00ab30716863c612c629a7bcca59c918f507dff8
[mesa.git] / src / mesa / drivers / dri / i965 / intel_screen.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <drm_fourcc.h>
27 #include <errno.h>
28 #include <time.h>
29 #include <unistd.h>
30 #include "main/context.h"
31 #include "main/framebuffer.h"
32 #include "main/renderbuffer.h"
33 #include "main/texobj.h"
34 #include "main/hash.h"
35 #include "main/fbobject.h"
36 #include "main/version.h"
37 #include "swrast/s_renderbuffer.h"
38 #include "util/ralloc.h"
39 #include "brw_defines.h"
40 #include "compiler/nir/nir.h"
41
42 #include "utils.h"
43 #include "xmlpool.h"
44
45 #ifndef DRM_FORMAT_MOD_INVALID
46 #define DRM_FORMAT_MOD_INVALID ((1ULL<<56) - 1)
47 #endif
48
49 #ifndef DRM_FORMAT_MOD_LINEAR
50 #define DRM_FORMAT_MOD_LINEAR 0
51 #endif
52
53 static const __DRIconfigOptionsExtension brw_config_options = {
54 .base = { __DRI_CONFIG_OPTIONS, 1 },
55 .xml =
56 DRI_CONF_BEGIN
57 DRI_CONF_SECTION_PERFORMANCE
58 DRI_CONF_VBLANK_MODE(DRI_CONF_VBLANK_ALWAYS_SYNC)
59 /* Options correspond to DRI_CONF_BO_REUSE_DISABLED,
60 * DRI_CONF_BO_REUSE_ALL
61 */
62 DRI_CONF_OPT_BEGIN_V(bo_reuse, enum, 1, "0:1")
63 DRI_CONF_DESC_BEGIN(en, "Buffer object reuse")
64 DRI_CONF_ENUM(0, "Disable buffer object reuse")
65 DRI_CONF_ENUM(1, "Enable reuse of all sizes of buffer objects")
66 DRI_CONF_DESC_END
67 DRI_CONF_OPT_END
68 DRI_CONF_SECTION_END
69
70 DRI_CONF_SECTION_QUALITY
71 DRI_CONF_FORCE_S3TC_ENABLE("false")
72
73 DRI_CONF_PRECISE_TRIG("false")
74
75 DRI_CONF_OPT_BEGIN(clamp_max_samples, int, -1)
76 DRI_CONF_DESC(en, "Clamp the value of GL_MAX_SAMPLES to the "
77 "given integer. If negative, then do not clamp.")
78 DRI_CONF_OPT_END
79 DRI_CONF_SECTION_END
80
81 DRI_CONF_SECTION_DEBUG
82 DRI_CONF_NO_RAST("false")
83 DRI_CONF_ALWAYS_FLUSH_BATCH("false")
84 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
85 DRI_CONF_DISABLE_THROTTLING("false")
86 DRI_CONF_FORCE_GLSL_EXTENSIONS_WARN("false")
87 DRI_CONF_FORCE_GLSL_VERSION(0)
88 DRI_CONF_DISABLE_GLSL_LINE_CONTINUATIONS("false")
89 DRI_CONF_DISABLE_BLEND_FUNC_EXTENDED("false")
90 DRI_CONF_DUAL_COLOR_BLEND_BY_LOCATION("false")
91 DRI_CONF_ALLOW_GLSL_EXTENSION_DIRECTIVE_MIDSHADER("false")
92 DRI_CONF_ALLOW_HIGHER_COMPAT_VERSION("false")
93 DRI_CONF_FORCE_GLSL_ABS_SQRT("false")
94
95 DRI_CONF_OPT_BEGIN_B(shader_precompile, "true")
96 DRI_CONF_DESC(en, "Perform code generation at shader link time.")
97 DRI_CONF_OPT_END
98 DRI_CONF_SECTION_END
99
100 DRI_CONF_SECTION_MISCELLANEOUS
101 DRI_CONF_GLSL_ZERO_INIT("false")
102 DRI_CONF_SECTION_END
103 DRI_CONF_END
104 };
105
106 #include "intel_batchbuffer.h"
107 #include "intel_buffers.h"
108 #include "brw_bufmgr.h"
109 #include "intel_fbo.h"
110 #include "intel_mipmap_tree.h"
111 #include "intel_screen.h"
112 #include "intel_tex.h"
113 #include "intel_image.h"
114
115 #include "brw_context.h"
116
117 #include "i915_drm.h"
118
119 /**
120 * For debugging purposes, this returns a time in seconds.
121 */
122 double
123 get_time(void)
124 {
125 struct timespec tp;
126
127 clock_gettime(CLOCK_MONOTONIC, &tp);
128
129 return tp.tv_sec + tp.tv_nsec / 1000000000.0;
130 }
131
132 static const __DRItexBufferExtension intelTexBufferExtension = {
133 .base = { __DRI_TEX_BUFFER, 3 },
134
135 .setTexBuffer = intelSetTexBuffer,
136 .setTexBuffer2 = intelSetTexBuffer2,
137 .releaseTexBuffer = NULL,
138 };
139
140 static void
141 intel_dri2_flush_with_flags(__DRIcontext *cPriv,
142 __DRIdrawable *dPriv,
143 unsigned flags,
144 enum __DRI2throttleReason reason)
145 {
146 struct brw_context *brw = cPriv->driverPrivate;
147
148 if (!brw)
149 return;
150
151 struct gl_context *ctx = &brw->ctx;
152
153 FLUSH_VERTICES(ctx, 0);
154
155 if (flags & __DRI2_FLUSH_DRAWABLE)
156 intel_resolve_for_dri2_flush(brw, dPriv);
157
158 if (reason == __DRI2_THROTTLE_SWAPBUFFER)
159 brw->need_swap_throttle = true;
160 if (reason == __DRI2_THROTTLE_FLUSHFRONT)
161 brw->need_flush_throttle = true;
162
163 intel_batchbuffer_flush(brw);
164 }
165
166 /**
167 * Provides compatibility with loaders that only support the older (version
168 * 1-3) flush interface.
169 *
170 * That includes libGL up to Mesa 9.0, and the X Server at least up to 1.13.
171 */
172 static void
173 intel_dri2_flush(__DRIdrawable *drawable)
174 {
175 intel_dri2_flush_with_flags(drawable->driContextPriv, drawable,
176 __DRI2_FLUSH_DRAWABLE,
177 __DRI2_THROTTLE_SWAPBUFFER);
178 }
179
180 static const struct __DRI2flushExtensionRec intelFlushExtension = {
181 .base = { __DRI2_FLUSH, 4 },
182
183 .flush = intel_dri2_flush,
184 .invalidate = dri2InvalidateDrawable,
185 .flush_with_flags = intel_dri2_flush_with_flags,
186 };
187
188 static struct intel_image_format intel_image_formats[] = {
189 { __DRI_IMAGE_FOURCC_ARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
190 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
191
192 { __DRI_IMAGE_FOURCC_ABGR8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
193 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
194
195 { __DRI_IMAGE_FOURCC_SARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
196 { { 0, 0, 0, __DRI_IMAGE_FORMAT_SARGB8, 4 } } },
197
198 { __DRI_IMAGE_FOURCC_XRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
199 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB8888, 4 }, } },
200
201 { __DRI_IMAGE_FOURCC_XBGR8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
202 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 }, } },
203
204 { __DRI_IMAGE_FOURCC_ARGB1555, __DRI_IMAGE_COMPONENTS_RGBA, 1,
205 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB1555, 2 } } },
206
207 { __DRI_IMAGE_FOURCC_RGB565, __DRI_IMAGE_COMPONENTS_RGB, 1,
208 { { 0, 0, 0, __DRI_IMAGE_FORMAT_RGB565, 2 } } },
209
210 { __DRI_IMAGE_FOURCC_R8, __DRI_IMAGE_COMPONENTS_R, 1,
211 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 }, } },
212
213 { __DRI_IMAGE_FOURCC_R16, __DRI_IMAGE_COMPONENTS_R, 1,
214 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 1 }, } },
215
216 { __DRI_IMAGE_FOURCC_GR88, __DRI_IMAGE_COMPONENTS_RG, 1,
217 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 }, } },
218
219 { __DRI_IMAGE_FOURCC_GR1616, __DRI_IMAGE_COMPONENTS_RG, 1,
220 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR1616, 2 }, } },
221
222 { __DRI_IMAGE_FOURCC_YUV410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
223 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
224 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
225 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
226
227 { __DRI_IMAGE_FOURCC_YUV411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
228 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
229 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
230 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
231
232 { __DRI_IMAGE_FOURCC_YUV420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
233 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
234 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
235 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
236
237 { __DRI_IMAGE_FOURCC_YUV422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
238 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
239 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
240 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
241
242 { __DRI_IMAGE_FOURCC_YUV444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
243 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
244 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
245 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
246
247 { __DRI_IMAGE_FOURCC_YVU410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
248 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
249 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
250 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
251
252 { __DRI_IMAGE_FOURCC_YVU411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
253 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
254 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
255 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
256
257 { __DRI_IMAGE_FOURCC_YVU420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
258 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
259 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
260 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
261
262 { __DRI_IMAGE_FOURCC_YVU422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
263 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
264 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
265 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
266
267 { __DRI_IMAGE_FOURCC_YVU444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
268 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
269 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
270 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
271
272 { __DRI_IMAGE_FOURCC_NV12, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
273 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
274 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR88, 2 } } },
275
276 { __DRI_IMAGE_FOURCC_NV16, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
277 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
278 { 1, 1, 0, __DRI_IMAGE_FORMAT_GR88, 2 } } },
279
280 /* For YUYV buffers, we set up two overlapping DRI images and treat
281 * them as planar buffers in the compositors. Plane 0 is GR88 and
282 * samples YU or YV pairs and places Y into the R component, while
283 * plane 1 is ARGB and samples YUYV clusters and places pairs and
284 * places U into the G component and V into A. This lets the
