30b20b388814d76663eeb07d26ce3356438244f0
[mesa.git] / src / mesa / drivers / dri / i965 / intel_screen.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <drm_fourcc.h>
27 #include <errno.h>
28 #include <time.h>
29 #include <unistd.h>
30 #include "main/context.h"
31 #include "main/framebuffer.h"
32 #include "main/renderbuffer.h"
33 #include "main/texobj.h"
34 #include "main/hash.h"
35 #include "main/fbobject.h"
36 #include "main/version.h"
37 #include "swrast/s_renderbuffer.h"
38 #include "util/ralloc.h"
39 #include "brw_defines.h"
40 #include "compiler/nir/nir.h"
41
42 #include "utils.h"
43 #include "xmlpool.h"
44
45 #ifndef DRM_FORMAT_MOD_INVALID
46 #define DRM_FORMAT_MOD_INVALID ((1ULL<<56) - 1)
47 #endif
48
49 #ifndef DRM_FORMAT_MOD_LINEAR
50 #define DRM_FORMAT_MOD_LINEAR 0
51 #endif
52
53 static const __DRIconfigOptionsExtension brw_config_options = {
54 .base = { __DRI_CONFIG_OPTIONS, 1 },
55 .xml =
56 DRI_CONF_BEGIN
57 DRI_CONF_SECTION_PERFORMANCE
58 DRI_CONF_VBLANK_MODE(DRI_CONF_VBLANK_ALWAYS_SYNC)
59 /* Options correspond to DRI_CONF_BO_REUSE_DISABLED,
60 * DRI_CONF_BO_REUSE_ALL
61 */
62 DRI_CONF_OPT_BEGIN_V(bo_reuse, enum, 1, "0:1")
63 DRI_CONF_DESC_BEGIN(en, "Buffer object reuse")
64 DRI_CONF_ENUM(0, "Disable buffer object reuse")
65 DRI_CONF_ENUM(1, "Enable reuse of all sizes of buffer objects")
66 DRI_CONF_DESC_END
67 DRI_CONF_OPT_END
68 DRI_CONF_SECTION_END
69
70 DRI_CONF_SECTION_QUALITY
71 DRI_CONF_FORCE_S3TC_ENABLE("false")
72
73 DRI_CONF_PRECISE_TRIG("false")
74
75 DRI_CONF_OPT_BEGIN(clamp_max_samples, int, -1)
76 DRI_CONF_DESC(en, "Clamp the value of GL_MAX_SAMPLES to the "
77 "given integer. If negative, then do not clamp.")
78 DRI_CONF_OPT_END
79 DRI_CONF_SECTION_END
80
81 DRI_CONF_SECTION_DEBUG
82 DRI_CONF_NO_RAST("false")
83 DRI_CONF_ALWAYS_FLUSH_BATCH("false")
84 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
85 DRI_CONF_DISABLE_THROTTLING("false")
86 DRI_CONF_FORCE_GLSL_EXTENSIONS_WARN("false")
87 DRI_CONF_FORCE_GLSL_VERSION(0)
88 DRI_CONF_DISABLE_GLSL_LINE_CONTINUATIONS("false")
89 DRI_CONF_DISABLE_BLEND_FUNC_EXTENDED("false")
90 DRI_CONF_DUAL_COLOR_BLEND_BY_LOCATION("false")
91 DRI_CONF_ALLOW_GLSL_EXTENSION_DIRECTIVE_MIDSHADER("false")
92 DRI_CONF_ALLOW_HIGHER_COMPAT_VERSION("false")
93 DRI_CONF_FORCE_GLSL_ABS_SQRT("false")
94
95 DRI_CONF_OPT_BEGIN_B(shader_precompile, "true")
96 DRI_CONF_DESC(en, "Perform code generation at shader link time.")
97 DRI_CONF_OPT_END
98 DRI_CONF_SECTION_END
99
100 DRI_CONF_SECTION_MISCELLANEOUS
101 DRI_CONF_GLSL_ZERO_INIT("false")
102 DRI_CONF_SECTION_END
103 DRI_CONF_END
104 };
105
106 #include "intel_batchbuffer.h"
107 #include "intel_buffers.h"
108 #include "brw_bufmgr.h"
109 #include "intel_fbo.h"
110 #include "intel_mipmap_tree.h"
111 #include "intel_screen.h"
112 #include "intel_tex.h"
113 #include "intel_image.h"
114
115 #include "brw_context.h"
116
117 #include "i915_drm.h"
118
119 /**
120 * For debugging purposes, this returns a time in seconds.
121 */
122 double
123 get_time(void)
124 {
125 struct timespec tp;
126
127 clock_gettime(CLOCK_MONOTONIC, &tp);
128
129 return tp.tv_sec + tp.tv_nsec / 1000000000.0;
130 }
131
132 static const __DRItexBufferExtension intelTexBufferExtension = {
133 .base = { __DRI_TEX_BUFFER, 3 },
134
135 .setTexBuffer = intelSetTexBuffer,
136 .setTexBuffer2 = intelSetTexBuffer2,
137 .releaseTexBuffer = NULL,
138 };
139
140 static void
141 intel_dri2_flush_with_flags(__DRIcontext *cPriv,
142 __DRIdrawable *dPriv,
143 unsigned flags,
144 enum __DRI2throttleReason reason)
145 {
146 struct brw_context *brw = cPriv->driverPrivate;
147
148 if (!brw)
149 return;
150
151 struct gl_context *ctx = &brw->ctx;
152
153 FLUSH_VERTICES(ctx, 0);
154
155 if (flags & __DRI2_FLUSH_DRAWABLE)
156 intel_resolve_for_dri2_flush(brw, dPriv);
157
158 if (reason == __DRI2_THROTTLE_SWAPBUFFER)
159 brw->need_swap_throttle = true;
160 if (reason == __DRI2_THROTTLE_FLUSHFRONT)
161 brw->need_flush_throttle = true;
162
163 intel_batchbuffer_flush(brw);
164 }
165
166 /**
167 * Provides compatibility with loaders that only support the older (version
168 * 1-3) flush interface.
169 *
170 * That includes libGL up to Mesa 9.0, and the X Server at least up to 1.13.
171 */
172 static void
173 intel_dri2_flush(__DRIdrawable *drawable)
174 {
175 intel_dri2_flush_with_flags(drawable->driContextPriv, drawable,
176 __DRI2_FLUSH_DRAWABLE,
177 __DRI2_THROTTLE_SWAPBUFFER);
178 }
179
180 static const struct __DRI2flushExtensionRec intelFlushExtension = {
181 .base = { __DRI2_FLUSH, 4 },
182
183 .flush = intel_dri2_flush,
184 .invalidate = dri2InvalidateDrawable,
185 .flush_with_flags = intel_dri2_flush_with_flags,
186 };
187
188 static struct intel_image_format intel_image_formats[] = {
189 { __DRI_IMAGE_FOURCC_ARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
190 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
191
192 { __DRI_IMAGE_FOURCC_ABGR8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
193 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
194
195 { __DRI_IMAGE_FOURCC_SARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
196 { { 0, 0, 0, __DRI_IMAGE_FORMAT_SARGB8, 4 } } },
197
198 { __DRI_IMAGE_FOURCC_XRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
199 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB8888, 4 }, } },
200
201 { __DRI_IMAGE_FOURCC_XBGR8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
202 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 }, } },
203
204 { __DRI_IMAGE_FOURCC_ARGB1555, __DRI_IMAGE_COMPONENTS_RGBA, 1,
205 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB1555, 2 } } },
206
207 { __DRI_IMAGE_FOURCC_RGB565, __DRI_IMAGE_COMPONENTS_RGB, 1,
208 { { 0, 0, 0, __DRI_IMAGE_FORMAT_RGB565, 2 } } },
209
210 { __DRI_IMAGE_FOURCC_R8, __DRI_IMAGE_COMPONENTS_R, 1,
211 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 }, } },
212
213 { __DRI_IMAGE_FOURCC_R16, __DRI_IMAGE_COMPONENTS_R, 1,
214 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 1 }, } },
215
216 { __DRI_IMAGE_FOURCC_GR88, __DRI_IMAGE_COMPONENTS_RG, 1,
217 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 }, } },
218
219 { __DRI_IMAGE_FOURCC_GR1616, __DRI_IMAGE_COMPONENTS_RG, 1,
220 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR1616, 2 }, } },
221
222 { __DRI_IMAGE_FOURCC_YUV410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
223 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
224 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
225 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
226
227 { __DRI_IMAGE_FOURCC_YUV411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
228 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
229 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
230 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
231
232 { __DRI_IMAGE_FOURCC_YUV420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
233 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
234 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
235 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
236
237 { __DRI_IMAGE_FOURCC_YUV422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
238 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
239 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
240 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
241
242 { __DRI_IMAGE_FOURCC_YUV444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
243 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
244 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
245 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
246
247 { __DRI_IMAGE_FOURCC_YVU410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
248 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
249 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
250 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
251
252 { __DRI_IMAGE_FOURCC_YVU411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
253 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
254 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
255 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
256
257 { __DRI_IMAGE_FOURCC_YVU420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
258 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
259 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
260 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
261
262 { __DRI_IMAGE_FOURCC_YVU422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
263 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
264 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
265 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
266
267 { __DRI_IMAGE_FOURCC_YVU444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
268 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
269 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
270 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
271
272 { __DRI_IMAGE_FOURCC_NV12, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
273 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
274 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR88, 2 } } },
275
276 { __DRI_IMAGE_FOURCC_NV16, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
277 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
278 { 1, 1, 0, __DRI_IMAGE_FORMAT_GR88, 2 } } },
279
280 /* For YUYV buffers, we set up two overlapping DRI images and treat
