i965/screen: Allow drirc to set 'allow_rgb10_configs' again.
[mesa.git] / src / mesa / drivers / dri / i965 / intel_screen.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <drm_fourcc.h>
27 #include <errno.h>
28 #include <time.h>
29 #include <unistd.h>
30 #include "main/context.h"
31 #include "main/framebuffer.h"
32 #include "main/renderbuffer.h"
33 #include "main/texobj.h"
34 #include "main/hash.h"
35 #include "main/fbobject.h"
36 #include "main/version.h"
37 #include "swrast/s_renderbuffer.h"
38 #include "util/ralloc.h"
39 #include "brw_defines.h"
40 #include "brw_state.h"
41 #include "compiler/nir/nir.h"
42
43 #include "utils.h"
44 #include "util/xmlpool.h"
45
46 static const __DRIconfigOptionsExtension brw_config_options = {
47 .base = { __DRI_CONFIG_OPTIONS, 1 },
48 .xml =
49 DRI_CONF_BEGIN
50 DRI_CONF_SECTION_PERFORMANCE
51 /* Options correspond to DRI_CONF_BO_REUSE_DISABLED,
52 * DRI_CONF_BO_REUSE_ALL
53 */
54 DRI_CONF_OPT_BEGIN_V(bo_reuse, enum, 1, "0:1")
55 DRI_CONF_DESC_BEGIN(en, "Buffer object reuse")
56 DRI_CONF_ENUM(0, "Disable buffer object reuse")
57 DRI_CONF_ENUM(1, "Enable reuse of all sizes of buffer objects")
58 DRI_CONF_DESC_END
59 DRI_CONF_OPT_END
60 DRI_CONF_MESA_NO_ERROR("false")
61 DRI_CONF_SECTION_END
62
63 DRI_CONF_SECTION_QUALITY
64 DRI_CONF_PRECISE_TRIG("false")
65
66 DRI_CONF_OPT_BEGIN(clamp_max_samples, int, -1)
67 DRI_CONF_DESC(en, "Clamp the value of GL_MAX_SAMPLES to the "
68 "given integer. If negative, then do not clamp.")
69 DRI_CONF_OPT_END
70 DRI_CONF_SECTION_END
71
72 DRI_CONF_SECTION_DEBUG
73 DRI_CONF_NO_RAST("false")
74 DRI_CONF_ALWAYS_FLUSH_BATCH("false")
75 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
76 DRI_CONF_DISABLE_THROTTLING("false")
77 DRI_CONF_FORCE_GLSL_EXTENSIONS_WARN("false")
78 DRI_CONF_FORCE_GLSL_VERSION(0)
79 DRI_CONF_DISABLE_GLSL_LINE_CONTINUATIONS("false")
80 DRI_CONF_DISABLE_BLEND_FUNC_EXTENDED("false")
81 DRI_CONF_DUAL_COLOR_BLEND_BY_LOCATION("false")
82 DRI_CONF_ALLOW_GLSL_EXTENSION_DIRECTIVE_MIDSHADER("false")
83 DRI_CONF_ALLOW_GLSL_BUILTIN_VARIABLE_REDECLARATION("false")
84 DRI_CONF_ALLOW_GLSL_CROSS_STAGE_INTERPOLATION_MISMATCH("false")
85 DRI_CONF_ALLOW_HIGHER_COMPAT_VERSION("false")
86 DRI_CONF_FORCE_GLSL_ABS_SQRT("false")
87
88 DRI_CONF_OPT_BEGIN_B(shader_precompile, "true")
89 DRI_CONF_DESC(en, "Perform code generation at shader link time.")
90 DRI_CONF_OPT_END
91 DRI_CONF_SECTION_END
92
93 DRI_CONF_SECTION_MISCELLANEOUS
94 DRI_CONF_GLSL_ZERO_INIT("false")
95 DRI_CONF_ALLOW_RGB10_CONFIGS("false")
96 DRI_CONF_SECTION_END
97 DRI_CONF_END
98 };
99
100 #include "intel_batchbuffer.h"
101 #include "intel_buffers.h"
102 #include "brw_bufmgr.h"
103 #include "intel_fbo.h"
104 #include "intel_mipmap_tree.h"
105 #include "intel_screen.h"
106 #include "intel_tex.h"
107 #include "intel_image.h"
108
109 #include "brw_context.h"
110
111 #include "i915_drm.h"
112
113 /**
114 * For debugging purposes, this returns a time in seconds.
115 */
116 double
117 get_time(void)
118 {
119 struct timespec tp;
120
121 clock_gettime(CLOCK_MONOTONIC, &tp);
122
123 return tp.tv_sec + tp.tv_nsec / 1000000000.0;
124 }
125
126 static const __DRItexBufferExtension intelTexBufferExtension = {
127 .base = { __DRI_TEX_BUFFER, 3 },
128
129 .setTexBuffer = intelSetTexBuffer,
130 .setTexBuffer2 = intelSetTexBuffer2,
131 .releaseTexBuffer = NULL,
132 };
133
134 static void
135 intel_dri2_flush_with_flags(__DRIcontext *cPriv,
136 __DRIdrawable *dPriv,
137 unsigned flags,
138 enum __DRI2throttleReason reason)
139 {
140 struct brw_context *brw = cPriv->driverPrivate;
141
142 if (!brw)
143 return;
144
145 struct gl_context *ctx = &brw->ctx;
146
147 FLUSH_VERTICES(ctx, 0);
148
149 if (flags & __DRI2_FLUSH_DRAWABLE)
150 intel_resolve_for_dri2_flush(brw, dPriv);
151
152 if (reason == __DRI2_THROTTLE_SWAPBUFFER)
153 brw->need_swap_throttle = true;
154 if (reason == __DRI2_THROTTLE_FLUSHFRONT)
155 brw->need_flush_throttle = true;
156
157 intel_batchbuffer_flush(brw);
158 }
159
160 /**
161 * Provides compatibility with loaders that only support the older (version
162 * 1-3) flush interface.
163 *
164 * That includes libGL up to Mesa 9.0, and the X Server at least up to 1.13.
165 */
166 static void
167 intel_dri2_flush(__DRIdrawable *drawable)
168 {
169 intel_dri2_flush_with_flags(drawable->driContextPriv, drawable,
170 __DRI2_FLUSH_DRAWABLE,
171 __DRI2_THROTTLE_SWAPBUFFER);
172 }
173
174 static const struct __DRI2flushExtensionRec intelFlushExtension = {
175 .base = { __DRI2_FLUSH, 4 },
176
177 .flush = intel_dri2_flush,
178 .invalidate = dri2InvalidateDrawable,
179 .flush_with_flags = intel_dri2_flush_with_flags,
180 };
181
182 static const struct intel_image_format intel_image_formats[] = {
183 { __DRI_IMAGE_FOURCC_ARGB2101010, __DRI_IMAGE_COMPONENTS_RGBA, 1,
184 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB2101010, 4 } } },
185
186 { __DRI_IMAGE_FOURCC_XRGB2101010, __DRI_IMAGE_COMPONENTS_RGB, 1,
187 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB2101010, 4 } } },
188
189 { __DRI_IMAGE_FOURCC_ARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
190 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
191
192 { __DRI_IMAGE_FOURCC_ABGR8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
193 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
194
195 { __DRI_IMAGE_FOURCC_SARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
196 { { 0, 0, 0, __DRI_IMAGE_FORMAT_SARGB8, 4 } } },
197
198 { __DRI_IMAGE_FOURCC_XRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
199 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB8888, 4 }, } },
200
201 { __DRI_IMAGE_FOURCC_XBGR8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
202 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 }, } },
203
204 { __DRI_IMAGE_FOURCC_ARGB1555, __DRI_IMAGE_COMPONENTS_RGBA, 1,
205 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB1555, 2 } } },
206
207 { __DRI_IMAGE_FOURCC_RGB565, __DRI_IMAGE_COMPONENTS_RGB, 1,
208 { { 0, 0, 0, __DRI_IMAGE_FORMAT_RGB565, 2 } } },
209
210 { __DRI_IMAGE_FOURCC_R8, __DRI_IMAGE_COMPONENTS_R, 1,
211 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 }, } },
212
213 { __DRI_IMAGE_FOURCC_R16, __DRI_IMAGE_COMPONENTS_R, 1,
214 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 1 }, } },
215
216 { __DRI_IMAGE_FOURCC_GR88, __DRI_IMAGE_COMPONENTS_RG, 1,
217 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 }, } },
218
219 { __DRI_IMAGE_FOURCC_GR1616, __DRI_IMAGE_COMPONENTS_RG, 1,
220 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR1616, 2 }, } },
221
222 { __DRI_IMAGE_FOURCC_YUV410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
223 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
224 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
225 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
226
227 { __DRI_IMAGE_FOURCC_YUV411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
228 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
229 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
230 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
231
232 { __DRI_IMAGE_FOURCC_YUV420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
233 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
234 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
235 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
236
237 { __DRI_IMAGE_FOURCC_YUV422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
238 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
239 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
240 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
241
242 { __DRI_IMAGE_FOURCC_YUV444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
243 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
244 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
245 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
246
247 { __DRI_IMAGE_FOURCC_YVU410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
248 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
249 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
250 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
251
252 { __DRI_IMAGE_FOURCC_YVU411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
253 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
254 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
255 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
256
257 { __DRI_IMAGE_FOURCC_YVU420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
258 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
259 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
260 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
261
262 { __DRI_IMAGE_FOURCC_YVU422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
263 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
264 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
265 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
266
267 { __DRI_IMAGE_FOURCC_YVU444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
268 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
269 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
270 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
271
272 { __DRI_IMAGE_FOURCC_NV12, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
273 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
274 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR88, 2 } } },
275
276 { __DRI_IMAGE_FOURCC_NV16, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
277 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
278 { 1, 1, 0, __DRI_IMAGE_FORMAT_GR88, 2 } } },
279
280 /* For YUYV and UYVY buffers, we set up two overlapping DRI images
281 * and treat them as planar buffers in the compositors.