285 * texture sampler interpolate the Y components correctly when
286 * sampling from plane 0, and interpolate U and V correctly when
287 * sampling from plane 1. */
288 { __DRI_IMAGE_FOURCC_YUYV, __DRI_IMAGE_COMPONENTS_Y_XUXV, 2,
289 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
290 { 0, 1, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } }
291 };
292
293 static const struct {
294 uint32_t tiling;
295 uint64_t modifier;
296 } tiling_modifier_map[] = {
297 { .tiling = I915_TILING_NONE, .modifier = DRM_FORMAT_MOD_LINEAR },
298 { .tiling = I915_TILING_X, .modifier = I915_FORMAT_MOD_X_TILED },
299 { .tiling = I915_TILING_Y, .modifier = I915_FORMAT_MOD_Y_TILED },
300 };
301
302 static uint32_t
303 modifier_to_tiling(uint64_t modifier)
304 {
305 int i;
306
307 for (i = 0; i < ARRAY_SIZE(tiling_modifier_map); i++) {
308 if (tiling_modifier_map[i].modifier == modifier)
309 return tiling_modifier_map[i].tiling;
310 }
311
312 assert(0 && "modifier_to_tiling should only receive known modifiers");
313 unreachable();
314 }
315
316 static uint64_t
317 tiling_to_modifier(uint32_t tiling)
318 {
319 int i;
320
321 for (i = 0; i < ARRAY_SIZE(tiling_modifier_map); i++) {
322 if (tiling_modifier_map[i].tiling == tiling)
323 return tiling_modifier_map[i].modifier;
324 }
325
326 assert(0 && "tiling_to_modifier received unknown tiling mode");
327 unreachable();
328 }
329
330 static void
331 intel_image_warn_if_unaligned(__DRIimage *image, const char *func)
332 {
333 uint32_t tiling, swizzle;
334 brw_bo_get_tiling(image->bo, &tiling, &swizzle);
335
336 if (tiling != I915_TILING_NONE && (image->offset & 0xfff)) {
337 _mesa_warning(NULL, "%s: offset 0x%08x not on tile boundary",
338 func, image->offset);
339 }
340 }
341
342 static struct intel_image_format *
343 intel_image_format_lookup(int fourcc)
344 {
345 struct intel_image_format *f = NULL;
346
347 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
348 if (intel_image_formats[i].fourcc == fourcc) {
349 f = &intel_image_formats[i];
350 break;
351 }
352 }
353
354 return f;
355 }
356
357 static boolean intel_lookup_fourcc(int dri_format, int *fourcc)
358 {
359 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
360 if (intel_image_formats[i].planes[0].dri_format == dri_format) {
361 *fourcc = intel_image_formats[i].fourcc;
362 return true;
363 }
364 }
365 return false;
366 }
367
368 static __DRIimage *
369 intel_allocate_image(struct intel_screen *screen, int dri_format,
370 void *loaderPrivate)
371 {
372 __DRIimage *image;
373
374 image = calloc(1, sizeof *image);
375 if (image == NULL)
376 return NULL;
377
378 image->screen = screen;
379 image->dri_format = dri_format;
380 image->offset = 0;
381
382 image->format = driImageFormatToGLFormat(dri_format);
383 if (dri_format != __DRI_IMAGE_FORMAT_NONE &&
384 image->format == MESA_FORMAT_NONE) {
385 free(image);
386 return NULL;
387 }
388
389 image->internal_format = _mesa_get_format_base_format(image->format);
390 image->data = loaderPrivate;
391
392 return image;
393 }
394
395 /**
396 * Sets up a DRIImage structure to point to a slice out of a miptree.
397 */
398 static void
399 intel_setup_image_from_mipmap_tree(struct brw_context *brw, __DRIimage *image,
400 struct intel_mipmap_tree *mt, GLuint level,
401 GLuint zoffset)
402 {
403 intel_miptree_make_shareable(brw, mt);
404
405 intel_miptree_check_level_layer(mt, level, zoffset);
406
407 image->width = minify(mt->physical_width0, level - mt->first_level);
408 image->height = minify(mt->physical_height0, level - mt->first_level);
409 image->pitch = mt->pitch;
410
411 image->offset = intel_miptree_get_tile_offsets(mt, level, zoffset,
412 &image->tile_x,
413 &image->tile_y);
414
415 brw_bo_unreference(image->bo);
416 image->bo = mt->bo;
417 brw_bo_reference(mt->bo);
418 }
419
420 static __DRIimage *
421 intel_create_image_from_name(__DRIscreen *dri_screen,
422 int width, int height, int format,
423 int name, int pitch, void *loaderPrivate)
424 {
425 struct intel_screen *screen = dri_screen->driverPrivate;
426 __DRIimage *image;
427 int cpp;
428
429 image = intel_allocate_image(screen, format, loaderPrivate);
430 if (image == NULL)
431 return NULL;
432
433 if (image->format == MESA_FORMAT_NONE)
434 cpp = 1;
435 else
436 cpp = _mesa_get_format_bytes(image->format);
437
438 image->width = width;
439 image->height = height;
440 image->pitch = pitch * cpp;
441 image->bo = brw_bo_gem_create_from_name(screen->bufmgr, "image",
442 name);
443 if (!image->bo) {
444 free(image);
445 return NULL;
446 }
447 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
448
449 return image;
450 }
451
452 static __DRIimage *
453 intel_create_image_from_renderbuffer(__DRIcontext *context,
454 int renderbuffer, void *loaderPrivate)
455 {
456 __DRIimage *image;
457 struct brw_context *brw = context->driverPrivate;
458 struct gl_context *ctx = &brw->ctx;
459 struct gl_renderbuffer *rb;
460 struct intel_renderbuffer *irb;
461
462 rb = _mesa_lookup_renderbuffer(ctx, renderbuffer);
463 if (!rb) {
464 _mesa_error(ctx, GL_INVALID_OPERATION, "glRenderbufferExternalMESA");
465 return NULL;
466 }
467
468 irb = intel_renderbuffer(rb);
469 intel_miptree_make_shareable(brw, irb->mt);
470 image = calloc(1, sizeof *image);
471 if (image == NULL)
472 return NULL;
473
474 image->internal_format = rb->InternalFormat;
475 image->format = rb->Format;
476 image->modifier = tiling_to_modifier(irb->mt->tiling);
477 image->offset = 0;
478 image->data = loaderPrivate;
479 brw_bo_unreference(image->bo);
480 image->bo = irb->mt->bo;
481 brw_bo_reference(irb->mt->bo);
482 image->width = rb->Width;
483 image->height = rb->Height;
484 image->pitch = irb->mt->pitch;
485 image->dri_format = driGLFormatToImageFormat(image->format);
486 image->has_depthstencil = irb->mt->stencil_mt? true : false;
487
488 rb->NeedsFinishRenderTexture = true;
489 return image;
490 }
491
492 static __DRIimage *
493 intel_create_image_from_texture(__DRIcontext *context, int target,
494 unsigned texture, int zoffset,
495 int level,
496 unsigned *error,
497 void *loaderPrivate)
498 {
499 __DRIimage *image;
500 struct brw_context *brw = context->driverPrivate;
501 struct gl_texture_object *obj;
502 struct intel_texture_object *iobj;
503 GLuint face = 0;
504
505 obj = _mesa_lookup_texture(&brw->ctx, texture);
506 if (!obj || obj->Target != target) {
507 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
508 return NULL;
509 }
510
511 if (target == GL_TEXTURE_CUBE_MAP)
512 face = zoffset;
513
514 _mesa_test_texobj_completeness(&brw->ctx, obj);
515 iobj = intel_texture_object(obj);
516 if (!obj->_BaseComplete || (level > 0 && !obj->_MipmapComplete)) {
517 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
518 return NULL;
519 }
520
521 if (level < obj->BaseLevel || level > obj->_MaxLevel) {
522 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
523 return NULL;
524 }
525
526 if (target == GL_TEXTURE_3D && obj->Image[face][level]->Depth < zoffset) {
527 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
528 return NULL;
529 }
530 image = calloc(1, sizeof *image);
531 if (image == NULL) {
532 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
533 return NULL;
534 }
535
536 image->internal_format = obj->Image[face][level]->InternalFormat;
537 image->format = obj->Image[face][level]->TexFormat;
538 image->modifier = tiling_to_modifier(iobj->mt->tiling);
539 image->data = loaderPrivate;
540 intel_setup_image_from_mipmap_tree(brw, image, iobj->mt, level, zoffset);
541 image->dri_format = driGLFormatToImageFormat(image->format);
542 image->has_depthstencil = iobj->mt->stencil_mt? true : false;
543 if (image->dri_format == MESA_FORMAT_NONE) {
544 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
545 free(image);
546 return NULL;
547 }
548
549 *error = __DRI_IMAGE_ERROR_SUCCESS;
550 return image;
551 }
552
553 static void
554 intel_destroy_image(__DRIimage *image)
555 {
556 brw_bo_unreference(image->bo);
557 free(image);
558 }
559
560 enum modifier_priority {
561 MODIFIER_PRIORITY_INVALID = 0,
562 MODIFIER_PRIORITY_LINEAR,
563 MODIFIER_PRIORITY_X,
564 MODIFIER_PRIORITY_Y,
565 };
566
567 const uint64_t priority_to_modifier[] = {
568 [MODIFIER_PRIORITY_INVALID] = DRM_FORMAT_MOD_INVALID,
569 [MODIFIER_PRIORITY_LINEAR] = DRM_FORMAT_MOD_LINEAR,
570 [MODIFIER_PRIORITY_X] = I915_FORMAT_MOD_X_TILED,
571 [MODIFIER_PRIORITY_Y] = I915_FORMAT_MOD_Y_TILED,
572 };
573
574 static uint64_t
575 select_best_modifier(struct gen_device_info *devinfo,
576 const uint64_t *modifiers,
577 const unsigned count)
578 {
579 enum modifier_priority prio = MODIFIER_PRIORITY_INVALID;
580
581 for (int i = 0; i < count; i++) {
582 switch (modifiers[i]) {
583 case I915_FORMAT_MOD_Y_TILED:
584 prio = MAX2(prio, MODIFIER_PRIORITY_Y);
585 break;
586 case I915_FORMAT_MOD_X_TILED:
587 prio = MAX2(prio, MODIFIER_PRIORITY_X);
588 break;
589 case DRM_FORMAT_MOD_LINEAR:
590 prio = MAX2(prio, MODIFIER_PRIORITY_LINEAR);
591 break;
592 case DRM_FORMAT_MOD_INVALID:
593 default:
594 break;
595 }
596 }
597
598 return priority_to_modifier[prio];
599 }
600
601 static __DRIimage *
602 intel_create_image_common(__DRIscreen *dri_screen,
603 int width, int height, int format,
604 unsigned int use,
605 const uint64_t *modifiers,
606 unsigned count,
607 void *loaderPrivate)
608 {
609 __DRIimage *image;
610 struct intel_screen *screen = dri_screen->driverPrivate;
611 uint32_t tiling;
612 int cpp;
613
614 /* Callers of this may specify a modifier, or a dri usage, but not both. The
615 * newer modifier interface deprecates the older usage flags newer modifier
616 * interface deprecates the older usage flags.