281 * them as planar buffers in the compositors. Plane 0 is GR88 and
282 * samples YU or YV pairs and places Y into the R component, while
283 * plane 1 is ARGB and samples YUYV clusters and places pairs and
284 * places U into the G component and V into A. This lets the
285 * texture sampler interpolate the Y components correctly when
286 * sampling from plane 0, and interpolate U and V correctly when
287 * sampling from plane 1. */
288 { __DRI_IMAGE_FOURCC_YUYV, __DRI_IMAGE_COMPONENTS_Y_XUXV, 2,
289 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
290 { 0, 1, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } }
291 };
292
293 static const struct {
294 uint32_t tiling;
295 uint64_t modifier;
296 } tiling_modifier_map[] = {
297 { .tiling = I915_TILING_NONE, .modifier = DRM_FORMAT_MOD_LINEAR },
298 { .tiling = I915_TILING_X, .modifier = I915_FORMAT_MOD_X_TILED },
299 { .tiling = I915_TILING_Y, .modifier = I915_FORMAT_MOD_Y_TILED },
300 };
301
302 static uint32_t
303 modifier_to_tiling(uint64_t modifier)
304 {
305 int i;
306
307 for (i = 0; i < ARRAY_SIZE(tiling_modifier_map); i++) {
308 if (tiling_modifier_map[i].modifier == modifier)
309 return tiling_modifier_map[i].tiling;
310 }
311
312 assert(0 && "modifier_to_tiling should only receive known modifiers");
313 unreachable();
314 }
315
316 static void
317 intel_image_warn_if_unaligned(__DRIimage *image, const char *func)
318 {
319 uint32_t tiling, swizzle;
320 brw_bo_get_tiling(image->bo, &tiling, &swizzle);
321
322 if (tiling != I915_TILING_NONE && (image->offset & 0xfff)) {
323 _mesa_warning(NULL, "%s: offset 0x%08x not on tile boundary",
324 func, image->offset);
325 }
326 }
327
328 static struct intel_image_format *
329 intel_image_format_lookup(int fourcc)
330 {
331 struct intel_image_format *f = NULL;
332
333 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
334 if (intel_image_formats[i].fourcc == fourcc) {
335 f = &intel_image_formats[i];
336 break;
337 }
338 }
339
340 return f;
341 }
342
343 static boolean intel_lookup_fourcc(int dri_format, int *fourcc)
344 {
345 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
346 if (intel_image_formats[i].planes[0].dri_format == dri_format) {
347 *fourcc = intel_image_formats[i].fourcc;
348 return true;
349 }
350 }
351 return false;
352 }
353
354 static __DRIimage *
355 intel_allocate_image(struct intel_screen *screen, int dri_format,
356 void *loaderPrivate)
357 {
358 __DRIimage *image;
359
360 image = calloc(1, sizeof *image);
361 if (image == NULL)
362 return NULL;
363
364 image->screen = screen;
365 image->dri_format = dri_format;
366 image->offset = 0;
367
368 image->format = driImageFormatToGLFormat(dri_format);
369 if (dri_format != __DRI_IMAGE_FORMAT_NONE &&
370 image->format == MESA_FORMAT_NONE) {
371 free(image);
372 return NULL;
373 }
374
375 image->internal_format = _mesa_get_format_base_format(image->format);
376 image->data = loaderPrivate;
377
378 return image;
379 }
380
381 /**
382 * Sets up a DRIImage structure to point to a slice out of a miptree.
383 */
384 static void
385 intel_setup_image_from_mipmap_tree(struct brw_context *brw, __DRIimage *image,
386 struct intel_mipmap_tree *mt, GLuint level,
387 GLuint zoffset)
388 {
389 intel_miptree_make_shareable(brw, mt);
390
391 intel_miptree_check_level_layer(mt, level, zoffset);
392
393 image->width = minify(mt->physical_width0, level - mt->first_level);
394 image->height = minify(mt->physical_height0, level - mt->first_level);
395 image->pitch = mt->pitch;
396
397 image->offset = intel_miptree_get_tile_offsets(mt, level, zoffset,
398 &image->tile_x,
399 &image->tile_y);
400
401 brw_bo_unreference(image->bo);
402 image->bo = mt->bo;
403 brw_bo_reference(mt->bo);
404 }
405
406 static __DRIimage *
407 intel_create_image_from_name(__DRIscreen *dri_screen,
408 int width, int height, int format,
409 int name, int pitch, void *loaderPrivate)
410 {
411 struct intel_screen *screen = dri_screen->driverPrivate;
412 __DRIimage *image;
413 int cpp;
414
415 image = intel_allocate_image(screen, format, loaderPrivate);
416 if (image == NULL)
417 return NULL;
418
419 if (image->format == MESA_FORMAT_NONE)
420 cpp = 1;
421 else
422 cpp = _mesa_get_format_bytes(image->format);
423
424 image->width = width;
425 image->height = height;
426 image->pitch = pitch * cpp;
427 image->bo = brw_bo_gem_create_from_name(screen->bufmgr, "image",
428 name);
429 if (!image->bo) {
430 free(image);
431 return NULL;
432 }
433
434 return image;
435 }
436
437 static __DRIimage *
438 intel_create_image_from_renderbuffer(__DRIcontext *context,
439 int renderbuffer, void *loaderPrivate)
440 {
441 __DRIimage *image;
442 struct brw_context *brw = context->driverPrivate;
443 struct gl_context *ctx = &brw->ctx;
444 struct gl_renderbuffer *rb;
445 struct intel_renderbuffer *irb;
446
447 rb = _mesa_lookup_renderbuffer(ctx, renderbuffer);
448 if (!rb) {
449 _mesa_error(ctx, GL_INVALID_OPERATION, "glRenderbufferExternalMESA");
450 return NULL;
451 }
452
453 irb = intel_renderbuffer(rb);
454 intel_miptree_make_shareable(brw, irb->mt);
455 image = calloc(1, sizeof *image);
456 if (image == NULL)
457 return NULL;
458
459 image->internal_format = rb->InternalFormat;
460 image->format = rb->Format;
461 image->offset = 0;
462 image->data = loaderPrivate;
463 brw_bo_unreference(image->bo);
464 image->bo = irb->mt->bo;
465 brw_bo_reference(irb->mt->bo);
466 image->width = rb->Width;
467 image->height = rb->Height;
468 image->pitch = irb->mt->pitch;
469 image->dri_format = driGLFormatToImageFormat(image->format);
470 image->has_depthstencil = irb->mt->stencil_mt? true : false;
471
472 rb->NeedsFinishRenderTexture = true;
473 return image;
474 }
475
476 static __DRIimage *
477 intel_create_image_from_texture(__DRIcontext *context, int target,
478 unsigned texture, int zoffset,
479 int level,
480 unsigned *error,
481 void *loaderPrivate)
482 {
483 __DRIimage *image;
484 struct brw_context *brw = context->driverPrivate;
485 struct gl_texture_object *obj;
486 struct intel_texture_object *iobj;
487 GLuint face = 0;
488
489 obj = _mesa_lookup_texture(&brw->ctx, texture);
490 if (!obj || obj->Target != target) {
491 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
492 return NULL;
493 }
494
495 if (target == GL_TEXTURE_CUBE_MAP)
496 face = zoffset;
497
498 _mesa_test_texobj_completeness(&brw->ctx, obj);
499 iobj = intel_texture_object(obj);
500 if (!obj->_BaseComplete || (level > 0 && !obj->_MipmapComplete)) {
501 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
502 return NULL;
503 }
504
505 if (level < obj->BaseLevel || level > obj->_MaxLevel) {
506 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
507 return NULL;
508 }
509
510 if (target == GL_TEXTURE_3D && obj->Image[face][level]->Depth < zoffset) {
511 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
512 return NULL;
513 }
514 image = calloc(1, sizeof *image);
515 if (image == NULL) {
516 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
517 return NULL;
518 }
519
520 image->internal_format = obj->Image[face][level]->InternalFormat;
521 image->format = obj->Image[face][level]->TexFormat;
522 image->data = loaderPrivate;
523 intel_setup_image_from_mipmap_tree(brw, image, iobj->mt, level, zoffset);
524 image->dri_format = driGLFormatToImageFormat(image->format);
525 image->has_depthstencil = iobj->mt->stencil_mt? true : false;
526 if (image->dri_format == MESA_FORMAT_NONE) {
527 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
528 free(image);
529 return NULL;
530 }
531
532 *error = __DRI_IMAGE_ERROR_SUCCESS;
533 return image;
534 }
535
536 static void
537 intel_destroy_image(__DRIimage *image)
538 {
539 brw_bo_unreference(image->bo);
540 free(image);
541 }
542
543 enum modifier_priority {
544 MODIFIER_PRIORITY_INVALID = 0,
545 MODIFIER_PRIORITY_LINEAR,
546 MODIFIER_PRIORITY_X,
547 MODIFIER_PRIORITY_Y,
548 };
549
550 const uint64_t priority_to_modifier[] = {
551 [MODIFIER_PRIORITY_INVALID] = DRM_FORMAT_MOD_INVALID,
552 [MODIFIER_PRIORITY_LINEAR] = DRM_FORMAT_MOD_LINEAR,
553 [MODIFIER_PRIORITY_X] = I915_FORMAT_MOD_X_TILED,
554 [MODIFIER_PRIORITY_Y] = I915_FORMAT_MOD_Y_TILED,
555 };
556
557 static uint64_t
558 select_best_modifier(struct gen_device_info *devinfo,
559 const uint64_t *modifiers,
560 const unsigned count)
561 {
562 enum modifier_priority prio = MODIFIER_PRIORITY_INVALID;
563
564 for (int i = 0; i < count; i++) {
565 switch (modifiers[i]) {
566 case I915_FORMAT_MOD_Y_TILED:
567 prio = MAX2(prio, MODIFIER_PRIORITY_Y);
568 break;
569 case I915_FORMAT_MOD_X_TILED:
570 prio = MAX2(prio, MODIFIER_PRIORITY_X);
571 break;
572 case DRM_FORMAT_MOD_LINEAR:
573 prio = MAX2(prio, MODIFIER_PRIORITY_LINEAR);
574 break;
575 case DRM_FORMAT_MOD_INVALID:
576 default:
577 break;
578 }
579 }
580
581 return priority_to_modifier[prio];
582 }
583
584 static __DRIimage *
585 intel_create_image_common(__DRIscreen *dri_screen,
586 int width, int height, int format,
587 unsigned int use,
588 const uint64_t *modifiers,
589 unsigned count,
590 void *loaderPrivate)
591 {
592 __DRIimage *image;
593 struct intel_screen *screen = dri_screen->driverPrivate;
594 uint32_t tiling;
595 int cpp;
596
597 /* Callers of this may specify a modifier, or a dri usage, but not both. The
598 * newer modifier interface deprecates the older usage flags newer modifier
599 * interface deprecates the older usage flags.