282 * Plane 0 is GR88 and samples YU or YV pairs and places Y into
283 * the R component, while plane 1 is ARGB/ABGR and samples YUYV/UYVY
284 * clusters and places pairs and places U into the G component and
285 * V into A. This lets the texture sampler interpolate the Y
286 * components correctly when sampling from plane 0, and interpolate
287 * U and V correctly when sampling from plane 1. */
288 { __DRI_IMAGE_FOURCC_YUYV, __DRI_IMAGE_COMPONENTS_Y_XUXV, 2,
289 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
290 { 0, 1, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
291 { __DRI_IMAGE_FOURCC_UYVY, __DRI_IMAGE_COMPONENTS_Y_UXVX, 2,
292 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
293 { 0, 1, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } }
294 };
295
296 static const struct {
297 uint64_t modifier;
298 unsigned since_gen;
299 } supported_modifiers[] = {
300 { .modifier = DRM_FORMAT_MOD_LINEAR , .since_gen = 1 },
301 { .modifier = I915_FORMAT_MOD_X_TILED , .since_gen = 1 },
302 { .modifier = I915_FORMAT_MOD_Y_TILED , .since_gen = 6 },
303 { .modifier = I915_FORMAT_MOD_Y_TILED_CCS , .since_gen = 9 },
304 };
305
306 static bool
307 modifier_is_supported(const struct gen_device_info *devinfo,
308 const struct intel_image_format *fmt, int dri_format,
309 uint64_t modifier)
310 {
311 const struct isl_drm_modifier_info *modinfo =
312 isl_drm_modifier_get_info(modifier);
313 int i;
314
315 /* ISL had better know about the modifier */
316 if (!modinfo)
317 return false;
318
319 if (modinfo->aux_usage == ISL_AUX_USAGE_CCS_E) {
320 /* If INTEL_DEBUG=norbc is set, don't support any CCS_E modifiers */
321 if (unlikely(INTEL_DEBUG & DEBUG_NO_RBC))
322 return false;
323
324 /* CCS_E is not supported for planar images */
325 if (fmt && fmt->nplanes > 1)
326 return false;
327
328 if (fmt) {
329 assert(dri_format == 0);
330 dri_format = fmt->planes[0].dri_format;
331 }
332
333 mesa_format format = driImageFormatToGLFormat(dri_format);
334 format = _mesa_get_srgb_format_linear(format);
335 if (!isl_format_supports_ccs_e(devinfo,
336 brw_isl_format_for_mesa_format(format)))
337 return false;
338 }
339
340 for (i = 0; i < ARRAY_SIZE(supported_modifiers); i++) {
341 if (supported_modifiers[i].modifier != modifier)
342 continue;
343
344 return supported_modifiers[i].since_gen <= devinfo->gen;
345 }
346
347 return false;
348 }
349
350 static uint64_t
351 tiling_to_modifier(uint32_t tiling)
352 {
353 static const uint64_t map[] = {
354 [I915_TILING_NONE] = DRM_FORMAT_MOD_LINEAR,
355 [I915_TILING_X] = I915_FORMAT_MOD_X_TILED,
356 [I915_TILING_Y] = I915_FORMAT_MOD_Y_TILED,
357 };
358
359 assert(tiling < ARRAY_SIZE(map));
360
361 return map[tiling];
362 }
363
364 static void
365 intel_image_warn_if_unaligned(__DRIimage *image, const char *func)
366 {
367 uint32_t tiling, swizzle;
368 brw_bo_get_tiling(image->bo, &tiling, &swizzle);
369
370 if (tiling != I915_TILING_NONE && (image->offset & 0xfff)) {
371 _mesa_warning(NULL, "%s: offset 0x%08x not on tile boundary",
372 func, image->offset);
373 }
374 }
375
376 static const struct intel_image_format *
377 intel_image_format_lookup(int fourcc)
378 {
379 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
380 if (intel_image_formats[i].fourcc == fourcc)
381 return &intel_image_formats[i];
382 }
383
384 return NULL;
385 }
386
387 static boolean intel_lookup_fourcc(int dri_format, int *fourcc)
388 {
389 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
390 if (intel_image_formats[i].planes[0].dri_format == dri_format) {
391 *fourcc = intel_image_formats[i].fourcc;
392 return true;
393 }
394 }
395 return false;
396 }
397
398 static __DRIimage *
399 intel_allocate_image(struct intel_screen *screen, int dri_format,
400 void *loaderPrivate)
401 {
402 __DRIimage *image;
403
404 image = calloc(1, sizeof *image);
405 if (image == NULL)
406 return NULL;
407
408 image->screen = screen;
409 image->dri_format = dri_format;
410 image->offset = 0;
411
412 image->format = driImageFormatToGLFormat(dri_format);
413 if (dri_format != __DRI_IMAGE_FORMAT_NONE &&
414 image->format == MESA_FORMAT_NONE) {
415 free(image);
416 return NULL;
417 }
418
419 image->internal_format = _mesa_get_format_base_format(image->format);
420 image->data = loaderPrivate;
421
422 return image;
423 }
424
425 /**
426 * Sets up a DRIImage structure to point to a slice out of a miptree.
427 */
428 static void
429 intel_setup_image_from_mipmap_tree(struct brw_context *brw, __DRIimage *image,
430 struct intel_mipmap_tree *mt, GLuint level,
431 GLuint zoffset)
432 {
433 intel_miptree_make_shareable(brw, mt);
434
435 intel_miptree_check_level_layer(mt, level, zoffset);
436
437 image->width = minify(mt->surf.phys_level0_sa.width,
438 level - mt->first_level);
439 image->height = minify(mt->surf.phys_level0_sa.height,
440 level - mt->first_level);
441 image->pitch = mt->surf.row_pitch;
442
443 image->offset = intel_miptree_get_tile_offsets(mt, level, zoffset,
444 &image->tile_x,
445 &image->tile_y);
446
447 brw_bo_unreference(image->bo);
448 image->bo = mt->bo;
449 brw_bo_reference(mt->bo);
450 }
451
452 static __DRIimage *
453 intel_create_image_from_name(__DRIscreen *dri_screen,
454 int width, int height, int format,
455 int name, int pitch, void *loaderPrivate)
456 {
457 struct intel_screen *screen = dri_screen->driverPrivate;
458 __DRIimage *image;
459 int cpp;
460
461 image = intel_allocate_image(screen, format, loaderPrivate);
462 if (image == NULL)
463 return NULL;
464
465 if (image->format == MESA_FORMAT_NONE)
466 cpp = 1;
467 else
468 cpp = _mesa_get_format_bytes(image->format);
469
470 image->width = width;
471 image->height = height;
472 image->pitch = pitch * cpp;
473 image->bo = brw_bo_gem_create_from_name(screen->bufmgr, "image",
474 name);
475 if (!image->bo) {
476 free(image);
477 return NULL;
478 }
479 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
480
481 return image;
482 }
483
484 static __DRIimage *
485 intel_create_image_from_renderbuffer(__DRIcontext *context,
486 int renderbuffer, void *loaderPrivate)
487 {
488 __DRIimage *image;
489 struct brw_context *brw = context->driverPrivate;
490 struct gl_context *ctx = &brw->ctx;
491 struct gl_renderbuffer *rb;
492 struct intel_renderbuffer *irb;
493
494 rb = _mesa_lookup_renderbuffer(ctx, renderbuffer);
495 if (!rb) {
496 _mesa_error(ctx, GL_INVALID_OPERATION, "glRenderbufferExternalMESA");
497 return NULL;
498 }
499
500 irb = intel_renderbuffer(rb);
501 intel_miptree_make_shareable(brw, irb->mt);
502 image = calloc(1, sizeof *image);
503 if (image == NULL)
504 return NULL;
505
506 image->internal_format = rb->InternalFormat;
507 image->format = rb->Format;
508 image->modifier = tiling_to_modifier(
509 isl_tiling_to_i915_tiling(irb->mt->surf.tiling));
510 image->offset = 0;
511 image->data = loaderPrivate;
512 brw_bo_unreference(image->bo);
513 image->bo = irb->mt->bo;
514 brw_bo_reference(irb->mt->bo);
515 image->width = rb->Width;
516 image->height = rb->Height;
517 image->pitch = irb->mt->surf.row_pitch;
518 image->dri_format = driGLFormatToImageFormat(image->format);
519 image->has_depthstencil = irb->mt->stencil_mt? true : false;
520
521 rb->NeedsFinishRenderTexture = true;
522 return image;
523 }
524
525 static __DRIimage *
526 intel_create_image_from_texture(__DRIcontext *context, int target,
527 unsigned texture, int zoffset,
528 int level,
529 unsigned *error,
530 void *loaderPrivate)
531 {
532 __DRIimage *image;
533 struct brw_context *brw = context->driverPrivate;
534 struct gl_texture_object *obj;
535 struct intel_texture_object *iobj;
536 GLuint face = 0;
537
538 obj = _mesa_lookup_texture(&brw->ctx, texture);
539 if (!obj || obj->Target != target) {
540 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
541 return NULL;
542 }
543
544 if (target == GL_TEXTURE_CUBE_MAP)
545 face = zoffset;
546
547 _mesa_test_texobj_completeness(&brw->ctx, obj);
548 iobj = intel_texture_object(obj);
549 if (!obj->_BaseComplete || (level > 0 && !obj->_MipmapComplete)) {
550 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