617 */
618 assert(!(use && count));
619
620 uint64_t modifier = select_best_modifier(&screen->devinfo, modifiers, count);
621 if (modifier == DRM_FORMAT_MOD_INVALID) {
622 /* User requested specific modifiers, none of which work */
623 if (modifiers)
624 return NULL;
625
626 /* Historically, X-tiled was the default, and so lack of modifier means
627 * X-tiled.
628 */
629 tiling = I915_TILING_X;
630 } else {
631 /* select_best_modifier has found a modifier we support */
632 tiling = modifier_to_tiling(modifier);
633 }
634
635 if (use & __DRI_IMAGE_USE_CURSOR) {
636 if (width != 64 || height != 64)
637 return NULL;
638 tiling = I915_TILING_NONE;
639 }
640
641 if (use & __DRI_IMAGE_USE_LINEAR)
642 tiling = I915_TILING_NONE;
643
644 image = intel_allocate_image(screen, format, loaderPrivate);
645 if (image == NULL)
646 return NULL;
647
648 cpp = _mesa_get_format_bytes(image->format);
649 image->bo = brw_bo_alloc_tiled(screen->bufmgr, "image",
650 width, height, cpp, tiling,
651 &image->pitch, 0);
652 if (image->bo == NULL) {
653 free(image);
654 return NULL;
655 }
656 image->width = width;
657 image->height = height;
658 image->modifier = modifier;
659
660 return image;
661 }
662
663 static __DRIimage *
664 intel_create_image(__DRIscreen *dri_screen,
665 int width, int height, int format,
666 unsigned int use,
667 void *loaderPrivate)
668 {
669 return intel_create_image_common(dri_screen, width, height, format, use, NULL, 0,
670 loaderPrivate);
671 }
672
673 static __DRIimage *
674 intel_create_image_with_modifiers(__DRIscreen *dri_screen,
675 int width, int height, int format,
676 const uint64_t *modifiers,
677 const unsigned count,
678 void *loaderPrivate)
679 {
680 return intel_create_image_common(dri_screen, width, height, format, 0,
681 modifiers, count, loaderPrivate);
682 }
683
684 static GLboolean
685 intel_query_image(__DRIimage *image, int attrib, int *value)
686 {
687 switch (attrib) {
688 case __DRI_IMAGE_ATTRIB_STRIDE:
689 *value = image->pitch;
690 return true;
691 case __DRI_IMAGE_ATTRIB_HANDLE:
692 *value = image->bo->gem_handle;
693 return true;
694 case __DRI_IMAGE_ATTRIB_NAME:
695 return !brw_bo_flink(image->bo, (uint32_t *) value);
696 case __DRI_IMAGE_ATTRIB_FORMAT:
697 *value = image->dri_format;
698 return true;
699 case __DRI_IMAGE_ATTRIB_WIDTH:
700 *value = image->width;
701 return true;
702 case __DRI_IMAGE_ATTRIB_HEIGHT:
703 *value = image->height;
704 return true;
705 case __DRI_IMAGE_ATTRIB_COMPONENTS:
706 if (image->planar_format == NULL)
707 return false;
708 *value = image->planar_format->components;
709 return true;
710 case __DRI_IMAGE_ATTRIB_FD:
711 return !brw_bo_gem_export_to_prime(image->bo, value);
712 case __DRI_IMAGE_ATTRIB_FOURCC:
713 return intel_lookup_fourcc(image->dri_format, value);
714 case __DRI_IMAGE_ATTRIB_NUM_PLANES:
715 *value = 1;
716 return true;
717 case __DRI_IMAGE_ATTRIB_OFFSET:
718 *value = image->offset;
719 return true;
720 case __DRI_IMAGE_ATTRIB_MODIFIER_LOWER:
721 *value = (image->modifier & 0xffffffff);
722 return true;
723 case __DRI_IMAGE_ATTRIB_MODIFIER_UPPER:
724 *value = ((image->modifier >> 32) & 0xffffffff);
725 return true;
726
727 default:
728 return false;
729 }
730 }
731
732 static __DRIimage *
733 intel_dup_image(__DRIimage *orig_image, void *loaderPrivate)
734 {
735 __DRIimage *image;
736
737 image = calloc(1, sizeof *image);
738 if (image == NULL)
739 return NULL;
740
741 brw_bo_reference(orig_image->bo);
742 image->bo = orig_image->bo;
743 image->internal_format = orig_image->internal_format;
744 image->planar_format = orig_image->planar_format;
745 image->dri_format = orig_image->dri_format;
746 image->format = orig_image->format;
747 image->modifier = orig_image->modifier;
748 image->offset = orig_image->offset;
749 image->width = orig_image->width;
750 image->height = orig_image->height;
751 image->pitch = orig_image->pitch;
752 image->tile_x = orig_image->tile_x;
753 image->tile_y = orig_image->tile_y;
754 image->has_depthstencil = orig_image->has_depthstencil;
755 image->data = loaderPrivate;
756
757 memcpy(image->strides, orig_image->strides, sizeof(image->strides));
758 memcpy(image->offsets, orig_image->offsets, sizeof(image->offsets));
759
760 return image;
761 }
762
763 static GLboolean
764 intel_validate_usage(__DRIimage *image, unsigned int use)
765 {
766 if (use & __DRI_IMAGE_USE_CURSOR) {
767 if (image->width != 64 || image->height != 64)
768 return GL_FALSE;
769 }
770
771 return GL_TRUE;
772 }
773
774 static __DRIimage *
775 intel_create_image_from_names(__DRIscreen *dri_screen,
776 int width, int height, int fourcc,
777 int *names, int num_names,
778 int *strides, int *offsets,
779 void *loaderPrivate)
780 {
781 struct intel_image_format *f = NULL;
782 __DRIimage *image;
783 int i, index;
784
785 if (dri_screen == NULL || names == NULL || num_names != 1)
786 return NULL;
787
788 f = intel_image_format_lookup(fourcc);
789 if (f == NULL)
790 return NULL;
791
792 image = intel_create_image_from_name(dri_screen, width, height,
793 __DRI_IMAGE_FORMAT_NONE,
794 names[0], strides[0],
795 loaderPrivate);
796
797 if (image == NULL)
798 return NULL;
799
800 image->planar_format = f;
801 for (i = 0; i < f->nplanes; i++) {
802 index = f->planes[i].buffer_index;
803 image->offsets[index] = offsets[index];
804 image->strides[index] = strides[index];
805 }
806
807 return image;
808 }
809
810 static __DRIimage *
811 intel_create_image_from_fds(__DRIscreen *dri_screen,
812 int width, int height, int fourcc,
813 int *fds, int num_fds, int *strides, int *offsets,
814 void *loaderPrivate)
815 {
816 struct intel_screen *screen = dri_screen->driverPrivate;
817 struct intel_image_format *f;
818 __DRIimage *image;
819 int i, index;
820
821 if (fds == NULL || num_fds < 1)
822 return NULL;
823
824 /* We only support all planes from the same bo */
825 for (i = 0; i < num_fds; i++)
826 if (fds[0] != fds[i])
827 return NULL;
828
829 f = intel_image_format_lookup(fourcc);
830 if (f == NULL)
831 return NULL;
832
833 if (f->nplanes == 1)
834 image = intel_allocate_image(screen, f->planes[0].dri_format,
835 loaderPrivate);
836 else
837 image = intel_allocate_image(screen, __DRI_IMAGE_FORMAT_NONE,
838 loaderPrivate);
839
840 if (image == NULL)
841 return NULL;
842
843 image->width = width;
844 image->height = height;
845 image->pitch = strides[0];
846
847 image->planar_format = f;
848 int size = 0;
849 for (i = 0; i < f->nplanes; i++) {
850 index = f->planes[i].buffer_index;
851 image->offsets[index] = offsets[index];
852 image->strides[index] = strides[index];
853
854 const int plane_height = height >> f->planes[i].height_shift;
855 const int end = offsets[index] + plane_height * strides[index];
856 if (size < end)
857 size = end;
858 }
859
860 image->bo = brw_bo_gem_create_from_prime(screen->bufmgr,
861 fds[0], size);
862 if (image->bo == NULL) {
863 free(image);
864 return NULL;
865 }
866 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
867
868 if (f->nplanes == 1) {
869 image->offset = image->offsets[0];
870 intel_image_warn_if_unaligned(image, __func__);
871 }
872
873 return image;
874 }
875
876 static __DRIimage *
877 intel_create_image_from_dma_bufs(__DRIscreen *dri_screen,
878 int width, int height, int fourcc,
879 int *fds, int num_fds,
880 int *strides, int *offsets,
881 enum __DRIYUVColorSpace yuv_color_space,
882 enum __DRISampleRange sample_range,
883 enum __DRIChromaSiting horizontal_siting,
884 enum __DRIChromaSiting vertical_siting,
885 unsigned *error,
886 void *loaderPrivate)
887 {
888 __DRIimage *image;
889 struct intel_image_format *f = intel_image_format_lookup(fourcc);
890
891 if (!f) {
892 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
893 return NULL;
894 }
895
896 image = intel_create_image_from_fds(dri_screen, width, height, fourcc, fds,
897 num_fds, strides, offsets,
898 loaderPrivate);
899
900 /*
901 * Invalid parameters and any inconsistencies between are assumed to be
902 * checked by the caller. Therefore besides unsupported formats one can fail
903 * only in allocation.