600 */
601 assert(!(use && count));
602
603 uint64_t modifier = select_best_modifier(&screen->devinfo, modifiers, count);
604 if (modifier == DRM_FORMAT_MOD_INVALID) {
605 /* User requested specific modifiers, none of which work */
606 if (modifiers)
607 return NULL;
608
609 /* Historically, X-tiled was the default, and so lack of modifier means
610 * X-tiled.
611 */
612 tiling = I915_TILING_X;
613 } else {
614 /* select_best_modifier has found a modifier we support */
615 tiling = modifier_to_tiling(modifier);
616 }
617
618 if (use & __DRI_IMAGE_USE_CURSOR) {
619 if (width != 64 || height != 64)
620 return NULL;
621 tiling = I915_TILING_NONE;
622 }
623
624 if (use & __DRI_IMAGE_USE_LINEAR)
625 tiling = I915_TILING_NONE;
626
627 image = intel_allocate_image(screen, format, loaderPrivate);
628 if (image == NULL)
629 return NULL;
630
631 cpp = _mesa_get_format_bytes(image->format);
632 image->bo = brw_bo_alloc_tiled(screen->bufmgr, "image",
633 width, height, cpp, tiling,
634 &image->pitch, 0);
635 if (image->bo == NULL) {
636 free(image);
637 return NULL;
638 }
639 image->width = width;
640 image->height = height;
641 image->modifier = modifier;
642
643 return image;
644 }
645
646 static __DRIimage *
647 intel_create_image(__DRIscreen *dri_screen,
648 int width, int height, int format,
649 unsigned int use,
650 void *loaderPrivate)
651 {
652 return intel_create_image_common(dri_screen, width, height, format, use, NULL, 0,
653 loaderPrivate);
654 }
655
656 static __DRIimage *
657 intel_create_image_with_modifiers(__DRIscreen *dri_screen,
658 int width, int height, int format,
659 const uint64_t *modifiers,
660 const unsigned count,
661 void *loaderPrivate)
662 {
663 return intel_create_image_common(dri_screen, width, height, format, 0,
664 modifiers, count, loaderPrivate);
665 }
666
667 static GLboolean
668 intel_query_image(__DRIimage *image, int attrib, int *value)
669 {
670 switch (attrib) {
671 case __DRI_IMAGE_ATTRIB_STRIDE:
672 *value = image->pitch;
673 return true;
674 case __DRI_IMAGE_ATTRIB_HANDLE:
675 *value = image->bo->gem_handle;
676 return true;
677 case __DRI_IMAGE_ATTRIB_NAME:
678 return !brw_bo_flink(image->bo, (uint32_t *) value);
679 case __DRI_IMAGE_ATTRIB_FORMAT:
680 *value = image->dri_format;
681 return true;
682 case __DRI_IMAGE_ATTRIB_WIDTH:
683 *value = image->width;
684 return true;
685 case __DRI_IMAGE_ATTRIB_HEIGHT:
686 *value = image->height;
687 return true;
688 case __DRI_IMAGE_ATTRIB_COMPONENTS:
689 if (image->planar_format == NULL)
690 return false;
691 *value = image->planar_format->components;
692 return true;
693 case __DRI_IMAGE_ATTRIB_FD:
694 return !brw_bo_gem_export_to_prime(image->bo, value);
695 case __DRI_IMAGE_ATTRIB_FOURCC:
696 return intel_lookup_fourcc(image->dri_format, value);
697 case __DRI_IMAGE_ATTRIB_NUM_PLANES:
698 *value = 1;
699 return true;
700 case __DRI_IMAGE_ATTRIB_OFFSET:
701 *value = image->offset;
702 return true;
703 case __DRI_IMAGE_ATTRIB_MODIFIER_LOWER:
704 *value = (image->modifier & 0xffffffff);
705 return true;
706 case __DRI_IMAGE_ATTRIB_MODIFIER_UPPER:
707 *value = ((image->modifier >> 32) & 0xffffffff);
708 return true;
709
710 default:
711 return false;
712 }
713 }
714
715 static __DRIimage *
716 intel_dup_image(__DRIimage *orig_image, void *loaderPrivate)
717 {
718 __DRIimage *image;
719
720 image = calloc(1, sizeof *image);
721 if (image == NULL)
722 return NULL;
723
724 brw_bo_reference(orig_image->bo);
725 image->bo = orig_image->bo;
726 image->internal_format = orig_image->internal_format;
727 image->planar_format = orig_image->planar_format;
728 image->dri_format = orig_image->dri_format;
729 image->format = orig_image->format;
730 image->offset = orig_image->offset;
731 image->width = orig_image->width;
732 image->height = orig_image->height;
733 image->pitch = orig_image->pitch;
734 image->tile_x = orig_image->tile_x;
735 image->tile_y = orig_image->tile_y;
736 image->has_depthstencil = orig_image->has_depthstencil;
737 image->data = loaderPrivate;
738
739 memcpy(image->strides, orig_image->strides, sizeof(image->strides));
740 memcpy(image->offsets, orig_image->offsets, sizeof(image->offsets));
741
742 return image;
743 }
744
745 static GLboolean
746 intel_validate_usage(__DRIimage *image, unsigned int use)
747 {
748 if (use & __DRI_IMAGE_USE_CURSOR) {
749 if (image->width != 64 || image->height != 64)
750 return GL_FALSE;
751 }
752
753 return GL_TRUE;
754 }
755
756 static __DRIimage *
757 intel_create_image_from_names(__DRIscreen *dri_screen,
758 int width, int height, int fourcc,
759 int *names, int num_names,
760 int *strides, int *offsets,
761 void *loaderPrivate)
762 {
763 struct intel_image_format *f = NULL;
764 __DRIimage *image;
765 int i, index;
766
767 if (dri_screen == NULL || names == NULL || num_names != 1)
768 return NULL;
769
770 f = intel_image_format_lookup(fourcc);
771 if (f == NULL)
772 return NULL;
773
774 image = intel_create_image_from_name(dri_screen, width, height,
775 __DRI_IMAGE_FORMAT_NONE,
776 names[0], strides[0],
777 loaderPrivate);
778
779 if (image == NULL)
780 return NULL;
781
782 image->planar_format = f;
783 for (i = 0; i < f->nplanes; i++) {
784 index = f->planes[i].buffer_index;
785 image->offsets[index] = offsets[index];
786 image->strides[index] = strides[index];
787 }
788
789 return image;
790 }
791
792 static __DRIimage *
793 intel_create_image_from_fds(__DRIscreen *dri_screen,
794 int width, int height, int fourcc,
795 int *fds, int num_fds, int *strides, int *offsets,
796 void *loaderPrivate)
797 {
798 struct intel_screen *screen = dri_screen->driverPrivate;
799 struct intel_image_format *f;
800 __DRIimage *image;
801 int i, index;
802
803 if (fds == NULL || num_fds < 1)
804 return NULL;
805
806 /* We only support all planes from the same bo */
807 for (i = 0; i < num_fds; i++)
808 if (fds[0] != fds[i])
809 return NULL;
810
811 f = intel_image_format_lookup(fourcc);
812 if (f == NULL)
813 return NULL;
814
815 if (f->nplanes == 1)
816 image = intel_allocate_image(screen, f->planes[0].dri_format,
817 loaderPrivate);
818 else
819 image = intel_allocate_image(screen, __DRI_IMAGE_FORMAT_NONE,
820 loaderPrivate);
821
822 if (image == NULL)
823 return NULL;
824
825 image->width = width;
826 image->height = height;
827 image->pitch = strides[0];
828
829 image->planar_format = f;
830 int size = 0;
831 for (i = 0; i < f->nplanes; i++) {
832 index = f->planes[i].buffer_index;
833 image->offsets[index] = offsets[index];
834 image->strides[index] = strides[index];
835
836 const int plane_height = height >> f->planes[i].height_shift;
837 const int end = offsets[index] + plane_height * strides[index];
838 if (size < end)
839 size = end;
840 }
841
842 image->bo = brw_bo_gem_create_from_prime(screen->bufmgr,
843 fds[0], size);
844 if (image->bo == NULL) {
845 free(image);
846 return NULL;
847 }
848
849 if (f->nplanes == 1) {
850 image->offset = image->offsets[0];
851 intel_image_warn_if_unaligned(image, __func__);
852 }
853
854 return image;
855 }
856
857 static __DRIimage *
858 intel_create_image_from_dma_bufs(__DRIscreen *dri_screen,
859 int width, int height, int fourcc,
860 int *fds, int num_fds,
861 int *strides, int *offsets,
862 enum __DRIYUVColorSpace yuv_color_space,
863 enum __DRISampleRange sample_range,
864 enum __DRIChromaSiting horizontal_siting,
865 enum __DRIChromaSiting vertical_siting,
866 unsigned *error,
867 void *loaderPrivate)
868 {
869 __DRIimage *image;
870 struct intel_image_format *f = intel_image_format_lookup(fourcc);
871
872 if (!f) {
873 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
874 return NULL;
875 }
876
877 image = intel_create_image_from_fds(dri_screen, width, height, fourcc, fds,
878 num_fds, strides, offsets,
879 loaderPrivate);
880
881 /*
882 * Invalid parameters and any inconsistencies between are assumed to be
883 * checked by the caller. Therefore besides unsupported formats one can fail
884 * only in allocation.