551 return NULL;
552 }
553
554 if (level < obj->BaseLevel || level > obj->_MaxLevel) {
555 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
556 return NULL;
557 }
558
559 if (target == GL_TEXTURE_3D && obj->Image[face][level]->Depth < zoffset) {
560 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
561 return NULL;
562 }
563 image = calloc(1, sizeof *image);
564 if (image == NULL) {
565 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
566 return NULL;
567 }
568
569 image->internal_format = obj->Image[face][level]->InternalFormat;
570 image->format = obj->Image[face][level]->TexFormat;
571 image->modifier = tiling_to_modifier(
572 isl_tiling_to_i915_tiling(iobj->mt->surf.tiling));
573 image->data = loaderPrivate;
574 intel_setup_image_from_mipmap_tree(brw, image, iobj->mt, level, zoffset);
575 image->dri_format = driGLFormatToImageFormat(image->format);
576 image->has_depthstencil = iobj->mt->stencil_mt? true : false;
577 if (image->dri_format == MESA_FORMAT_NONE) {
578 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
579 free(image);
580 return NULL;
581 }
582
583 *error = __DRI_IMAGE_ERROR_SUCCESS;
584 return image;
585 }
586
587 static void
588 intel_destroy_image(__DRIimage *image)
589 {
590 brw_bo_unreference(image->bo);
591 free(image);
592 }
593
594 enum modifier_priority {
595 MODIFIER_PRIORITY_INVALID = 0,
596 MODIFIER_PRIORITY_LINEAR,
597 MODIFIER_PRIORITY_X,
598 MODIFIER_PRIORITY_Y,
599 MODIFIER_PRIORITY_Y_CCS,
600 };
601
602 const uint64_t priority_to_modifier[] = {
603 [MODIFIER_PRIORITY_INVALID] = DRM_FORMAT_MOD_INVALID,
604 [MODIFIER_PRIORITY_LINEAR] = DRM_FORMAT_MOD_LINEAR,
605 [MODIFIER_PRIORITY_X] = I915_FORMAT_MOD_X_TILED,
606 [MODIFIER_PRIORITY_Y] = I915_FORMAT_MOD_Y_TILED,
607 [MODIFIER_PRIORITY_Y_CCS] = I915_FORMAT_MOD_Y_TILED_CCS,
608 };
609
610 static uint64_t
611 select_best_modifier(struct gen_device_info *devinfo,
612 int dri_format,
613 const uint64_t *modifiers,
614 const unsigned count)
615 {
616 enum modifier_priority prio = MODIFIER_PRIORITY_INVALID;
617
618 for (int i = 0; i < count; i++) {
619 if (!modifier_is_supported(devinfo, NULL, dri_format, modifiers[i]))
620 continue;
621
622 switch (modifiers[i]) {
623 case I915_FORMAT_MOD_Y_TILED_CCS:
624 prio = MAX2(prio, MODIFIER_PRIORITY_Y_CCS);
625 break;
626 case I915_FORMAT_MOD_Y_TILED:
627 prio = MAX2(prio, MODIFIER_PRIORITY_Y);
628 break;
629 case I915_FORMAT_MOD_X_TILED:
630 prio = MAX2(prio, MODIFIER_PRIORITY_X);
631 break;
632 case DRM_FORMAT_MOD_LINEAR:
633 prio = MAX2(prio, MODIFIER_PRIORITY_LINEAR);
634 break;
635 case DRM_FORMAT_MOD_INVALID:
636 default:
637 break;
638 }
639 }
640
641 return priority_to_modifier[prio];
642 }
643
644 static __DRIimage *
645 intel_create_image_common(__DRIscreen *dri_screen,
646 int width, int height, int format,
647 unsigned int use,
648 const uint64_t *modifiers,
649 unsigned count,
650 void *loaderPrivate)
651 {
652 __DRIimage *image;
653 struct intel_screen *screen = dri_screen->driverPrivate;
654 uint64_t modifier = DRM_FORMAT_MOD_INVALID;
655 bool ok;
656
657 /* Callers of this may specify a modifier, or a dri usage, but not both. The
658 * newer modifier interface deprecates the older usage flags newer modifier
659 * interface deprecates the older usage flags.
660 */
661 assert(!(use && count));
662
663 if (use & __DRI_IMAGE_USE_CURSOR) {
664 if (width != 64 || height != 64)
665 return NULL;
666 modifier = DRM_FORMAT_MOD_LINEAR;
667 }
668
669 if (use & __DRI_IMAGE_USE_LINEAR)
670 modifier = DRM_FORMAT_MOD_LINEAR;
671
672 if (modifier == DRM_FORMAT_MOD_INVALID) {
673 if (modifiers) {
674 /* User requested specific modifiers */
675 modifier = select_best_modifier(&screen->devinfo, format,
676 modifiers, count);
677 if (modifier == DRM_FORMAT_MOD_INVALID)
678 return NULL;
679 } else {
680 /* Historically, X-tiled was the default, and so lack of modifier means
681 * X-tiled.
682 */
683 modifier = I915_FORMAT_MOD_X_TILED;
684 }
685 }
686
687 image = intel_allocate_image(screen, format, loaderPrivate);
688 if (image == NULL)
689 return NULL;
690
691 const struct isl_drm_modifier_info *mod_info =
692 isl_drm_modifier_get_info(modifier);
693
694 struct isl_surf surf;
695 ok = isl_surf_init(&screen->isl_dev, &surf,
696 .dim = ISL_SURF_DIM_2D,
697 .format = brw_isl_format_for_mesa_format(image->format),
698 .width = width,
699 .height = height,
700 .depth = 1,
701 .levels = 1,
702 .array_len = 1,
703 .samples = 1,
704 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
705 ISL_SURF_USAGE_TEXTURE_BIT |
706 ISL_SURF_USAGE_STORAGE_BIT,
707 .tiling_flags = (1 << mod_info->tiling));
708 assert(ok);
709 if (!ok) {
710 free(image);
711 return NULL;
712 }
713
714 struct isl_surf aux_surf;
715 if (mod_info->aux_usage == ISL_AUX_USAGE_CCS_E) {
716 ok = isl_surf_get_ccs_surf(&screen->isl_dev, &surf, &aux_surf, 0);
717 if (!ok) {
718 free(image);
719 return NULL;
720 }
721 } else {
722 assert(mod_info->aux_usage == ISL_AUX_USAGE_NONE);
723 aux_surf.size = 0;
724 }
725
726 /* We request that the bufmgr zero the buffer for us for two reasons:
727 *
728 * 1) If a buffer gets re-used from the pool, we don't want to leak random
729 * garbage from our process to some other.
730 *
731 * 2) For images with CCS_E, we want to ensure that the CCS starts off in
732 * a valid state. A CCS value of 0 indicates that the given block is
733 * in the pass-through state which is what we want.
734 */
735 image->bo = brw_bo_alloc_tiled(screen->bufmgr, "image",
736 surf.size + aux_surf.size,
737 isl_tiling_to_i915_tiling(mod_info->tiling),
738 surf.row_pitch, BO_ALLOC_ZEROED);
739 if (image->bo == NULL) {
740 free(image);
741 return NULL;
742 }
743 image->width = width;
744 image->height = height;
745 image->pitch = surf.row_pitch;
746 image->modifier = modifier;
747
748 if (aux_surf.size) {
749 image->aux_offset = surf.size;
750 image->aux_pitch = aux_surf.row_pitch;
751 }
752
753 return image;
754 }
755
756 static __DRIimage *
757 intel_create_image(__DRIscreen *dri_screen,
758 int width, int height, int format,
759 unsigned int use,
760 void *loaderPrivate)
761 {
762 return intel_create_image_common(dri_screen, width, height, format, use, NULL, 0,
763 loaderPrivate);
764 }
765
766 static void *
767 intel_map_image(__DRIcontext *context, __DRIimage *image,
768 int x0, int y0, int width, int height,
769 unsigned int flags, int *stride, void **map_info)
770 {
771 struct brw_context *brw = NULL;
772 struct brw_bo *bo = NULL;
773 void *raw_data = NULL;
774 GLuint pix_w = 1;
775 GLuint pix_h = 1;
776 GLint pix_bytes = 1;
777
778 if (!context || !image || !stride || !map_info || *map_info)
779 return NULL;
780
781 if (x0 < 0 || x0 >= image->width || width > image->width - x0)
782 return NULL;
783
784 if (y0 < 0 || y0 >= image->height || height > image->height - y0)
785 return NULL;
786
787 if (flags & MAP_INTERNAL_MASK)
788 return NULL;
789
790 brw = context->driverPrivate;
791 bo = image->bo;
792
793 assert(brw);
794 assert(bo);
795
796 /* DRI flags and GL_MAP.*_BIT flags are the same, so just pass them on. */
797 raw_data = brw_bo_map(brw, bo, flags);
798 if (!raw_data)
799 return NULL;
800
801 _mesa_get_format_block_size(image->format, &pix_w, &pix_h);
802 pix_bytes = _mesa_get_format_bytes(image->format);
803
804 assert(pix_w);
805 assert(pix_h);
806 assert(pix_bytes > 0);
807
808 raw_data += (x0 / pix_w) * pix_bytes + (y0 / pix_h) * image->pitch;
809
810 brw_bo_reference(bo);
811
812 *stride = image->pitch;
813 *map_info = bo;
814
815 return raw_data;
816 }
817
818 static void
819 intel_unmap_image(__DRIcontext *context, __DRIimage *image, void *map_info)
820 {
821 struct brw_bo *bo = map_info;
822
823 brw_bo_unmap(bo);
824 brw_bo_unreference(bo);
825 }
826
827 static __DRIimage *
828 intel_create_image_with_modifiers(__DRIscreen *dri_screen,
829 int width, int height, int format,
830 const uint64_t *modifiers,
831 const unsigned count,
832 void *loaderPrivate)
833 {
834 return intel_create_image_common(dri_screen, width, height, format, 0,
835 modifiers, count, loaderPrivate);
836 }
837
838 static GLboolean