904 */
905 if (!image) {
906 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
907 return NULL;
908 }
909
910 image->dma_buf_imported = true;
911 image->yuv_color_space = yuv_color_space;
912 image->sample_range = sample_range;
913 image->horizontal_siting = horizontal_siting;
914 image->vertical_siting = vertical_siting;
915
916 *error = __DRI_IMAGE_ERROR_SUCCESS;
917 return image;
918 }
919
920 static __DRIimage *
921 intel_from_planar(__DRIimage *parent, int plane, void *loaderPrivate)
922 {
923 int width, height, offset, stride, dri_format, index;
924 struct intel_image_format *f;
925 __DRIimage *image;
926
927 if (parent == NULL || parent->planar_format == NULL)
928 return NULL;
929
930 f = parent->planar_format;
931
932 if (plane >= f->nplanes)
933 return NULL;
934
935 width = parent->width >> f->planes[plane].width_shift;
936 height = parent->height >> f->planes[plane].height_shift;
937 dri_format = f->planes[plane].dri_format;
938 index = f->planes[plane].buffer_index;
939 offset = parent->offsets[index];
940 stride = parent->strides[index];
941
942 image = intel_allocate_image(parent->screen, dri_format, loaderPrivate);
943 if (image == NULL)
944 return NULL;
945
946 if (offset + height * stride > parent->bo->size) {
947 _mesa_warning(NULL, "intel_create_sub_image: subimage out of bounds");
948 free(image);
949 return NULL;
950 }
951
952 image->bo = parent->bo;
953 brw_bo_reference(parent->bo);
954 image->modifier = parent->modifier;
955
956 image->width = width;
957 image->height = height;
958 image->pitch = stride;
959 image->offset = offset;
960
961 intel_image_warn_if_unaligned(image, __func__);
962
963 return image;
964 }
965
966 static const __DRIimageExtension intelImageExtension = {
967 .base = { __DRI_IMAGE, 14 },
968
969 .createImageFromName = intel_create_image_from_name,
970 .createImageFromRenderbuffer = intel_create_image_from_renderbuffer,
971 .destroyImage = intel_destroy_image,
972 .createImage = intel_create_image,
973 .queryImage = intel_query_image,
974 .dupImage = intel_dup_image,
975 .validateUsage = intel_validate_usage,
976 .createImageFromNames = intel_create_image_from_names,
977 .fromPlanar = intel_from_planar,
978 .createImageFromTexture = intel_create_image_from_texture,
979 .createImageFromFds = intel_create_image_from_fds,
980 .createImageFromDmaBufs = intel_create_image_from_dma_bufs,
981 .blitImage = NULL,
982 .getCapabilities = NULL,
983 .mapImage = NULL,
984 .unmapImage = NULL,
985 .createImageWithModifiers = intel_create_image_with_modifiers,
986 };
987
988 static uint64_t
989 get_aperture_size(int fd)
990 {
991 struct drm_i915_gem_get_aperture aperture;
992
993 if (drmIoctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture) != 0)
994 return 0;
995
996 return aperture.aper_size;
997 }
998
999 static int
1000 brw_query_renderer_integer(__DRIscreen *dri_screen,
1001 int param, unsigned int *value)
1002 {
1003 const struct intel_screen *const screen =
1004 (struct intel_screen *) dri_screen->driverPrivate;
1005
1006 switch (param) {
1007 case __DRI2_RENDERER_VENDOR_ID:
1008 value[0] = 0x8086;
1009 return 0;
1010 case __DRI2_RENDERER_DEVICE_ID:
1011 value[0] = screen->deviceID;
1012 return 0;
1013 case __DRI2_RENDERER_ACCELERATED:
1014 value[0] = 1;
1015 return 0;
1016 case __DRI2_RENDERER_VIDEO_MEMORY: {
1017 /* Once a batch uses more than 75% of the maximum mappable size, we
1018 * assume that there's some fragmentation, and we start doing extra
1019 * flushing, etc. That's the big cliff apps will care about.
1020 */
1021 const unsigned gpu_mappable_megabytes =
1022 screen->aperture_threshold / (1024 * 1024);
1023
1024 const long system_memory_pages = sysconf(_SC_PHYS_PAGES);
1025 const long system_page_size = sysconf(_SC_PAGE_SIZE);
1026
1027 if (system_memory_pages <= 0 || system_page_size <= 0)
1028 return -1;
1029
1030 const uint64_t system_memory_bytes = (uint64_t) system_memory_pages
1031 * (uint64_t) system_page_size;
1032
1033 const unsigned system_memory_megabytes =
1034 (unsigned) (system_memory_bytes / (1024 * 1024));
1035
1036 value[0] = MIN2(system_memory_megabytes, gpu_mappable_megabytes);
1037 return 0;
1038 }
1039 case __DRI2_RENDERER_UNIFIED_MEMORY_ARCHITECTURE:
1040 value[0] = 1;
1041 return 0;
1042 case __DRI2_RENDERER_HAS_TEXTURE_3D:
1043 value[0] = 1;
1044 return 0;
1045 default:
1046 return driQueryRendererIntegerCommon(dri_screen, param, value);
1047 }
1048
1049 return -1;
1050 }
1051
1052 static int
1053 brw_query_renderer_string(__DRIscreen *dri_screen,
1054 int param, const char **value)
1055 {
1056 const struct intel_screen *screen =
1057 (struct intel_screen *) dri_screen->driverPrivate;
1058
1059 switch (param) {
1060 case __DRI2_RENDERER_VENDOR_ID:
1061 value[0] = brw_vendor_string;
1062 return 0;
1063 case __DRI2_RENDERER_DEVICE_ID:
1064 value[0] = brw_get_renderer_string(screen);
1065 return 0;
1066 default:
1067 break;
1068 }
1069
1070 return -1;
1071 }
1072
1073 static const __DRI2rendererQueryExtension intelRendererQueryExtension = {
1074 .base = { __DRI2_RENDERER_QUERY, 1 },
1075
1076 .queryInteger = brw_query_renderer_integer,
1077 .queryString = brw_query_renderer_string
1078 };
1079
1080 static const __DRIrobustnessExtension dri2Robustness = {
1081 .base = { __DRI2_ROBUSTNESS, 1 }
1082 };
1083
1084 static const __DRIextension *screenExtensions[] = {
1085 &intelTexBufferExtension.base,
1086 &intelFenceExtension.base,
1087 &intelFlushExtension.base,
1088 &intelImageExtension.base,
1089 &intelRendererQueryExtension.base,
1090 &dri2ConfigQueryExtension.base,
1091 NULL
1092 };
1093
1094 static const __DRIextension *intelRobustScreenExtensions[] = {
1095 &intelTexBufferExtension.base,
1096 &intelFenceExtension.base,
1097 &intelFlushExtension.base,
1098 &intelImageExtension.base,
1099 &intelRendererQueryExtension.base,
1100 &dri2ConfigQueryExtension.base,
1101 &dri2Robustness.base,
1102 NULL
1103 };
1104
1105 static int
1106 intel_get_param(struct intel_screen *screen, int param, int *value)
1107 {
1108 int ret = 0;
1109 struct drm_i915_getparam gp;
1110
1111 memset(&gp, 0, sizeof(gp));
1112 gp.param = param;
1113 gp.value = value;
1114
1115 if (drmIoctl(screen->driScrnPriv->fd, DRM_IOCTL_I915_GETPARAM, &gp) == -1) {
1116 ret = -errno;
1117 if (ret != -EINVAL)
1118 _mesa_warning(NULL, "drm_i915_getparam: %d", ret);
1119 }
1120
1121 return ret;
1122 }
1123
1124 static bool
1125 intel_get_boolean(struct intel_screen *screen, int param)
1126 {
1127 int value = 0;
1128 return (intel_get_param(screen, param, &value) == 0) && value;
1129 }
1130
1131 static int
1132 intel_get_integer(struct intel_screen *screen, int param)
1133 {
1134 int value = -1;
1135
1136 if (intel_get_param(screen, param, &value) == 0)
1137 return value;
1138
1139 return -1;
1140 }
1141
1142 static void
1143 intelDestroyScreen(__DRIscreen * sPriv)
1144 {
1145 struct intel_screen *screen = sPriv->driverPrivate;
1146
1147 brw_bufmgr_destroy(screen->bufmgr);
1148 driDestroyOptionInfo(&screen->optionCache);
1149
1150 ralloc_free(screen);
1151 sPriv->driverPrivate = NULL;
1152 }
1153
1154
1155 /**
1156 * This is called when we need to set up GL rendering to a new X window.
