i965/miptree: Create a disable CCS flag
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28
29 #include "intel_batchbuffer.h"
30 #include "intel_mipmap_tree.h"
31 #include "intel_resolve_map.h"
32 #include "intel_tex.h"
33 #include "intel_blit.h"
34 #include "intel_fbo.h"
35
36 #include "brw_blorp.h"
37 #include "brw_context.h"
38 #include "brw_state.h"
39
40 #include "main/enums.h"
41 #include "main/fbobject.h"
42 #include "main/formats.h"
43 #include "main/glformats.h"
44 #include "main/texcompress_etc.h"
45 #include "main/teximage.h"
46 #include "main/streaming-load-memcpy.h"
47 #include "x86/common_x86_asm.h"
48
49 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
50
51 static void *intel_miptree_map_raw(struct brw_context *brw,
52 struct intel_mipmap_tree *mt);
53
54 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
55
56 static bool
57 intel_miptree_alloc_mcs(struct brw_context *brw,
58 struct intel_mipmap_tree *mt,
59 GLuint num_samples);
60
61 /**
62 * Determine which MSAA layout should be used by the MSAA surface being
63 * created, based on the chip generation and the surface type.
64 */
65 static enum intel_msaa_layout
66 compute_msaa_layout(struct brw_context *brw, mesa_format format,
67 enum intel_aux_disable aux_disable)
68 {
69 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
70 if (brw->gen < 7)
71 return INTEL_MSAA_LAYOUT_IMS;
72
73 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
74 switch (_mesa_get_format_base_format(format)) {
75 case GL_DEPTH_COMPONENT:
76 case GL_STENCIL_INDEX:
77 case GL_DEPTH_STENCIL:
78 return INTEL_MSAA_LAYOUT_IMS;
79 default:
80 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
81 *
82 * This field must be set to 0 for all SINT MSRTs when all RT channels
83 * are not written
84 *
85 * In practice this means that we have to disable MCS for all signed
86 * integer MSAA buffers. The alternative, to disable MCS only when one
87 * of the render target channels is disabled, is impractical because it
88 * would require converting between CMS and UMS MSAA layouts on the fly,
89 * which is expensive.
90 */
91 if (brw->gen == 7 && _mesa_get_format_datatype(format) == GL_INT) {
92 return INTEL_MSAA_LAYOUT_UMS;
93 } else if (aux_disable & INTEL_AUX_DISABLE_MCS) {
94 /* We can't use the CMS layout because it uses an aux buffer, the MCS
95 * buffer. So fallback to UMS, which is identical to CMS without the
96 * MCS. */
97 return INTEL_MSAA_LAYOUT_UMS;
98 } else {
99 return INTEL_MSAA_LAYOUT_CMS;
100 }
101 }
102 }
103
104 bool
105 intel_tiling_supports_non_msrt_mcs(const struct brw_context *brw,
106 unsigned tiling)
107 {
108 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
109 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
110 *
111 * - Support is limited to tiled render targets.
112 *
113 * Gen9 changes the restriction to Y-tile only.
114 */
115 if (brw->gen >= 9)
116 return tiling == I915_TILING_Y;
117 else if (brw->gen >= 7)
118 return tiling != I915_TILING_NONE;
119 else
120 return false;
121 }
122
123 /**
124 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
125 * can be used. This doesn't (and should not) inspect any of the properties of
126 * the miptree's BO.
127 *
128 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
129 * beneath the "Fast Color Clear" bullet (p326):
130 *
131 * - Support is for non-mip-mapped and non-array surface types only.
132 *
133 * And then later, on p327:
134 *
135 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
136 * 64bpp, and 128bpp.
137 *
138 * From the Skylake documentation, it is made clear that X-tiling is no longer
139 * supported:
140 *
141 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
142 * non-MSRTs only.
143 */
144 bool
145 intel_miptree_supports_non_msrt_fast_clear(struct brw_context *brw,
146 const struct intel_mipmap_tree *mt)
147 {
148 /* MCS support does not exist prior to Gen7 */
149 if (brw->gen < 7)
150 return false;
151
152 if (mt->aux_disable & INTEL_AUX_DISABLE_MCS)
153 return false;
154
155 /* This function applies only to non-multisampled render targets. */
156 if (mt->num_samples > 1)
157 return false;
158
159 /* MCS is only supported for color buffers */
160 switch (_mesa_get_format_base_format(mt->format)) {
161 case GL_DEPTH_COMPONENT:
162 case GL_DEPTH_STENCIL:
163 case GL_STENCIL_INDEX:
164 return false;
165 }
166
167 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
168 return false;
169
170 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
171 const bool arrayed = mt->physical_depth0 != 1;
172
173 if (arrayed) {
174 /* Multisample surfaces with the CMS layout are not layered surfaces,
175 * yet still have physical_depth0 > 1. Assert that we don't
176 * accidentally reject a multisampled surface here. We should have
177 * rejected it earlier by explicitly checking the sample count.
178 */
179 assert(mt->num_samples <= 1);
180 }
181
182 /* Handle the hardware restrictions...
183 *
184 * All GENs have the following restriction: "MCS buffer for non-MSRT is
185 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
186 *
187 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
188 * Non-MultiSampler Render Target Restrictions) Support is for
189 * non-mip-mapped and non-array surface types only.
190 *
191 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
192 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
193 * surfaces are supported with MCS buffer layout with these alignments in
194 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
195 *
196 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
197 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
198 * surfaces are supported with MCS buffer layout with these alignments in
199 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
200 */
201 if (brw->gen < 8 && (mip_mapped || arrayed))
202 return false;
203
204 /* There's no point in using an MCS buffer if the surface isn't in a
205 * renderable format.
206 */
207 if (!brw->format_supported_as_render_target[mt->format])
208 return false;
209
210 if (brw->gen >= 9) {
211 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
212 const uint32_t brw_format = brw_format_for_mesa_format(linear_format);
213 return isl_format_supports_lossless_compression(&brw->screen->devinfo,
214 brw_format);
215 } else
216 return true;
217 }
218
219 /* On Gen9 support for color buffer compression was extended to single
220 * sampled surfaces. This is a helper considering both auxiliary buffer
221 * type and number of samples telling if the given miptree represents
222 * the new single sampled case - also called lossless compression.
223 */
224 bool
225 intel_miptree_is_lossless_compressed(const struct brw_context *brw,
226 const struct intel_mipmap_tree *mt)
227 {
228 /* Only available from Gen9 onwards. */
229 if (brw->gen < 9)
230 return false;
231
232 /* Compression always requires auxiliary buffer. */
233 if (!mt->mcs_buf)
234 return false;
235
236 /* Single sample compression is represented re-using msaa compression
237 * layout type: "Compressed Multisampled Surfaces".
238 */
239 if (mt->msaa_layout != INTEL_MSAA_LAYOUT_CMS)
240 return false;
241
242 /* And finally distinguish between msaa and single sample case. */
243 return mt->num_samples <= 1;
244 }
245
246 bool
247 intel_miptree_supports_lossless_compressed(struct brw_context *brw,
248 const struct intel_mipmap_tree *mt)
249 {
250 /* For now compression is only enabled for integer formats even though
251 * there exist supported floating point formats also. This is a heuristic
252 * decision based on current public benchmarks. In none of the cases these
253 * formats provided any improvement but a few cases were seen to regress.
254 * Hence these are left to to be enabled in the future when they are known
255 * to improve things.
256 */
257 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
258 return false;
259
260 /* Fast clear mechanism and lossless compression go hand in hand. */
261 if (!intel_miptree_supports_non_msrt_fast_clear(brw, mt))
262 return false;
263
264 /* Fast clear can be also used to clear srgb surfaces by using equivalent
265 * linear format. This trick, however, can't be extended to be used with
266 * lossless compression and therefore a check is needed to see if the format
267 * really is linear.
268 */
269 return _mesa_get_srgb_format_linear(mt->format) == mt->format;
270 }
271
272 /**
273 * Determine depth format corresponding to a depth+stencil format,
274 * for separate stencil.
275 */
276 mesa_format
277 intel_depth_format_for_depthstencil_format(mesa_format format) {
278 switch (format) {
279 case MESA_FORMAT_Z24_UNORM_S8_UINT:
280 return MESA_FORMAT_Z24_UNORM_X8_UINT;
281 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
282 return MESA_FORMAT_Z_FLOAT32;
283 default:
284 return format;
285 }
286 }
287
288
289 /**
290 * @param for_bo Indicates that the caller is
291 * intel_miptree_create_for_bo(). If true, then do not create
292 * \c stencil_mt.
293 */
294 static struct intel_mipmap_tree *
295 intel_miptree_create_layout(struct brw_context *brw,
296 GLenum target,
297 mesa_format format,
298 GLuint first_level,
299 GLuint last_level,
300 GLuint width0,
301 GLuint height0,
302 GLuint depth0,
303 GLuint num_samples,
304 uint32_t layout_flags)
305 {
306 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
307 if (!mt)
308 return NULL;
309
310 DBG("%s target %s format %s level %d..%d slices %d <-- %p\n", __func__,
311 _mesa_enum_to_string(target),
312 _mesa_get_format_name(format),
313 first_level, last_level, depth0, mt);
314
315 if (target == GL_TEXTURE_1D_ARRAY)
316 assert(height0 == 1);
317
318 mt->target = target;
319 mt->format = format;
320 mt->first_level = first_level;
321 mt->last_level = last_level;
322 mt->logical_width0 = width0;
323 mt->logical_height0 = height0;
324 mt->logical_depth0 = depth0;
325 mt->aux_disable = (layout_flags & MIPTREE_LAYOUT_DISABLE_AUX) != 0 ?
326 INTEL_AUX_DISABLE_ALL : INTEL_AUX_DISABLE_NONE;
327 mt->aux_disable |= INTEL_AUX_DISABLE_CCS;
328 mt->is_scanout = (layout_flags & MIPTREE_LAYOUT_FOR_SCANOUT) != 0;
329 exec_list_make_empty(&mt->hiz_map);
330 exec_list_make_empty(&mt->color_resolve_map);
331 mt->cpp = _mesa_get_format_bytes(format);
332 mt->num_samples = num_samples;
333 mt->compressed = _mesa_is_format_compressed(format);
334 mt->msaa_layout = INTEL_MSAA_LAYOUT_NONE;
335 mt->refcount = 1;
336
337 int depth_multiply = 1;
338 if (num_samples > 1) {
339 /* Adjust width/height/depth for MSAA */
340 mt->msaa_layout = compute_msaa_layout(brw, format, mt->aux_disable);
341 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_IMS) {
342 /* From the Ivybridge PRM, Volume 1, Part 1, page 108:
343 * "If the surface is multisampled and it is a depth or stencil
344 * surface or Multisampled Surface StorageFormat in SURFACE_STATE is
345 * MSFMT_DEPTH_STENCIL, WL and HL must be adjusted as follows before
346 * proceeding:
347 *
348 * +----------------------------------------------------------------+
349 * | Num Multisamples | W_l = | H_l = |
350 * +----------------------------------------------------------------+
351 * | 2 | ceiling(W_l / 2) * 4 | H_l (no adjustment) |
352 * | 4 | ceiling(W_l / 2) * 4 | ceiling(H_l / 2) * 4 |
353 * | 8 | ceiling(W_l / 2) * 8 | ceiling(H_l / 2) * 4 |
354 * | 16 | ceiling(W_l / 2) * 8 | ceiling(H_l / 2) * 8 |
355 * +----------------------------------------------------------------+
356 * "
357 *
358 * Note that MSFMT_DEPTH_STENCIL just means the IMS (interleaved)
359 * format rather than UMS/CMS (array slices). The Sandybridge PRM,
360 * Volume 1, Part 1, Page 111 has the same formula for 4x MSAA.
361 *
362 * Another more complicated explanation for these adjustments comes
363 * from the Sandybridge PRM, volume 4, part 1, page 31:
364 *
365 * "Any of the other messages (sample*, LOD, load4) used with a
366 * (4x) multisampled surface will in-effect sample a surface with
367 * double the height and width as that indicated in the surface
368 * state. Each pixel position on the original-sized surface is
369 * replaced with a 2x2 of samples with the following arrangement:
370 *
371 * sample 0 sample 2
372 * sample 1 sample 3"
373 *
374 * Thus, when sampling from a multisampled texture, it behaves as
375 * though the layout in memory for (x,y,sample) is:
376 *
377 * (0,0,0) (0,0,2) (1,0,0) (1,0,2)
378 * (0,0,1) (0,0,3) (1,0,1) (1,0,3)
379 *
380 * (0,1,0) (0,1,2) (1,1,0) (1,1,2)
381 * (0,1,1) (0,1,3) (1,1,1) (1,1,3)
382 *
383 * However, the actual layout of multisampled data in memory is:
384 *
385 * (0,0,0) (1,0,0) (0,0,1) (1,0,1)
386 * (0,1,0) (1,1,0) (0,1,1) (1,1,1)
387 *
388 * (0,0,2) (1,0,2) (0,0,3) (1,0,3)
389 * (0,1,2) (1,1,2) (0,1,3) (1,1,3)
390 *
391 * This pattern repeats for each 2x2 pixel block.
392 *
393 * As a result, when calculating the size of our 4-sample buffer for
394 * an odd width or height, we have to align before scaling up because
395 * sample 3 is in that bottom right 2x2 block.
396 */
397 switch (num_samples) {
398 case 2:
399 assert(brw->gen >= 8);
400 width0 = ALIGN(width0, 2) * 2;
401 height0 = ALIGN(height0, 2);
402 break;
403 case 4:
404 width0 = ALIGN(width0, 2) * 2;
405 height0 = ALIGN(height0, 2) * 2;
406 break;
407 case 8:
408 width0 = ALIGN(width0, 2) * 4;
409 height0 = ALIGN(height0, 2) * 2;
410 break;
411 case 16:
412 width0 = ALIGN(width0, 2) * 4;
413 height0 = ALIGN(height0, 2) * 4;
414 break;
415 default:
416 /* num_samples should already have been quantized to 0, 1, 2, 4, 8
417 * or 16.
418 */
419 unreachable("not reached");
420 }
421 } else {
422 /* Non-interleaved */
423 depth_multiply = num_samples;
424 depth0 *= depth_multiply;
425 }
426 }
427
428 /* Set array_layout to ALL_SLICES_AT_EACH_LOD when array_spacing_lod0 can
429 * be used. array_spacing_lod0 is only used for non-IMS MSAA surfaces on
430 * Gen 7 and 8. On Gen 8 and 9 this layout is not available but it is still
431 * used on Gen8 to make it pick a qpitch value which doesn't include space
432 * for the mipmaps. On Gen9 this is not necessary because it will
433 * automatically pick a packed qpitch value whenever mt->first_level ==
434 * mt->last_level.
435 * TODO: can we use it elsewhere?