839 intel_query_image(__DRIimage *image, int attrib, int *value)
840 {
841 switch (attrib) {
842 case __DRI_IMAGE_ATTRIB_STRIDE:
843 *value = image->pitch;
844 return true;
845 case __DRI_IMAGE_ATTRIB_HANDLE:
846 *value = brw_bo_export_gem_handle(image->bo);
847 return true;
848 case __DRI_IMAGE_ATTRIB_NAME:
849 return !brw_bo_flink(image->bo, (uint32_t *) value);
850 case __DRI_IMAGE_ATTRIB_FORMAT:
851 *value = image->dri_format;
852 return true;
853 case __DRI_IMAGE_ATTRIB_WIDTH:
854 *value = image->width;
855 return true;
856 case __DRI_IMAGE_ATTRIB_HEIGHT:
857 *value = image->height;
858 return true;
859 case __DRI_IMAGE_ATTRIB_COMPONENTS:
860 if (image->planar_format == NULL)
861 return false;
862 *value = image->planar_format->components;
863 return true;
864 case __DRI_IMAGE_ATTRIB_FD:
865 return !brw_bo_gem_export_to_prime(image->bo, value);
866 case __DRI_IMAGE_ATTRIB_FOURCC:
867 return intel_lookup_fourcc(image->dri_format, value);
868 case __DRI_IMAGE_ATTRIB_NUM_PLANES:
869 if (isl_drm_modifier_has_aux(image->modifier)) {
870 assert(!image->planar_format || image->planar_format->nplanes == 1);
871 *value = 2;
872 } else if (image->planar_format) {
873 *value = image->planar_format->nplanes;
874 } else {
875 *value = 1;
876 }
877 return true;
878 case __DRI_IMAGE_ATTRIB_OFFSET:
879 *value = image->offset;
880 return true;
881 case __DRI_IMAGE_ATTRIB_MODIFIER_LOWER:
882 *value = (image->modifier & 0xffffffff);
883 return true;
884 case __DRI_IMAGE_ATTRIB_MODIFIER_UPPER:
885 *value = ((image->modifier >> 32) & 0xffffffff);
886 return true;
887
888 default:
889 return false;
890 }
891 }
892
893 static GLboolean
894 intel_query_format_modifier_attribs(__DRIscreen *dri_screen,
895 uint32_t fourcc, uint64_t modifier,
896 int attrib, uint64_t *value)
897 {
898 struct intel_screen *screen = dri_screen->driverPrivate;
899 const struct intel_image_format *f = intel_image_format_lookup(fourcc);
900
901 if (!modifier_is_supported(&screen->devinfo, f, 0, modifier))
902 return false;
903
904 switch (attrib) {
905 case __DRI_IMAGE_FORMAT_MODIFIER_ATTRIB_PLANE_COUNT:
906 *value = isl_drm_modifier_has_aux(modifier) ? 2 : f->nplanes;
907 return true;
908
909 default:
910 return false;
911 }
912 }
913
914 static __DRIimage *
915 intel_dup_image(__DRIimage *orig_image, void *loaderPrivate)
916 {
917 __DRIimage *image;
918
919 image = calloc(1, sizeof *image);
920 if (image == NULL)
921 return NULL;
922
923 brw_bo_reference(orig_image->bo);
924 image->bo = orig_image->bo;
925 image->internal_format = orig_image->internal_format;
926 image->planar_format = orig_image->planar_format;
927 image->dri_format = orig_image->dri_format;
928 image->format = orig_image->format;
929 image->modifier = orig_image->modifier;
930 image->offset = orig_image->offset;
931 image->width = orig_image->width;
932 image->height = orig_image->height;
933 image->pitch = orig_image->pitch;
934 image->tile_x = orig_image->tile_x;
935 image->tile_y = orig_image->tile_y;
936 image->has_depthstencil = orig_image->has_depthstencil;
937 image->data = loaderPrivate;
938 image->dma_buf_imported = orig_image->dma_buf_imported;
939 image->aux_offset = orig_image->aux_offset;
940 image->aux_pitch = orig_image->aux_pitch;
941
942 memcpy(image->strides, orig_image->strides, sizeof(image->strides));
943 memcpy(image->offsets, orig_image->offsets, sizeof(image->offsets));
944
945 return image;
946 }
947
948 static GLboolean
949 intel_validate_usage(__DRIimage *image, unsigned int use)
950 {
951 if (use & __DRI_IMAGE_USE_CURSOR) {
952 if (image->width != 64 || image->height != 64)
953 return GL_FALSE;
954 }
955
956 return GL_TRUE;
957 }
958
959 static __DRIimage *
960 intel_create_image_from_names(__DRIscreen *dri_screen,
961 int width, int height, int fourcc,
962 int *names, int num_names,
963 int *strides, int *offsets,
964 void *loaderPrivate)
965 {
966 const struct intel_image_format *f = NULL;
967 __DRIimage *image;
968 int i, index;
969
970 if (dri_screen == NULL || names == NULL || num_names != 1)
971 return NULL;
972
973 f = intel_image_format_lookup(fourcc);
974 if (f == NULL)
975 return NULL;
976
977 image = intel_create_image_from_name(dri_screen, width, height,
978 __DRI_IMAGE_FORMAT_NONE,
979 names[0], strides[0],
980 loaderPrivate);
981
982 if (image == NULL)
983 return NULL;
984
985 image->planar_format = f;
986 for (i = 0; i < f->nplanes; i++) {
987 index = f->planes[i].buffer_index;
988 image->offsets[index] = offsets[index];
989 image->strides[index] = strides[index];
990 }
991
992 return image;
993 }
994
995 static __DRIimage *
996 intel_create_image_from_fds_common(__DRIscreen *dri_screen,
997 int width, int height, int fourcc,
998 uint64_t modifier, int *fds, int num_fds,
999 int *strides, int *offsets,
1000 void *loaderPrivate)
1001 {
1002 struct intel_screen *screen = dri_screen->driverPrivate;
1003 const struct intel_image_format *f;
1004 __DRIimage *image;
1005 int i, index;
1006 bool ok;
1007
1008 if (fds == NULL || num_fds < 1)
1009 return NULL;
1010
1011 f = intel_image_format_lookup(fourcc);
1012 if (f == NULL)
1013 return NULL;
1014
1015 if (modifier != DRM_FORMAT_MOD_INVALID &&
1016 !modifier_is_supported(&screen->devinfo, f, 0, modifier))
1017 return NULL;
1018
1019 if (f->nplanes == 1)
1020 image = intel_allocate_image(screen, f->planes[0].dri_format,
1021 loaderPrivate);
1022 else
1023 image = intel_allocate_image(screen, __DRI_IMAGE_FORMAT_NONE,
1024 loaderPrivate);
1025
1026 if (image == NULL)
1027 return NULL;
1028
1029 image->width = width;
1030 image->height = height;
1031 image->pitch = strides[0];
1032
1033 image->planar_format = f;
1034
1035 image->bo = brw_bo_gem_create_from_prime(screen->bufmgr, fds[0]);
1036 if (image->bo == NULL) {
1037 free(image);
1038 return NULL;
1039 }
1040
1041 /* We only support all planes from the same bo.
1042 * brw_bo_gem_create_from_prime() should return the same pointer for all
1043 * fds received here */
1044 for (i = 1; i < num_fds; i++) {
1045 struct brw_bo *aux = brw_bo_gem_create_from_prime(screen->bufmgr, fds[i]);
1046 brw_bo_unreference(aux);
1047 if (aux != image->bo) {
1048 brw_bo_unreference(image->bo);
1049 free(image);
1050 return NULL;
1051 }
1052 }
1053
1054 if (modifier != DRM_FORMAT_MOD_INVALID)
1055 image->modifier = modifier;
1056 else
1057 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
1058
1059 const struct isl_drm_modifier_info *mod_info =
1060 isl_drm_modifier_get_info(image->modifier);
1061
1062 int size = 0;
1063 struct isl_surf surf;
1064 for (i = 0; i < f->nplanes; i++) {
1065 index = f->planes[i].buffer_index;
1066 image->offsets[index] = offsets[index];
1067 image->strides[index] = strides[index];
1068
1069 mesa_format format = driImageFormatToGLFormat(f->planes[i].dri_format);
1070
1071 ok = isl_surf_init(&screen->isl_dev, &surf,
1072 .dim = ISL_SURF_DIM_2D,
1073 .format = brw_isl_format_for_mesa_format(format),
1074 .width = image->width >> f->planes[i].width_shift,
1075 .height = image->height >> f->planes[i].height_shift,
1076 .depth = 1,
1077 .levels = 1,
1078 .array_len = 1,
1079 .samples = 1,
1080 .row_pitch = strides[index],
1081 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
1082 ISL_SURF_USAGE_TEXTURE_BIT |
1083 ISL_SURF_USAGE_STORAGE_BIT,
1084 .tiling_flags = (1 << mod_info->tiling));
1085 if (!ok) {
1086 brw_bo_unreference(image->bo);
1087 free(image);
1088 return NULL;
1089 }
1090
1091 const int end = offsets[index] + surf.size;
1092 if (size < end)
1093 size = end;
1094 }
1095
1096 if (mod_info->aux_usage == ISL_AUX_USAGE_CCS_E) {
1097 /* Even though we initialize surf in the loop above, we know that
1098 * anything with CCS_E will have exactly one plane so surf is properly
1099 * initialized when we get here.
1100 */
1101 assert(f->nplanes == 1);
1102
1103 image->aux_offset = offsets[1];
1104 image->aux_pitch = strides[1];
1105
1106 /* Scanout hardware requires that the CCS be placed after the main
1107 * surface in memory. We consider any CCS that is placed any earlier in
1108 * memory to be invalid and reject it.