885 */
886 if (!image) {
887 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
888 return NULL;
889 }
890
891 image->dma_buf_imported = true;
892 image->yuv_color_space = yuv_color_space;
893 image->sample_range = sample_range;
894 image->horizontal_siting = horizontal_siting;
895 image->vertical_siting = vertical_siting;
896
897 *error = __DRI_IMAGE_ERROR_SUCCESS;
898 return image;
899 }
900
901 static __DRIimage *
902 intel_from_planar(__DRIimage *parent, int plane, void *loaderPrivate)
903 {
904 int width, height, offset, stride, dri_format, index;
905 struct intel_image_format *f;
906 __DRIimage *image;
907
908 if (parent == NULL || parent->planar_format == NULL)
909 return NULL;
910
911 f = parent->planar_format;
912
913 if (plane >= f->nplanes)
914 return NULL;
915
916 width = parent->width >> f->planes[plane].width_shift;
917 height = parent->height >> f->planes[plane].height_shift;
918 dri_format = f->planes[plane].dri_format;
919 index = f->planes[plane].buffer_index;
920 offset = parent->offsets[index];
921 stride = parent->strides[index];
922
923 image = intel_allocate_image(parent->screen, dri_format, loaderPrivate);
924 if (image == NULL)
925 return NULL;
926
927 if (offset + height * stride > parent->bo->size) {
928 _mesa_warning(NULL, "intel_create_sub_image: subimage out of bounds");
929 free(image);
930 return NULL;
931 }
932
933 image->bo = parent->bo;
934 brw_bo_reference(parent->bo);
935
936 image->width = width;
937 image->height = height;
938 image->pitch = stride;
939 image->offset = offset;
940
941 intel_image_warn_if_unaligned(image, __func__);
942
943 return image;
944 }
945
946 static const __DRIimageExtension intelImageExtension = {
947 .base = { __DRI_IMAGE, 14 },
948
949 .createImageFromName = intel_create_image_from_name,
950 .createImageFromRenderbuffer = intel_create_image_from_renderbuffer,
951 .destroyImage = intel_destroy_image,
952 .createImage = intel_create_image,
953 .queryImage = intel_query_image,
954 .dupImage = intel_dup_image,
955 .validateUsage = intel_validate_usage,
956 .createImageFromNames = intel_create_image_from_names,
957 .fromPlanar = intel_from_planar,
958 .createImageFromTexture = intel_create_image_from_texture,
959 .createImageFromFds = intel_create_image_from_fds,
960 .createImageFromDmaBufs = intel_create_image_from_dma_bufs,
961 .blitImage = NULL,
962 .getCapabilities = NULL,
963 .mapImage = NULL,
964 .unmapImage = NULL,
965 .createImageWithModifiers = intel_create_image_with_modifiers,
966 };
967
968 static uint64_t
969 get_aperture_size(int fd)
970 {
971 struct drm_i915_gem_get_aperture aperture;
972
973 if (drmIoctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture) != 0)
974 return 0;
975
976 return aperture.aper_size;
977 }
978
979 static int
980 brw_query_renderer_integer(__DRIscreen *dri_screen,
981 int param, unsigned int *value)
982 {
983 const struct intel_screen *const screen =
984 (struct intel_screen *) dri_screen->driverPrivate;
985
986 switch (param) {
987 case __DRI2_RENDERER_VENDOR_ID:
988 value[0] = 0x8086;
989 return 0;
990 case __DRI2_RENDERER_DEVICE_ID:
991 value[0] = screen->deviceID;
992 return 0;
993 case __DRI2_RENDERER_ACCELERATED:
994 value[0] = 1;
995 return 0;
996 case __DRI2_RENDERER_VIDEO_MEMORY: {
997 /* Once a batch uses more than 75% of the maximum mappable size, we
998 * assume that there's some fragmentation, and we start doing extra
999 * flushing, etc. That's the big cliff apps will care about.
1000 */
1001 const unsigned gpu_mappable_megabytes =
1002 screen->aperture_threshold / (1024 * 1024);
1003
1004 const long system_memory_pages = sysconf(_SC_PHYS_PAGES);
1005 const long system_page_size = sysconf(_SC_PAGE_SIZE);
1006
1007 if (system_memory_pages <= 0 || system_page_size <= 0)
1008 return -1;
1009
1010 const uint64_t system_memory_bytes = (uint64_t) system_memory_pages
1011 * (uint64_t) system_page_size;
1012
1013 const unsigned system_memory_megabytes =
1014 (unsigned) (system_memory_bytes / (1024 * 1024));
1015
1016 value[0] = MIN2(system_memory_megabytes, gpu_mappable_megabytes);
1017 return 0;
1018 }
1019 case __DRI2_RENDERER_UNIFIED_MEMORY_ARCHITECTURE:
1020 value[0] = 1;
1021 return 0;
1022 case __DRI2_RENDERER_HAS_TEXTURE_3D:
1023 value[0] = 1;
1024 return 0;
1025 default:
1026 return driQueryRendererIntegerCommon(dri_screen, param, value);
1027 }
1028
1029 return -1;
1030 }
1031
1032 static int
1033 brw_query_renderer_string(__DRIscreen *dri_screen,
1034 int param, const char **value)
1035 {
1036 const struct intel_screen *screen =
1037 (struct intel_screen *) dri_screen->driverPrivate;
1038
1039 switch (param) {
1040 case __DRI2_RENDERER_VENDOR_ID:
1041 value[0] = brw_vendor_string;
1042 return 0;
1043 case __DRI2_RENDERER_DEVICE_ID:
1044 value[0] = brw_get_renderer_string(screen);
1045 return 0;
1046 default:
1047 break;
1048 }
1049
1050 return -1;
1051 }
1052
1053 static const __DRI2rendererQueryExtension intelRendererQueryExtension = {
1054 .base = { __DRI2_RENDERER_QUERY, 1 },
1055
1056 .queryInteger = brw_query_renderer_integer,
1057 .queryString = brw_query_renderer_string
1058 };
1059
1060 static const __DRIrobustnessExtension dri2Robustness = {
1061 .base = { __DRI2_ROBUSTNESS, 1 }
1062 };
1063
1064 static const __DRIextension *screenExtensions[] = {
1065 &intelTexBufferExtension.base,
1066 &intelFenceExtension.base,
1067 &intelFlushExtension.base,
1068 &intelImageExtension.base,
1069 &intelRendererQueryExtension.base,
1070 &dri2ConfigQueryExtension.base,
1071 NULL
1072 };
1073
1074 static const __DRIextension *intelRobustScreenExtensions[] = {
1075 &intelTexBufferExtension.base,
1076 &intelFenceExtension.base,
1077 &intelFlushExtension.base,
1078 &intelImageExtension.base,
1079 &intelRendererQueryExtension.base,
1080 &dri2ConfigQueryExtension.base,
1081 &dri2Robustness.base,
1082 NULL
1083 };
1084
1085 static int
1086 intel_get_param(struct intel_screen *screen, int param, int *value)
1087 {
1088 int ret = 0;
1089 struct drm_i915_getparam gp;
1090
1091 memset(&gp, 0, sizeof(gp));
1092 gp.param = param;
1093 gp.value = value;
1094
1095 if (drmIoctl(screen->driScrnPriv->fd, DRM_IOCTL_I915_GETPARAM, &gp) == -1) {
1096 ret = -errno;
1097 if (ret != -EINVAL)
1098 _mesa_warning(NULL, "drm_i915_getparam: %d", ret);
1099 }
1100
1101 return ret;
1102 }
1103
1104 static bool
1105 intel_get_boolean(struct intel_screen *screen, int param)
1106 {
1107 int value = 0;
1108 return (intel_get_param(screen, param, &value) == 0) && value;
1109 }
1110
1111 static int
1112 intel_get_integer(struct intel_screen *screen, int param)
1113 {
1114 int value = -1;
1115
1116 if (intel_get_param(screen, param, &value) == 0)
1117 return value;
1118
1119 return -1;
1120 }
1121
1122 static void
1123 intelDestroyScreen(__DRIscreen * sPriv)
1124 {
1125 struct intel_screen *screen = sPriv->driverPrivate;
1126
1127 brw_bufmgr_destroy(screen->bufmgr);
1128 driDestroyOptionInfo(&screen->optionCache);
1129
1130 ralloc_free(screen);
1131 sPriv->driverPrivate = NULL;
1132 }
1133
1134
1135 /**
1136 * This is called when we need to set up GL rendering to a new X window.
1137 */
1138 static GLboolean
1139 intelCreateBuffer(__DRIscreen *dri_screen,
1140 __DRIdrawable * driDrawPriv,
1141 const struct gl_config * mesaVis, GLboolean isPixmap)
1142 {
1143 struct intel_renderbuffer *rb;
1144 struct intel_screen *screen = (struct intel_screen *)
1145 dri_screen->driverPrivate;
1146 mesa_format rgbFormat;
1147 unsigned num_samples =
1148 intel_quantize_num_samples(screen, mesaVis->samples);
1149 struct gl_framebuffer *fb;
1150
1151 if (isPixmap)
1152 return false;
1153
1154 fb = CALLOC_STRUCT(gl_framebuffer);
1155 if (!fb)
1156 return false;
1157
1158 _mesa_initialize_window_framebuffer(fb, mesaVis);
1159
1160 if (screen->winsys_msaa_samples_override != -1) {
1161 num_samples = screen->winsys_msaa_samples_override;
1162 fb->Visual.samples = num_samples;
1163 }
1164
1165 if (mesaVis->redBits == 5) {
1166 rgbFormat = mesaVis->redMask == 0x1f ? MESA_FORMAT_R5G6B5_UNORM
1167 : MESA_FORMAT_B5G6R5_UNORM;
1168 } else if (mesaVis->sRGBCapable) {
1169 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1170 : MESA_FORMAT_B8G8R8A8_SRGB;
1171 } else if (mesaVis->alphaBits == 0) {
1172 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8X8_UNORM
1173 : MESA_FORMAT_B8G8R8X8_UNORM;
1174 } else {
1175 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1176 : MESA_FORMAT_B8G8R8A8_SRGB;
1177 fb->Visual.sRGBCapable = true;
1178 }
1179
1180 /* setup the hardware-based renderbuffers */
1181 rb = intel_create_renderbuffer(rgbFormat, num_samples);
1182 _mesa_attach_and_own_rb(fb, BUFFER_FRONT_LEFT, &rb->Base.Base);
1183
1184 if (mesaVis->doubleBufferMode) {
1185 rb = intel_create_renderbuffer(rgbFormat, num_samples);
1186 _mesa_attach_and_own_rb(fb, BUFFER_BACK_LEFT, &rb->Base.Base);
1187 }
1188
1189 /*
1190 * Assert here that the gl_config has an expected depth/stencil bit
1191 * combination: one of d24/s8, d16/s0, d0/s0. (See intelInitScreen2(),
1192 * which constructs the advertised configs.)