436 * TODO: also disable this on Gen8 and pick the qpitch value like Gen9
437 */
438 if (brw->gen >= 9) {
439 mt->array_layout = ALL_LOD_IN_EACH_SLICE;
440 } else {
441 switch (mt->msaa_layout) {
442 case INTEL_MSAA_LAYOUT_NONE:
443 case INTEL_MSAA_LAYOUT_IMS:
444 mt->array_layout = ALL_LOD_IN_EACH_SLICE;
445 break;
446 case INTEL_MSAA_LAYOUT_UMS:
447 case INTEL_MSAA_LAYOUT_CMS:
448 mt->array_layout = ALL_SLICES_AT_EACH_LOD;
449 break;
450 }
451 }
452
453 if (target == GL_TEXTURE_CUBE_MAP)
454 assert(depth0 == 6 * depth_multiply);
455
456 mt->physical_width0 = width0;
457 mt->physical_height0 = height0;
458 mt->physical_depth0 = depth0;
459
460 if (!(layout_flags & MIPTREE_LAYOUT_FOR_BO) &&
461 _mesa_get_format_base_format(format) == GL_DEPTH_STENCIL &&
462 (brw->must_use_separate_stencil ||
463 (brw->has_separate_stencil &&
464 intel_miptree_wants_hiz_buffer(brw, mt)))) {
465 uint32_t stencil_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD;
466 if (brw->gen == 6) {
467 stencil_flags |= MIPTREE_LAYOUT_FORCE_ALL_SLICE_AT_LOD |
468 MIPTREE_LAYOUT_TILING_ANY;
469 }
470
471 mt->stencil_mt = intel_miptree_create(brw,
472 mt->target,
473 MESA_FORMAT_S_UINT8,
474 mt->first_level,
475 mt->last_level,
476 mt->logical_width0,
477 mt->logical_height0,
478 mt->logical_depth0,
479 num_samples,
480 stencil_flags);
481
482 if (!mt->stencil_mt) {
483 intel_miptree_release(&mt);
484 return NULL;
485 }
486 mt->stencil_mt->r8stencil_needs_update = true;
487
488 /* Fix up the Z miptree format for how we're splitting out separate
489 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
490 */
491 mt->format = intel_depth_format_for_depthstencil_format(mt->format);
492 mt->cpp = 4;
493
494 if (format == mt->format) {
495 _mesa_problem(NULL, "Unknown format %s in separate stencil mt\n",
496 _mesa_get_format_name(mt->format));
497 }
498 }
499
500 if (layout_flags & MIPTREE_LAYOUT_FORCE_ALL_SLICE_AT_LOD)
501 mt->array_layout = ALL_SLICES_AT_EACH_LOD;
502
503 /*
504 * Obey HALIGN_16 constraints for Gen8 and Gen9 buffers which are
505 * multisampled or have an AUX buffer attached to it.
506 *
507 * GEN | MSRT | AUX_CCS_* or AUX_MCS
508 * -------------------------------------------
509 * 9 | HALIGN_16 | HALIGN_16
510 * 8 | HALIGN_ANY | HALIGN_16
511 * 7 | ? | ?
512 * 6 | ? | ?
513 */
514 if (intel_miptree_supports_non_msrt_fast_clear(brw, mt)) {
515 if (brw->gen >= 9 || (brw->gen == 8 && num_samples <= 1))
516 layout_flags |= MIPTREE_LAYOUT_FORCE_HALIGN16;
517 } else if (brw->gen >= 9 && num_samples > 1) {
518 layout_flags |= MIPTREE_LAYOUT_FORCE_HALIGN16;
519 } else {
520 const UNUSED bool is_lossless_compressed_aux =
521 brw->gen >= 9 && num_samples == 1 &&
522 mt->format == MESA_FORMAT_R_UINT32;
523
524 /* For now, nothing else has this requirement */
525 assert(is_lossless_compressed_aux ||
526 (layout_flags & MIPTREE_LAYOUT_FORCE_HALIGN16) == 0);
527 }
528
529 brw_miptree_layout(brw, mt, layout_flags);
530
531 if (mt->aux_disable & INTEL_AUX_DISABLE_MCS)
532 assert(mt->msaa_layout != INTEL_MSAA_LAYOUT_CMS);
533
534 return mt;
535 }
536
537
538 /**
539 * Choose an appropriate uncompressed format for a requested
540 * compressed format, if unsupported.
541 */
542 mesa_format
543 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
544 {
545 /* No need to lower ETC formats on these platforms,
546 * they are supported natively.
547 */
548 if (brw->gen >= 8 || brw->is_baytrail)
549 return format;
550
551 switch (format) {
552 case MESA_FORMAT_ETC1_RGB8:
553 return MESA_FORMAT_R8G8B8X8_UNORM;
554 case MESA_FORMAT_ETC2_RGB8:
555 return MESA_FORMAT_R8G8B8X8_UNORM;
556 case MESA_FORMAT_ETC2_SRGB8:
557 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
558 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
559 return MESA_FORMAT_B8G8R8A8_SRGB;
560 case MESA_FORMAT_ETC2_RGBA8_EAC:
561 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
562 return MESA_FORMAT_R8G8B8A8_UNORM;
563 case MESA_FORMAT_ETC2_R11_EAC:
564 return MESA_FORMAT_R_UNORM16;
565 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
566 return MESA_FORMAT_R_SNORM16;
567 case MESA_FORMAT_ETC2_RG11_EAC:
568 return MESA_FORMAT_R16G16_UNORM;
569 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
570 return MESA_FORMAT_R16G16_SNORM;
571 default:
572 /* Non ETC1 / ETC2 format */
573 return format;
574 }
575 }
576
577 /* This function computes Yf/Ys tiled bo size, alignment and pitch. */
578 static unsigned long
579 intel_get_yf_ys_bo_size(struct intel_mipmap_tree *mt, unsigned *alignment,
580 unsigned long *pitch)
581 {
582 uint32_t tile_width, tile_height;
583 unsigned long stride, size, aligned_y;
584
585 assert(mt->tr_mode != INTEL_MIPTREE_TRMODE_NONE);
586 intel_get_tile_dims(mt->tiling, mt->tr_mode, mt->cpp,
587 &tile_width, &tile_height);
588
589 aligned_y = ALIGN(mt->total_height, tile_height);
590 stride = mt->total_width * mt->cpp;
591 stride = ALIGN(stride, tile_width);
592 size = stride * aligned_y;
593
594 if (mt->tr_mode == INTEL_MIPTREE_TRMODE_YF) {
595 assert(size % 4096 == 0);
596 *alignment = 4096;
597 } else {
598 assert(size % (64 * 1024) == 0);
599 *alignment = 64 * 1024;
600 }
601 *pitch = stride;
602 return size;
603 }
604
605 static struct intel_mipmap_tree *
606 miptree_create(struct brw_context *brw,
607 GLenum target,
608 mesa_format format,
609 GLuint first_level,
610 GLuint last_level,
611 GLuint width0,
612 GLuint height0,
613 GLuint depth0,
614 GLuint num_samples,
615 uint32_t layout_flags)
616 {
617 struct intel_mipmap_tree *mt;
618 mesa_format tex_format = format;
619 mesa_format etc_format = MESA_FORMAT_NONE;
620 uint32_t alloc_flags = 0;
621
622 format = intel_lower_compressed_format(brw, format);
623
624 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
625
626 assert((layout_flags & MIPTREE_LAYOUT_FOR_BO) == 0);
627 mt = intel_miptree_create_layout(brw, target, format,
628 first_level, last_level, width0,
629 height0, depth0, num_samples,
630 layout_flags);
631 /*
632 * pitch == 0 || height == 0 indicates the null texture
633 */
634 if (!mt || !mt->total_width || !mt->total_height) {
635 intel_miptree_release(&mt);
636 return NULL;
637 }
638
639 if (mt->tiling == (I915_TILING_Y | I915_TILING_X))
640 mt->tiling = I915_TILING_Y;
641
642 if (layout_flags & MIPTREE_LAYOUT_ACCELERATED_UPLOAD)
643 alloc_flags |= BO_ALLOC_FOR_RENDER;
644
645 unsigned long pitch;
646 mt->etc_format = etc_format;
647
648 if (mt->tr_mode != INTEL_MIPTREE_TRMODE_NONE) {
649 unsigned alignment = 0;
650 unsigned long size;
651 size = intel_get_yf_ys_bo_size(mt, &alignment, &pitch);
652 assert(size);
653 mt->bo = drm_intel_bo_alloc_for_render(brw->bufmgr, "miptree",
654 size, alignment);
655 } else {
656 if (format == MESA_FORMAT_S_UINT8) {
657 /* Align to size of W tile, 64x64. */
658 mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree",
659 ALIGN(mt->total_width, 64),
660 ALIGN(mt->total_height, 64),
661 mt->cpp, &mt->tiling, &pitch,
662 alloc_flags);
663 } else {
664 mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree",
665 mt->total_width, mt->total_height,
666 mt->cpp, &mt->tiling, &pitch,
667 alloc_flags);
668 }
669 }
670
671 mt->pitch = pitch;
672
673 return mt;
674 }
675
676 struct intel_mipmap_tree *
677 intel_miptree_create(struct brw_context *brw,
678 GLenum target,
679 mesa_format format,
680 GLuint first_level,
681 GLuint last_level,
682 GLuint width0,
683 GLuint height0,
684 GLuint depth0,
685 GLuint num_samples,
686 uint32_t layout_flags)
687 {
688 struct intel_mipmap_tree *mt = miptree_create(
689 brw, target, format,
690 first_level, last_level,
691 width0, height0, depth0, num_samples,
692 layout_flags);
693
694 /* If the BO is too large to fit in the aperture, we need to use the
695 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
696 * handle Y-tiling, so we need to fall back to X.
697 */
698 if (brw->gen < 6 && mt->bo->size >= brw->max_gtt_map_object_size &&
699 mt->tiling == I915_TILING_Y) {
700 unsigned long pitch = mt->pitch;
701 const uint32_t alloc_flags =
702 (layout_flags & MIPTREE_LAYOUT_ACCELERATED_UPLOAD) ?
703 BO_ALLOC_FOR_RENDER : 0;
704 perf_debug("%dx%d miptree larger than aperture; falling back to X-tiled\n",
705 mt->total_width, mt->total_height);
706
707 mt->tiling = I915_TILING_X;
708 drm_intel_bo_unreference(mt->bo);
709 mt->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "miptree",
710 mt->total_width, mt->total_height, mt->cpp,
711 &mt->tiling, &pitch, alloc_flags);
712 mt->pitch = pitch;
713 }
714
715 mt->offset = 0;
716
717 if (!mt->bo) {
718 intel_miptree_release(&mt);
719 return NULL;
720 }
721
722
723 if (mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS) {
724 assert(mt->num_samples > 1);
725 if (!intel_miptree_alloc_mcs(brw, mt, num_samples)) {
726 intel_miptree_release(&mt);
727 return NULL;
728 }
729 }
730
731 /* If this miptree is capable of supporting fast color clears, set
732 * fast_clear_state appropriately to ensure that fast clears will occur.
733 * Allocation of the MCS miptree will be deferred until the first fast
734 * clear actually occurs or when compressed single sampled buffer is
735 * written by the GPU for the first time.
736 */
737 if (intel_tiling_supports_non_msrt_mcs(brw, mt->tiling) &&
738 intel_miptree_supports_non_msrt_fast_clear(brw, mt)) {
739 mt->aux_disable &= ~INTEL_AUX_DISABLE_CCS;
740 assert(brw->gen < 8 || mt->halign == 16 || num_samples <= 1);
741
742 /* On Gen9+ clients are not currently capable of consuming compressed
743 * single-sampled buffers. Disabling compression allows us to skip
744 * resolves.
745 */
746 const bool lossless_compression_disabled = INTEL_DEBUG & DEBUG_NO_RBC;
747 const bool is_lossless_compressed =
748 unlikely(!lossless_compression_disabled) &&
749 brw->gen >= 9 && !mt->is_scanout &&
750 intel_miptree_supports_lossless_compressed(brw, mt);
751
752 if (is_lossless_compressed) {
753 intel_miptree_alloc_non_msrt_mcs(brw, mt, is_lossless_compressed);
754 }
755 }
756
757 return mt;
758 }
759
760 struct intel_mipmap_tree *
761 intel_miptree_create_for_bo(struct brw_context *brw,
762 drm_intel_bo *bo,
763 mesa_format format,
764 uint32_t offset,
765 uint32_t width,
766 uint32_t height,
767 uint32_t depth,
768 int pitch,
769 uint32_t layout_flags)
770 {
771 struct intel_mipmap_tree *mt;
772 uint32_t tiling, swizzle;
773 GLenum target;
774
775 drm_intel_bo_get_tiling(bo, &tiling, &swizzle);
776
777 /* Nothing will be able to use this miptree with the BO if the offset isn't
778 * aligned.
779 */
780 if (tiling != I915_TILING_NONE)
781 assert(offset % 4096 == 0);
782
783 /* miptrees can't handle negative pitch. If you need flipping of images,
784 * that's outside of the scope of the mt.
785 */
786 assert(pitch >= 0);
787
788 target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
789
790 /* The BO already has a tiling format and we shouldn't confuse the lower
791 * layers by making it try to find a tiling format again.
792 */
793 assert((layout_flags & MIPTREE_LAYOUT_TILING_ANY) == 0);
794 assert((layout_flags & MIPTREE_LAYOUT_TILING_NONE) == 0);
795
796 layout_flags |= MIPTREE_LAYOUT_FOR_BO;
797 mt = intel_miptree_create_layout(brw, target, format,
798 0, 0,
799 width, height, depth, 0,
800 layout_flags);
801 if (!mt)
802 return NULL;
803
804 drm_intel_bo_reference(bo);
805 mt->bo = bo;
806 mt->pitch = pitch;
807 mt->offset = offset;
808 mt->tiling = tiling;
809
810 return mt;
811 }
812
813 /**
814 * For a singlesample renderbuffer, this simply wraps the given BO with a
815 * miptree.
816 *
817 * For a multisample renderbuffer, this wraps the window system's
818 * (singlesample) BO with a singlesample miptree attached to the
819 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
820 * that will contain the actual rendering (which is lazily resolved to
821 * irb->singlesample_mt).
822 */
823 void
824 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
825 struct intel_renderbuffer *irb,
826 drm_intel_bo *bo,
827 uint32_t width, uint32_t height,
828 uint32_t pitch)
829 {
830 struct intel_mipmap_tree *singlesample_mt = NULL;
831 struct intel_mipmap_tree *multisample_mt = NULL;
832 struct gl_renderbuffer *rb = &irb->Base.Base;
833 mesa_format format = rb->Format;
834 int num_samples = rb->NumSamples;
835
836 /* Only the front and back buffers, which are color buffers, are allocated
837 * through the image loader.
838 */
839 assert(_mesa_get_format_base_format(format) == GL_RGB ||
840 _mesa_get_format_base_format(format) == GL_RGBA);
841
842 singlesample_mt = intel_miptree_create_for_bo(intel,
843 bo,
844 format,
845 0,
846 width,
847 height,
848 1,
849 pitch,
850 MIPTREE_LAYOUT_FOR_SCANOUT);
851 if (!singlesample_mt)
852 goto fail;
853
854 /* If this miptree is capable of supporting fast color clears, set
855 * mcs_state appropriately to ensure that fast clears will occur.
856 * Allocation of the MCS miptree will be deferred until the first fast
857 * clear actually occurs.