1109 *
1110 * At some point in the future, this restriction may be relaxed if the
1111 * hardware becomes less strict but we may need a new modifier for that.
1112 */
1113 assert(size > 0);
1114 if (image->aux_offset < size) {
1115 brw_bo_unreference(image->bo);
1116 free(image);
1117 return NULL;
1118 }
1119
1120 struct isl_surf aux_surf;
1121 ok = isl_surf_get_ccs_surf(&screen->isl_dev, &surf, &aux_surf,
1122 image->aux_pitch);
1123 if (!ok) {
1124 brw_bo_unreference(image->bo);
1125 free(image);
1126 return NULL;
1127 }
1128
1129 const int end = image->aux_offset + aux_surf.size;
1130 if (size < end)
1131 size = end;
1132 } else {
1133 assert(mod_info->aux_usage == ISL_AUX_USAGE_NONE);
1134 }
1135
1136 /* Check that the requested image actually fits within the BO. 'size'
1137 * is already relative to the offsets, so we don't need to add that. */
1138 if (image->bo->size == 0) {
1139 image->bo->size = size;
1140 } else if (size > image->bo->size) {
1141 brw_bo_unreference(image->bo);
1142 free(image);
1143 return NULL;
1144 }
1145
1146 if (f->nplanes == 1) {
1147 image->offset = image->offsets[0];
1148 intel_image_warn_if_unaligned(image, __func__);
1149 }
1150
1151 return image;
1152 }
1153
1154 static __DRIimage *
1155 intel_create_image_from_fds(__DRIscreen *dri_screen,
1156 int width, int height, int fourcc,
1157 int *fds, int num_fds, int *strides, int *offsets,
1158 void *loaderPrivate)
1159 {
1160 return intel_create_image_from_fds_common(dri_screen, width, height, fourcc,
1161 DRM_FORMAT_MOD_INVALID,
1162 fds, num_fds, strides, offsets,
1163 loaderPrivate);
1164 }
1165
1166 static __DRIimage *
1167 intel_create_image_from_dma_bufs2(__DRIscreen *dri_screen,
1168 int width, int height,
1169 int fourcc, uint64_t modifier,
1170 int *fds, int num_fds,
1171 int *strides, int *offsets,
1172 enum __DRIYUVColorSpace yuv_color_space,
1173 enum __DRISampleRange sample_range,
1174 enum __DRIChromaSiting horizontal_siting,
1175 enum __DRIChromaSiting vertical_siting,
1176 unsigned *error,
1177 void *loaderPrivate)
1178 {
1179 __DRIimage *image;
1180 const struct intel_image_format *f = intel_image_format_lookup(fourcc);
1181
1182 if (!f) {
1183 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
1184 return NULL;
1185 }
1186
1187 image = intel_create_image_from_fds_common(dri_screen, width, height,
1188 fourcc, modifier,
1189 fds, num_fds, strides, offsets,
1190 loaderPrivate);
1191
1192 /*
1193 * Invalid parameters and any inconsistencies between are assumed to be
1194 * checked by the caller. Therefore besides unsupported formats one can fail
1195 * only in allocation.
1196 */
1197 if (!image) {
1198 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
1199 return NULL;
1200 }
1201
1202 image->dma_buf_imported = true;
1203 image->yuv_color_space = yuv_color_space;
1204 image->sample_range = sample_range;
1205 image->horizontal_siting = horizontal_siting;
1206 image->vertical_siting = vertical_siting;
1207
1208 *error = __DRI_IMAGE_ERROR_SUCCESS;
1209 return image;
1210 }
1211
1212 static __DRIimage *
1213 intel_create_image_from_dma_bufs(__DRIscreen *dri_screen,
1214 int width, int height, int fourcc,
1215 int *fds, int num_fds,
1216 int *strides, int *offsets,
1217 enum __DRIYUVColorSpace yuv_color_space,
1218 enum __DRISampleRange sample_range,
1219 enum __DRIChromaSiting horizontal_siting,
1220 enum __DRIChromaSiting vertical_siting,
1221 unsigned *error,
1222 void *loaderPrivate)
1223 {
1224 return intel_create_image_from_dma_bufs2(dri_screen, width, height,
1225 fourcc, DRM_FORMAT_MOD_INVALID,
1226 fds, num_fds, strides, offsets,
1227 yuv_color_space,
1228 sample_range,
1229 horizontal_siting,
1230 vertical_siting,
1231 error,
1232 loaderPrivate);
1233 }
1234
1235 static GLboolean
1236 intel_query_dma_buf_formats(__DRIscreen *screen, int max,
1237 int *formats, int *count)
1238 {
1239 int i, j = 0;
1240
1241 if (max == 0) {
1242 *count = ARRAY_SIZE(intel_image_formats) - 1; /* not SARGB */
1243 return true;
1244 }
1245
1246 for (i = 0; i < (ARRAY_SIZE(intel_image_formats)) && j < max; i++) {
1247 if (intel_image_formats[i].fourcc == __DRI_IMAGE_FOURCC_SARGB8888)
1248 continue;
1249 formats[j++] = intel_image_formats[i].fourcc;
1250 }
1251
1252 *count = j;
1253 return true;
1254 }
1255
1256 static GLboolean
1257 intel_query_dma_buf_modifiers(__DRIscreen *_screen, int fourcc, int max,
1258 uint64_t *modifiers,
1259 unsigned int *external_only,
1260 int *count)
1261 {
1262 struct intel_screen *screen = _screen->driverPrivate;
1263 const struct intel_image_format *f;
1264 int num_mods = 0, i;
1265
1266 f = intel_image_format_lookup(fourcc);
1267 if (f == NULL)
1268 return false;
1269
1270 for (i = 0; i < ARRAY_SIZE(supported_modifiers); i++) {
1271 uint64_t modifier = supported_modifiers[i].modifier;
1272 if (!modifier_is_supported(&screen->devinfo, f, 0, modifier))
1273 continue;
1274
1275 num_mods++;
1276 if (max == 0)
1277 continue;
1278
1279 modifiers[num_mods - 1] = modifier;
1280 if (num_mods >= max)
1281 break;
1282 }
1283
1284 if (external_only != NULL) {
1285 for (i = 0; i < num_mods && i < max; i++) {
1286 if (f->components == __DRI_IMAGE_COMPONENTS_Y_U_V ||
1287 f->components == __DRI_IMAGE_COMPONENTS_Y_UV ||
1288 f->components == __DRI_IMAGE_COMPONENTS_Y_XUXV) {
1289 external_only[i] = GL_TRUE;
1290 }
1291 else {
1292 external_only[i] = GL_FALSE;
1293 }
1294 }
1295 }
1296
1297 *count = num_mods;
1298 return true;
1299 }
1300
1301 static __DRIimage *
1302 intel_from_planar(__DRIimage *parent, int plane, void *loaderPrivate)
1303 {
1304 int width, height, offset, stride, dri_format, index;
1305 const struct intel_image_format *f;
1306 __DRIimage *image;
1307
1308 if (parent == NULL) {
1309 return NULL;
1310 } else if (parent->planar_format == NULL) {
1311 const bool is_aux =
1312 isl_drm_modifier_has_aux(parent->modifier) && plane == 1;
1313 if (!is_aux)
1314 return NULL;
1315
1316 width = parent->width;
1317 height = parent->height;
1318 dri_format = parent->dri_format;
1319 offset = parent->aux_offset;
1320 stride = parent->aux_pitch;
1321 } else {
1322 /* Planar formats don't support aux buffers/images */
1323 assert(!isl_drm_modifier_has_aux(parent->modifier));
1324 f = parent->planar_format;
1325
1326 if (plane >= f->nplanes)
1327 return NULL;
1328
1329 width = parent->width >> f->planes[plane].width_shift;
1330 height = parent->height >> f->planes[plane].height_shift;
1331 dri_format = f->planes[plane].dri_format;
1332 index = f->planes[plane].buffer_index;
1333 offset = parent->offsets[index];
1334 stride = parent->strides[index];
1335
1336 if (offset + height * stride > parent->bo->size) {
1337 _mesa_warning(NULL, "intel_create_sub_image: subimage out of bounds");
1338 return NULL;
1339 }
1340 }
1341
1342 image = intel_allocate_image(parent->screen, dri_format, loaderPrivate);
1343 if (image == NULL)
1344 return NULL;
1345
1346 image->bo = parent->bo;
1347 brw_bo_reference(parent->bo);
1348 image->modifier = parent->modifier;
1349
1350 image->width = width;
1351 image->height = height;
1352 image->pitch = stride;
1353 image->offset = offset;
1354
1355 intel_image_warn_if_unaligned(image, __func__);
1356
1357 return image;
1358 }
1359
1360 static const __DRIimageExtension intelImageExtension = {
1361 .base = { __DRI_IMAGE, 16 },
1362
1363 .createImageFromName = intel_create_image_from_name,
1364 .createImageFromRenderbuffer = intel_create_image_from_renderbuffer,
1365 .destroyImage = intel_destroy_image,
1366 .createImage = intel_create_image,
1367 .queryImage = intel_query_image,
1368 .dupImage = intel_dup_image,
1369 .validateUsage = intel_validate_usage,
1370 .createImageFromNames = intel_create_image_from_names,
1371 .fromPlanar = intel_from_planar,
1372 .createImageFromTexture = intel_create_image_from_texture,
1373 .createImageFromFds = intel_create_image_from_fds,
1374 .createImageFromDmaBufs = intel_create_image_from_dma_bufs,
1375 .blitImage = NULL,
1376 .getCapabilities = NULL,
1377 .mapImage = intel_map_image,
1378 .unmapImage = intel_unmap_image,
1379 .createImageWithModifiers = intel_create_image_with_modifiers,
1380 .createImageFromDmaBufs2 = intel_create_image_from_dma_bufs2,
1381 .queryDmaBufFormats = intel_query_dma_buf_formats,
1382 .queryDmaBufModifiers = intel_query_dma_buf_modifiers,
1383 .queryDmaBufFormatModifierAttribs = intel_query_format_modifier_attribs,
1384 };
1385
1386 static uint64_t
1387 get_aperture_size(int fd)
1388 {
1389 struct drm_i915_gem_get_aperture aperture;
1390
1391 if (drmIoctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture) != 0)
1392 return 0;
1393
1394 return aperture.aper_size;
1395 }
1396
1397 static int
1398 brw_query_renderer_integer(__DRIscreen *dri_screen,
1399 int param, unsigned int *value)
1400 {
1401 const struct intel_screen *const screen =
1402 (struct intel_screen *) dri_screen->driverPrivate;
1403
1404 switch (param) {
1405 case __DRI2_RENDERER_VENDOR_ID:
1406 value[0] = 0x8086;
1407 return 0;
1408 case __DRI2_RENDERER_DEVICE_ID:
1409 value[0] = screen->deviceID;
1410 return 0;
1411 case __DRI2_RENDERER_ACCELERATED:
1412 value[0] = 1;
1413 return 0;
1414 case __DRI2_RENDERER_VIDEO_MEMORY: {
1415 /* Once a batch uses more than 75% of the maximum mappable size, we
1416 * assume that there's some fragmentation, and we start doing extra
1417 * flushing, etc. That's the big cliff apps will care about.