1193 */
1194 if (mesaVis->depthBits == 24) {
1195 assert(mesaVis->stencilBits == 8);
1196
1197 if (screen->devinfo.has_hiz_and_separate_stencil) {
1198 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z24_UNORM_X8_UINT,
1199 num_samples);
1200 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1201 rb = intel_create_private_renderbuffer(MESA_FORMAT_S_UINT8,
1202 num_samples);
1203 _mesa_attach_and_own_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1204 } else {
1205 /*
1206 * Use combined depth/stencil. Note that the renderbuffer is
1207 * attached to two attachment points.
1208 */
1209 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z24_UNORM_S8_UINT,
1210 num_samples);
1211 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1212 _mesa_attach_and_reference_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1213 }
1214 }
1215 else if (mesaVis->depthBits == 16) {
1216 assert(mesaVis->stencilBits == 0);
1217 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z_UNORM16,
1218 num_samples);
1219 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1220 }
1221 else {
1222 assert(mesaVis->depthBits == 0);
1223 assert(mesaVis->stencilBits == 0);
1224 }
1225
1226 /* now add any/all software-based renderbuffers we may need */
1227 _swrast_add_soft_renderbuffers(fb,
1228 false, /* never sw color */
1229 false, /* never sw depth */
1230 false, /* never sw stencil */
1231 mesaVis->accumRedBits > 0,
1232 false, /* never sw alpha */
1233 false /* never sw aux */ );
1234 driDrawPriv->driverPrivate = fb;
1235
1236 return true;
1237 }
1238
1239 static void
1240 intelDestroyBuffer(__DRIdrawable * driDrawPriv)
1241 {
1242 struct gl_framebuffer *fb = driDrawPriv->driverPrivate;
1243
1244 _mesa_reference_framebuffer(&fb, NULL);
1245 }
1246
1247 static void
1248 intel_detect_sseu(struct intel_screen *screen)
1249 {
1250 assert(screen->devinfo.gen >= 8);
1251 int ret;
1252
1253 screen->subslice_total = -1;
1254 screen->eu_total = -1;
1255
1256 ret = intel_get_param(screen, I915_PARAM_SUBSLICE_TOTAL,
1257 &screen->subslice_total);
1258 if (ret < 0 && ret != -EINVAL)
1259 goto err_out;
1260
1261 ret = intel_get_param(screen,
1262 I915_PARAM_EU_TOTAL, &screen->eu_total);
1263 if (ret < 0 && ret != -EINVAL)
1264 goto err_out;
1265
1266 /* Without this information, we cannot get the right Braswell brandstrings,
1267 * and we have to use conservative numbers for GPGPU on many platforms, but
1268 * otherwise, things will just work.
1269 */
1270 if (screen->subslice_total < 1 || screen->eu_total < 1)
1271 _mesa_warning(NULL,
1272 "Kernel 4.1 required to properly query GPU properties.\n");
1273
1274 return;
1275
1276 err_out:
1277 screen->subslice_total = -1;
1278 screen->eu_total = -1;
1279 _mesa_warning(NULL, "Failed to query GPU properties (%s).\n", strerror(-ret));
1280 }
1281
1282 static bool
1283 intel_init_bufmgr(struct intel_screen *screen)
1284 {
1285 __DRIscreen *dri_screen = screen->driScrnPriv;
1286
1287 if (getenv("INTEL_NO_HW") != NULL)
1288 screen->no_hw = true;
1289
1290 screen->bufmgr = brw_bufmgr_init(&screen->devinfo, dri_screen->fd, BATCH_SZ);
1291 if (screen->bufmgr == NULL) {
1292 fprintf(stderr, "[%s:%u] Error initializing buffer manager.\n",
1293 __func__, __LINE__);
1294 return false;
1295 }
1296
1297 if (!intel_get_boolean(screen, I915_PARAM_HAS_WAIT_TIMEOUT)) {
1298 fprintf(stderr, "[%s: %u] Kernel 3.6 required.\n", __func__, __LINE__);
1299 return false;
1300 }
1301
1302 return true;
1303 }
1304
1305 static bool
1306 intel_detect_swizzling(struct intel_screen *screen)
1307 {
1308 struct brw_bo *buffer;
1309 unsigned flags = 0;
1310 uint32_t aligned_pitch;
1311 uint32_t tiling = I915_TILING_X;
1312 uint32_t swizzle_mode = 0;
1313
1314 buffer = brw_bo_alloc_tiled(screen->bufmgr, "swizzle test",
1315 64, 64, 4, tiling, &aligned_pitch, flags);
1316 if (buffer == NULL)
1317 return false;
1318
1319 brw_bo_get_tiling(buffer, &tiling, &swizzle_mode);
1320 brw_bo_unreference(buffer);
1321
1322 if (swizzle_mode == I915_BIT_6_SWIZZLE_NONE)
1323 return false;
1324 else
1325 return true;
1326 }
1327
1328 static int
1329 intel_detect_timestamp(struct intel_screen *screen)
1330 {
1331 uint64_t dummy = 0, last = 0;
1332 int upper, lower, loops;
1333
1334 /* On 64bit systems, some old kernels trigger a hw bug resulting in the
1335 * TIMESTAMP register being shifted and the low 32bits always zero.
1336 *
1337 * More recent kernels offer an interface to read the full 36bits
1338 * everywhere.
1339 */
1340 if (brw_reg_read(screen->bufmgr, TIMESTAMP | 1, &dummy) == 0)
1341 return 3;
1342
1343 /* Determine if we have a 32bit or 64bit kernel by inspecting the
1344 * upper 32bits for a rapidly changing timestamp.
1345 */
1346 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &last))
1347 return 0;
1348
1349 upper = lower = 0;
1350 for (loops = 0; loops < 10; loops++) {
1351 /* The TIMESTAMP should change every 80ns, so several round trips
1352 * through the kernel should be enough to advance it.
1353 */
1354 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &dummy))
1355 return 0;
1356
1357 upper += (dummy >> 32) != (last >> 32);
1358 if (upper > 1) /* beware 32bit counter overflow */
1359 return 2; /* upper dword holds the low 32bits of the timestamp */
1360
1361 lower += (dummy & 0xffffffff) != (last & 0xffffffff);
1362 if (lower > 1)
1363 return 1; /* timestamp is unshifted */
1364
1365 last = dummy;
1366 }
1367
1368 /* No advancement? No timestamp! */
1369 return 0;
1370 }
1371
1372 /**
1373 * Test if we can use MI_LOAD_REGISTER_MEM from an untrusted batchbuffer.
1374 *
1375 * Some combinations of hardware and kernel versions allow this feature,
1376 * while others don't. Instead of trying to enumerate every case, just
1377 * try and write a register and see if works.
1378 */
1379 static bool
1380 intel_detect_pipelined_register(struct intel_screen *screen,
1381 int reg, uint32_t expected_value, bool reset)
1382 {
1383 if (screen->no_hw)
1384 return false;
1385
1386 struct brw_bo *results, *bo;
1387 uint32_t *batch;
1388 uint32_t offset = 0;
1389 bool success = false;
1390
1391 /* Create a zero'ed temporary buffer for reading our results */
1392 results = brw_bo_alloc(screen->bufmgr, "registers", 4096, 0);
1393 if (results == NULL)
1394 goto err;
1395
1396 bo = brw_bo_alloc(screen->bufmgr, "batchbuffer", 4096, 0);
1397 if (bo == NULL)
1398 goto err_results;
1399
1400 if (brw_bo_map(NULL, bo, 1))
1401 goto err_batch;
1402
1403 batch = bo->virtual;
1404
1405 /* Write the register. */
1406 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1407 *batch++ = reg;
1408 *batch++ = expected_value;
1409
1410 /* Save the register's value back to the buffer. */
1411 *batch++ = MI_STORE_REGISTER_MEM | (3 - 2);
1412 *batch++ = reg;
1413 struct drm_i915_gem_relocation_entry reloc = {
1414 .offset = (char *) batch - (char *) bo->virtual,
1415 .delta = offset * sizeof(uint32_t),
1416 .target_handle = results->gem_handle,
1417 .read_domains = I915_GEM_DOMAIN_INSTRUCTION,
1418 .write_domain = I915_GEM_DOMAIN_INSTRUCTION,
1419 };
1420 *batch++ = reloc.presumed_offset + reloc.delta;
1421
1422 /* And afterwards clear the register */
1423 if (reset) {
1424 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1425 *batch++ = reg;
1426 *batch++ = 0;
1427 }
1428
1429 *batch++ = MI_BATCH_BUFFER_END;
1430
1431 struct drm_i915_gem_exec_object2 exec_objects[2] = {
1432 {
1433 .handle = results->gem_handle,
1434 },
1435 {
1436 .handle = bo->gem_handle,
1437 .relocation_count = 1,
1438 .relocs_ptr = (uintptr_t) &reloc,
1439 }
1440 };
1441
1442 struct drm_i915_gem_execbuffer2 execbuf = {
1443 .buffers_ptr = (uintptr_t) exec_objects,
1444 .buffer_count = 2,
1445 .batch_len = ALIGN((char *) batch - (char *) bo->virtual, 8),
1446 .flags = I915_EXEC_RENDER,
1447 };
1448
1449 /* Don't bother with error checking - if the execbuf fails, the
1450 * value won't be written and we'll just report that there's no access.