858 */
859 if (intel_tiling_supports_non_msrt_mcs(intel, singlesample_mt->tiling) &&
860 intel_miptree_supports_non_msrt_fast_clear(intel, singlesample_mt)) {
861 singlesample_mt->aux_disable &= ~INTEL_AUX_DISABLE_CCS;
862 }
863
864 if (num_samples == 0) {
865 intel_miptree_release(&irb->mt);
866 irb->mt = singlesample_mt;
867
868 assert(!irb->singlesample_mt);
869 } else {
870 intel_miptree_release(&irb->singlesample_mt);
871 irb->singlesample_mt = singlesample_mt;
872
873 if (!irb->mt ||
874 irb->mt->logical_width0 != width ||
875 irb->mt->logical_height0 != height) {
876 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
877 format,
878 width,
879 height,
880 num_samples);
881 if (!multisample_mt)
882 goto fail;
883
884 irb->need_downsample = false;
885 intel_miptree_release(&irb->mt);
886 irb->mt = multisample_mt;
887 }
888 }
889 return;
890
891 fail:
892 intel_miptree_release(&irb->singlesample_mt);
893 intel_miptree_release(&irb->mt);
894 return;
895 }
896
897 struct intel_mipmap_tree*
898 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
899 mesa_format format,
900 uint32_t width,
901 uint32_t height,
902 uint32_t num_samples)
903 {
904 struct intel_mipmap_tree *mt;
905 uint32_t depth = 1;
906 bool ok;
907 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
908 const uint32_t layout_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD |
909 MIPTREE_LAYOUT_TILING_ANY |
910 MIPTREE_LAYOUT_FOR_SCANOUT;
911
912 mt = intel_miptree_create(brw, target, format, 0, 0,
913 width, height, depth, num_samples,
914 layout_flags);
915 if (!mt)
916 goto fail;
917
918 if (intel_miptree_wants_hiz_buffer(brw, mt)) {
919 ok = intel_miptree_alloc_hiz(brw, mt);
920 if (!ok)
921 goto fail;
922 }
923
924 return mt;
925
926 fail:
927 intel_miptree_release(&mt);
928 return NULL;
929 }
930
931 void
932 intel_miptree_reference(struct intel_mipmap_tree **dst,
933 struct intel_mipmap_tree *src)
934 {
935 if (*dst == src)
936 return;
937
938 intel_miptree_release(dst);
939
940 if (src) {
941 src->refcount++;
942 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
943 }
944
945 *dst = src;
946 }
947
948 static void
949 intel_miptree_hiz_buffer_free(struct intel_miptree_hiz_buffer *hiz_buf)
950 {
951 if (hiz_buf == NULL)
952 return;
953
954 if (hiz_buf->mt)
955 intel_miptree_release(&hiz_buf->mt);
956 else
957 drm_intel_bo_unreference(hiz_buf->aux_base.bo);
958
959 free(hiz_buf);
960 }
961
962 void
963 intel_miptree_release(struct intel_mipmap_tree **mt)
964 {
965 if (!*mt)
966 return;
967
968 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
969 if (--(*mt)->refcount <= 0) {
970 GLuint i;
971
972 DBG("%s deleting %p\n", __func__, *mt);
973
974 drm_intel_bo_unreference((*mt)->bo);
975 intel_miptree_release(&(*mt)->stencil_mt);
976 intel_miptree_release(&(*mt)->r8stencil_mt);
977 intel_miptree_hiz_buffer_free((*mt)->hiz_buf);
978 if ((*mt)->mcs_buf) {
979 drm_intel_bo_unreference((*mt)->mcs_buf->bo);
980 free((*mt)->mcs_buf);
981 }
982 intel_resolve_map_clear(&(*mt)->hiz_map);
983 intel_resolve_map_clear(&(*mt)->color_resolve_map);
984
985 intel_miptree_release(&(*mt)->plane[0]);
986 intel_miptree_release(&(*mt)->plane[1]);
987
988 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
989 free((*mt)->level[i].slice);
990 }
991
992 free(*mt);
993 }
994 *mt = NULL;
995 }
996
997
998 void
999 intel_get_image_dims(struct gl_texture_image *image,
1000 int *width, int *height, int *depth)
1001 {
1002 switch (image->TexObject->Target) {
1003 case GL_TEXTURE_1D_ARRAY:
1004 /* For a 1D Array texture the OpenGL API will treat the image height as
1005 * the number of array slices. For Intel hardware, we treat the 1D array
1006 * as a 2D Array with a height of 1. So, here we want to swap image
1007 * height and depth.
1008 */
1009 assert(image->Depth == 1);
1010 *width = image->Width;
1011 *height = 1;
1012 *depth = image->Height;
1013 break;
1014 case GL_TEXTURE_CUBE_MAP:
1015 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1016 * though we really have 6 slices.
1017 */
1018 assert(image->Depth == 1);
1019 *width = image->Width;
1020 *height = image->Height;
1021 *depth = 6;
1022 break;
1023 default:
1024 *width = image->Width;
1025 *height = image->Height;
1026 *depth = image->Depth;
1027 break;
1028 }
1029 }
1030
1031 /**
1032 * Can the image be pulled into a unified mipmap tree? This mirrors
1033 * the completeness test in a lot of ways.
1034 *
1035 * Not sure whether I want to pass gl_texture_image here.
1036 */
1037 bool
1038 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1039 struct gl_texture_image *image)
1040 {
1041 struct intel_texture_image *intelImage = intel_texture_image(image);
1042 GLuint level = intelImage->base.Base.Level;
1043 int width, height, depth;
1044
1045 /* glTexImage* choose the texture object based on the target passed in, and
1046 * objects can't change targets over their lifetimes, so this should be
1047 * true.
1048 */
1049 assert(image->TexObject->Target == mt->target);
1050
1051 mesa_format mt_format = mt->format;
1052 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1053 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1054 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1055 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1056 if (mt->etc_format != MESA_FORMAT_NONE)
1057 mt_format = mt->etc_format;
1058
1059 if (image->TexFormat != mt_format)
1060 return false;
1061
1062 intel_get_image_dims(image, &width, &height, &depth);
1063
1064 if (mt->target == GL_TEXTURE_CUBE_MAP)
1065 depth = 6;
1066
1067 int level_depth = mt->level[level].depth;
1068 if (mt->num_samples > 1) {
1069 switch (mt->msaa_layout) {
1070 case INTEL_MSAA_LAYOUT_NONE:
1071 case INTEL_MSAA_LAYOUT_IMS:
1072 break;
1073 case INTEL_MSAA_LAYOUT_UMS:
1074 case INTEL_MSAA_LAYOUT_CMS:
1075 level_depth /= mt->num_samples;
1076 break;
1077 }
1078 }
1079
1080 /* Test image dimensions against the base level image adjusted for
1081 * minification. This will also catch images not present in the
1082 * tree, changed targets, etc.
1083 */
1084 if (width != minify(mt->logical_width0, level - mt->first_level) ||
1085 height != minify(mt->logical_height0, level - mt->first_level) ||
1086 depth != level_depth) {
1087 return false;
1088 }
1089
1090 if (image->NumSamples != mt->num_samples)
1091 return false;
1092
1093 return true;
1094 }
1095
1096
1097 void
1098 intel_miptree_set_level_info(struct intel_mipmap_tree *mt,
1099 GLuint level,
1100 GLuint x, GLuint y, GLuint d)
1101 {
1102 mt->level[level].depth = d;
1103 mt->level[level].level_x = x;
1104 mt->level[level].level_y = y;
1105
1106 DBG("%s level %d, depth %d, offset %d,%d\n", __func__,
1107 level, d, x, y);
1108
1109 assert(mt->level[level].slice == NULL);
1110
1111 mt->level[level].slice = calloc(d, sizeof(*mt->level[0].slice));
1112 mt->level[level].slice[0].x_offset = mt->level[level].level_x;
1113 mt->level[level].slice[0].y_offset = mt->level[level].level_y;
1114 }
1115
1116
1117 void
1118 intel_miptree_set_image_offset(struct intel_mipmap_tree *mt,
1119 GLuint level, GLuint img,
1120 GLuint x, GLuint y)
1121 {
1122 if (img == 0 && level == 0)
1123 assert(x == 0 && y == 0);
1124
1125 assert(img < mt->level[level].depth);
1126
1127 mt->level[level].slice[img].x_offset = mt->level[level].level_x + x;
1128 mt->level[level].slice[img].y_offset = mt->level[level].level_y + y;
1129
1130 DBG("%s level %d img %d pos %d,%d\n",
1131 __func__, level, img,
1132 mt->level[level].slice[img].x_offset,
1133 mt->level[level].slice[img].y_offset);
1134 }
1135
1136 void
1137 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1138 GLuint level, GLuint slice,
1139 GLuint *x, GLuint *y)
1140 {
1141 assert(slice < mt->level[level].depth);
1142
1143 *x = mt->level[level].slice[slice].x_offset;
1144 *y = mt->level[level].slice[slice].y_offset;
1145 }
1146
1147
1148 /**
1149 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1150 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1151 * and tile_h is set to 1.
1152 */
1153 void
1154 intel_get_tile_dims(uint32_t tiling, uint32_t tr_mode, uint32_t cpp,
1155 uint32_t *tile_w, uint32_t *tile_h)
1156 {
1157 if (tr_mode == INTEL_MIPTREE_TRMODE_NONE) {
1158 switch (tiling) {
1159 case I915_TILING_X:
1160 *tile_w = 512;
1161 *tile_h = 8;
1162 break;
1163 case I915_TILING_Y:
1164 *tile_w = 128;
1165 *tile_h = 32;
1166 break;
1167 case I915_TILING_NONE:
1168 *tile_w = cpp;
1169 *tile_h = 1;
1170 break;
1171 default:
1172 unreachable("not reached");
1173 }
1174 } else {
1175 uint32_t aspect_ratio = 1;
1176 assert(_mesa_is_pow_two(cpp));
1177
1178 switch (cpp) {
1179 case 1:
1180 *tile_h = 64;
1181 break;
1182 case 2:
1183 case 4:
1184 *tile_h = 32;
1185 break;
1186 case 8:
1187 case 16:
1188 *tile_h = 16;
1189 break;
1190 default:
1191 unreachable("not reached");
1192 }
1193
1194 if (cpp == 2 || cpp == 8)
1195 aspect_ratio = 2;
1196
1197 if (tr_mode == INTEL_MIPTREE_TRMODE_YS)
1198 *tile_h *= 4;
1199
1200 *tile_w = *tile_h * aspect_ratio * cpp;
1201 }
1202 }
1203
1204
1205 /**
1206 * This function computes masks that may be used to select the bits of the X
1207 * and Y coordinates that indicate the offset within a tile. If the BO is
1208 * untiled, the masks are set to 0.
1209 */
1210 void
1211 intel_get_tile_masks(uint32_t tiling, uint32_t tr_mode, uint32_t cpp,
1212 uint32_t *mask_x, uint32_t *mask_y)
1213 {
1214 uint32_t tile_w_bytes, tile_h;
1215
1216 intel_get_tile_dims(tiling, tr_mode, cpp, &tile_w_bytes, &tile_h);
1217
1218 *mask_x = tile_w_bytes / cpp - 1;
1219 *mask_y = tile_h - 1;
1220 }
1221
1222 /**
1223 * Compute the offset (in bytes) from the start of the BO to the given x
1224 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1225 * multiples of the tile size.
1226 */
1227 uint32_t
1228 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1229 uint32_t x, uint32_t y)
1230 {
1231 int cpp = mt->cpp;
1232 uint32_t pitch = mt->pitch;
1233 uint32_t tiling = mt->tiling;
1234
1235 switch (tiling) {
1236 default:
1237 unreachable("not reached");
1238 case I915_TILING_NONE:
1239 return y * pitch + x * cpp;
1240 case I915_TILING_X:
1241 assert((x % (512 / cpp)) == 0);
1242 assert((y % 8) == 0);
1243 return y * pitch + x / (512 / cpp) * 4096;
1244 case I915_TILING_Y:
1245 assert((x % (128 / cpp)) == 0);
1246 assert((y % 32) == 0);
1247 return y * pitch + x / (128 / cpp) * 4096;
1248 }
1249 }
1250
1251 /**
1252 * Rendering with tiled buffers requires that the base address of the buffer
1253 * be aligned to a page boundary. For renderbuffers, and sometimes with
1254 * textures, we may want the surface to point at a texture image level that
1255 * isn't at a page boundary.
1256 *
1257 * This function returns an appropriately-aligned base offset
1258 * according to the tiling restrictions, plus any required x/y offset
1259 * from there.
1260 */
1261 uint32_t
1262 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1263 GLuint level, GLuint slice,
1264 uint32_t *tile_x,
1265 uint32_t *tile_y)
1266 {
1267 uint32_t x, y;
1268 uint32_t mask_x, mask_y;
1269
1270 intel_get_tile_masks(mt->tiling, mt->tr_mode, mt->cpp, &mask_x, &mask_y);
1271 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1272
1273 *tile_x = x & mask_x;
1274 *tile_y = y & mask_y;
1275
1276 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1277 }
1278
1279 static void
1280 intel_miptree_copy_slice_sw(struct brw_context *brw,
1281 struct intel_mipmap_tree *dst_mt,
1282 struct intel_mipmap_tree *src_mt,
1283 int level,
1284 int slice,
1285 int width,
1286 int height)
1287 {
1288 void *src, *dst;
1289 ptrdiff_t src_stride, dst_stride;
1290 int cpp = dst_mt->cpp;
1291
1292 intel_miptree_map(brw, src_mt,
1293 level, slice,
1294 0, 0,
1295 width, height,
1296 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1297 &src, &src_stride);
1298
1299 intel_miptree_map(brw, dst_mt,
1300 level, slice,
1301 0, 0,
1302 width, height,
1303 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1304 BRW_MAP_DIRECT_BIT,
1305 &dst, &dst_stride);
1306
1307 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1308 _mesa_get_format_name(src_mt->format),
1309 src_mt, src, src_stride,
1310 _mesa_get_format_name(dst_mt->format),
1311 dst_mt, dst, dst_stride,
1312 width, height);
1313
1314 int row_size = cpp * width;
1315 if (src_stride == row_size &&
1316 dst_stride == row_size) {
1317 memcpy(dst, src, row_size * height);
1318 } else {
1319 for (int i = 0; i < height; i++) {
1320 memcpy(dst, src, row_size);
1321 dst += dst_stride;
1322 src += src_stride;
1323 }
1324 }
1325
1326 intel_miptree_unmap(brw, dst_mt, level, slice);
1327 intel_miptree_unmap(brw, src_mt, level, slice);
1328
1329 /* Don't forget to copy the stencil data over, too. We could have skipped
1330 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1331 * shuffling the two data sources in/out of temporary storage instead of
1332 * the direct mapping we get this way.
1333 */
1334 if (dst_mt->stencil_mt) {
1335 assert(src_mt->stencil_mt);
1336 intel_miptree_copy_slice_sw(brw, dst_mt->stencil_mt, src_mt->stencil_mt,
1337 level, slice, width, height);
1338 }
1339 }
1340
1341 static void
1342 intel_miptree_copy_slice(struct brw_context *brw,
1343 struct intel_mipmap_tree *dst_mt,
1344 struct intel_mipmap_tree *src_mt,
1345 int level,
1346 int face,
1347 int depth)
1348
1349 {
1350 mesa_format format = src_mt->format;
1351 uint32_t width = minify(src_mt->physical_width0, level - src_mt->first_level);
1352 uint32_t height = minify(src_mt->physical_height0, level - src_mt->first_level);
1353 int slice;
1354
1355 if (face > 0)
1356 slice = face;
1357 else
1358 slice = depth;
1359
1360 assert(depth < src_mt->level[level].depth);
1361 assert(src_mt->format == dst_mt->format);
1362
1363 if (dst_mt->compressed) {
1364 unsigned int i, j;
1365 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1366 height = ALIGN_NPOT(height, j) / j;
1367 width = ALIGN_NPOT(width, i) / i;
1368 }
1369
1370 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1371 * below won't apply since we can't do the depth's Y tiling or the
1372 * stencil's W tiling in the blitter.
1373 */
1374 if (src_mt->stencil_mt) {
1375 intel_miptree_copy_slice_sw(brw,
1376 dst_mt, src_mt,
1377 level, slice,
1378 width, height);
1379 return;
1380 }
1381
1382 uint32_t dst_x, dst_y, src_x, src_y;
1383 intel_miptree_get_image_offset(dst_mt, level, slice, &dst_x, &dst_y);
1384 intel_miptree_get_image_offset(src_mt, level, slice, &src_x, &src_y);
1385
1386 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1387 _mesa_get_format_name(src_mt->format),
1388 src_mt, src_x, src_y, src_mt->pitch,
1389 _mesa_get_format_name(dst_mt->format),
1390 dst_mt, dst_x, dst_y, dst_mt->pitch,
1391 width, height);
1392
1393 if (!intel_miptree_blit(brw,
1394 src_mt, level, slice, 0, 0, false,
1395 dst_mt, level, slice, 0, 0, false,
1396 width, height, GL_COPY)) {
1397 perf_debug("miptree validate blit for %s failed\n",
1398 _mesa_get_format_name(format));
1399
1400 intel_miptree_copy_slice_sw(brw, dst_mt, src_mt, level, slice,
1401 width, height);
1402 }
1403 }
1404
1405 /**
1406 * Copies the image's current data to the given miptree, and associates that
1407 * miptree with the image.