1418 */
1419 const unsigned gpu_mappable_megabytes =
1420 screen->aperture_threshold / (1024 * 1024);
1421
1422 const long system_memory_pages = sysconf(_SC_PHYS_PAGES);
1423 const long system_page_size = sysconf(_SC_PAGE_SIZE);
1424
1425 if (system_memory_pages <= 0 || system_page_size <= 0)
1426 return -1;
1427
1428 const uint64_t system_memory_bytes = (uint64_t) system_memory_pages
1429 * (uint64_t) system_page_size;
1430
1431 const unsigned system_memory_megabytes =
1432 (unsigned) (system_memory_bytes / (1024 * 1024));
1433
1434 value[0] = MIN2(system_memory_megabytes, gpu_mappable_megabytes);
1435 return 0;
1436 }
1437 case __DRI2_RENDERER_UNIFIED_MEMORY_ARCHITECTURE:
1438 value[0] = 1;
1439 return 0;
1440 case __DRI2_RENDERER_HAS_TEXTURE_3D:
1441 value[0] = 1;
1442 return 0;
1443 case __DRI2_RENDERER_HAS_CONTEXT_PRIORITY:
1444 value[0] = 0;
1445 if (brw_hw_context_set_priority(screen->bufmgr,
1446 0, BRW_CONTEXT_HIGH_PRIORITY) == 0)
1447 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_HIGH;
1448 if (brw_hw_context_set_priority(screen->bufmgr,
1449 0, BRW_CONTEXT_LOW_PRIORITY) == 0)
1450 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_LOW;
1451 /* reset to default last, just in case */
1452 if (brw_hw_context_set_priority(screen->bufmgr,
1453 0, BRW_CONTEXT_MEDIUM_PRIORITY) == 0)
1454 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_MEDIUM;
1455 return 0;
1456 case __DRI2_RENDERER_HAS_FRAMEBUFFER_SRGB:
1457 value[0] = 1;
1458 return 0;
1459 default:
1460 return driQueryRendererIntegerCommon(dri_screen, param, value);
1461 }
1462
1463 return -1;
1464 }
1465
1466 static int
1467 brw_query_renderer_string(__DRIscreen *dri_screen,
1468 int param, const char **value)
1469 {
1470 const struct intel_screen *screen =
1471 (struct intel_screen *) dri_screen->driverPrivate;
1472
1473 switch (param) {
1474 case __DRI2_RENDERER_VENDOR_ID:
1475 value[0] = brw_vendor_string;
1476 return 0;
1477 case __DRI2_RENDERER_DEVICE_ID:
1478 value[0] = brw_get_renderer_string(screen);
1479 return 0;
1480 default:
1481 break;
1482 }
1483
1484 return -1;
1485 }
1486
1487 static const __DRI2rendererQueryExtension intelRendererQueryExtension = {
1488 .base = { __DRI2_RENDERER_QUERY, 1 },
1489
1490 .queryInteger = brw_query_renderer_integer,
1491 .queryString = brw_query_renderer_string
1492 };
1493
1494 static const __DRIrobustnessExtension dri2Robustness = {
1495 .base = { __DRI2_ROBUSTNESS, 1 }
1496 };
1497
1498 static const __DRIextension *screenExtensions[] = {
1499 &intelTexBufferExtension.base,
1500 &intelFenceExtension.base,
1501 &intelFlushExtension.base,
1502 &intelImageExtension.base,
1503 &intelRendererQueryExtension.base,
1504 &dri2ConfigQueryExtension.base,
1505 &dri2NoErrorExtension.base,
1506 NULL
1507 };
1508
1509 static const __DRIextension *intelRobustScreenExtensions[] = {
1510 &intelTexBufferExtension.base,
1511 &intelFenceExtension.base,
1512 &intelFlushExtension.base,
1513 &intelImageExtension.base,
1514 &intelRendererQueryExtension.base,
1515 &dri2ConfigQueryExtension.base,
1516 &dri2Robustness.base,
1517 &dri2NoErrorExtension.base,
1518 NULL
1519 };
1520
1521 static int
1522 intel_get_param(struct intel_screen *screen, int param, int *value)
1523 {
1524 int ret = 0;
1525 struct drm_i915_getparam gp;
1526
1527 memset(&gp, 0, sizeof(gp));
1528 gp.param = param;
1529 gp.value = value;
1530
1531 if (drmIoctl(screen->driScrnPriv->fd, DRM_IOCTL_I915_GETPARAM, &gp) == -1) {
1532 ret = -errno;
1533 if (ret != -EINVAL)
1534 _mesa_warning(NULL, "drm_i915_getparam: %d", ret);
1535 }
1536
1537 return ret;
1538 }
1539
1540 static bool
1541 intel_get_boolean(struct intel_screen *screen, int param)
1542 {
1543 int value = 0;
1544 return (intel_get_param(screen, param, &value) == 0) && value;
1545 }
1546
1547 static int
1548 intel_get_integer(struct intel_screen *screen, int param)
1549 {
1550 int value = -1;
1551
1552 if (intel_get_param(screen, param, &value) == 0)
1553 return value;
1554
1555 return -1;
1556 }
1557
1558 static void
1559 intelDestroyScreen(__DRIscreen * sPriv)
1560 {
1561 struct intel_screen *screen = sPriv->driverPrivate;
1562
1563 brw_bufmgr_destroy(screen->bufmgr);
1564 driDestroyOptionInfo(&screen->optionCache);
1565
1566 ralloc_free(screen);
1567 sPriv->driverPrivate = NULL;
1568 }
1569
1570
1571 /**
1572 * Create a gl_framebuffer and attach it to __DRIdrawable::driverPrivate.
1573 *
1574 *_This implements driDriverAPI::createNewDrawable, which the DRI layer calls
1575 * when creating a EGLSurface, GLXDrawable, or GLXPixmap. Despite the name,
1576 * this does not allocate GPU memory.
1577 */
1578 static GLboolean
1579 intelCreateBuffer(__DRIscreen *dri_screen,
1580 __DRIdrawable * driDrawPriv,
1581 const struct gl_config * mesaVis, GLboolean isPixmap)
1582 {
1583 struct intel_renderbuffer *rb;
1584 struct intel_screen *screen = (struct intel_screen *)
1585 dri_screen->driverPrivate;
1586 mesa_format rgbFormat;
1587 unsigned num_samples =
1588 intel_quantize_num_samples(screen, mesaVis->samples);
1589
1590 if (isPixmap)
1591 return false;
1592
1593 struct gl_framebuffer *fb = CALLOC_STRUCT(gl_framebuffer);
1594 if (!fb)
1595 return false;
1596
1597 _mesa_initialize_window_framebuffer(fb, mesaVis);
1598
1599 if (screen->winsys_msaa_samples_override != -1) {
1600 num_samples = screen->winsys_msaa_samples_override;
1601 fb->Visual.samples = num_samples;
1602 }
1603
1604 if (mesaVis->redBits == 10 && mesaVis->alphaBits > 0) {
1605 rgbFormat = mesaVis->redMask == 0x3ff00000 ? MESA_FORMAT_B10G10R10A2_UNORM
1606 : MESA_FORMAT_R10G10B10A2_UNORM;
1607 } else if (mesaVis->redBits == 10) {
1608 rgbFormat = mesaVis->redMask == 0x3ff00000 ? MESA_FORMAT_B10G10R10X2_UNORM
1609 : MESA_FORMAT_R10G10B10X2_UNORM;
1610 } else if (mesaVis->redBits == 5) {
1611 rgbFormat = mesaVis->redMask == 0x1f ? MESA_FORMAT_R5G6B5_UNORM
1612 : MESA_FORMAT_B5G6R5_UNORM;
1613 } else if (mesaVis->sRGBCapable) {
1614 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1615 : MESA_FORMAT_B8G8R8A8_SRGB;
1616 } else if (mesaVis->alphaBits == 0) {
1617 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8X8_UNORM
1618 : MESA_FORMAT_B8G8R8X8_UNORM;
1619 } else {
1620 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1621 : MESA_FORMAT_B8G8R8A8_SRGB;
1622 fb->Visual.sRGBCapable = true;
1623 }
1624
1625 /* mesaVis->sRGBCapable was set, user is asking for sRGB */
1626 bool srgb_cap_set = mesaVis->redBits >= 8 && mesaVis->sRGBCapable;
1627
1628 /* setup the hardware-based renderbuffers */
1629 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1630 _mesa_attach_and_own_rb(fb, BUFFER_FRONT_LEFT, &rb->Base.Base);
1631 rb->need_srgb = srgb_cap_set;
1632
1633 if (mesaVis->doubleBufferMode) {
1634 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1635 _mesa_attach_and_own_rb(fb, BUFFER_BACK_LEFT, &rb->Base.Base);
1636 rb->need_srgb = srgb_cap_set;
1637 }
1638
1639 /*
1640 * Assert here that the gl_config has an expected depth/stencil bit
1641 * combination: one of d24/s8, d16/s0, d0/s0. (See intelInitScreen2(),
1642 * which constructs the advertised configs.)