1451 */
1452 __DRIscreen *dri_screen = screen->driScrnPriv;
1453 drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf);
1454
1455 /* Check whether the value got written. */
1456 if (brw_bo_map(NULL, results, false) == 0) {
1457 success = *((uint32_t *)results->virtual + offset) == expected_value;
1458 brw_bo_unmap(results);
1459 }
1460
1461 err_batch:
1462 brw_bo_unreference(bo);
1463 err_results:
1464 brw_bo_unreference(results);
1465 err:
1466 return success;
1467 }
1468
1469 static bool
1470 intel_detect_pipelined_so(struct intel_screen *screen)
1471 {
1472 const struct gen_device_info *devinfo = &screen->devinfo;
1473
1474 /* Supposedly, Broadwell just works. */
1475 if (devinfo->gen >= 8)
1476 return true;
1477
1478 if (devinfo->gen <= 6)
1479 return false;
1480
1481 /* See the big explanation about command parser versions below */
1482 if (screen->cmd_parser_version >= (devinfo->is_haswell ? 7 : 2))
1483 return true;
1484
1485 /* We use SO_WRITE_OFFSET0 since you're supposed to write it (unlike the
1486 * statistics registers), and we already reset it to zero before using it.
1487 */
1488 return intel_detect_pipelined_register(screen,
1489 GEN7_SO_WRITE_OFFSET(0),
1490 0x1337d0d0,
1491 false);
1492 }
1493
1494 /**
1495 * Return array of MSAA modes supported by the hardware. The array is
1496 * zero-terminated and sorted in decreasing order.
1497 */
1498 const int*
1499 intel_supported_msaa_modes(const struct intel_screen *screen)
1500 {
1501 static const int gen9_modes[] = {16, 8, 4, 2, 0, -1};
1502 static const int gen8_modes[] = {8, 4, 2, 0, -1};
1503 static const int gen7_modes[] = {8, 4, 0, -1};
1504 static const int gen6_modes[] = {4, 0, -1};
1505 static const int gen4_modes[] = {0, -1};
1506
1507 if (screen->devinfo.gen >= 9) {
1508 return gen9_modes;
1509 } else if (screen->devinfo.gen >= 8) {
1510 return gen8_modes;
1511 } else if (screen->devinfo.gen >= 7) {
1512 return gen7_modes;
1513 } else if (screen->devinfo.gen == 6) {
1514 return gen6_modes;
1515 } else {
1516 return gen4_modes;
1517 }
1518 }
1519
1520 static __DRIconfig**
1521 intel_screen_make_configs(__DRIscreen *dri_screen)
1522 {
1523 static const mesa_format formats[] = {
1524 MESA_FORMAT_B5G6R5_UNORM,
1525 MESA_FORMAT_B8G8R8A8_UNORM,
1526 MESA_FORMAT_B8G8R8X8_UNORM
1527 };
1528
1529 /* GLX_SWAP_COPY_OML is not supported due to page flipping. */
1530 static const GLenum back_buffer_modes[] = {
1531 GLX_SWAP_UNDEFINED_OML, GLX_NONE,
1532 };
1533
1534 static const uint8_t singlesample_samples[1] = {0};
1535 static const uint8_t multisample_samples[2] = {4, 8};
1536
1537 struct intel_screen *screen = dri_screen->driverPrivate;
1538 const struct gen_device_info *devinfo = &screen->devinfo;
1539 uint8_t depth_bits[4], stencil_bits[4];
1540 __DRIconfig **configs = NULL;
1541
1542 /* Generate singlesample configs without accumulation buffer. */
1543 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1544 __DRIconfig **new_configs;
1545 int num_depth_stencil_bits = 2;
1546
1547 /* Starting with DRI2 protocol version 1.1 we can request a depth/stencil
1548 * buffer that has a different number of bits per pixel than the color
1549 * buffer, gen >= 6 supports this.
1550 */
1551 depth_bits[0] = 0;
1552 stencil_bits[0] = 0;
1553
1554 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1555 depth_bits[1] = 16;
1556 stencil_bits[1] = 0;
1557 if (devinfo->gen >= 6) {
1558 depth_bits[2] = 24;
1559 stencil_bits[2] = 8;
1560 num_depth_stencil_bits = 3;
1561 }
1562 } else {
1563 depth_bits[1] = 24;
1564 stencil_bits[1] = 8;
1565 }
1566
1567 new_configs = driCreateConfigs(formats[i],
1568 depth_bits,
1569 stencil_bits,
1570 num_depth_stencil_bits,
1571 back_buffer_modes, 2,
1572 singlesample_samples, 1,
1573 false, false);
1574 configs = driConcatConfigs(configs, new_configs);
1575 }
1576
1577 /* Generate the minimum possible set of configs that include an
1578 * accumulation buffer.
1579 */
1580 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1581 __DRIconfig **new_configs;
1582
1583 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1584 depth_bits[0] = 16;
1585 stencil_bits[0] = 0;
1586 } else {
1587 depth_bits[0] = 24;
1588 stencil_bits[0] = 8;
1589 }
1590
1591 new_configs = driCreateConfigs(formats[i],
1592 depth_bits, stencil_bits, 1,
1593 back_buffer_modes, 1,
1594 singlesample_samples, 1,
1595 true, false);
1596 configs = driConcatConfigs(configs, new_configs);
1597 }
1598
1599 /* Generate multisample configs.
1600 *
1601 * This loop breaks early, and hence is a no-op, on gen < 6.
1602 *
1603 * Multisample configs must follow the singlesample configs in order to
1604 * work around an X server bug present in 1.12. The X server chooses to
1605 * associate the first listed RGBA888-Z24S8 config, regardless of its
1606 * sample count, with the 32-bit depth visual used for compositing.
1607 *
1608 * Only doublebuffer configs with GLX_SWAP_UNDEFINED_OML behavior are
1609 * supported. Singlebuffer configs are not supported because no one wants
1610 * them.
1611 */
1612 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1613 if (devinfo->gen < 6)
1614 break;
1615
1616 __DRIconfig **new_configs;
1617 const int num_depth_stencil_bits = 2;
1618 int num_msaa_modes = 0;
1619
1620 depth_bits[0] = 0;
1621 stencil_bits[0] = 0;
1622
1623 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1624 depth_bits[1] = 16;
1625 stencil_bits[1] = 0;
1626 } else {
1627 depth_bits[1] = 24;
1628 stencil_bits[1] = 8;
1629 }
1630
1631 if (devinfo->gen >= 7)
1632 num_msaa_modes = 2;
1633 else if (devinfo->gen == 6)
1634 num_msaa_modes = 1;
1635
1636 new_configs = driCreateConfigs(formats[i],
1637 depth_bits,
1638 stencil_bits,
1639 num_depth_stencil_bits,
1640 back_buffer_modes, 1,
1641 multisample_samples,
1642 num_msaa_modes,
1643 false, false);
1644 configs = driConcatConfigs(configs, new_configs);
1645 }
1646
1647 if (configs == NULL) {
1648 fprintf(stderr, "[%s:%u] Error creating FBConfig!\n", __func__,
1649 __LINE__);
1650 return NULL;
1651 }
1652
1653 return configs;
1654 }
1655
1656 static void
1657 set_max_gl_versions(struct intel_screen *screen)
1658 {
1659 __DRIscreen *dri_screen = screen->driScrnPriv;
1660 const bool has_astc = screen->devinfo.gen >= 9;
1661
1662 switch (screen->devinfo.gen) {
1663 case 9:
1664 case 8:
1665 dri_screen->max_gl_core_version = 45;
1666 dri_screen->max_gl_compat_version = 30;
1667 dri_screen->max_gl_es1_version = 11;
1668 dri_screen->max_gl_es2_version = has_astc ? 32 : 31;
1669 break;
1670 case 7:
1671 dri_screen->max_gl_core_version = 33;
1672 if (can_do_pipelined_register_writes(screen)) {
1673 dri_screen->max_gl_core_version = 42;
1674 if (screen->devinfo.is_haswell && can_do_compute_dispatch(screen))
1675 dri_screen->max_gl_core_version = 43;
1676 if (screen->devinfo.is_haswell && can_do_mi_math_and_lrr(screen))
1677 dri_screen->max_gl_core_version = 45;
1678 }
1679 dri_screen->max_gl_compat_version = 30;
1680 dri_screen->max_gl_es1_version = 11;
1681 dri_screen->max_gl_es2_version = screen->devinfo.is_haswell ? 31 : 30;
1682 break;
1683 case 6:
1684 dri_screen->max_gl_core_version = 33;
1685 dri_screen->max_gl_compat_version = 30;
1686 dri_screen->max_gl_es1_version = 11;
1687 dri_screen->max_gl_es2_version = 30;
1688 break;
1689 case 5:
1690 case 4:
1691 dri_screen->max_gl_core_version = 0;
1692 dri_screen->max_gl_compat_version = 21;
1693 dri_screen->max_gl_es1_version = 11;
1694 dri_screen->max_gl_es2_version = 20;
1695 break;
1696 default:
1697 unreachable("unrecognized intel_screen::gen");
1698 }
1699 }
1700
1701 /**
1702 * Return the revision (generally the revid field of the PCI header) of the
1703 * graphics device.