1408 *
1409 * If \c invalidate is true, then the actual image data does not need to be
1410 * copied, but the image still needs to be associated to the new miptree (this
1411 * is set to true if we're about to clear the image).
1412 */
1413 void
1414 intel_miptree_copy_teximage(struct brw_context *brw,
1415 struct intel_texture_image *intelImage,
1416 struct intel_mipmap_tree *dst_mt,
1417 bool invalidate)
1418 {
1419 struct intel_mipmap_tree *src_mt = intelImage->mt;
1420 struct intel_texture_object *intel_obj =
1421 intel_texture_object(intelImage->base.Base.TexObject);
1422 int level = intelImage->base.Base.Level;
1423 int face = intelImage->base.Base.Face;
1424
1425 GLuint depth;
1426 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY)
1427 depth = intelImage->base.Base.Height;
1428 else
1429 depth = intelImage->base.Base.Depth;
1430
1431 if (!invalidate) {
1432 for (int slice = 0; slice < depth; slice++) {
1433 intel_miptree_copy_slice(brw, dst_mt, src_mt, level, face, slice);
1434 }
1435 }
1436
1437 intel_miptree_reference(&intelImage->mt, dst_mt);
1438 intel_obj->needs_validate = true;
1439 }
1440
1441 static void
1442 intel_miptree_init_mcs(struct brw_context *brw,
1443 struct intel_mipmap_tree *mt,
1444 int init_value)
1445 {
1446 assert(mt->mcs_buf != NULL);
1447
1448 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1449 *
1450 * When MCS buffer is enabled and bound to MSRT, it is required that it
1451 * is cleared prior to any rendering.
1452 *
1453 * Since we don't use the MCS buffer for any purpose other than rendering,
1454 * it makes sense to just clear it immediately upon allocation.
1455 *
1456 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1457 */
1458 const int ret = brw_bo_map_gtt(brw, mt->mcs_buf->bo, "miptree");
1459 if (unlikely(ret)) {
1460 fprintf(stderr, "Failed to map mcs buffer into GTT\n");
1461 drm_intel_bo_unreference(mt->mcs_buf->bo);
1462 free(mt->mcs_buf);
1463 return;
1464 }
1465 void *data = mt->mcs_buf->bo->virtual;
1466 memset(data, init_value, mt->mcs_buf->size);
1467 drm_intel_bo_unmap(mt->mcs_buf->bo);
1468 }
1469
1470 static struct intel_miptree_aux_buffer *
1471 intel_mcs_miptree_buf_create(struct brw_context *brw,
1472 struct intel_mipmap_tree *mt,
1473 mesa_format format,
1474 unsigned mcs_width,
1475 unsigned mcs_height,
1476 uint32_t layout_flags)
1477 {
1478 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1479 struct intel_mipmap_tree *temp_mt;
1480
1481 if (!buf)
1482 return NULL;
1483
1484 /* From the Ivy Bridge PRM, Vol4 Part1 p76, "MCS Base Address":
1485 *
1486 * "The MCS surface must be stored as Tile Y."
1487 */
1488 layout_flags |= MIPTREE_LAYOUT_TILING_Y;
1489 temp_mt = miptree_create(brw,
1490 mt->target,
1491 format,
1492 mt->first_level,
1493 mt->last_level,
1494 mcs_width,
1495 mcs_height,
1496 mt->logical_depth0,
1497 0 /* num_samples */,
1498 layout_flags);
1499 if (!temp_mt) {
1500 free(buf);
1501 return NULL;
1502 }
1503
1504 buf->bo = temp_mt->bo;
1505 buf->offset = temp_mt->offset;
1506 buf->size = temp_mt->total_height * temp_mt->pitch;
1507 buf->pitch = temp_mt->pitch;
1508 buf->qpitch = temp_mt->qpitch;
1509
1510 /* Just hang on to the BO which backs the AUX buffer; the rest of the miptree
1511 * structure should go away. We use miptree create simply as a means to make
1512 * sure all the constraints for the buffer are satisfied.
1513 */
1514 drm_intel_bo_reference(temp_mt->bo);
1515 intel_miptree_release(&temp_mt);
1516
1517 return buf;
1518 }
1519
1520 static bool
1521 intel_miptree_alloc_mcs(struct brw_context *brw,
1522 struct intel_mipmap_tree *mt,
1523 GLuint num_samples)
1524 {
1525 assert(brw->gen >= 7); /* MCS only used on Gen7+ */
1526 assert(mt->mcs_buf == NULL);
1527 assert((mt->aux_disable & INTEL_AUX_DISABLE_MCS) == 0);
1528
1529 /* Choose the correct format for the MCS buffer. All that really matters
1530 * is that we allocate the right buffer size, since we'll always be
1531 * accessing this miptree using MCS-specific hardware mechanisms, which
1532 * infer the correct format based on num_samples.
1533 */
1534 mesa_format format;
1535 switch (num_samples) {
1536 case 2:
1537 case 4:
1538 /* 8 bits/pixel are required for MCS data when using 4x MSAA (2 bits for
1539 * each sample).
1540 */
1541 format = MESA_FORMAT_R_UNORM8;
1542 break;
1543 case 8:
1544 /* 32 bits/pixel are required for MCS data when using 8x MSAA (3 bits
1545 * for each sample, plus 8 padding bits).
1546 */
1547 format = MESA_FORMAT_R_UINT32;
1548 break;
1549 case 16:
1550 /* 64 bits/pixel are required for MCS data when using 16x MSAA (4 bits
1551 * for each sample).
1552 */
1553 format = MESA_FORMAT_RG_UINT32;
1554 break;
1555 default:
1556 unreachable("Unrecognized sample count in intel_miptree_alloc_mcs");
1557 };
1558
1559 mt->mcs_buf =
1560 intel_mcs_miptree_buf_create(brw, mt,
1561 format,
1562 mt->logical_width0,
1563 mt->logical_height0,
1564 MIPTREE_LAYOUT_ACCELERATED_UPLOAD);
1565 if (!mt->mcs_buf)
1566 return false;
1567
1568 intel_miptree_init_mcs(brw, mt, 0xFF);
1569
1570 /* Multisampled miptrees are only supported for single level. */
1571 assert(mt->first_level == 0);
1572 intel_miptree_set_fast_clear_state(brw, mt, mt->first_level, 0,
1573 mt->logical_depth0,
1574 INTEL_FAST_CLEAR_STATE_CLEAR);
1575
1576 return true;
1577 }
1578
1579
1580 bool
1581 intel_miptree_alloc_non_msrt_mcs(struct brw_context *brw,
1582 struct intel_mipmap_tree *mt,
1583 bool is_lossless_compressed)
1584 {
1585 assert(mt->mcs_buf == NULL);
1586 assert(!(mt->aux_disable & (INTEL_AUX_DISABLE_MCS | INTEL_AUX_DISABLE_CCS)));
1587
1588 struct isl_surf temp_main_surf;
1589 struct isl_surf temp_ccs_surf;
1590
1591 /* Create first an ISL presentation for the main color surface and let ISL
1592 * calculate equivalent CCS surface against it.
1593 */
1594 intel_miptree_get_isl_surf(brw, mt, &temp_main_surf);
1595 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &temp_main_surf, &temp_ccs_surf))
1596 return false;
1597
1598 assert(temp_ccs_surf.size &&
1599 (temp_ccs_surf.size % temp_ccs_surf.row_pitch == 0));
1600
1601 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1602 if (!buf)
1603 return false;
1604
1605 buf->size = temp_ccs_surf.size;
1606 buf->pitch = temp_ccs_surf.row_pitch;
1607 buf->qpitch = isl_surf_get_array_pitch_sa_rows(&temp_ccs_surf);
1608
1609 /* In case of compression mcs buffer needs to be initialised requiring the
1610 * buffer to be immediately mapped to cpu space for writing. Therefore do
1611 * not use the gpu access flag which can cause an unnecessary delay if the
1612 * backing pages happened to be just used by the GPU.
1613 */
1614 const uint32_t alloc_flags =
1615 is_lossless_compressed ? 0 : BO_ALLOC_FOR_RENDER;
1616 uint32_t tiling = I915_TILING_Y;
1617 unsigned long pitch;
1618
1619 /* ISL has stricter set of alignment rules then the drm allocator.
1620 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1621 * trying to recalculate based on different format block sizes.
1622 */
1623 buf->bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "ccs-miptree",
1624 buf->pitch, buf->size / buf->pitch,
1625 1, &tiling, &pitch, alloc_flags);
1626 if (buf->bo) {
1627 assert(pitch == buf->pitch);
1628 assert(tiling == I915_TILING_Y);
1629 } else {
1630 free(buf);
1631 return false;
1632 }
1633
1634 mt->mcs_buf = buf;
1635
1636 /* From Gen9 onwards single-sampled (non-msrt) auxiliary buffers are
1637 * used for lossless compression which requires similar initialisation
1638 * as multi-sample compression.
1639 */
1640 if (is_lossless_compressed) {
1641 /* Hardware sets the auxiliary buffer to all zeroes when it does full
1642 * resolve. Initialize it accordingly in case the first renderer is
1643 * cpu (or other none compression aware party).
1644 *
1645 * This is also explicitly stated in the spec (MCS Buffer for Render
1646 * Target(s)):
1647 * "If Software wants to enable Color Compression without Fast clear,
1648 * Software needs to initialize MCS with zeros."
1649 */
1650 intel_miptree_init_mcs(brw, mt, 0);
1651 mt->msaa_layout = INTEL_MSAA_LAYOUT_CMS;
1652 }
1653
1654 return true;
1655 }
1656
1657 /**
1658 * Helper for intel_miptree_alloc_hiz() that sets
1659 * \c mt->level[level].has_hiz. Return true if and only if
1660 * \c has_hiz was set.
1661 */
1662 static bool
1663 intel_miptree_level_enable_hiz(struct brw_context *brw,
1664 struct intel_mipmap_tree *mt,
1665 uint32_t level)
1666 {
1667 assert(mt->hiz_buf);
1668
1669 if (brw->gen >= 8 || brw->is_haswell) {
1670 uint32_t width = minify(mt->physical_width0, level);
1671 uint32_t height = minify(mt->physical_height0, level);
1672
1673 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1674 * and the height is 4 aligned. This allows our HiZ support
1675 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1676 * we can grow the width & height to allow the HiZ op to
1677 * force the proper size alignments.
1678 */
1679 if (level > 0 && ((width & 7) || (height & 3))) {
1680 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1681 return false;
1682 }
1683 }
1684
1685 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1686 mt->level[level].has_hiz = true;
1687 return true;
1688 }
1689
1690
1691 /**
1692 * Helper for intel_miptree_alloc_hiz() that determines the required hiz
1693 * buffer dimensions and allocates a bo for the hiz buffer.
1694 */
1695 static struct intel_miptree_hiz_buffer *
1696 intel_gen7_hiz_buf_create(struct brw_context *brw,
1697 struct intel_mipmap_tree *mt)
1698 {
1699 unsigned z_width = mt->logical_width0;
1700 unsigned z_height = mt->logical_height0;
1701 const unsigned z_depth = MAX2(mt->logical_depth0, 1);
1702 unsigned hz_width, hz_height;
1703 struct intel_miptree_hiz_buffer *buf = calloc(sizeof(*buf), 1);
1704
1705 if (!buf)
1706 return NULL;
1707
1708 /* Gen7 PRM Volume 2, Part 1, 11.5.3 "Hierarchical Depth Buffer" documents
1709 * adjustments required for Z_Height and Z_Width based on multisampling.
1710 */
1711 switch (mt->num_samples) {
1712 case 0:
1713 case 1:
1714 break;
1715 case 2:
1716 case 4:
1717 z_width *= 2;
1718 z_height *= 2;
1719 break;
1720 case 8:
1721 z_width *= 4;
1722 z_height *= 2;
1723 break;
1724 default:
1725 unreachable("unsupported sample count");
1726 }
1727
1728 const unsigned vertical_align = 8; /* 'j' in the docs */
1729 const unsigned H0 = z_height;
1730 const unsigned h0 = ALIGN(H0, vertical_align);
1731 const unsigned h1 = ALIGN(minify(H0, 1), vertical_align);
1732 const unsigned Z0 = z_depth;
1733
1734 /* HZ_Width (bytes) = ceiling(Z_Width / 16) * 16 */
1735 hz_width = ALIGN(z_width, 16);
1736
1737 if (mt->target == GL_TEXTURE_3D) {
1738 unsigned H_i = H0;
1739 unsigned Z_i = Z0;
1740 hz_height = 0;
1741 for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
1742 unsigned h_i = ALIGN(H_i, vertical_align);
1743 /* sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
1744 hz_height += h_i * Z_i;
1745 H_i = minify(H_i, 1);
1746 Z_i = minify(Z_i, 1);
1747 }
1748 /* HZ_Height =
1749 * (1/2) * sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i)))
1750 */
1751 hz_height = DIV_ROUND_UP(hz_height, 2);
1752 } else {
1753 const unsigned hz_qpitch = h0 + h1 + (12 * vertical_align);
1754 /* HZ_Height (rows) = Ceiling ( ( Q_pitch * Z_depth/2) /8 ) * 8 */
1755 hz_height = DIV_ROUND_UP(hz_qpitch * Z0, 2 * 8) * 8;
1756 }
1757
1758 unsigned long pitch;
1759 uint32_t tiling = I915_TILING_Y;
1760 buf->aux_base.bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "hiz",
1761 hz_width, hz_height, 1,
1762 &tiling, &pitch,
1763 BO_ALLOC_FOR_RENDER);
1764 if (!buf->aux_base.bo) {
1765 free(buf);
1766 return NULL;
1767 } else if (tiling != I915_TILING_Y) {
1768 drm_intel_bo_unreference(buf->aux_base.bo);
1769 free(buf);
1770 return NULL;
1771 }
1772
1773 buf->aux_base.size = hz_width * hz_height;
1774 buf->aux_base.pitch = pitch;
1775
1776 return buf;
1777 }
1778
1779
1780 /**
1781 * Helper for intel_miptree_alloc_hiz() that determines the required hiz
1782 * buffer dimensions and allocates a bo for the hiz buffer.
1783 */
1784 static struct intel_miptree_hiz_buffer *
1785 intel_gen8_hiz_buf_create(struct brw_context *brw,
1786 struct intel_mipmap_tree *mt)
1787 {
1788 unsigned z_width = mt->logical_width0;
1789 unsigned z_height = mt->logical_height0;
1790 const unsigned z_depth = MAX2(mt->logical_depth0, 1);
1791 unsigned hz_width, hz_height;
1792 struct intel_miptree_hiz_buffer *buf = calloc(sizeof(*buf), 1);
1793
1794 if (!buf)
1795 return NULL;
1796
1797 /* Gen7 PRM Volume 2, Part 1, 11.5.3 "Hierarchical Depth Buffer" documents
1798 * adjustments required for Z_Height and Z_Width based on multisampling.