1643 */
1644 if (mesaVis->depthBits == 24) {
1645 assert(mesaVis->stencilBits == 8);
1646
1647 if (screen->devinfo.has_hiz_and_separate_stencil) {
1648 rb = intel_create_private_renderbuffer(screen,
1649 MESA_FORMAT_Z24_UNORM_X8_UINT,
1650 num_samples);
1651 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1652 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_S_UINT8,
1653 num_samples);
1654 _mesa_attach_and_own_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1655 } else {
1656 /*
1657 * Use combined depth/stencil. Note that the renderbuffer is
1658 * attached to two attachment points.
1659 */
1660 rb = intel_create_private_renderbuffer(screen,
1661 MESA_FORMAT_Z24_UNORM_S8_UINT,
1662 num_samples);
1663 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1664 _mesa_attach_and_reference_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1665 }
1666 }
1667 else if (mesaVis->depthBits == 16) {
1668 assert(mesaVis->stencilBits == 0);
1669 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_Z_UNORM16,
1670 num_samples);
1671 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1672 }
1673 else {
1674 assert(mesaVis->depthBits == 0);
1675 assert(mesaVis->stencilBits == 0);
1676 }
1677
1678 /* now add any/all software-based renderbuffers we may need */
1679 _swrast_add_soft_renderbuffers(fb,
1680 false, /* never sw color */
1681 false, /* never sw depth */
1682 false, /* never sw stencil */
1683 mesaVis->accumRedBits > 0,
1684 false, /* never sw alpha */
1685 false /* never sw aux */ );
1686 driDrawPriv->driverPrivate = fb;
1687
1688 return true;
1689 }
1690
1691 static void
1692 intelDestroyBuffer(__DRIdrawable * driDrawPriv)
1693 {
1694 struct gl_framebuffer *fb = driDrawPriv->driverPrivate;
1695
1696 _mesa_reference_framebuffer(&fb, NULL);
1697 }
1698
1699 static void
1700 intel_cs_timestamp_frequency(struct intel_screen *screen)
1701 {
1702 /* We shouldn't need to update gen_device_info.timestamp_frequency prior to
1703 * gen10, PCI-id is enough to figure it out.
1704 */
1705 assert(screen->devinfo.gen >= 10);
1706
1707 int ret, freq;
1708
1709 ret = intel_get_param(screen, I915_PARAM_CS_TIMESTAMP_FREQUENCY,
1710 &freq);
1711 if (ret < 0) {
1712 _mesa_warning(NULL,
1713 "Kernel 4.15 required to read the CS timestamp frequency.\n");
1714 return;
1715 }
1716
1717 screen->devinfo.timestamp_frequency = freq;
1718 }
1719
1720 static void
1721 intel_detect_sseu(struct intel_screen *screen)
1722 {
1723 assert(screen->devinfo.gen >= 8);
1724 int ret;
1725
1726 screen->subslice_total = -1;
1727 screen->eu_total = -1;
1728
1729 ret = intel_get_param(screen, I915_PARAM_SUBSLICE_TOTAL,
1730 &screen->subslice_total);
1731 if (ret < 0 && ret != -EINVAL)
1732 goto err_out;
1733
1734 ret = intel_get_param(screen,
1735 I915_PARAM_EU_TOTAL, &screen->eu_total);
1736 if (ret < 0 && ret != -EINVAL)
1737 goto err_out;
1738
1739 /* Without this information, we cannot get the right Braswell brandstrings,
1740 * and we have to use conservative numbers for GPGPU on many platforms, but
1741 * otherwise, things will just work.
1742 */
1743 if (screen->subslice_total < 1 || screen->eu_total < 1)
1744 _mesa_warning(NULL,
1745 "Kernel 4.1 required to properly query GPU properties.\n");
1746
1747 return;
1748
1749 err_out:
1750 screen->subslice_total = -1;
1751 screen->eu_total = -1;
1752 _mesa_warning(NULL, "Failed to query GPU properties (%s).\n", strerror(-ret));
1753 }
1754
1755 static bool
1756 intel_init_bufmgr(struct intel_screen *screen)
1757 {
1758 __DRIscreen *dri_screen = screen->driScrnPriv;
1759
1760 if (getenv("INTEL_NO_HW") != NULL)
1761 screen->no_hw = true;
1762
1763 screen->bufmgr = brw_bufmgr_init(&screen->devinfo, dri_screen->fd);
1764 if (screen->bufmgr == NULL) {
1765 fprintf(stderr, "[%s:%u] Error initializing buffer manager.\n",
1766 __func__, __LINE__);
1767 return false;
1768 }
1769
1770 if (!intel_get_boolean(screen, I915_PARAM_HAS_WAIT_TIMEOUT)) {
1771 fprintf(stderr, "[%s: %u] Kernel 3.6 required.\n", __func__, __LINE__);
1772 return false;
1773 }
1774
1775 return true;
1776 }
1777
1778 static bool
1779 intel_detect_swizzling(struct intel_screen *screen)
1780 {
1781 struct brw_bo *buffer;
1782 unsigned flags = 0;
1783 uint32_t aligned_pitch;
1784 uint32_t tiling = I915_TILING_X;
1785 uint32_t swizzle_mode = 0;
1786
1787 buffer = brw_bo_alloc_tiled_2d(screen->bufmgr, "swizzle test",
1788 64, 64, 4, tiling, &aligned_pitch, flags);
1789 if (buffer == NULL)
1790 return false;
1791
1792 brw_bo_get_tiling(buffer, &tiling, &swizzle_mode);
1793 brw_bo_unreference(buffer);
1794
1795 if (swizzle_mode == I915_BIT_6_SWIZZLE_NONE)
1796 return false;
1797 else
1798 return true;
1799 }
1800
1801 static int
1802 intel_detect_timestamp(struct intel_screen *screen)
1803 {
1804 uint64_t dummy = 0, last = 0;
1805 int upper, lower, loops;
1806
1807 /* On 64bit systems, some old kernels trigger a hw bug resulting in the
1808 * TIMESTAMP register being shifted and the low 32bits always zero.
1809 *
1810 * More recent kernels offer an interface to read the full 36bits
1811 * everywhere.
1812 */
1813 if (brw_reg_read(screen->bufmgr, TIMESTAMP | 1, &dummy) == 0)
1814 return 3;
1815
1816 /* Determine if we have a 32bit or 64bit kernel by inspecting the
1817 * upper 32bits for a rapidly changing timestamp.
1818 */
1819 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &last))
1820 return 0;
1821
1822 upper = lower = 0;
1823 for (loops = 0; loops < 10; loops++) {
1824 /* The TIMESTAMP should change every 80ns, so several round trips
1825 * through the kernel should be enough to advance it.
1826 */
1827 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &dummy))
1828 return 0;
1829
1830 upper += (dummy >> 32) != (last >> 32);
1831 if (upper > 1) /* beware 32bit counter overflow */
1832 return 2; /* upper dword holds the low 32bits of the timestamp */
1833
1834 lower += (dummy & 0xffffffff) != (last & 0xffffffff);
1835 if (lower > 1)
1836 return 1; /* timestamp is unshifted */
1837
1838 last = dummy;
1839 }
1840
1841 /* No advancement? No timestamp! */
1842 return 0;
1843 }
1844
1845 /**
1846 * Test if we can use MI_LOAD_REGISTER_MEM from an untrusted batchbuffer.
1847 *
1848 * Some combinations of hardware and kernel versions allow this feature,
1849 * while others don't. Instead of trying to enumerate every case, just
1850 * try and write a register and see if works.
1851 */
1852 static bool
1853 intel_detect_pipelined_register(struct intel_screen *screen,
1854 int reg, uint32_t expected_value, bool reset)
1855 {
1856 if (screen->no_hw)
1857 return false;
1858
1859 struct brw_bo *results, *bo;
1860 uint32_t *batch;
1861 uint32_t offset = 0;
1862 void *map;
1863 bool success = false;
1864
1865 /* Create a zero'ed temporary buffer for reading our results */
1866 results = brw_bo_alloc(screen->bufmgr, "registers", 4096, 0);
1867 if (results == NULL)
1868 goto err;
1869
1870 bo = brw_bo_alloc(screen->bufmgr, "batchbuffer", 4096, 0);
1871 if (bo == NULL)
1872 goto err_results;
1873
1874 map = brw_bo_map(NULL, bo, MAP_WRITE);
1875 if (!map)
1876 goto err_batch;
1877
1878 batch = map;
1879
1880 /* Write the register. */
1881 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1882 *batch++ = reg;
1883 *batch++ = expected_value;
1884
1885 /* Save the register's value back to the buffer. */
1886 *batch++ = MI_STORE_REGISTER_MEM | (3 - 2);
1887 *batch++ = reg;
1888 struct drm_i915_gem_relocation_entry reloc = {
1889 .offset = (char *) batch - (char *) map,
1890 .delta = offset * sizeof(uint32_t),
1891 .target_handle = results->gem_handle,
1892 .read_domains = I915_GEM_DOMAIN_INSTRUCTION,
1893 .write_domain = I915_GEM_DOMAIN_INSTRUCTION,
1894 };
1895 *batch++ = reloc.presumed_offset + reloc.delta;
1896
1897 /* And afterwards clear the register */
1898 if (reset) {
1899 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1900 *batch++ = reg;
1901 *batch++ = 0;
1902 }
1903
1904 *batch++ = MI_BATCH_BUFFER_END;
1905
1906 struct drm_i915_gem_exec_object2 exec_objects[2] = {
1907 {
1908 .handle = results->gem_handle,
1909 },
1910 {
1911 .handle = bo->gem_handle,
1912 .relocation_count = 1,
1913 .relocs_ptr = (uintptr_t) &reloc,
1914 }
1915 };
1916
1917 struct drm_i915_gem_execbuffer2 execbuf = {
1918 .buffers_ptr = (uintptr_t) exec_objects,
1919 .buffer_count = 2,
1920 .batch_len = ALIGN((char *) batch - (char *) map, 8),
1921 .flags = I915_EXEC_RENDER,
1922 };
1923
1924 /* Don't bother with error checking - if the execbuf fails, the
1925 * value won't be written and we'll just report that there's no access.