1157 */
1158 static GLboolean
1159 intelCreateBuffer(__DRIscreen *dri_screen,
1160 __DRIdrawable * driDrawPriv,
1161 const struct gl_config * mesaVis, GLboolean isPixmap)
1162 {
1163 struct intel_renderbuffer *rb;
1164 struct intel_screen *screen = (struct intel_screen *)
1165 dri_screen->driverPrivate;
1166 mesa_format rgbFormat;
1167 unsigned num_samples =
1168 intel_quantize_num_samples(screen, mesaVis->samples);
1169 struct gl_framebuffer *fb;
1170
1171 if (isPixmap)
1172 return false;
1173
1174 fb = CALLOC_STRUCT(gl_framebuffer);
1175 if (!fb)
1176 return false;
1177
1178 _mesa_initialize_window_framebuffer(fb, mesaVis);
1179
1180 if (screen->winsys_msaa_samples_override != -1) {
1181 num_samples = screen->winsys_msaa_samples_override;
1182 fb->Visual.samples = num_samples;
1183 }
1184
1185 if (mesaVis->redBits == 5) {
1186 rgbFormat = mesaVis->redMask == 0x1f ? MESA_FORMAT_R5G6B5_UNORM
1187 : MESA_FORMAT_B5G6R5_UNORM;
1188 } else if (mesaVis->sRGBCapable) {
1189 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1190 : MESA_FORMAT_B8G8R8A8_SRGB;
1191 } else if (mesaVis->alphaBits == 0) {
1192 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8X8_UNORM
1193 : MESA_FORMAT_B8G8R8X8_UNORM;
1194 } else {
1195 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1196 : MESA_FORMAT_B8G8R8A8_SRGB;
1197 fb->Visual.sRGBCapable = true;
1198 }
1199
1200 /* setup the hardware-based renderbuffers */
1201 rb = intel_create_renderbuffer(rgbFormat, num_samples);
1202 _mesa_attach_and_own_rb(fb, BUFFER_FRONT_LEFT, &rb->Base.Base);
1203
1204 if (mesaVis->doubleBufferMode) {
1205 rb = intel_create_renderbuffer(rgbFormat, num_samples);
1206 _mesa_attach_and_own_rb(fb, BUFFER_BACK_LEFT, &rb->Base.Base);
1207 }
1208
1209 /*
1210 * Assert here that the gl_config has an expected depth/stencil bit
1211 * combination: one of d24/s8, d16/s0, d0/s0. (See intelInitScreen2(),
1212 * which constructs the advertised configs.)
1213 */
1214 if (mesaVis->depthBits == 24) {
1215 assert(mesaVis->stencilBits == 8);
1216
1217 if (screen->devinfo.has_hiz_and_separate_stencil) {
1218 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z24_UNORM_X8_UINT,
1219 num_samples);
1220 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1221 rb = intel_create_private_renderbuffer(MESA_FORMAT_S_UINT8,
1222 num_samples);
1223 _mesa_attach_and_own_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1224 } else {
1225 /*
1226 * Use combined depth/stencil. Note that the renderbuffer is
1227 * attached to two attachment points.
1228 */
1229 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z24_UNORM_S8_UINT,
1230 num_samples);
1231 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1232 _mesa_attach_and_reference_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1233 }
1234 }
1235 else if (mesaVis->depthBits == 16) {
1236 assert(mesaVis->stencilBits == 0);
1237 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z_UNORM16,
1238 num_samples);
1239 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1240 }
1241 else {
1242 assert(mesaVis->depthBits == 0);
1243 assert(mesaVis->stencilBits == 0);
1244 }
1245
1246 /* now add any/all software-based renderbuffers we may need */
1247 _swrast_add_soft_renderbuffers(fb,
1248 false, /* never sw color */
1249 false, /* never sw depth */
1250 false, /* never sw stencil */
1251 mesaVis->accumRedBits > 0,
1252 false, /* never sw alpha */
1253 false /* never sw aux */ );
1254 driDrawPriv->driverPrivate = fb;
1255
1256 return true;
1257 }
1258
1259 static void
1260 intelDestroyBuffer(__DRIdrawable * driDrawPriv)
1261 {
1262 struct gl_framebuffer *fb = driDrawPriv->driverPrivate;
1263
1264 _mesa_reference_framebuffer(&fb, NULL);
1265 }
1266
1267 static void
1268 intel_detect_sseu(struct intel_screen *screen)
1269 {
1270 assert(screen->devinfo.gen >= 8);
1271 int ret;
1272
1273 screen->subslice_total = -1;
1274 screen->eu_total = -1;
1275
1276 ret = intel_get_param(screen, I915_PARAM_SUBSLICE_TOTAL,
1277 &screen->subslice_total);
1278 if (ret < 0 && ret != -EINVAL)
1279 goto err_out;
1280
1281 ret = intel_get_param(screen,
1282 I915_PARAM_EU_TOTAL, &screen->eu_total);
1283 if (ret < 0 && ret != -EINVAL)
1284 goto err_out;
1285
1286 /* Without this information, we cannot get the right Braswell brandstrings,
1287 * and we have to use conservative numbers for GPGPU on many platforms, but
1288 * otherwise, things will just work.
1289 */
1290 if (screen->subslice_total < 1 || screen->eu_total < 1)
1291 _mesa_warning(NULL,
1292 "Kernel 4.1 required to properly query GPU properties.\n");
1293
1294 return;
1295
1296 err_out:
1297 screen->subslice_total = -1;
1298 screen->eu_total = -1;
1299 _mesa_warning(NULL, "Failed to query GPU properties (%s).\n", strerror(-ret));
1300 }
1301
1302 static bool
1303 intel_init_bufmgr(struct intel_screen *screen)
1304 {
1305 __DRIscreen *dri_screen = screen->driScrnPriv;
1306
1307 if (getenv("INTEL_NO_HW") != NULL)
1308 screen->no_hw = true;
1309
1310 screen->bufmgr = brw_bufmgr_init(&screen->devinfo, dri_screen->fd, BATCH_SZ);
1311 if (screen->bufmgr == NULL) {
1312 fprintf(stderr, "[%s:%u] Error initializing buffer manager.\n",
1313 __func__, __LINE__);
1314 return false;
1315 }
1316
1317 if (!intel_get_boolean(screen, I915_PARAM_HAS_WAIT_TIMEOUT)) {
1318 fprintf(stderr, "[%s: %u] Kernel 3.6 required.\n", __func__, __LINE__);
1319 return false;
1320 }
1321
1322 return true;
1323 }
1324
1325 static bool
1326 intel_detect_swizzling(struct intel_screen *screen)
1327 {
1328 struct brw_bo *buffer;
1329 unsigned flags = 0;
1330 uint32_t aligned_pitch;
1331 uint32_t tiling = I915_TILING_X;
1332 uint32_t swizzle_mode = 0;
1333
1334 buffer = brw_bo_alloc_tiled(screen->bufmgr, "swizzle test",
1335 64, 64, 4, tiling, &aligned_pitch, flags);
1336 if (buffer == NULL)
1337 return false;
1338
1339 brw_bo_get_tiling(buffer, &tiling, &swizzle_mode);
1340 brw_bo_unreference(buffer);
1341
1342 if (swizzle_mode == I915_BIT_6_SWIZZLE_NONE)
1343 return false;
1344 else
1345 return true;
1346 }
1347
1348 static int
1349 intel_detect_timestamp(struct intel_screen *screen)
1350 {
1351 uint64_t dummy = 0, last = 0;
1352 int upper, lower, loops;
1353
1354 /* On 64bit systems, some old kernels trigger a hw bug resulting in the
1355 * TIMESTAMP register being shifted and the low 32bits always zero.
1356 *
1357 * More recent kernels offer an interface to read the full 36bits
1358 * everywhere.
1359 */
1360 if (brw_reg_read(screen->bufmgr, TIMESTAMP | 1, &dummy) == 0)
1361 return 3;
1362
1363 /* Determine if we have a 32bit or 64bit kernel by inspecting the
1364 * upper 32bits for a rapidly changing timestamp.
1365 */
1366 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &last))
1367 return 0;
1368
1369 upper = lower = 0;
1370 for (loops = 0; loops < 10; loops++) {
1371 /* The TIMESTAMP should change every 80ns, so several round trips
1372 * through the kernel should be enough to advance it.
1373 */
1374 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &dummy))
1375 return 0;
1376
1377 upper += (dummy >> 32) != (last >> 32);
1378 if (upper > 1) /* beware 32bit counter overflow */
1379 return 2; /* upper dword holds the low 32bits of the timestamp */
1380
1381 lower += (dummy & 0xffffffff) != (last & 0xffffffff);
1382 if (lower > 1)
1383 return 1; /* timestamp is unshifted */
1384
1385 last = dummy;
1386 }
1387
1388 /* No advancement? No timestamp! */
1389 return 0;
1390 }
1391
1392 /**
1393 * Test if we can use MI_LOAD_REGISTER_MEM from an untrusted batchbuffer.
1394 *
1395 * Some combinations of hardware and kernel versions allow this feature,
1396 * while others don't. Instead of trying to enumerate every case, just
1397 * try and write a register and see if works.
1398 */
1399 static bool
1400 intel_detect_pipelined_register(struct intel_screen *screen,
1401 int reg, uint32_t expected_value, bool reset)
1402 {
1403 if (screen->no_hw)
1404 return false;
1405
1406 struct brw_bo *results, *bo;
1407 uint32_t *batch;
1408 uint32_t offset = 0;
1409 bool success = false;
1410
1411 /* Create a zero'ed temporary buffer for reading our results */
1412 results = brw_bo_alloc(screen->bufmgr, "registers", 4096, 0);
1413 if (results == NULL)
1414 goto err;
1415
1416 bo = brw_bo_alloc(screen->bufmgr, "batchbuffer", 4096, 0);
1417 if (bo == NULL)
1418 goto err_results;
1419
1420 if (brw_bo_map(NULL, bo, 1))
1421 goto err_batch;
1422
1423 batch = bo->virtual;
1424
1425 /* Write the register. */
1426 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1427 *batch++ = reg;
1428 *batch++ = expected_value;
1429
1430 /* Save the register's value back to the buffer. */
1431 *batch++ = MI_STORE_REGISTER_MEM | (3 - 2);
1432 *batch++ = reg;
1433 struct drm_i915_gem_relocation_entry reloc = {
1434 .offset = (char *) batch - (char *) bo->virtual,
1435 .delta = offset * sizeof(uint32_t),
1436 .target_handle = results->gem_handle,
1437 .read_domains = I915_GEM_DOMAIN_INSTRUCTION,
1438 .write_domain = I915_GEM_DOMAIN_INSTRUCTION,
1439 };
1440 *batch++ = reloc.presumed_offset + reloc.delta;
1441
1442 /* And afterwards clear the register */
1443 if (reset) {
1444 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1445 *batch++ = reg;
1446 *batch++ = 0;
1447 }
1448
1449 *batch++ = MI_BATCH_BUFFER_END;
1450
1451 struct drm_i915_gem_exec_object2 exec_objects[2] = {
1452 {
1453 .handle = results->gem_handle,
1454 },
1455 {
1456 .handle = bo->gem_handle,
1457 .relocation_count = 1,
1458 .relocs_ptr = (uintptr_t) &reloc,
1459 }
1460 };
1461
1462 struct drm_i915_gem_execbuffer2 execbuf = {
1463 .buffers_ptr = (uintptr_t) exec_objects,
1464 .buffer_count = 2,
1465 .batch_len = ALIGN((char *) batch - (char *) bo->virtual, 8),
1466 .flags = I915_EXEC_RENDER,
1467 };
1468
1469 /* Don't bother with error checking - if the execbuf fails, the
1470 * value won't be written and we'll just report that there's no access.