1704 *
1705 * XXX: This function is useful to keep around even if it is not currently in
1706 * use. It is necessary for new platforms and revision specific workarounds or
1707 * features. Please don't remove it so that we know it at least continues to
1708 * build.
1709 */
1710 static __attribute__((__unused__)) int
1711 brw_get_revision(int fd)
1712 {
1713 struct drm_i915_getparam gp;
1714 int revision;
1715 int ret;
1716
1717 memset(&gp, 0, sizeof(gp));
1718 gp.param = I915_PARAM_REVISION;
1719 gp.value = &revision;
1720
1721 ret = drmCommandWriteRead(fd, DRM_I915_GETPARAM, &gp, sizeof(gp));
1722 if (ret)
1723 revision = -1;
1724
1725 return revision;
1726 }
1727
1728 static void
1729 shader_debug_log_mesa(void *data, const char *fmt, ...)
1730 {
1731 struct brw_context *brw = (struct brw_context *)data;
1732 va_list args;
1733
1734 va_start(args, fmt);
1735 GLuint msg_id = 0;
1736 _mesa_gl_vdebug(&brw->ctx, &msg_id,
1737 MESA_DEBUG_SOURCE_SHADER_COMPILER,
1738 MESA_DEBUG_TYPE_OTHER,
1739 MESA_DEBUG_SEVERITY_NOTIFICATION, fmt, args);
1740 va_end(args);
1741 }
1742
1743 static void
1744 shader_perf_log_mesa(void *data, const char *fmt, ...)
1745 {
1746 struct brw_context *brw = (struct brw_context *)data;
1747
1748 va_list args;
1749 va_start(args, fmt);
1750
1751 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
1752 va_list args_copy;
1753 va_copy(args_copy, args);
1754 vfprintf(stderr, fmt, args_copy);
1755 va_end(args_copy);
1756 }
1757
1758 if (brw->perf_debug) {
1759 GLuint msg_id = 0;
1760 _mesa_gl_vdebug(&brw->ctx, &msg_id,
1761 MESA_DEBUG_SOURCE_SHADER_COMPILER,
1762 MESA_DEBUG_TYPE_PERFORMANCE,
1763 MESA_DEBUG_SEVERITY_MEDIUM, fmt, args);
1764 }
1765 va_end(args);
1766 }
1767
1768 static int
1769 parse_devid_override(const char *devid_override)
1770 {
1771 static const struct {
1772 const char *name;
1773 int pci_id;
1774 } name_map[] = {
1775 { "brw", 0x2a02 },
1776 { "g4x", 0x2a42 },
1777 { "ilk", 0x0042 },
1778 { "snb", 0x0126 },
1779 { "ivb", 0x016a },
1780 { "hsw", 0x0d2e },
1781 { "byt", 0x0f33 },
1782 { "bdw", 0x162e },
1783 { "skl", 0x1912 },
1784 { "kbl", 0x5912 },
1785 };
1786
1787 for (unsigned i = 0; i < ARRAY_SIZE(name_map); i++) {
1788 if (!strcmp(name_map[i].name, devid_override))
1789 return name_map[i].pci_id;
1790 }
1791
1792 return strtod(devid_override, NULL);
1793 }
1794
1795 /**
1796 * Get the PCI ID for the device. This can be overridden by setting the
1797 * INTEL_DEVID_OVERRIDE environment variable to the desired ID.
1798 *
1799 * Returns -1 on ioctl failure.
1800 */
1801 static int
1802 get_pci_device_id(struct intel_screen *screen)
1803 {
1804 if (geteuid() == getuid()) {
1805 char *devid_override = getenv("INTEL_DEVID_OVERRIDE");
1806 if (devid_override) {
1807 screen->no_hw = true;
1808 return parse_devid_override(devid_override);
1809 }
1810 }
1811
1812 return intel_get_integer(screen, I915_PARAM_CHIPSET_ID);
1813 }
1814
1815 /**
1816 * This is the driver specific part of the createNewScreen entry point.
1817 * Called when using DRI2.
1818 *
1819 * \return the struct gl_config supported by this driver
1820 */
1821 static const
1822 __DRIconfig **intelInitScreen2(__DRIscreen *dri_screen)
1823 {
1824 struct intel_screen *screen;
1825
1826 if (dri_screen->image.loader) {
1827 } else if (dri_screen->dri2.loader->base.version <= 2 ||
1828 dri_screen->dri2.loader->getBuffersWithFormat == NULL) {
1829 fprintf(stderr,
1830 "\nERROR! DRI2 loader with getBuffersWithFormat() "
1831 "support required\n");
1832 return NULL;
1833 }
1834
1835 /* Allocate the private area */
1836 screen = rzalloc(NULL, struct intel_screen);
1837 if (!screen) {
1838 fprintf(stderr, "\nERROR! Allocating private area failed\n");
1839 return NULL;
1840 }
1841 /* parse information in __driConfigOptions */
1842 driParseOptionInfo(&screen->optionCache, brw_config_options.xml);
1843
1844 screen->driScrnPriv = dri_screen;
1845 dri_screen->driverPrivate = (void *) screen;
1846
1847 screen->deviceID = get_pci_device_id(screen);
1848
1849 if (!gen_get_device_info(screen->deviceID, &screen->devinfo))
1850 return NULL;
1851
1852 if (!intel_init_bufmgr(screen))
1853 return NULL;
1854
1855 const struct gen_device_info *devinfo = &screen->devinfo;
1856
1857 brw_process_intel_debug_variable();
1858
1859 if ((INTEL_DEBUG & DEBUG_SHADER_TIME) && devinfo->gen < 7) {
1860 fprintf(stderr,
1861 "shader_time debugging requires gen7 (Ivybridge) or better.\n");
1862 INTEL_DEBUG &= ~DEBUG_SHADER_TIME;
1863 }
1864
1865 if (intel_get_integer(screen, I915_PARAM_MMAP_GTT_VERSION) >= 1) {
1866 /* Theorectically unlimited! At least for individual objects...
1867 *
1868 * Currently the entire (global) address space for all GTT maps is
1869 * limited to 64bits. That is all objects on the system that are
1870 * setup for GTT mmapping must fit within 64bits. An attempt to use
1871 * one that exceeds the limit with fail in brw_bo_map_gtt().
1872 *
1873 * Long before we hit that limit, we will be practically limited by
1874 * that any single object must fit in physical memory (RAM). The upper
1875 * limit on the CPU's address space is currently 48bits (Skylake), of
1876 * which only 39bits can be physical memory. (The GPU itself also has
1877 * a 48bit addressable virtual space.) We can fit over 32 million
1878 * objects of the current maximum allocable size before running out
1879 * of mmap space.
1880 */
1881 screen->max_gtt_map_object_size = UINT64_MAX;
1882 } else {
1883 /* Estimate the size of the mappable aperture into the GTT. There's an
1884 * ioctl to get the whole GTT size, but not one to get the mappable subset.
1885 * It turns out it's basically always 256MB, though some ancient hardware
1886 * was smaller.
1887 */
1888 uint32_t gtt_size = 256 * 1024 * 1024;
1889
1890 /* We don't want to map two objects such that a memcpy between them would
1891 * just fault one mapping in and then the other over and over forever. So
1892 * we would need to divide the GTT size by 2. Additionally, some GTT is
1893 * taken up by things like the framebuffer and the ringbuffer and such, so
1894 * be more conservative.
1895 */
1896 screen->max_gtt_map_object_size = gtt_size / 4;
1897 }
1898
1899 screen->aperture_threshold = get_aperture_size(dri_screen->fd) * 3 / 4;
1900
1901 screen->hw_has_swizzling = intel_detect_swizzling(screen);
1902 screen->hw_has_timestamp = intel_detect_timestamp(screen);
1903
1904 /* GENs prior to 8 do not support EU/Subslice info */
1905 if (devinfo->gen >= 8) {
1906 intel_detect_sseu(screen);
1907 } else if (devinfo->gen == 7) {
1908 screen->subslice_total = 1 << (devinfo->gt - 1);
1909 }
1910
1911 /* Gen7-7.5 kernel requirements / command parser saga:
1912 *
1913 * - pre-v3.16:
1914 * Haswell and Baytrail cannot use any privileged batchbuffer features.
1915 *
1916 * Ivybridge has aliasing PPGTT on by default, which accidentally marks
1917 * all batches secure, allowing them to use any feature with no checking.
1918 * This is effectively equivalent to a command parser version of
1919 * \infinity - everything is possible.
1920 *
1921 * The command parser does not exist, and querying the version will
1922 * return -EINVAL.
1923 *
1924 * - v3.16:
1925 * The kernel enables the command parser by default, for systems with
1926 * aliasing PPGTT enabled (Ivybridge and Haswell). However, the
1927 * hardware checker is still enabled, so Haswell and Baytrail cannot
1928 * do anything.
1929 *
1930 * Ivybridge goes from "everything is possible" to "only what the
1931 * command parser allows" (if the user boots with i915.cmd_parser=0,
1932 * then everything is possible again). We can only safely use features
1933 * allowed by the supported command parser version.
1934 *
1935 * Annoyingly, I915_PARAM_CMD_PARSER_VERSION reports the static version
1936 * implemented by the kernel, even if it's turned off. So, checking
1937 * for version > 0 does not mean that you can write registers. We have
1938 * to try it and see. The version does, however, indicate the age of
1939 * the kernel.
1940 *
1941 * Instead of matching the hardware checker's behavior of converting
1942 * privileged commands to MI_NOOP, it makes execbuf2 start returning
1943 * -EINVAL, making it dangerous to try and use privileged features.
1944 *
1945 * Effective command parser versions:
1946 * - Haswell: 0 (reporting 1, writes don't work)
1947 * - Baytrail: 0 (reporting 1, writes don't work)
1948 * - Ivybridge: 1 (enabled) or infinite (disabled)
1949 *
1950 * - v3.17:
1951 * Baytrail aliasing PPGTT is enabled, making it like Ivybridge:
1952 * effectively version 1 (enabled) or infinite (disabled).