1799 */
1800 if (brw->gen < 9) {
1801 switch (mt->num_samples) {
1802 case 0:
1803 case 1:
1804 break;
1805 case 2:
1806 case 4:
1807 z_width *= 2;
1808 z_height *= 2;
1809 break;
1810 case 8:
1811 z_width *= 4;
1812 z_height *= 2;
1813 break;
1814 default:
1815 unreachable("unsupported sample count");
1816 }
1817 }
1818
1819 const unsigned vertical_align = 8; /* 'j' in the docs */
1820 const unsigned H0 = z_height;
1821 const unsigned h0 = ALIGN(H0, vertical_align);
1822 const unsigned h1 = ALIGN(minify(H0, 1), vertical_align);
1823 const unsigned Z0 = z_depth;
1824
1825 /* HZ_Width (bytes) = ceiling(Z_Width / 16) * 16 */
1826 hz_width = ALIGN(z_width, 16);
1827
1828 unsigned H_i = H0;
1829 unsigned Z_i = Z0;
1830 unsigned sum_h_i = 0;
1831 unsigned hz_height_3d_sum = 0;
1832 for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
1833 unsigned i = level - mt->first_level;
1834 unsigned h_i = ALIGN(H_i, vertical_align);
1835 /* sum(i=2 to m; h_i) */
1836 if (i >= 2) {
1837 sum_h_i += h_i;
1838 }
1839 /* sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
1840 hz_height_3d_sum += h_i * Z_i;
1841 H_i = minify(H_i, 1);
1842 Z_i = minify(Z_i, 1);
1843 }
1844 /* HZ_QPitch = h0 + max(h1, sum(i=2 to m; h_i)) */
1845 buf->aux_base.qpitch = h0 + MAX2(h1, sum_h_i);
1846
1847 if (mt->target == GL_TEXTURE_3D) {
1848 /* (1/2) * sum(i=0 to m; h_i * max(1, floor(Z_Depth/2**i))) */
1849 hz_height = DIV_ROUND_UP(hz_height_3d_sum, 2);
1850 } else {
1851 /* HZ_Height (rows) = ceiling( (HZ_QPitch/2)/8) *8 * Z_Depth */
1852 hz_height = DIV_ROUND_UP(buf->aux_base.qpitch, 2 * 8) * 8 * Z0;
1853 }
1854
1855 unsigned long pitch;
1856 uint32_t tiling = I915_TILING_Y;
1857 buf->aux_base.bo = drm_intel_bo_alloc_tiled(brw->bufmgr, "hiz",
1858 hz_width, hz_height, 1,
1859 &tiling, &pitch,
1860 BO_ALLOC_FOR_RENDER);
1861 if (!buf->aux_base.bo) {
1862 free(buf);
1863 return NULL;
1864 } else if (tiling != I915_TILING_Y) {
1865 drm_intel_bo_unreference(buf->aux_base.bo);
1866 free(buf);
1867 return NULL;
1868 }
1869
1870 buf->aux_base.size = hz_width * hz_height;
1871 buf->aux_base.pitch = pitch;
1872
1873 return buf;
1874 }
1875
1876
1877 static struct intel_miptree_hiz_buffer *
1878 intel_hiz_miptree_buf_create(struct brw_context *brw,
1879 struct intel_mipmap_tree *mt)
1880 {
1881 struct intel_miptree_hiz_buffer *buf = calloc(sizeof(*buf), 1);
1882 uint32_t layout_flags = MIPTREE_LAYOUT_ACCELERATED_UPLOAD;
1883
1884 if (brw->gen == 6)
1885 layout_flags |= MIPTREE_LAYOUT_FORCE_ALL_SLICE_AT_LOD;
1886
1887 if (!buf)
1888 return NULL;
1889
1890 layout_flags |= MIPTREE_LAYOUT_TILING_ANY;
1891 buf->mt = intel_miptree_create(brw,
1892 mt->target,
1893 mt->format,
1894 mt->first_level,
1895 mt->last_level,
1896 mt->logical_width0,
1897 mt->logical_height0,
1898 mt->logical_depth0,
1899 mt->num_samples,
1900 layout_flags);
1901 if (!buf->mt) {
1902 free(buf);
1903 return NULL;
1904 }
1905
1906 buf->aux_base.bo = buf->mt->bo;
1907 buf->aux_base.size = buf->mt->total_height * buf->mt->pitch;
1908 buf->aux_base.pitch = buf->mt->pitch;
1909 buf->aux_base.qpitch = buf->mt->qpitch;
1910
1911 return buf;
1912 }
1913
1914 bool
1915 intel_miptree_wants_hiz_buffer(struct brw_context *brw,
1916 struct intel_mipmap_tree *mt)
1917 {
1918 if (!brw->has_hiz)
1919 return false;
1920
1921 if (mt->hiz_buf != NULL)
1922 return false;
1923
1924 if (mt->aux_disable & INTEL_AUX_DISABLE_HIZ)
1925 return false;
1926
1927 switch (mt->format) {
1928 case MESA_FORMAT_Z_FLOAT32:
1929 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
1930 case MESA_FORMAT_Z24_UNORM_X8_UINT:
1931 case MESA_FORMAT_Z24_UNORM_S8_UINT:
1932 case MESA_FORMAT_Z_UNORM16:
1933 return true;
1934 default:
1935 return false;
1936 }
1937 }
1938
1939 bool
1940 intel_miptree_alloc_hiz(struct brw_context *brw,
1941 struct intel_mipmap_tree *mt)
1942 {
1943 assert(mt->hiz_buf == NULL);
1944 assert((mt->aux_disable & INTEL_AUX_DISABLE_HIZ) == 0);
1945
1946 if (brw->gen == 7) {
1947 mt->hiz_buf = intel_gen7_hiz_buf_create(brw, mt);
1948 } else if (brw->gen >= 8) {
1949 mt->hiz_buf = intel_gen8_hiz_buf_create(brw, mt);
1950 } else {
1951 mt->hiz_buf = intel_hiz_miptree_buf_create(brw, mt);
1952 }
1953
1954 if (!mt->hiz_buf)
1955 return false;
1956
1957 /* Mark that all slices need a HiZ resolve. */
1958 for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
1959 if (!intel_miptree_level_enable_hiz(brw, mt, level))
1960 continue;
1961
1962 for (unsigned layer = 0; layer < mt->level[level].depth; ++layer) {
1963 struct intel_resolve_map *m = malloc(sizeof(struct intel_resolve_map));
1964 exec_node_init(&m->link);
1965 m->level = level;
1966 m->layer = layer;
1967 m->need = BLORP_HIZ_OP_HIZ_RESOLVE;
1968
1969 exec_list_push_tail(&mt->hiz_map, &m->link);
1970 }
1971 }
1972
1973 return true;
1974 }
1975
1976 /**
1977 * Can the miptree sample using the hiz buffer?
1978 */
1979 bool
1980 intel_miptree_sample_with_hiz(struct brw_context *brw,
1981 struct intel_mipmap_tree *mt)
1982 {
1983 /* It's unclear how well supported sampling from the hiz buffer is on GEN8,
1984 * so keep things conservative for now and never enable it unless we're SKL+.
1985 */
1986 if (brw->gen < 9) {
1987 return false;
1988 }
1989
1990 if (!mt->hiz_buf) {
1991 return false;
1992 }
1993
1994 /* It seems the hardware won't fallback to the depth buffer if some of the
1995 * mipmap levels aren't available in the HiZ buffer. So we need all levels
1996 * of the texture to be HiZ enabled.
1997 */
1998 for (unsigned level = mt->first_level; level <= mt->last_level; ++level) {
1999 if (!intel_miptree_level_has_hiz(mt, level))
2000 return false;
2001 }
2002
2003 /* If compressed multisampling is enabled, then we use it for the auxiliary
2004 * buffer instead.
2005 *
2006 * From the BDW PRM (Volume 2d: Command Reference: Structures
2007 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
2008 *
2009 * "If this field is set to AUX_HIZ, Number of Multisamples must be
2010 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
2011 *
2012 * There is no such blurb for 1D textures, but there is sufficient evidence
2013 * that this is broken on SKL+.
2014 */
2015 return (mt->num_samples <= 1 &&
2016 mt->target != GL_TEXTURE_3D &&
2017 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
2018 }
2019
2020 /**
2021 * Does the miptree slice have hiz enabled?
2022 */
2023 bool
2024 intel_miptree_level_has_hiz(struct intel_mipmap_tree *mt, uint32_t level)
2025 {
2026 intel_miptree_check_level_layer(mt, level, 0);
2027 return mt->level[level].has_hiz;
2028 }
2029
2030 void
2031 intel_miptree_slice_set_needs_hiz_resolve(struct intel_mipmap_tree *mt,
2032 uint32_t level,
2033 uint32_t layer)
2034 {
2035 if (!intel_miptree_level_has_hiz(mt, level))
2036 return;
2037
2038 intel_resolve_map_set(&mt->hiz_map,
2039 level, layer, BLORP_HIZ_OP_HIZ_RESOLVE);
2040 }
2041
2042
2043 void
2044 intel_miptree_slice_set_needs_depth_resolve(struct intel_mipmap_tree *mt,
2045 uint32_t level,
2046 uint32_t layer)
2047 {
2048 if (!intel_miptree_level_has_hiz(mt, level))
2049 return;
2050
2051 intel_resolve_map_set(&mt->hiz_map,
2052 level, layer, BLORP_HIZ_OP_DEPTH_RESOLVE);
2053 }
2054
2055 void
2056 intel_miptree_set_all_slices_need_depth_resolve(struct intel_mipmap_tree *mt,
2057 uint32_t level)
2058 {
2059 uint32_t layer;
2060 uint32_t end_layer = mt->level[level].depth;
2061
2062 for (layer = 0; layer < end_layer; layer++) {
2063 intel_miptree_slice_set_needs_depth_resolve(mt, level, layer);
2064 }
2065 }
2066
2067 static bool
2068 intel_miptree_slice_resolve(struct brw_context *brw,
2069 struct intel_mipmap_tree *mt,
2070 uint32_t level,
2071 uint32_t layer,
2072 enum blorp_hiz_op need)
2073 {
2074 intel_miptree_check_level_layer(mt, level, layer);
2075
2076 struct intel_resolve_map *item =
2077 intel_resolve_map_get(&mt->hiz_map, level, layer);
2078
2079 if (!item || item->need != need)
2080 return false;
2081
2082 intel_hiz_exec(brw, mt, level, layer, need);
2083 intel_resolve_map_remove(item);
2084 return true;
2085 }
2086
2087 bool
2088 intel_miptree_slice_resolve_hiz(struct brw_context *brw,
2089 struct intel_mipmap_tree *mt,
2090 uint32_t level,
2091 uint32_t layer)
2092 {
2093 return intel_miptree_slice_resolve(brw, mt, level, layer,
2094 BLORP_HIZ_OP_HIZ_RESOLVE);
2095 }
2096
2097 bool
2098 intel_miptree_slice_resolve_depth(struct brw_context *brw,
2099 struct intel_mipmap_tree *mt,
2100 uint32_t level,
2101 uint32_t layer)
2102 {
2103 return intel_miptree_slice_resolve(brw, mt, level, layer,
2104 BLORP_HIZ_OP_DEPTH_RESOLVE);
2105 }
2106
2107 static bool
2108 intel_miptree_all_slices_resolve(struct brw_context *brw,
2109 struct intel_mipmap_tree *mt,
2110 enum blorp_hiz_op need)
2111 {
2112 bool did_resolve = false;
2113
2114 foreach_list_typed_safe(struct intel_resolve_map, map, link, &mt->hiz_map) {
2115 if (map->need != need)
2116 continue;
2117
2118 intel_hiz_exec(brw, mt, map->level, map->layer, need);
2119 intel_resolve_map_remove(map);
2120 did_resolve = true;
2121 }
2122
2123 return did_resolve;
2124 }
2125
2126 bool
2127 intel_miptree_all_slices_resolve_hiz(struct brw_context *brw,
2128 struct intel_mipmap_tree *mt)
2129 {
2130 return intel_miptree_all_slices_resolve(brw, mt,
2131 BLORP_HIZ_OP_HIZ_RESOLVE);
2132 }
2133
2134 bool
2135 intel_miptree_all_slices_resolve_depth(struct brw_context *brw,
2136 struct intel_mipmap_tree *mt)
2137 {
2138 return intel_miptree_all_slices_resolve(brw, mt,
2139 BLORP_HIZ_OP_DEPTH_RESOLVE);
2140 }
2141
2142 enum intel_fast_clear_state
2143 intel_miptree_get_fast_clear_state(const struct intel_mipmap_tree *mt,
2144 unsigned level, unsigned layer)
2145 {
2146 intel_miptree_check_level_layer(mt, level, layer);
2147
2148 const struct intel_resolve_map *item =
2149 intel_resolve_map_const_get(&mt->color_resolve_map, level, layer);
2150
2151 if (!item)
2152 return INTEL_FAST_CLEAR_STATE_RESOLVED;
2153
2154 return item->fast_clear_state;
2155 }
2156
2157 static void
2158 intel_miptree_check_color_resolve(const struct brw_context *brw,
2159 const struct intel_mipmap_tree *mt,
2160 unsigned level, unsigned layer)
2161 {
2162
2163 if ((mt->aux_disable & INTEL_AUX_DISABLE_CCS) || !mt->mcs_buf)
2164 return;
2165
2166 /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
2167 assert(brw->gen >= 8 ||
2168 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
2169
2170 /* Compression of arrayed msaa surfaces is supported. */
2171 if (mt->num_samples > 1)
2172 return;
2173
2174 /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
2175 assert(brw->gen >= 8 || (layer == 0 && mt->logical_depth0 == 1));
2176
2177 (void)level;
2178 (void)layer;
2179 }
2180
2181 void
2182 intel_miptree_set_fast_clear_state(const struct brw_context *brw,
2183 struct intel_mipmap_tree *mt,
2184 unsigned level,
2185 unsigned first_layer,
2186 unsigned num_layers,
2187 enum intel_fast_clear_state new_state)
2188 {
2189 /* Setting the state to resolved means removing the item from the list
2190 * altogether.
2191 */
2192 assert(new_state != INTEL_FAST_CLEAR_STATE_RESOLVED);
2193
2194 intel_miptree_check_color_resolve(brw, mt, level, first_layer);
2195
2196 assert(first_layer + num_layers <= mt->physical_depth0);
2197
2198 for (unsigned i = 0; i < num_layers; i++)
2199 intel_resolve_map_set(&mt->color_resolve_map, level,
2200 first_layer + i, new_state);
2201 }
2202
2203 bool
2204 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
2205 unsigned start_level, unsigned num_levels,
2206 unsigned start_layer, unsigned num_layers)
2207 {
2208 return intel_resolve_map_find_any(&mt->color_resolve_map,
2209 start_level, num_levels,
2210 start_layer, num_layers) != NULL;
2211 }
2212
2213 void
2214 intel_miptree_used_for_rendering(const struct brw_context *brw,
2215 struct intel_mipmap_tree *mt, unsigned level,
2216 unsigned start_layer, unsigned num_layers)
2217 {
2218 const bool is_lossless_compressed =
2219 intel_miptree_is_lossless_compressed(brw, mt);
2220
2221 for (unsigned i = 0; i < num_layers; ++i) {
2222 const enum intel_fast_clear_state fast_clear_state =
2223 intel_miptree_get_fast_clear_state(mt, level, start_layer + i);
2224
2225 /* If the buffer was previously in fast clear state, change it to
2226 * unresolved state, since it won't be guaranteed to be clear after
2227 * rendering occurs.