1471 */
1472 __DRIscreen *dri_screen = screen->driScrnPriv;
1473 drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf);
1474
1475 /* Check whether the value got written. */
1476 if (brw_bo_map(NULL, results, false) == 0) {
1477 success = *((uint32_t *)results->virtual + offset) == expected_value;
1478 brw_bo_unmap(results);
1479 }
1480
1481 err_batch:
1482 brw_bo_unreference(bo);
1483 err_results:
1484 brw_bo_unreference(results);
1485 err:
1486 return success;
1487 }
1488
1489 static bool
1490 intel_detect_pipelined_so(struct intel_screen *screen)
1491 {
1492 const struct gen_device_info *devinfo = &screen->devinfo;
1493
1494 /* Supposedly, Broadwell just works. */
1495 if (devinfo->gen >= 8)
1496 return true;
1497
1498 if (devinfo->gen <= 6)
1499 return false;
1500
1501 /* See the big explanation about command parser versions below */
1502 if (screen->cmd_parser_version >= (devinfo->is_haswell ? 7 : 2))
1503 return true;
1504
1505 /* We use SO_WRITE_OFFSET0 since you're supposed to write it (unlike the
1506 * statistics registers), and we already reset it to zero before using it.
1507 */
1508 return intel_detect_pipelined_register(screen,
1509 GEN7_SO_WRITE_OFFSET(0),
1510 0x1337d0d0,
1511 false);
1512 }
1513
1514 /**
1515 * Return array of MSAA modes supported by the hardware. The array is
1516 * zero-terminated and sorted in decreasing order.
1517 */
1518 const int*
1519 intel_supported_msaa_modes(const struct intel_screen *screen)
1520 {
1521 static const int gen9_modes[] = {16, 8, 4, 2, 0, -1};
1522 static const int gen8_modes[] = {8, 4, 2, 0, -1};
1523 static const int gen7_modes[] = {8, 4, 0, -1};
1524 static const int gen6_modes[] = {4, 0, -1};
1525 static const int gen4_modes[] = {0, -1};
1526
1527 if (screen->devinfo.gen >= 9) {
1528 return gen9_modes;
1529 } else if (screen->devinfo.gen >= 8) {
1530 return gen8_modes;
1531 } else if (screen->devinfo.gen >= 7) {
1532 return gen7_modes;
1533 } else if (screen->devinfo.gen == 6) {
1534 return gen6_modes;
1535 } else {
1536 return gen4_modes;
1537 }
1538 }
1539
1540 static __DRIconfig**
1541 intel_screen_make_configs(__DRIscreen *dri_screen)
1542 {
1543 static const mesa_format formats[] = {
1544 MESA_FORMAT_B5G6R5_UNORM,
1545 MESA_FORMAT_B8G8R8A8_UNORM,
1546 MESA_FORMAT_B8G8R8X8_UNORM
1547 };
1548
1549 /* GLX_SWAP_COPY_OML is not supported due to page flipping. */
1550 static const GLenum back_buffer_modes[] = {
1551 GLX_SWAP_UNDEFINED_OML, GLX_NONE,
1552 };
1553
1554 static const uint8_t singlesample_samples[1] = {0};
1555 static const uint8_t multisample_samples[2] = {4, 8};
1556
1557 struct intel_screen *screen = dri_screen->driverPrivate;
1558 const struct gen_device_info *devinfo = &screen->devinfo;
1559 uint8_t depth_bits[4], stencil_bits[4];
1560 __DRIconfig **configs = NULL;
1561
1562 /* Generate singlesample configs without accumulation buffer. */
1563 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1564 __DRIconfig **new_configs;
1565 int num_depth_stencil_bits = 2;
1566
1567 /* Starting with DRI2 protocol version 1.1 we can request a depth/stencil
1568 * buffer that has a different number of bits per pixel than the color
1569 * buffer, gen >= 6 supports this.
1570 */
1571 depth_bits[0] = 0;
1572 stencil_bits[0] = 0;
1573
1574 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1575 depth_bits[1] = 16;
1576 stencil_bits[1] = 0;
1577 if (devinfo->gen >= 6) {
1578 depth_bits[2] = 24;
1579 stencil_bits[2] = 8;
1580 num_depth_stencil_bits = 3;
1581 }
1582 } else {
1583 depth_bits[1] = 24;
1584 stencil_bits[1] = 8;
1585 }
1586
1587 new_configs = driCreateConfigs(formats[i],
1588 depth_bits,
1589 stencil_bits,
1590 num_depth_stencil_bits,
1591 back_buffer_modes, 2,
1592 singlesample_samples, 1,
1593 false, false);
1594 configs = driConcatConfigs(configs, new_configs);
1595 }
1596
1597 /* Generate the minimum possible set of configs that include an
1598 * accumulation buffer.
1599 */
1600 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1601 __DRIconfig **new_configs;
1602
1603 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1604 depth_bits[0] = 16;
1605 stencil_bits[0] = 0;
1606 } else {
1607 depth_bits[0] = 24;
1608 stencil_bits[0] = 8;
1609 }
1610
1611 new_configs = driCreateConfigs(formats[i],
1612 depth_bits, stencil_bits, 1,
1613 back_buffer_modes, 1,
1614 singlesample_samples, 1,
1615 true, false);
1616 configs = driConcatConfigs(configs, new_configs);
1617 }
1618
1619 /* Generate multisample configs.
1620 *
1621 * This loop breaks early, and hence is a no-op, on gen < 6.
1622 *
1623 * Multisample configs must follow the singlesample configs in order to
1624 * work around an X server bug present in 1.12. The X server chooses to
1625 * associate the first listed RGBA888-Z24S8 config, regardless of its
1626 * sample count, with the 32-bit depth visual used for compositing.
1627 *
1628 * Only doublebuffer configs with GLX_SWAP_UNDEFINED_OML behavior are
1629 * supported. Singlebuffer configs are not supported because no one wants
1630 * them.
1631 */
1632 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1633 if (devinfo->gen < 6)
1634 break;
1635
1636 __DRIconfig **new_configs;
1637 const int num_depth_stencil_bits = 2;
1638 int num_msaa_modes = 0;
1639
1640 depth_bits[0] = 0;
1641 stencil_bits[0] = 0;
1642
1643 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1644 depth_bits[1] = 16;
1645 stencil_bits[1] = 0;
1646 } else {
1647 depth_bits[1] = 24;
1648 stencil_bits[1] = 8;
1649 }
1650
1651 if (devinfo->gen >= 7)
1652 num_msaa_modes = 2;
1653 else if (devinfo->gen == 6)
1654 num_msaa_modes = 1;
1655
1656 new_configs = driCreateConfigs(formats[i],
1657 depth_bits,
1658 stencil_bits,
1659 num_depth_stencil_bits,
1660 back_buffer_modes, 1,
1661 multisample_samples,
1662 num_msaa_modes,
1663 false, false);
1664 configs = driConcatConfigs(configs, new_configs);
1665 }
1666
1667 if (configs == NULL) {
1668 fprintf(stderr, "[%s:%u] Error creating FBConfig!\n", __func__,
1669 __LINE__);
1670 return NULL;
1671 }
1672
1673 return configs;
1674 }
1675
1676 static void
1677 set_max_gl_versions(struct intel_screen *screen)
1678 {
1679 __DRIscreen *dri_screen = screen->driScrnPriv;
1680 const bool has_astc = screen->devinfo.gen >= 9;
1681
1682 switch (screen->devinfo.gen) {
1683 case 9:
1684 case 8:
1685 dri_screen->max_gl_core_version = 45;
1686 dri_screen->max_gl_compat_version = 30;
1687 dri_screen->max_gl_es1_version = 11;
1688 dri_screen->max_gl_es2_version = has_astc ? 32 : 31;
1689 break;
1690 case 7:
1691 dri_screen->max_gl_core_version = 33;
1692 if (can_do_pipelined_register_writes(screen)) {
1693 dri_screen->max_gl_core_version = 42;
1694 if (screen->devinfo.is_haswell && can_do_compute_dispatch(screen))
1695 dri_screen->max_gl_core_version = 43;
1696 if (screen->devinfo.is_haswell && can_do_mi_math_and_lrr(screen))
1697 dri_screen->max_gl_core_version = 45;
1698 }
1699 dri_screen->max_gl_compat_version = 30;
1700 dri_screen->max_gl_es1_version = 11;
1701 dri_screen->max_gl_es2_version = screen->devinfo.is_haswell ? 31 : 30;
1702 break;
1703 case 6:
1704 dri_screen->max_gl_core_version = 33;
1705 dri_screen->max_gl_compat_version = 30;
1706 dri_screen->max_gl_es1_version = 11;
1707 dri_screen->max_gl_es2_version = 30;
1708 break;
1709 case 5:
1710 case 4:
1711 dri_screen->max_gl_core_version = 0;
1712 dri_screen->max_gl_compat_version = 21;
1713 dri_screen->max_gl_es1_version = 11;
1714 dri_screen->max_gl_es2_version = 20;
1715 break;
1716 default:
1717 unreachable("unrecognized intel_screen::gen");
1718 }
1719 }
1720
1721 /**
1722 * Return the revision (generally the revid field of the PCI header) of the
1723 * graphics device.