1953 *
1954 * - v3.19: f1f55cc0556031c8ee3fe99dae7251e78b9b653b
1955 * Command parser v2 supports predicate writes.
1956 *
1957 * - Haswell: 0 (reporting 1, writes don't work)
1958 * - Baytrail: 2 (enabled) or infinite (disabled)
1959 * - Ivybridge: 2 (enabled) or infinite (disabled)
1960 *
1961 * So version >= 2 is enough to know that Ivybridge and Baytrail
1962 * will work. Haswell still can't do anything.
1963 *
1964 * - v4.0: Version 3 happened. Largely not relevant.
1965 *
1966 * - v4.1: 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
1967 * L3 config registers are properly saved and restored as part
1968 * of the hardware context. We can approximately detect this point
1969 * in time by checking if I915_PARAM_REVISION is recognized - it
1970 * landed in a later commit, but in the same release cycle.
1971 *
1972 * - v4.2: 245054a1fe33c06ad233e0d58a27ec7b64db9284
1973 * Command parser finally gains secure batch promotion. On Haswell,
1974 * the hardware checker gets disabled, which finally allows it to do
1975 * privileged commands.
1976 *
1977 * I915_PARAM_CMD_PARSER_VERSION reports 3. Effective versions:
1978 * - Haswell: 3 (enabled) or 0 (disabled)
1979 * - Baytrail: 3 (enabled) or infinite (disabled)
1980 * - Ivybridge: 3 (enabled) or infinite (disabled)
1981 *
1982 * Unfortunately, detecting this point in time is tricky, because
1983 * no version bump happened when this important change occurred.
1984 * On Haswell, if we can write any register, then the kernel is at
1985 * least this new, and we can start trusting the version number.
1986 *
1987 * - v4.4: 2bbe6bbb0dc94fd4ce287bdac9e1bd184e23057b and
1988 * Command parser reaches version 4, allowing access to Haswell
1989 * atomic scratch and chicken3 registers. If version >= 4, we know
1990 * the kernel is new enough to support privileged features on all
1991 * hardware. However, the user might have disabled it...and the
1992 * kernel will still report version 4. So we still have to guess
1993 * and check.
1994 *
1995 * - v4.4: 7b9748cb513a6bef4af87b79f0da3ff7e8b56cd8
1996 * Command parser v5 whitelists indirect compute shader dispatch
1997 * registers, needed for OpenGL 4.3 and later.
1998 *
1999 * - v4.8:
2000 * Command parser v7 lets us use MI_MATH on Haswell.
2001 *
2002 * Additionally, the kernel begins reporting version 0 when
2003 * the command parser is disabled, allowing us to skip the
2004 * guess-and-check step on Haswell. Unfortunately, this also
2005 * means that we can no longer use it as an indicator of the
2006 * age of the kernel.
2007 */
2008 if (intel_get_param(screen, I915_PARAM_CMD_PARSER_VERSION,
2009 &screen->cmd_parser_version) < 0) {
2010 /* Command parser does not exist - getparam is unrecognized */
2011 screen->cmd_parser_version = 0;
2012 }
2013
2014 if (!intel_detect_pipelined_so(screen)) {
2015 /* We can't do anything, so the effective version is 0. */
2016 screen->cmd_parser_version = 0;
2017 } else {
2018 screen->kernel_features |= KERNEL_ALLOWS_SOL_OFFSET_WRITES;
2019 }
2020
2021 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 2)
2022 screen->kernel_features |= KERNEL_ALLOWS_PREDICATE_WRITES;
2023
2024 /* Haswell requires command parser version 4 in order to have L3
2025 * atomic scratch1 and chicken3 bits
2026 */
2027 if (devinfo->is_haswell && screen->cmd_parser_version >= 4) {
2028 screen->kernel_features |=
2029 KERNEL_ALLOWS_HSW_SCRATCH1_AND_ROW_CHICKEN3;
2030 }
2031
2032 /* Haswell requires command parser version 6 in order to write to the
2033 * MI_MATH GPR registers, and version 7 in order to use
2034 * MI_LOAD_REGISTER_REG (which all users of MI_MATH use).
2035 */
2036 if (devinfo->gen >= 8 ||
2037 (devinfo->is_haswell && screen->cmd_parser_version >= 7)) {
2038 screen->kernel_features |= KERNEL_ALLOWS_MI_MATH_AND_LRR;
2039 }
2040
2041 /* Gen7 needs at least command parser version 5 to support compute */
2042 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 5)
2043 screen->kernel_features |= KERNEL_ALLOWS_COMPUTE_DISPATCH;
2044
2045 const char *force_msaa = getenv("INTEL_FORCE_MSAA");
2046 if (force_msaa) {
2047 screen->winsys_msaa_samples_override =
2048 intel_quantize_num_samples(screen, atoi(force_msaa));
2049 printf("Forcing winsys sample count to %d\n",
2050 screen->winsys_msaa_samples_override);
2051 } else {
2052 screen->winsys_msaa_samples_override = -1;
2053 }
2054
2055 set_max_gl_versions(screen);
2056
2057 /* Notification of GPU resets requires hardware contexts and a kernel new
2058 * enough to support DRM_IOCTL_I915_GET_RESET_STATS. If the ioctl is
2059 * supported, calling it with a context of 0 will either generate EPERM or
2060 * no error. If the ioctl is not supported, it always generate EINVAL.
2061 * Use this to determine whether to advertise the __DRI2_ROBUSTNESS
2062 * extension to the loader.
2063 *
2064 * Don't even try on pre-Gen6, since we don't attempt to use contexts there.
2065 */
2066 if (devinfo->gen >= 6) {
2067 struct drm_i915_reset_stats stats;
2068 memset(&stats, 0, sizeof(stats));
2069
2070 const int ret = drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats);
2071
2072 screen->has_context_reset_notification =
2073 (ret != -1 || errno != EINVAL);
2074 }
2075
2076 dri_screen->extensions = !screen->has_context_reset_notification
2077 ? screenExtensions : intelRobustScreenExtensions;
2078
2079 screen->compiler = brw_compiler_create(screen, devinfo);
2080 screen->compiler->shader_debug_log = shader_debug_log_mesa;
2081 screen->compiler->shader_perf_log = shader_perf_log_mesa;
2082 screen->program_id = 1;
2083
2084 screen->has_exec_fence =
2085 intel_get_boolean(screen, I915_PARAM_HAS_EXEC_FENCE);
2086
2087 return (const __DRIconfig**) intel_screen_make_configs(dri_screen);
2088 }
2089
2090 struct intel_buffer {
2091 __DRIbuffer base;
2092 struct brw_bo *bo;
2093 };
2094
2095 static __DRIbuffer *
2096 intelAllocateBuffer(__DRIscreen *dri_screen,
2097 unsigned attachment, unsigned format,
2098 int width, int height)
2099 {
2100 struct intel_buffer *intelBuffer;
2101 struct intel_screen *screen = dri_screen->driverPrivate;
2102
2103 assert(attachment == __DRI_BUFFER_FRONT_LEFT ||
2104 attachment == __DRI_BUFFER_BACK_LEFT);
2105
2106 intelBuffer = calloc(1, sizeof *intelBuffer);
2107 if (intelBuffer == NULL)
2108 return NULL;
2109
2110 /* The front and back buffers are color buffers, which are X tiled. GEN9+
2111 * supports Y tiled and compressed buffers, but there is no way to plumb that
2112 * through to here. */
2113 uint32_t pitch;
2114 int cpp = format / 8;
2115 intelBuffer->bo = brw_bo_alloc_tiled(screen->bufmgr,
2116 "intelAllocateBuffer",
2117 width,
2118 height,
2119 cpp,
2120 I915_TILING_X, &pitch,
2121 BO_ALLOC_FOR_RENDER);
2122
2123 if (intelBuffer->bo == NULL) {
2124 free(intelBuffer);
2125 return NULL;
2126 }
2127
2128 brw_bo_flink(intelBuffer->bo, &intelBuffer->base.name);
2129
2130 intelBuffer->base.attachment = attachment;
2131 intelBuffer->base.cpp = cpp;
2132 intelBuffer->base.pitch = pitch;
2133
2134 return &intelBuffer->base;
2135 }
2136
2137 static void
2138 intelReleaseBuffer(__DRIscreen *dri_screen, __DRIbuffer *buffer)
2139 {
2140 struct intel_buffer *intelBuffer = (struct intel_buffer *) buffer;
2141
2142 brw_bo_unreference(intelBuffer->bo);
2143 free(intelBuffer);
2144 }
2145
2146 static const struct __DriverAPIRec brw_driver_api = {
2147 .InitScreen = intelInitScreen2,
2148 .DestroyScreen = intelDestroyScreen,
2149 .CreateContext = brwCreateContext,
2150 .DestroyContext = intelDestroyContext,
2151 .CreateBuffer = intelCreateBuffer,
2152 .DestroyBuffer = intelDestroyBuffer,
2153 .MakeCurrent = intelMakeCurrent,
2154 .UnbindContext = intelUnbindContext,
2155 .AllocateBuffer = intelAllocateBuffer,
2156 .ReleaseBuffer = intelReleaseBuffer
2157 };
2158
2159 static const struct __DRIDriverVtableExtensionRec brw_vtable = {
2160 .base = { __DRI_DRIVER_VTABLE, 1 },
2161 .vtable = &brw_driver_api,
2162 };
2163
2164 static const __DRIextension *brw_driver_extensions[] = {
2165 &driCoreExtension.base,
2166 &driImageDriverExtension.base,
2167 &driDRI2Extension.base,
2168 &brw_vtable.base,
2169 &brw_config_options.base,
2170 NULL
2171 };
2172
2173 PUBLIC const __DRIextension **__driDriverGetExtensions_i965(void)
2174 {
2175 globalDriverAPI = &brw_driver_api;
2176
2177 return brw_driver_extensions;
2178 }