2228 */
2229 if (is_lossless_compressed ||
2230 fast_clear_state == INTEL_FAST_CLEAR_STATE_CLEAR) {
2231 intel_miptree_set_fast_clear_state(
2232 brw, mt, level, start_layer + i, 1,
2233 INTEL_FAST_CLEAR_STATE_UNRESOLVED);
2234 }
2235 }
2236 }
2237
2238 static bool
2239 intel_miptree_needs_color_resolve(const struct brw_context *brw,
2240 const struct intel_mipmap_tree *mt,
2241 int flags)
2242 {
2243 if (mt->aux_disable & INTEL_AUX_DISABLE_CCS)
2244 return false;
2245
2246 const bool is_lossless_compressed =
2247 intel_miptree_is_lossless_compressed(brw, mt);
2248
2249 /* From gen9 onwards there is new compression scheme for single sampled
2250 * surfaces called "lossless compressed". These don't need to be always
2251 * resolved.
2252 */
2253 if ((flags & INTEL_MIPTREE_IGNORE_CCS_E) && is_lossless_compressed)
2254 return false;
2255
2256 /* Fast color clear resolves only make sense for non-MSAA buffers. */
2257 if (mt->msaa_layout != INTEL_MSAA_LAYOUT_NONE && !is_lossless_compressed)
2258 return false;
2259
2260 return true;
2261 }
2262
2263 bool
2264 intel_miptree_resolve_color(struct brw_context *brw,
2265 struct intel_mipmap_tree *mt, unsigned level,
2266 unsigned start_layer, unsigned num_layers,
2267 int flags)
2268 {
2269 intel_miptree_check_color_resolve(brw, mt, level, start_layer);
2270
2271 if (!intel_miptree_needs_color_resolve(brw, mt, flags))
2272 return false;
2273
2274 /* Arrayed fast clear is only supported for gen8+. */
2275 assert(brw->gen >= 8 || num_layers == 1);
2276
2277 bool resolved = false;
2278 for (unsigned i = 0; i < num_layers; ++i) {
2279 intel_miptree_check_level_layer(mt, level, start_layer + i);
2280
2281 struct intel_resolve_map *item =
2282 intel_resolve_map_get(&mt->color_resolve_map, level,
2283 start_layer + i);
2284
2285 if (item) {
2286 assert(item->fast_clear_state != INTEL_FAST_CLEAR_STATE_RESOLVED);
2287
2288 brw_blorp_resolve_color(brw, mt, level, start_layer);
2289 intel_resolve_map_remove(item);
2290 resolved = true;
2291 }
2292 }
2293
2294 return resolved;
2295 }
2296
2297 void
2298 intel_miptree_all_slices_resolve_color(struct brw_context *brw,
2299 struct intel_mipmap_tree *mt,
2300 int flags)
2301 {
2302 if (!intel_miptree_needs_color_resolve(brw, mt, flags))
2303 return;
2304
2305 foreach_list_typed_safe(struct intel_resolve_map, map, link,
2306 &mt->color_resolve_map) {
2307 assert(map->fast_clear_state != INTEL_FAST_CLEAR_STATE_RESOLVED);
2308
2309 brw_blorp_resolve_color(brw, mt, map->level, map->layer);
2310 intel_resolve_map_remove(map);
2311 }
2312 }
2313
2314 /**
2315 * Make it possible to share the BO backing the given miptree with another
2316 * process or another miptree.
2317 *
2318 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2319 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2320 * ensure that no MCS buffer gets allocated in the future.
2321 *
2322 * HiZ is similarly unsafe with shared buffers.
2323 */
2324 void
2325 intel_miptree_make_shareable(struct brw_context *brw,
2326 struct intel_mipmap_tree *mt)
2327 {
2328 /* MCS buffers are also used for multisample buffers, but we can't resolve
2329 * away a multisample MCS buffer because it's an integral part of how the
2330 * pixel data is stored. Fortunately this code path should never be
2331 * reached for multisample buffers.
2332 */
2333 assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE || mt->num_samples <= 1);
2334
2335 if (mt->mcs_buf) {
2336 intel_miptree_all_slices_resolve_color(brw, mt, 0);
2337 mt->aux_disable |= (INTEL_AUX_DISABLE_CCS | INTEL_AUX_DISABLE_MCS);
2338 drm_intel_bo_unreference(mt->mcs_buf->bo);
2339 free(mt->mcs_buf);
2340 mt->mcs_buf = NULL;
2341 }
2342
2343 if (mt->hiz_buf) {
2344 mt->aux_disable |= INTEL_AUX_DISABLE_HIZ;
2345 intel_miptree_all_slices_resolve_depth(brw, mt);
2346 intel_miptree_hiz_buffer_free(mt->hiz_buf);
2347 mt->hiz_buf = NULL;
2348 }
2349 }
2350
2351
2352 /**
2353 * \brief Get pointer offset into stencil buffer.
2354 *
2355 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2356 * must decode the tile's layout in software.
2357 *
2358 * See
2359 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2360 * Format.
2361 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2362 *
2363 * Even though the returned offset is always positive, the return type is
2364 * signed due to
2365 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2366 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2367 */
2368 static intptr_t
2369 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2370 {
2371 uint32_t tile_size = 4096;
2372 uint32_t tile_width = 64;
2373 uint32_t tile_height = 64;
2374 uint32_t row_size = 64 * stride;
2375
2376 uint32_t tile_x = x / tile_width;
2377 uint32_t tile_y = y / tile_height;
2378
2379 /* The byte's address relative to the tile's base addres. */
2380 uint32_t byte_x = x % tile_width;
2381 uint32_t byte_y = y % tile_height;
2382
2383 uintptr_t u = tile_y * row_size
2384 + tile_x * tile_size
2385 + 512 * (byte_x / 8)
2386 + 64 * (byte_y / 8)
2387 + 32 * ((byte_y / 4) % 2)
2388 + 16 * ((byte_x / 4) % 2)
2389 + 8 * ((byte_y / 2) % 2)
2390 + 4 * ((byte_x / 2) % 2)
2391 + 2 * (byte_y % 2)
2392 + 1 * (byte_x % 2);
2393
2394 if (swizzled) {
2395 /* adjust for bit6 swizzling */
2396 if (((byte_x / 8) % 2) == 1) {
2397 if (((byte_y / 8) % 2) == 0) {
2398 u += 64;
2399 } else {
2400 u -= 64;
2401 }
2402 }
2403 }
2404
2405 return u;
2406 }
2407
2408 void
2409 intel_miptree_updownsample(struct brw_context *brw,
2410 struct intel_mipmap_tree *src,
2411 struct intel_mipmap_tree *dst)
2412 {
2413 brw_blorp_blit_miptrees(brw,
2414 src, 0 /* level */, 0 /* layer */,
2415 src->format, SWIZZLE_XYZW,
2416 dst, 0 /* level */, 0 /* layer */, dst->format,
2417 0, 0,
2418 src->logical_width0, src->logical_height0,
2419 0, 0,
2420 dst->logical_width0, dst->logical_height0,
2421 GL_NEAREST, false, false /*mirror x, y*/,
2422 false, false);
2423
2424 if (src->stencil_mt) {
2425 brw_blorp_blit_miptrees(brw,
2426 src->stencil_mt, 0 /* level */, 0 /* layer */,
2427 src->stencil_mt->format, SWIZZLE_XYZW,
2428 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2429 dst->stencil_mt->format,
2430 0, 0,
2431 src->logical_width0, src->logical_height0,
2432 0, 0,
2433 dst->logical_width0, dst->logical_height0,
2434 GL_NEAREST, false, false /*mirror x, y*/,
2435 false, false /* decode/encode srgb */);
2436 }
2437 }
2438
2439 void
2440 intel_update_r8stencil(struct brw_context *brw,
2441 struct intel_mipmap_tree *mt)
2442 {
2443 assert(brw->gen >= 7);
2444 struct intel_mipmap_tree *src =
2445 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2446 if (!src || brw->gen >= 8 || !src->r8stencil_needs_update)
2447 return;
2448
2449 if (!mt->r8stencil_mt) {
2450 const uint32_t r8stencil_flags =
2451 MIPTREE_LAYOUT_ACCELERATED_UPLOAD | MIPTREE_LAYOUT_TILING_Y |
2452 MIPTREE_LAYOUT_DISABLE_AUX;
2453 assert(brw->gen > 6); /* Handle MIPTREE_LAYOUT_FORCE_ALL_SLICE_AT_LOD */
2454 mt->r8stencil_mt = intel_miptree_create(brw,
2455 src->target,
2456 MESA_FORMAT_R_UINT8,
2457 src->first_level,
2458 src->last_level,
2459 src->logical_width0,
2460 src->logical_height0,
2461 src->logical_depth0,
2462 src->num_samples,
2463 r8stencil_flags);
2464 assert(mt->r8stencil_mt);
2465 }
2466
2467 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
2468
2469 for (int level = src->first_level; level <= src->last_level; level++) {
2470 const unsigned depth = src->level[level].depth;
2471 const int layers_per_blit =
2472 (dst->msaa_layout == INTEL_MSAA_LAYOUT_UMS ||
2473 dst->msaa_layout == INTEL_MSAA_LAYOUT_CMS) ?
2474 dst->num_samples : 1;
2475
2476 for (unsigned layer = 0; layer < depth; layer++) {
2477 brw_blorp_blit_miptrees(brw,
2478 src, level, layer,
2479 src->format, SWIZZLE_X,
2480 dst, level, layers_per_blit * layer,
2481 MESA_FORMAT_R_UNORM8,
2482 0, 0,
2483 minify(src->logical_width0, level),
2484 minify(src->logical_height0, level),
2485 0, 0,
2486 minify(dst->logical_width0, level),
2487 minify(dst->logical_height0, level),
2488 GL_NEAREST, false, false /*mirror x, y*/,
2489 false, false /* decode/encode srgb */);
2490 }
2491 }
2492
2493 brw_render_cache_set_check_flush(brw, dst->bo);
2494 src->r8stencil_needs_update = false;
2495 }
2496
2497 static void *
2498 intel_miptree_map_raw(struct brw_context *brw, struct intel_mipmap_tree *mt)
2499 {
2500 /* CPU accesses to color buffers don't understand fast color clears, so
2501 * resolve any pending fast color clears before we map.
2502 */
2503 intel_miptree_all_slices_resolve_color(brw, mt, 0);
2504
2505 drm_intel_bo *bo = mt->bo;
2506
2507 if (drm_intel_bo_references(brw->batch.bo, bo))
2508 intel_batchbuffer_flush(brw);
2509
2510 if (mt->tiling != I915_TILING_NONE)
2511 brw_bo_map_gtt(brw, bo, "miptree");
2512 else
2513 brw_bo_map(brw, bo, true, "miptree");
2514
2515 return bo->virtual;
2516 }
2517
2518 static void
2519 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
2520 {
2521 drm_intel_bo_unmap(mt->bo);
2522 }
2523
2524 static void
2525 intel_miptree_map_gtt(struct brw_context *brw,
2526 struct intel_mipmap_tree *mt,
2527 struct intel_miptree_map *map,
2528 unsigned int level, unsigned int slice)
2529 {
2530 unsigned int bw, bh;
2531 void *base;
2532 unsigned int image_x, image_y;
2533 intptr_t x = map->x;
2534 intptr_t y = map->y;
2535
2536 /* For compressed formats, the stride is the number of bytes per
2537 * row of blocks. intel_miptree_get_image_offset() already does
2538 * the divide.
2539 */
2540 _mesa_get_format_block_size(mt->format, &bw, &bh);
2541 assert(y % bh == 0);
2542 assert(x % bw == 0);
2543 y /= bh;
2544 x /= bw;
2545
2546 base = intel_miptree_map_raw(brw, mt) + mt->offset;
2547
2548 if (base == NULL)
2549 map->ptr = NULL;
2550 else {
2551 /* Note that in the case of cube maps, the caller must have passed the
2552 * slice number referencing the face.
2553 */
2554 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2555 x += image_x;
2556 y += image_y;
2557
2558 map->stride = mt->pitch;
2559 map->ptr = base + y * map->stride + x * mt->cpp;
2560 }
2561
2562 DBG("%s: %d,%d %dx%d from mt %p (%s) "
2563 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
2564 map->x, map->y, map->w, map->h,
2565 mt, _mesa_get_format_name(mt->format),
2566 x, y, map->ptr, map->stride);
2567 }
2568
2569 static void
2570 intel_miptree_unmap_gtt(struct intel_mipmap_tree *mt)
2571 {
2572 intel_miptree_unmap_raw(mt);
2573 }
2574
2575 static void
2576 intel_miptree_map_blit(struct brw_context *brw,
2577 struct intel_mipmap_tree *mt,
2578 struct intel_miptree_map *map,
2579 unsigned int level, unsigned int slice)
2580 {
2581 map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
2582 /* first_level */ 0,
2583 /* last_level */ 0,
2584 map->w, map->h, 1,
2585 /* samples */ 0,
2586 MIPTREE_LAYOUT_TILING_NONE);
2587
2588 if (!map->linear_mt) {
2589 fprintf(stderr, "Failed to allocate blit temporary\n");
2590 goto fail;
2591 }
2592 map->stride = map->linear_mt->pitch;
2593
2594 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2595 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2596 * invalidate is set, since we'll be writing the whole rectangle from our
2597 * temporary buffer back out.
2598 */
2599 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2600 if (!intel_miptree_copy(brw,
2601 mt, level, slice, map->x, map->y,
2602 map->linear_mt, 0, 0, 0, 0,
2603 map->w, map->h)) {
2604 fprintf(stderr, "Failed to blit\n");
2605 goto fail;
2606 }
2607 }
2608
2609 map->ptr = intel_miptree_map_raw(brw, map->linear_mt);
2610
2611 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
2612 map->x, map->y, map->w, map->h,
2613 mt, _mesa_get_format_name(mt->format),
2614 level, slice, map->ptr, map->stride);
2615
2616 return;
2617
2618 fail:
2619 intel_miptree_release(&map->linear_mt);
2620 map->ptr = NULL;
2621 map->stride = 0;
2622 }
2623
2624 static void
2625 intel_miptree_unmap_blit(struct brw_context *brw,
2626 struct intel_mipmap_tree *mt,
2627 struct intel_miptree_map *map,
2628 unsigned int level,
2629 unsigned int slice)
2630 {
2631 struct gl_context *ctx = &brw->ctx;
2632
2633 intel_miptree_unmap_raw(map->linear_mt);
2634
2635 if (map->mode & GL_MAP_WRITE_BIT) {
2636 bool ok = intel_miptree_copy(brw,
2637 map->linear_mt, 0, 0, 0, 0,
2638 mt, level, slice, map->x, map->y,
2639 map->w, map->h);
2640 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
2641 }
2642
2643 intel_miptree_release(&map->linear_mt);
2644 }
2645
2646 /**
2647 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
2648 */
2649 #if defined(USE_SSE41)
2650 static void
2651 intel_miptree_map_movntdqa(struct brw_context *brw,
2652 struct intel_mipmap_tree *mt,
2653 struct intel_miptree_map *map,
2654 unsigned int level, unsigned int slice)
2655 {
2656 assert(map->mode & GL_MAP_READ_BIT);
2657 assert(!(map->mode & GL_MAP_WRITE_BIT));
2658
2659 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
2660 map->x, map->y, map->w, map->h,
2661 mt, _mesa_get_format_name(mt->format),
2662 level, slice, map->ptr, map->stride);
2663
2664 /* Map the original image */
2665 uint32_t image_x;
2666 uint32_t image_y;
2667 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2668 image_x += map->x;
2669 image_y += map->y;
2670
2671 void *src = intel_miptree_map_raw(brw, mt);
2672 if (!src)
2673 return;
2674
2675 src += mt->offset;
2676
2677 src += image_y * mt->pitch;
2678 src += image_x * mt->cpp;
2679
2680 /* Due to the pixel offsets for the particular image being mapped, our
2681 * src pointer may not be 16-byte aligned. However, if the pitch is
2682 * divisible by 16, then the amount by which it's misaligned will remain
2683 * consistent from row to row.