1724 *
1725 * XXX: This function is useful to keep around even if it is not currently in
1726 * use. It is necessary for new platforms and revision specific workarounds or
1727 * features. Please don't remove it so that we know it at least continues to
1728 * build.
1729 */
1730 static __attribute__((__unused__)) int
1731 brw_get_revision(int fd)
1732 {
1733 struct drm_i915_getparam gp;
1734 int revision;
1735 int ret;
1736
1737 memset(&gp, 0, sizeof(gp));
1738 gp.param = I915_PARAM_REVISION;
1739 gp.value = &revision;
1740
1741 ret = drmCommandWriteRead(fd, DRM_I915_GETPARAM, &gp, sizeof(gp));
1742 if (ret)
1743 revision = -1;
1744
1745 return revision;
1746 }
1747
1748 static void
1749 shader_debug_log_mesa(void *data, const char *fmt, ...)
1750 {
1751 struct brw_context *brw = (struct brw_context *)data;
1752 va_list args;
1753
1754 va_start(args, fmt);
1755 GLuint msg_id = 0;
1756 _mesa_gl_vdebug(&brw->ctx, &msg_id,
1757 MESA_DEBUG_SOURCE_SHADER_COMPILER,
1758 MESA_DEBUG_TYPE_OTHER,
1759 MESA_DEBUG_SEVERITY_NOTIFICATION, fmt, args);
1760 va_end(args);
1761 }
1762
1763 static void
1764 shader_perf_log_mesa(void *data, const char *fmt, ...)
1765 {
1766 struct brw_context *brw = (struct brw_context *)data;
1767
1768 va_list args;
1769 va_start(args, fmt);
1770
1771 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
1772 va_list args_copy;
1773 va_copy(args_copy, args);
1774 vfprintf(stderr, fmt, args_copy);
1775 va_end(args_copy);
1776 }
1777
1778 if (brw->perf_debug) {
1779 GLuint msg_id = 0;
1780 _mesa_gl_vdebug(&brw->ctx, &msg_id,
1781 MESA_DEBUG_SOURCE_SHADER_COMPILER,
1782 MESA_DEBUG_TYPE_PERFORMANCE,
1783 MESA_DEBUG_SEVERITY_MEDIUM, fmt, args);
1784 }
1785 va_end(args);
1786 }
1787
1788 static int
1789 parse_devid_override(const char *devid_override)
1790 {
1791 static const struct {
1792 const char *name;
1793 int pci_id;
1794 } name_map[] = {
1795 { "brw", 0x2a02 },
1796 { "g4x", 0x2a42 },
1797 { "ilk", 0x0042 },
1798 { "snb", 0x0126 },
1799 { "ivb", 0x016a },
1800 { "hsw", 0x0d2e },
1801 { "byt", 0x0f33 },
1802 { "bdw", 0x162e },
1803 { "skl", 0x1912 },
1804 { "kbl", 0x5912 },
1805 };
1806
1807 for (unsigned i = 0; i < ARRAY_SIZE(name_map); i++) {
1808 if (!strcmp(name_map[i].name, devid_override))
1809 return name_map[i].pci_id;
1810 }
1811
1812 return strtod(devid_override, NULL);
1813 }
1814
1815 /**
1816 * Get the PCI ID for the device. This can be overridden by setting the
1817 * INTEL_DEVID_OVERRIDE environment variable to the desired ID.
1818 *
1819 * Returns -1 on ioctl failure.
1820 */
1821 static int
1822 get_pci_device_id(struct intel_screen *screen)
1823 {
1824 if (geteuid() == getuid()) {
1825 char *devid_override = getenv("INTEL_DEVID_OVERRIDE");
1826 if (devid_override) {
1827 screen->no_hw = true;
1828 return parse_devid_override(devid_override);
1829 }
1830 }
1831
1832 return intel_get_integer(screen, I915_PARAM_CHIPSET_ID);
1833 }
1834
1835 /**
1836 * This is the driver specific part of the createNewScreen entry point.
1837 * Called when using DRI2.
1838 *
1839 * \return the struct gl_config supported by this driver
1840 */
1841 static const
1842 __DRIconfig **intelInitScreen2(__DRIscreen *dri_screen)
1843 {
1844 struct intel_screen *screen;
1845
1846 if (dri_screen->image.loader) {
1847 } else if (dri_screen->dri2.loader->base.version <= 2 ||
1848 dri_screen->dri2.loader->getBuffersWithFormat == NULL) {
1849 fprintf(stderr,
1850 "\nERROR! DRI2 loader with getBuffersWithFormat() "
1851 "support required\n");
1852 return NULL;
1853 }
1854
1855 /* Allocate the private area */
1856 screen = rzalloc(NULL, struct intel_screen);
1857 if (!screen) {
1858 fprintf(stderr, "\nERROR! Allocating private area failed\n");
1859 return NULL;
1860 }
1861 /* parse information in __driConfigOptions */
1862 driParseOptionInfo(&screen->optionCache, brw_config_options.xml);
1863
1864 screen->driScrnPriv = dri_screen;
1865 dri_screen->driverPrivate = (void *) screen;
1866
1867 screen->deviceID = get_pci_device_id(screen);
1868
1869 if (!gen_get_device_info(screen->deviceID, &screen->devinfo))
1870 return NULL;
1871
1872 if (!intel_init_bufmgr(screen))
1873 return NULL;
1874
1875 const struct gen_device_info *devinfo = &screen->devinfo;
1876
1877 brw_process_intel_debug_variable();
1878
1879 if ((INTEL_DEBUG & DEBUG_SHADER_TIME) && devinfo->gen < 7) {
1880 fprintf(stderr,
1881 "shader_time debugging requires gen7 (Ivybridge) or better.\n");
1882 INTEL_DEBUG &= ~DEBUG_SHADER_TIME;
1883 }
1884
1885 if (intel_get_integer(screen, I915_PARAM_MMAP_GTT_VERSION) >= 1) {
1886 /* Theorectically unlimited! At least for individual objects...
1887 *
1888 * Currently the entire (global) address space for all GTT maps is
1889 * limited to 64bits. That is all objects on the system that are
1890 * setup for GTT mmapping must fit within 64bits. An attempt to use
1891 * one that exceeds the limit with fail in brw_bo_map_gtt().
1892 *
1893 * Long before we hit that limit, we will be practically limited by
1894 * that any single object must fit in physical memory (RAM). The upper
1895 * limit on the CPU's address space is currently 48bits (Skylake), of
1896 * which only 39bits can be physical memory. (The GPU itself also has
1897 * a 48bit addressable virtual space.) We can fit over 32 million
1898 * objects of the current maximum allocable size before running out
1899 * of mmap space.
1900 */
1901 screen->max_gtt_map_object_size = UINT64_MAX;
1902 } else {
1903 /* Estimate the size of the mappable aperture into the GTT. There's an
1904 * ioctl to get the whole GTT size, but not one to get the mappable subset.
1905 * It turns out it's basically always 256MB, though some ancient hardware
1906 * was smaller.
1907 */
1908 uint32_t gtt_size = 256 * 1024 * 1024;
1909
1910 /* We don't want to map two objects such that a memcpy between them would
1911 * just fault one mapping in and then the other over and over forever. So
1912 * we would need to divide the GTT size by 2. Additionally, some GTT is
1913 * taken up by things like the framebuffer and the ringbuffer and such, so
1914 * be more conservative.
1915 */
1916 screen->max_gtt_map_object_size = gtt_size / 4;
1917 }
1918
1919 screen->aperture_threshold = get_aperture_size(dri_screen->fd) * 3 / 4;
1920
1921 screen->hw_has_swizzling = intel_detect_swizzling(screen);
1922 screen->hw_has_timestamp = intel_detect_timestamp(screen);
1923
1924 /* GENs prior to 8 do not support EU/Subslice info */
1925 if (devinfo->gen >= 8) {
1926 intel_detect_sseu(screen);
1927 } else if (devinfo->gen == 7) {
1928 screen->subslice_total = 1 << (devinfo->gt - 1);
1929 }
1930
1931 /* Gen7-7.5 kernel requirements / command parser saga:
1932 *
1933 * - pre-v3.16:
1934 * Haswell and Baytrail cannot use any privileged batchbuffer features.
1935 *
1936 * Ivybridge has aliasing PPGTT on by default, which accidentally marks
1937 * all batches secure, allowing them to use any feature with no checking.
1938 * This is effectively equivalent to a command parser version of
1939 * \infinity - everything is possible.
1940 *
1941 * The command parser does not exist, and querying the version will
1942 * return -EINVAL.
1943 *
1944 * - v3.16:
1945 * The kernel enables the command parser by default, for systems with
1946 * aliasing PPGTT enabled (Ivybridge and Haswell). However, the
1947 * hardware checker is still enabled, so Haswell and Baytrail cannot
1948 * do anything.
1949 *
1950 * Ivybridge goes from "everything is possible" to "only what the
1951 * command parser allows" (if the user boots with i915.cmd_parser=0,
1952 * then everything is possible again). We can only safely use features
1953 * allowed by the supported command parser version.
1954 *
1955 * Annoyingly, I915_PARAM_CMD_PARSER_VERSION reports the static version
1956 * implemented by the kernel, even if it's turned off. So, checking
1957 * for version > 0 does not mean that you can write registers. We have
1958 * to try it and see. The version does, however, indicate the age of
1959 * the kernel.
1960 *
1961 * Instead of matching the hardware checker's behavior of converting
1962 * privileged commands to MI_NOOP, it makes execbuf2 start returning
1963 * -EINVAL, making it dangerous to try and use privileged features.
1964 *
1965 * Effective command parser versions:
1966 * - Haswell: 0 (reporting 1, writes don't work)
1967 * - Baytrail: 0 (reporting 1, writes don't work)
1968 * - Ivybridge: 1 (enabled) or infinite (disabled)
1969 *
1970 * - v3.17:
1971 * Baytrail aliasing PPGTT is enabled, making it like Ivybridge:
1972 * effectively version 1 (enabled) or infinite (disabled).
1973 *
1974 * - v3.19: f1f55cc0556031c8ee3fe99dae7251e78b9b653b
1975 * Command parser v2 supports predicate writes.
1976 *
1977 * - Haswell: 0 (reporting 1, writes don't work)
1978 * - Baytrail: 2 (enabled) or infinite (disabled)
1979 * - Ivybridge: 2 (enabled) or infinite (disabled)
1980 *
1981 * So version >= 2 is enough to know that Ivybridge and Baytrail
1982 * will work. Haswell still can't do anything.
1983 *
1984 * - v4.0: Version 3 happened. Largely not relevant.
1985 *
1986 * - v4.1: 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
1987 * L3 config registers are properly saved and restored as part
1988 * of the hardware context. We can approximately detect this point
1989 * in time by checking if I915_PARAM_REVISION is recognized - it
1990 * landed in a later commit, but in the same release cycle.
1991 *
1992 * - v4.2: 245054a1fe33c06ad233e0d58a27ec7b64db9284
1993 * Command parser finally gains secure batch promotion. On Haswell,
1994 * the hardware checker gets disabled, which finally allows it to do
1995 * privileged commands.
1996 *
1997 * I915_PARAM_CMD_PARSER_VERSION reports 3. Effective versions:
1998 * - Haswell: 3 (enabled) or 0 (disabled)
1999 * - Baytrail: 3 (enabled) or infinite (disabled)
2000 * - Ivybridge: 3 (enabled) or infinite (disabled)
2001 *
2002 * Unfortunately, detecting this point in time is tricky, because
2003 * no version bump happened when this important change occurred.
2004 * On Haswell, if we can write any register, then the kernel is at
2005 * least this new, and we can start trusting the version number.
2006 *
2007 * - v4.4: 2bbe6bbb0dc94fd4ce287bdac9e1bd184e23057b and
2008 * Command parser reaches version 4, allowing access to Haswell
2009 * atomic scratch and chicken3 registers. If version >= 4, we know
2010 * the kernel is new enough to support privileged features on all
2011 * hardware. However, the user might have disabled it...and the
2012 * kernel will still report version 4. So we still have to guess
2013 * and check.
2014 *
2015 * - v4.4: 7b9748cb513a6bef4af87b79f0da3ff7e8b56cd8
2016 * Command parser v5 whitelists indirect compute shader dispatch
2017 * registers, needed for OpenGL 4.3 and later.
2018 *
2019 * - v4.8:
2020 * Command parser v7 lets us use MI_MATH on Haswell.
2021 *
2022 * Additionally, the kernel begins reporting version 0 when
2023 * the command parser is disabled, allowing us to skip the
2024 * guess-and-check step on Haswell. Unfortunately, this also
2025 * means that we can no longer use it as an indicator of the
2026 * age of the kernel.
2027 */
2028 if (intel_get_param(screen, I915_PARAM_CMD_PARSER_VERSION,
2029 &screen->cmd_parser_version) < 0) {
2030 /* Command parser does not exist - getparam is unrecognized */
2031 screen->cmd_parser_version = 0;
2032 }
2033
2034 if (!intel_detect_pipelined_so(screen)) {
2035 /* We can't do anything, so the effective version is 0. */
2036 screen->cmd_parser_version = 0;
2037 } else {
2038 screen->kernel_features |= KERNEL_ALLOWS_SOL_OFFSET_WRITES;
2039 }
2040
2041 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 2)
2042 screen->kernel_features |= KERNEL_ALLOWS_PREDICATE_WRITES;
2043
2044 /* Haswell requires command parser version 4 in order to have L3
2045 * atomic scratch1 and chicken3 bits
2046 */
2047 if (devinfo->is_haswell && screen->cmd_parser_version >= 4) {
2048 screen->kernel_features |=
2049 KERNEL_ALLOWS_HSW_SCRATCH1_AND_ROW_CHICKEN3;
2050 }
2051
2052 /* Haswell requires command parser version 6 in order to write to the
2053 * MI_MATH GPR registers, and version 7 in order to use
2054 * MI_LOAD_REGISTER_REG (which all users of MI_MATH use).
2055 */
2056 if (devinfo->gen >= 8 ||
2057 (devinfo->is_haswell && screen->cmd_parser_version >= 7)) {
2058 screen->kernel_features |= KERNEL_ALLOWS_MI_MATH_AND_LRR;
2059 }
2060
2061 /* Gen7 needs at least command parser version 5 to support compute */
2062 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 5)
2063 screen->kernel_features |= KERNEL_ALLOWS_COMPUTE_DISPATCH;
2064
2065 const char *force_msaa = getenv("INTEL_FORCE_MSAA");
2066 if (force_msaa) {
2067 screen->winsys_msaa_samples_override =
2068 intel_quantize_num_samples(screen, atoi(force_msaa));
2069 printf("Forcing winsys sample count to %d\n",
2070 screen->winsys_msaa_samples_override);
2071 } else {
2072 screen->winsys_msaa_samples_override = -1;
2073 }
2074
2075 set_max_gl_versions(screen);
2076
2077 /* Notification of GPU resets requires hardware contexts and a kernel new
2078 * enough to support DRM_IOCTL_I915_GET_RESET_STATS. If the ioctl is
2079 * supported, calling it with a context of 0 will either generate EPERM or
2080 * no error. If the ioctl is not supported, it always generate EINVAL.
2081 * Use this to determine whether to advertise the __DRI2_ROBUSTNESS
2082 * extension to the loader.
2083 *
2084 * Don't even try on pre-Gen6, since we don't attempt to use contexts there.
2085 */
2086 if (devinfo->gen >= 6) {
2087 struct drm_i915_reset_stats stats;
2088 memset(&stats, 0, sizeof(stats));
2089
2090 const int ret = drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats);
2091
2092 screen->has_context_reset_notification =
2093 (ret != -1 || errno != EINVAL);
2094 }
2095
2096 dri_screen->extensions = !screen->has_context_reset_notification
2097 ? screenExtensions : intelRobustScreenExtensions;
2098
2099 screen->compiler = brw_compiler_create(screen, devinfo);
2100 screen->compiler->shader_debug_log = shader_debug_log_mesa;
2101 screen->compiler->shader_perf_log = shader_perf_log_mesa;
2102 screen->program_id = 1;
2103
2104 screen->has_exec_fence =
2105 intel_get_boolean(screen, I915_PARAM_HAS_EXEC_FENCE);
2106
2107 return (const __DRIconfig**) intel_screen_make_configs(dri_screen);
2108 }
2109
2110 struct intel_buffer {
2111 __DRIbuffer base;
2112 struct brw_bo *bo;
2113 };
2114
2115 static __DRIbuffer *
2116 intelAllocateBuffer(__DRIscreen *dri_screen,
2117 unsigned attachment, unsigned format,
2118 int width, int height)
2119 {
2120 struct intel_buffer *intelBuffer;
2121 struct intel_screen *screen = dri_screen->driverPrivate;
2122
2123 assert(attachment == __DRI_BUFFER_FRONT_LEFT ||
2124 attachment == __DRI_BUFFER_BACK_LEFT);
2125
2126 intelBuffer = calloc(1, sizeof *intelBuffer);
2127 if (intelBuffer == NULL)
2128 return NULL;
2129
2130 /* The front and back buffers are color buffers, which are X tiled. GEN9+
2131 * supports Y tiled and compressed buffers, but there is no way to plumb that
2132 * through to here. */
2133 uint32_t pitch;
2134 int cpp = format / 8;
2135 intelBuffer->bo = brw_bo_alloc_tiled(screen->bufmgr,
2136 "intelAllocateBuffer",
2137 width,
2138 height,
2139 cpp,
2140 I915_TILING_X, &pitch,
2141 BO_ALLOC_FOR_RENDER);
2142
2143 if (intelBuffer->bo == NULL) {
2144 free(intelBuffer);
2145 return NULL;
2146 }
2147
2148 brw_bo_flink(intelBuffer->bo, &intelBuffer->base.name);
2149
2150 intelBuffer->base.attachment = attachment;
2151 intelBuffer->base.cpp = cpp;
2152 intelBuffer->base.pitch = pitch;
2153
2154 return &intelBuffer->base;
2155 }
2156
2157 static void
2158 intelReleaseBuffer(__DRIscreen *dri_screen, __DRIbuffer *buffer)
2159 {
2160 struct intel_buffer *intelBuffer = (struct intel_buffer *) buffer;
2161
2162 brw_bo_unreference(intelBuffer->bo);
2163 free(intelBuffer);
2164 }
2165
2166 static const struct __DriverAPIRec brw_driver_api = {
2167 .InitScreen = intelInitScreen2,
2168 .DestroyScreen = intelDestroyScreen,
2169 .CreateContext = brwCreateContext,
2170 .DestroyContext = intelDestroyContext,
2171 .CreateBuffer = intelCreateBuffer,
2172 .DestroyBuffer = intelDestroyBuffer,
2173 .MakeCurrent = intelMakeCurrent,
2174 .UnbindContext = intelUnbindContext,
2175 .AllocateBuffer = intelAllocateBuffer,
2176 .ReleaseBuffer = intelReleaseBuffer
2177 };
2178
2179 static const struct __DRIDriverVtableExtensionRec brw_vtable = {
2180 .base = { __DRI_DRIVER_VTABLE, 1 },
2181 .vtable = &brw_driver_api,
2182 };
2183
2184 static const __DRIextension *brw_driver_extensions[] = {
2185 &driCoreExtension.base,
2186 &driImageDriverExtension.base,
2187 &driDRI2Extension.base,
2188 &brw_vtable.base,
2189 &brw_config_options.base,
2190 NULL
2191 };
2192
2193 PUBLIC const __DRIextension **__driDriverGetExtensions_i965(void)
2194 {
2195 globalDriverAPI = &brw_driver_api;
2196
2197 return brw_driver_extensions;
2198 }