2684 */
2685 assert((mt->pitch % 16) == 0);
2686 const int misalignment = ((uintptr_t) src) & 15;
2687
2688 /* Create an untiled temporary buffer for the mapping. */
2689 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
2690
2691 map->stride = ALIGN(misalignment + width_bytes, 16);
2692
2693 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
2694 /* Offset the destination so it has the same misalignment as src. */
2695 map->ptr = map->buffer + misalignment;
2696
2697 assert((((uintptr_t) map->ptr) & 15) == misalignment);
2698
2699 for (uint32_t y = 0; y < map->h; y++) {
2700 void *dst_ptr = map->ptr + y * map->stride;
2701 void *src_ptr = src + y * mt->pitch;
2702
2703 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
2704 }
2705
2706 intel_miptree_unmap_raw(mt);
2707 }
2708
2709 static void
2710 intel_miptree_unmap_movntdqa(struct brw_context *brw,
2711 struct intel_mipmap_tree *mt,
2712 struct intel_miptree_map *map,
2713 unsigned int level,
2714 unsigned int slice)
2715 {
2716 _mesa_align_free(map->buffer);
2717 map->buffer = NULL;
2718 map->ptr = NULL;
2719 }
2720 #endif
2721
2722 static void
2723 intel_miptree_map_s8(struct brw_context *brw,
2724 struct intel_mipmap_tree *mt,
2725 struct intel_miptree_map *map,
2726 unsigned int level, unsigned int slice)
2727 {
2728 map->stride = map->w;
2729 map->buffer = map->ptr = malloc(map->stride * map->h);
2730 if (!map->buffer)
2731 return;
2732
2733 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2734 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2735 * invalidate is set, since we'll be writing the whole rectangle from our
2736 * temporary buffer back out.
2737 */
2738 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2739 uint8_t *untiled_s8_map = map->ptr;
2740 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
2741 unsigned int image_x, image_y;
2742
2743 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2744
2745 for (uint32_t y = 0; y < map->h; y++) {
2746 for (uint32_t x = 0; x < map->w; x++) {
2747 ptrdiff_t offset = intel_offset_S8(mt->pitch,
2748 x + image_x + map->x,
2749 y + image_y + map->y,
2750 brw->has_swizzling);
2751 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
2752 }
2753 }
2754
2755 intel_miptree_unmap_raw(mt);
2756
2757 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
2758 map->x, map->y, map->w, map->h,
2759 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
2760 } else {
2761 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
2762 map->x, map->y, map->w, map->h,
2763 mt, map->ptr, map->stride);
2764 }
2765 }
2766
2767 static void
2768 intel_miptree_unmap_s8(struct brw_context *brw,
2769 struct intel_mipmap_tree *mt,
2770 struct intel_miptree_map *map,
2771 unsigned int level,
2772 unsigned int slice)
2773 {
2774 if (map->mode & GL_MAP_WRITE_BIT) {
2775 unsigned int image_x, image_y;
2776 uint8_t *untiled_s8_map = map->ptr;
2777 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt);
2778
2779 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2780
2781 for (uint32_t y = 0; y < map->h; y++) {
2782 for (uint32_t x = 0; x < map->w; x++) {
2783 ptrdiff_t offset = intel_offset_S8(mt->pitch,
2784 image_x + x + map->x,
2785 image_y + y + map->y,
2786 brw->has_swizzling);
2787 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
2788 }
2789 }
2790
2791 intel_miptree_unmap_raw(mt);
2792 }
2793
2794 free(map->buffer);
2795 }
2796
2797 static void
2798 intel_miptree_map_etc(struct brw_context *brw,
2799 struct intel_mipmap_tree *mt,
2800 struct intel_miptree_map *map,
2801 unsigned int level,
2802 unsigned int slice)
2803 {
2804 assert(mt->etc_format != MESA_FORMAT_NONE);
2805 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
2806 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
2807 }
2808
2809 assert(map->mode & GL_MAP_WRITE_BIT);
2810 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
2811
2812 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
2813 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
2814 map->w, map->h, 1));
2815 map->ptr = map->buffer;
2816 }
2817
2818 static void
2819 intel_miptree_unmap_etc(struct brw_context *brw,
2820 struct intel_mipmap_tree *mt,
2821 struct intel_miptree_map *map,
2822 unsigned int level,
2823 unsigned int slice)
2824 {
2825 uint32_t image_x;
2826 uint32_t image_y;
2827 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
2828
2829 image_x += map->x;
2830 image_y += map->y;
2831
2832 uint8_t *dst = intel_miptree_map_raw(brw, mt)
2833 + image_y * mt->pitch
2834 + image_x * mt->cpp;
2835
2836 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
2837 _mesa_etc1_unpack_rgba8888(dst, mt->pitch,
2838 map->ptr, map->stride,
2839 map->w, map->h);
2840 else
2841 _mesa_unpack_etc2_format(dst, mt->pitch,
2842 map->ptr, map->stride,
2843 map->w, map->h, mt->etc_format);
2844
2845 intel_miptree_unmap_raw(mt);
2846 free(map->buffer);
2847 }
2848
2849 /**
2850 * Mapping function for packed depth/stencil miptrees backed by real separate
2851 * miptrees for depth and stencil.
2852 *
2853 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
2854 * separate from the depth buffer. Yet at the GL API level, we have to expose
2855 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
2856 * be able to map that memory for texture storage and glReadPixels-type
2857 * operations. We give Mesa core that access by mallocing a temporary and
2858 * copying the data between the actual backing store and the temporary.
2859 */
2860 static void
2861 intel_miptree_map_depthstencil(struct brw_context *brw,
2862 struct intel_mipmap_tree *mt,
2863 struct intel_miptree_map *map,
2864 unsigned int level, unsigned int slice)
2865 {
2866 struct intel_mipmap_tree *z_mt = mt;
2867 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
2868 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
2869 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
2870
2871 map->stride = map->w * packed_bpp;
2872 map->buffer = map->ptr = malloc(map->stride * map->h);
2873 if (!map->buffer)
2874 return;
2875
2876 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
2877 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
2878 * invalidate is set, since we'll be writing the whole rectangle from our
2879 * temporary buffer back out.
2880 */
2881 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
2882 uint32_t *packed_map = map->ptr;
2883 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
2884 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
2885 unsigned int s_image_x, s_image_y;
2886 unsigned int z_image_x, z_image_y;
2887
2888 intel_miptree_get_image_offset(s_mt, level, slice,
2889 &s_image_x, &s_image_y);
2890 intel_miptree_get_image_offset(z_mt, level, slice,
2891 &z_image_x, &z_image_y);
2892
2893 for (uint32_t y = 0; y < map->h; y++) {
2894 for (uint32_t x = 0; x < map->w; x++) {
2895 int map_x = map->x + x, map_y = map->y + y;
2896 ptrdiff_t s_offset = intel_offset_S8(s_mt->pitch,
2897 map_x + s_image_x,
2898 map_y + s_image_y,
2899 brw->has_swizzling);
2900 ptrdiff_t z_offset = ((map_y + z_image_y) *
2901 (z_mt->pitch / 4) +
2902 (map_x + z_image_x));
2903 uint8_t s = s_map[s_offset];
2904 uint32_t z = z_map[z_offset];
2905
2906 if (map_z32f_x24s8) {
2907 packed_map[(y * map->w + x) * 2 + 0] = z;
2908 packed_map[(y * map->w + x) * 2 + 1] = s;
2909 } else {
2910 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
2911 }
2912 }
2913 }
2914
2915 intel_miptree_unmap_raw(s_mt);
2916 intel_miptree_unmap_raw(z_mt);
2917
2918 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
2919 __func__,
2920 map->x, map->y, map->w, map->h,
2921 z_mt, map->x + z_image_x, map->y + z_image_y,
2922 s_mt, map->x + s_image_x, map->y + s_image_y,
2923 map->ptr, map->stride);
2924 } else {
2925 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
2926 map->x, map->y, map->w, map->h,
2927 mt, map->ptr, map->stride);
2928 }
2929 }
2930
2931 static void
2932 intel_miptree_unmap_depthstencil(struct brw_context *brw,
2933 struct intel_mipmap_tree *mt,
2934 struct intel_miptree_map *map,
2935 unsigned int level,
2936 unsigned int slice)
2937 {
2938 struct intel_mipmap_tree *z_mt = mt;
2939 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
2940 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
2941
2942 if (map->mode & GL_MAP_WRITE_BIT) {
2943 uint32_t *packed_map = map->ptr;
2944 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt);
2945 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt);
2946 unsigned int s_image_x, s_image_y;
2947 unsigned int z_image_x, z_image_y;
2948
2949 intel_miptree_get_image_offset(s_mt, level, slice,
2950 &s_image_x, &s_image_y);
2951 intel_miptree_get_image_offset(z_mt, level, slice,
2952 &z_image_x, &z_image_y);
2953
2954 for (uint32_t y = 0; y < map->h; y++) {
2955 for (uint32_t x = 0; x < map->w; x++) {
2956 ptrdiff_t s_offset = intel_offset_S8(s_mt->pitch,
2957 x + s_image_x + map->x,
2958 y + s_image_y + map->y,
2959 brw->has_swizzling);
2960 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
2961 (z_mt->pitch / 4) +
2962 (x + z_image_x + map->x));
2963
2964 if (map_z32f_x24s8) {
2965 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
2966 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
2967 } else {
2968 uint32_t packed = packed_map[y * map->w + x];
2969 s_map[s_offset] = packed >> 24;
2970 z_map[z_offset] = packed;
2971 }
2972 }
2973 }
2974
2975 intel_miptree_unmap_raw(s_mt);
2976 intel_miptree_unmap_raw(z_mt);
2977
2978 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
2979 __func__,
2980 map->x, map->y, map->w, map->h,
2981 z_mt, _mesa_get_format_name(z_mt->format),
2982 map->x + z_image_x, map->y + z_image_y,
2983 s_mt, map->x + s_image_x, map->y + s_image_y,
2984 map->ptr, map->stride);
2985 }
2986
2987 free(map->buffer);
2988 }
2989
2990 /**
2991 * Create and attach a map to the miptree at (level, slice). Return the
2992 * attached map.
2993 */
2994 static struct intel_miptree_map*
2995 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
2996 unsigned int level,
2997 unsigned int slice,
2998 unsigned int x,
2999 unsigned int y,
3000 unsigned int w,
3001 unsigned int h,
3002 GLbitfield mode)
3003 {
3004 struct intel_miptree_map *map = calloc(1, sizeof(*map));
3005
3006 if (!map)
3007 return NULL;
3008
3009 assert(mt->level[level].slice[slice].map == NULL);
3010 mt->level[level].slice[slice].map = map;
3011
3012 map->mode = mode;
3013 map->x = x;
3014 map->y = y;
3015 map->w = w;
3016 map->h = h;
3017
3018 return map;
3019 }
3020
3021 /**
3022 * Release the map at (level, slice).
3023 */
3024 static void
3025 intel_miptree_release_map(struct intel_mipmap_tree *mt,
3026 unsigned int level,
3027 unsigned int slice)
3028 {
3029 struct intel_miptree_map **map;
3030
3031 map = &mt->level[level].slice[slice].map;
3032 free(*map);
3033 *map = NULL;
3034 }
3035
3036 static bool
3037 can_blit_slice(struct intel_mipmap_tree *mt,
3038 unsigned int level, unsigned int slice)
3039 {
3040 /* See intel_miptree_blit() for details on the 32k pitch limit. */
3041 if (mt->pitch >= 32768)
3042 return false;
3043
3044 return true;
3045 }
3046
3047 static bool
3048 use_intel_mipree_map_blit(struct brw_context *brw,
3049 struct intel_mipmap_tree *mt,
3050 GLbitfield mode,
3051 unsigned int level,
3052 unsigned int slice)
3053 {
3054 if (brw->has_llc &&
3055 /* It's probably not worth swapping to the blit ring because of
3056 * all the overhead involved. But, we must use blitter for the
3057 * surfaces with INTEL_MIPTREE_TRMODE_{YF,YS}.
3058 */
3059 (!(mode & GL_MAP_WRITE_BIT) ||
3060 mt->tr_mode != INTEL_MIPTREE_TRMODE_NONE) &&
3061 !mt->compressed &&
3062 (mt->tiling == I915_TILING_X ||
3063 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3064 (brw->gen >= 6 && mt->tiling == I915_TILING_Y) ||
3065 /* Fast copy blit on skl+ supports all tiling formats. */
3066 brw->gen >= 9) &&
3067 can_blit_slice(mt, level, slice))
3068 return true;
3069
3070 if (mt->tiling != I915_TILING_NONE &&
3071 mt->bo->size >= brw->max_gtt_map_object_size) {
3072 assert(can_blit_slice(mt, level, slice));
3073 return true;
3074 }
3075
3076 return false;
3077 }
3078
3079 /**
3080 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3081 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3082 * arithmetic overflow.
3083 *
3084 * If you call this function and use \a out_stride, then you're doing pointer
3085 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3086 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3087 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3088 * which usually have type uint32_t or GLuint.
3089 */
3090 void
3091 intel_miptree_map(struct brw_context *brw,
3092 struct intel_mipmap_tree *mt,
3093 unsigned int level,
3094 unsigned int slice,
3095 unsigned int x,
3096 unsigned int y,
3097 unsigned int w,
3098 unsigned int h,
3099 GLbitfield mode,
3100 void **out_ptr,
3101 ptrdiff_t *out_stride)
3102 {
3103 struct intel_miptree_map *map;
3104
3105 assert(mt->num_samples <= 1);
3106
3107 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3108 if (!map){
3109 *out_ptr = NULL;
3110 *out_stride = 0;
3111 return;
3112 }
3113
3114 intel_miptree_slice_resolve_depth(brw, mt, level, slice);
3115 if (map->mode & GL_MAP_WRITE_BIT) {
3116 intel_miptree_slice_set_needs_hiz_resolve(mt, level, slice);
3117 }
3118
3119 if (mt->format == MESA_FORMAT_S_UINT8) {
3120 intel_miptree_map_s8(brw, mt, map, level, slice);
3121 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3122 !(mode & BRW_MAP_DIRECT_BIT)) {
3123 intel_miptree_map_etc(brw, mt, map, level, slice);
3124 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3125 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3126 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3127 intel_miptree_map_blit(brw, mt, map, level, slice);
3128 #if defined(USE_SSE41)
3129 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3130 !mt->compressed && cpu_has_sse4_1 &&
3131 (mt->pitch % 16 == 0)) {
3132 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3133 #endif
3134 } else {
3135 /* intel_miptree_map_gtt() doesn't support surfaces with Yf/Ys tiling. */
3136 assert(mt->tr_mode == INTEL_MIPTREE_TRMODE_NONE);
3137 intel_miptree_map_gtt(brw, mt, map, level, slice);
3138 }
3139
3140 *out_ptr = map->ptr;
3141 *out_stride = map->stride;
3142
3143 if (map->ptr == NULL)
3144 intel_miptree_release_map(mt, level, slice);
3145 }
3146
3147 void
3148 intel_miptree_unmap(struct brw_context *brw,
3149 struct intel_mipmap_tree *mt,
3150 unsigned int level,
3151 unsigned int slice)
3152 {
3153 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3154
3155 assert(mt->num_samples <= 1);
3156
3157 if (!map)
3158 return;
3159
3160 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3161 mt, _mesa_get_format_name(mt->format), level, slice);
3162
3163 if (mt->format == MESA_FORMAT_S_UINT8) {
3164 intel_miptree_unmap_s8(brw, mt, map, level, slice);
3165 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3166 !(map->mode & BRW_MAP_DIRECT_BIT)) {
3167 intel_miptree_unmap_etc(brw, mt, map, level, slice);
3168 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
3169 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
3170 } else if (map->linear_mt) {
3171 intel_miptree_unmap_blit(brw, mt, map, level, slice);
3172 #if defined(USE_SSE41)
3173 } else if (map->buffer && cpu_has_sse4_1) {
3174 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
3175 #endif
3176 } else {
3177 intel_miptree_unmap_gtt(mt);
3178 }
3179
3180 intel_miptree_release_map(mt, level, slice);
3181 }
3182
3183 enum isl_surf_dim
3184 get_isl_surf_dim(GLenum target)
3185 {
3186 switch (target) {
3187 case GL_TEXTURE_1D:
3188 case GL_TEXTURE_1D_ARRAY:
3189 return ISL_SURF_DIM_1D;
3190
3191 case GL_TEXTURE_2D:
3192 case GL_TEXTURE_2D_ARRAY:
3193 case GL_TEXTURE_RECTANGLE:
3194 case GL_TEXTURE_CUBE_MAP:
3195 case GL_TEXTURE_CUBE_MAP_ARRAY:
3196 case GL_TEXTURE_2D_MULTISAMPLE:
3197 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3198 case GL_TEXTURE_EXTERNAL_OES:
3199 return ISL_SURF_DIM_2D;
3200
3201 case GL_TEXTURE_3D:
3202 return ISL_SURF_DIM_3D;
3203 }
3204
3205 unreachable("Invalid texture target");
3206 }
3207
3208 enum isl_dim_layout
3209 get_isl_dim_layout(const struct gen_device_info *devinfo, uint32_t tiling,
3210 GLenum target)
3211 {
3212 switch (target) {
3213 case GL_TEXTURE_1D:
3214 case GL_TEXTURE_1D_ARRAY:
3215 return (devinfo->gen >= 9 && tiling == I915_TILING_NONE ?
3216 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3217
3218 case GL_TEXTURE_2D:
3219 case GL_TEXTURE_2D_ARRAY:
3220 case GL_TEXTURE_RECTANGLE:
3221 case GL_TEXTURE_2D_MULTISAMPLE:
3222 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3223 case GL_TEXTURE_EXTERNAL_OES:
3224 return ISL_DIM_LAYOUT_GEN4_2D;
3225
3226 case GL_TEXTURE_CUBE_MAP:
3227 case GL_TEXTURE_CUBE_MAP_ARRAY:
3228 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3229 ISL_DIM_LAYOUT_GEN4_2D);
3230
3231 case GL_TEXTURE_3D:
3232 return (devinfo->gen >= 9 ?
3233 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3234 }
3235
3236 unreachable("Invalid texture target");
3237 }
3238
3239 enum isl_tiling
3240 intel_miptree_get_isl_tiling(const struct intel_mipmap_tree *mt)
3241 {
3242 if (mt->format == MESA_FORMAT_S_UINT8) {
3243 return ISL_TILING_W;
3244 } else {
3245 switch (mt->tiling) {
3246 case I915_TILING_NONE:
3247 return ISL_TILING_LINEAR;
3248 case I915_TILING_X:
3249 return ISL_TILING_X;
3250 case I915_TILING_Y:
3251 switch (mt->tr_mode) {
3252 case INTEL_MIPTREE_TRMODE_NONE:
3253 return ISL_TILING_Y0;
3254 case INTEL_MIPTREE_TRMODE_YF:
3255 return ISL_TILING_Yf;
3256 case INTEL_MIPTREE_TRMODE_YS:
3257 return ISL_TILING_Ys;
3258 default:
3259 unreachable("Invalid tiled resource mode");
3260 }
3261 default:
3262 unreachable("Invalid tiling mode");
3263 }
3264 }
3265 }
3266
3267 void
3268 intel_miptree_get_isl_surf(struct brw_context *brw,
3269 const struct intel_mipmap_tree *mt,
3270 struct isl_surf *surf)
3271 {
3272 surf->dim = get_isl_surf_dim(mt->target);
3273 surf->dim_layout = get_isl_dim_layout(&brw->screen->devinfo,
3274 mt->tiling, mt->target);
3275
3276 if (mt->num_samples > 1) {
3277 switch (mt->msaa_layout) {
3278 case INTEL_MSAA_LAYOUT_IMS:
3279 surf->msaa_layout = ISL_MSAA_LAYOUT_INTERLEAVED;
3280 break;
3281 case INTEL_MSAA_LAYOUT_UMS:
3282 case INTEL_MSAA_LAYOUT_CMS:
3283 surf->msaa_layout = ISL_MSAA_LAYOUT_ARRAY;
3284 break;
3285 default:
3286 unreachable("Invalid MSAA layout");
3287 }
3288 } else {
3289 surf->msaa_layout = ISL_MSAA_LAYOUT_NONE;
3290 }
3291
3292 surf->tiling = intel_miptree_get_isl_tiling(mt);
3293
3294 if (mt->format == MESA_FORMAT_S_UINT8) {
3295 /* The ISL definition of row_pitch matches the surface state pitch field
3296 * a bit better than intel_mipmap_tree. In particular, ISL incorporates
3297 * the factor of 2 for W-tiling in row_pitch.
3298 */
3299 surf->row_pitch = 2 * mt->pitch;
3300 } else {
3301 surf->row_pitch = mt->pitch;
3302 }
3303
3304 surf->format = translate_tex_format(brw, mt->format, false);
3305
3306 if (brw->gen >= 9) {
3307 if (surf->dim == ISL_SURF_DIM_1D && surf->tiling == ISL_TILING_LINEAR) {
3308 /* For gen9 1-D surfaces, intel_mipmap_tree has a bogus alignment. */
3309 surf->image_alignment_el = isl_extent3d(64, 1, 1);
3310 } else {
3311 /* On gen9+, intel_mipmap_tree stores the horizontal and vertical
3312 * alignment in terms of surface elements like we want.
3313 */
3314 surf->image_alignment_el = isl_extent3d(mt->halign, mt->valign, 1);
3315 }
3316 } else {
3317 /* On earlier gens it's stored in pixels. */
3318 unsigned bw, bh;
3319 _mesa_get_format_block_size(mt->format, &bw, &bh);
3320 surf->image_alignment_el =
3321 isl_extent3d(mt->halign / bw, mt->valign / bh, 1);
3322 }
3323
3324 surf->logical_level0_px.width = mt->logical_width0;
3325 surf->logical_level0_px.height = mt->logical_height0;
3326 if (surf->dim == ISL_SURF_DIM_3D) {
3327 surf->logical_level0_px.depth = mt->logical_depth0;
3328 surf->logical_level0_px.array_len = 1;
3329 } else {
3330 surf->logical_level0_px.depth = 1;
3331 surf->logical_level0_px.array_len = mt->logical_depth0;
3332 }
3333
3334 surf->phys_level0_sa.width = mt->physical_width0;
3335 surf->phys_level0_sa.height = mt->physical_height0;
3336 if (surf->dim == ISL_SURF_DIM_3D) {
3337 surf->phys_level0_sa.depth = mt->physical_depth0;
3338 surf->phys_level0_sa.array_len = 1;
3339 } else {
3340 surf->phys_level0_sa.depth = 1;
3341 surf->phys_level0_sa.array_len = mt->physical_depth0;
3342 }
3343
3344 surf->levels = mt->last_level + 1;
3345 surf->samples = MAX2(mt->num_samples, 1);
3346
3347 surf->size = 0; /* TODO */
3348 surf->alignment = 0; /* TODO */
3349
3350 switch (surf->dim_layout) {
3351 case ISL_DIM_LAYOUT_GEN4_2D:
3352 case ISL_DIM_LAYOUT_GEN4_3D:
3353 if (brw->gen >= 9) {
3354 surf->array_pitch_el_rows = mt->qpitch;
3355 } else {
3356 unsigned bw, bh;
3357 _mesa_get_format_block_size(mt->format, &bw, &bh);
3358 assert(mt->qpitch % bh == 0);
3359 surf->array_pitch_el_rows = mt->qpitch / bh;
3360 }
3361 break;
3362 case ISL_DIM_LAYOUT_GEN9_1D:
3363 surf->array_pitch_el_rows = 1;
3364 break;
3365 }
3366
3367 switch (mt->array_layout) {
3368 case ALL_LOD_IN_EACH_SLICE:
3369 surf->array_pitch_span = ISL_ARRAY_PITCH_SPAN_FULL;
3370 break;
3371 case ALL_SLICES_AT_EACH_LOD:
3372 surf->array_pitch_span = ISL_ARRAY_PITCH_SPAN_COMPACT;
3373 break;
3374 default:
3375 unreachable("Invalid array layout");
3376 }
3377
3378 GLenum base_format = _mesa_get_format_base_format(mt->format);
3379 switch (base_format) {
3380 case GL_DEPTH_COMPONENT:
3381 surf->usage = ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT;
3382 break;
3383 case GL_STENCIL_INDEX:
3384 surf->usage = ISL_SURF_USAGE_STENCIL_BIT;
3385 if (brw->gen >= 8)
3386 surf->usage |= ISL_SURF_USAGE_TEXTURE_BIT;
3387 break;
3388 case GL_DEPTH_STENCIL:
3389 /* In this case we only texture from the depth part */
3390 surf->usage = ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_STENCIL_BIT |
3391 ISL_SURF_USAGE_TEXTURE_BIT;
3392 break;
3393 default:
3394 surf->usage = ISL_SURF_USAGE_TEXTURE_BIT;
3395 if (brw->format_supported_as_render_target[mt->format])
3396 surf->usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
3397 break;
3398 }
3399
3400 if (_mesa_is_cube_map_texture(mt->target))
3401 surf->usage |= ISL_SURF_USAGE_CUBE_BIT;
3402 }
3403
3404 /* WARNING: THE SURFACE CREATED BY THIS FUNCTION IS NOT COMPLETE AND CANNOT BE
3405 * USED FOR ANY REAL CALCULATIONS. THE ONLY VALID USE OF SUCH A SURFACE IS TO
3406 * PASS IT INTO isl_surf_fill_state.
3407 */
3408 void
3409 intel_miptree_get_aux_isl_surf(struct brw_context *brw,
3410 const struct intel_mipmap_tree *mt,
3411 struct isl_surf *surf,
3412 enum isl_aux_usage *usage)
3413 {
3414 uint32_t aux_pitch, aux_qpitch;
3415 if (mt->mcs_buf) {
3416 aux_pitch = mt->mcs_buf->pitch;
3417 aux_qpitch = mt->mcs_buf->qpitch;
3418
3419 if (mt->num_samples > 1) {
3420 assert(mt->msaa_layout == INTEL_MSAA_LAYOUT_CMS);
3421 *usage = ISL_AUX_USAGE_MCS;
3422 } else if (intel_miptree_is_lossless_compressed(brw, mt)) {
3423 assert(brw->gen >= 9);
3424 *usage = ISL_AUX_USAGE_CCS_E;
3425 } else if ((mt->aux_disable & INTEL_AUX_DISABLE_CCS) == 0) {
3426 *usage = ISL_AUX_USAGE_CCS_D;
3427 } else {
3428 unreachable("Invalid MCS miptree");
3429 }
3430 } else if (mt->hiz_buf) {
3431 if (mt->hiz_buf->mt) {
3432 aux_pitch = mt->hiz_buf->mt->pitch;
3433 aux_qpitch = mt->hiz_buf->mt->qpitch;
3434 } else {
3435 aux_pitch = mt->hiz_buf->aux_base.pitch;
3436 aux_qpitch = mt->hiz_buf->aux_base.qpitch;
3437 }
3438
3439 *usage = ISL_AUX_USAGE_HIZ;
3440 } else {
3441 *usage = ISL_AUX_USAGE_NONE;
3442 return;
3443 }
3444
3445 /* Start with a copy of the original surface. */
3446 intel_miptree_get_isl_surf(brw, mt, surf);
3447
3448 /* Figure out the format and tiling of the auxiliary surface */
3449 switch (*usage) {
3450 case ISL_AUX_USAGE_NONE:
3451 unreachable("Invalid auxiliary usage");
3452
3453 case ISL_AUX_USAGE_HIZ:
3454 isl_surf_get_hiz_surf(&brw->isl_dev, surf, surf);
3455 break;
3456
3457 case ISL_AUX_USAGE_MCS:
3458 /*
3459 * From the SKL PRM:
3460 * "When Auxiliary Surface Mode is set to AUX_CCS_D or AUX_CCS_E,
3461 * HALIGN 16 must be used."
3462 */
3463 if (brw->gen >= 9)
3464 assert(mt->halign == 16);
3465
3466 isl_surf_get_mcs_surf(&brw->isl_dev, surf, surf);
3467 break;
3468
3469 case ISL_AUX_USAGE_CCS_D:
3470 case ISL_AUX_USAGE_CCS_E:
3471 /*
3472 * From the BDW PRM, Volume 2d, page 260 (RENDER_SURFACE_STATE):
3473 *
3474 * "When MCS is enabled for non-MSRT, HALIGN_16 must be used"
3475 *
3476 * From the hardware spec for GEN9:
3477 *
3478 * "When Auxiliary Surface Mode is set to AUX_CCS_D or AUX_CCS_E,
3479 * HALIGN 16 must be used."
3480 */
3481 assert(mt->num_samples <= 1);
3482 if (brw->gen >= 8)
3483 assert(mt->halign == 16);
3484
3485 isl_surf_get_ccs_surf(&brw->isl_dev, surf, surf);
3486 break;
3487 }
3488
3489 /* We want the pitch of the actual aux buffer. */
3490 surf->row_pitch = aux_pitch;
3491
3492 /* Auxiliary surfaces in ISL have compressed formats and array_pitch_el_rows
3493 * is in elements. This doesn't match intel_mipmap_tree::qpitch which is
3494 * in elements of the primary color surface so we have to divide by the
3495 * compression block height.
3496 */
3497 surf->array_pitch_el_rows =
3498 aux_qpitch / isl_format_get_layout(surf->format)->bh;
3499 }
3500
3501 union isl_color_value
3502 intel_miptree_get_isl_clear_color(struct brw_context *brw,
3503 const struct intel_mipmap_tree *mt)
3504 {
3505 union isl_color_value clear_color;
3506
3507 if (_mesa_get_format_base_format(mt->format) == GL_DEPTH_COMPONENT) {
3508 clear_color.i32[0] = mt->depth_clear_value;
3509 clear_color.i32[1] = 0;
3510 clear_color.i32[2] = 0;
3511 clear_color.i32[3] = 0;
3512 } else if (brw->gen >= 9) {
3513 clear_color.i32[0] = mt->gen9_fast_clear_color.i[0];
3514 clear_color.i32[1] = mt->gen9_fast_clear_color.i[1];
3515 clear_color.i32[2] = mt->gen9_fast_clear_color.i[2];
3516 clear_color.i32[3] = mt->gen9_fast_clear_color.i[3];
3517 } else if (_mesa_is_format_integer(mt->format)) {
3518 clear_color.i32[0] = (mt->fast_clear_color_value & (1u << 31)) != 0;
3519 clear_color.i32[1] = (mt->fast_clear_color_value & (1u << 30)) != 0;
3520 clear_color.i32[2] = (mt->fast_clear_color_value & (1u << 29)) != 0;
3521 clear_color.i32[3] = (mt->fast_clear_color_value & (1u << 28)) != 0;
3522 } else {
3523 clear_color.f32[0] = (mt->fast_clear_color_value & (1u << 31)) != 0;
3524 clear_color.f32[1] = (mt->fast_clear_color_value & (1u << 30)) != 0;
3525 clear_color.f32[2] = (mt->fast_clear_color_value & (1u << 29)) != 0;
3526 clear_color.f32[3] = (mt->fast_clear_color_value & (1u << 28)) != 0;
3527 }
3528
3529 return clear_color;
3530 }