1926 */
1927 __DRIscreen *dri_screen = screen->driScrnPriv;
1928 drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf);
1929
1930 /* Check whether the value got written. */
1931 void *results_map = brw_bo_map(NULL, results, MAP_READ);
1932 if (results_map) {
1933 success = *((uint32_t *)results_map + offset) == expected_value;
1934 brw_bo_unmap(results);
1935 }
1936
1937 err_batch:
1938 brw_bo_unreference(bo);
1939 err_results:
1940 brw_bo_unreference(results);
1941 err:
1942 return success;
1943 }
1944
1945 static bool
1946 intel_detect_pipelined_so(struct intel_screen *screen)
1947 {
1948 const struct gen_device_info *devinfo = &screen->devinfo;
1949
1950 /* Supposedly, Broadwell just works. */
1951 if (devinfo->gen >= 8)
1952 return true;
1953
1954 if (devinfo->gen <= 6)
1955 return false;
1956
1957 /* See the big explanation about command parser versions below */
1958 if (screen->cmd_parser_version >= (devinfo->is_haswell ? 7 : 2))
1959 return true;
1960
1961 /* We use SO_WRITE_OFFSET0 since you're supposed to write it (unlike the
1962 * statistics registers), and we already reset it to zero before using it.
1963 */
1964 return intel_detect_pipelined_register(screen,
1965 GEN7_SO_WRITE_OFFSET(0),
1966 0x1337d0d0,
1967 false);
1968 }
1969
1970 /**
1971 * Return array of MSAA modes supported by the hardware. The array is
1972 * zero-terminated and sorted in decreasing order.
1973 */
1974 const int*
1975 intel_supported_msaa_modes(const struct intel_screen *screen)
1976 {
1977 static const int gen9_modes[] = {16, 8, 4, 2, 0, -1};
1978 static const int gen8_modes[] = {8, 4, 2, 0, -1};
1979 static const int gen7_modes[] = {8, 4, 0, -1};
1980 static const int gen6_modes[] = {4, 0, -1};
1981 static const int gen4_modes[] = {0, -1};
1982
1983 if (screen->devinfo.gen >= 9) {
1984 return gen9_modes;
1985 } else if (screen->devinfo.gen >= 8) {
1986 return gen8_modes;
1987 } else if (screen->devinfo.gen >= 7) {
1988 return gen7_modes;
1989 } else if (screen->devinfo.gen == 6) {
1990 return gen6_modes;
1991 } else {
1992 return gen4_modes;
1993 }
1994 }
1995
1996 static unsigned
1997 intel_loader_get_cap(const __DRIscreen *dri_screen, enum dri_loader_cap cap)
1998 {
1999 if (dri_screen->dri2.loader && dri_screen->dri2.loader->base.version >= 4 &&
2000 dri_screen->dri2.loader->getCapability)
2001 return dri_screen->dri2.loader->getCapability(dri_screen->loaderPrivate, cap);
2002
2003 if (dri_screen->image.loader && dri_screen->image.loader->base.version >= 2 &&
2004 dri_screen->image.loader->getCapability)
2005 return dri_screen->image.loader->getCapability(dri_screen->loaderPrivate, cap);
2006
2007 return 0;
2008 }
2009
2010 static __DRIconfig**
2011 intel_screen_make_configs(__DRIscreen *dri_screen)
2012 {
2013 static const mesa_format formats[] = {
2014 MESA_FORMAT_B5G6R5_UNORM,
2015 MESA_FORMAT_B8G8R8A8_UNORM,
2016 MESA_FORMAT_B8G8R8X8_UNORM,
2017
2018 MESA_FORMAT_B8G8R8A8_SRGB,
2019
2020 /* For 10 bpc, 30 bit depth framebuffers. */
2021 MESA_FORMAT_B10G10R10A2_UNORM,
2022 MESA_FORMAT_B10G10R10X2_UNORM,
2023
2024 /* The 32-bit RGBA format must not precede the 32-bit BGRA format.
2025 * Likewise for RGBX and BGRX. Otherwise, the GLX client and the GLX
2026 * server may disagree on which format the GLXFBConfig represents,
2027 * resulting in swapped color channels.
2028 *
2029 * The problem, as of 2017-05-30:
2030 * When matching a GLXFBConfig to a __DRIconfig, GLX ignores the channel
2031 * order and chooses the first __DRIconfig with the expected channel
2032 * sizes. Specifically, GLX compares the GLXFBConfig's and __DRIconfig's
2033 * __DRI_ATTRIB_{CHANNEL}_SIZE but ignores __DRI_ATTRIB_{CHANNEL}_MASK.
2034 *
2035 * EGL does not suffer from this problem. It correctly compares the
2036 * channel masks when matching EGLConfig to __DRIconfig.
2037 */
2038
2039 /* Required by Android, for HAL_PIXEL_FORMAT_RGBA_8888. */
2040 MESA_FORMAT_R8G8B8A8_UNORM,
2041
2042 /* Required by Android, for HAL_PIXEL_FORMAT_RGBX_8888. */
2043 MESA_FORMAT_R8G8B8X8_UNORM,
2044 };
2045
2046 /* GLX_SWAP_COPY_OML is not supported due to page flipping. */
2047 static const GLenum back_buffer_modes[] = {
2048 __DRI_ATTRIB_SWAP_UNDEFINED, __DRI_ATTRIB_SWAP_NONE
2049 };
2050
2051 static const uint8_t singlesample_samples[1] = {0};
2052
2053 struct intel_screen *screen = dri_screen->driverPrivate;
2054 const struct gen_device_info *devinfo = &screen->devinfo;
2055 uint8_t depth_bits[4], stencil_bits[4];
2056 __DRIconfig **configs = NULL;
2057
2058 /* Expose only BGRA ordering if the loader doesn't support RGBA ordering. */
2059 unsigned num_formats;
2060 if (intel_loader_get_cap(dri_screen, DRI_LOADER_CAP_RGBA_ORDERING))
2061 num_formats = ARRAY_SIZE(formats);
2062 else
2063 num_formats = ARRAY_SIZE(formats) - 2; /* all - RGBA_ORDERING formats */
2064
2065 /* Shall we expose 10 bpc formats? */
2066 bool allow_rgb10_configs = driQueryOptionb(&screen->optionCache,
2067 "allow_rgb10_configs");
2068
2069 /* Generate singlesample configs without accumulation buffer. */
2070 for (unsigned i = 0; i < num_formats; i++) {
2071 __DRIconfig **new_configs;
2072 int num_depth_stencil_bits = 2;
2073
2074 if (!allow_rgb10_configs &&
2075 (formats[i] == MESA_FORMAT_B10G10R10A2_UNORM ||
2076 formats[i] == MESA_FORMAT_B10G10R10X2_UNORM))
2077 continue;
2078
2079 /* Starting with DRI2 protocol version 1.1 we can request a depth/stencil
2080 * buffer that has a different number of bits per pixel than the color
2081 * buffer, gen >= 6 supports this.
2082 */
2083 depth_bits[0] = 0;
2084 stencil_bits[0] = 0;
2085
2086 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2087 depth_bits[1] = 16;
2088 stencil_bits[1] = 0;
2089 if (devinfo->gen >= 6) {
2090 depth_bits[2] = 24;
2091 stencil_bits[2] = 8;
2092 num_depth_stencil_bits = 3;
2093 }
2094 } else {
2095 depth_bits[1] = 24;
2096 stencil_bits[1] = 8;
2097 }
2098
2099 new_configs = driCreateConfigs(formats[i],
2100 depth_bits,
2101 stencil_bits,
2102 num_depth_stencil_bits,
2103 back_buffer_modes, 2,
2104 singlesample_samples, 1,
2105 false, false);
2106 configs = driConcatConfigs(configs, new_configs);
2107 }
2108
2109 /* Generate the minimum possible set of configs that include an
2110 * accumulation buffer.
2111 */
2112 for (unsigned i = 0; i < num_formats; i++) {
2113 __DRIconfig **new_configs;
2114
2115 if (!allow_rgb10_configs &&
2116 (formats[i] == MESA_FORMAT_B10G10R10A2_UNORM ||
2117 formats[i] == MESA_FORMAT_B10G10R10X2_UNORM))
2118 continue;
2119
2120 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2121 depth_bits[0] = 16;
2122 stencil_bits[0] = 0;
2123 } else {
2124 depth_bits[0] = 24;
2125 stencil_bits[0] = 8;
2126 }
2127
2128 new_configs = driCreateConfigs(formats[i],
2129 depth_bits, stencil_bits, 1,
2130 back_buffer_modes, 1,
2131 singlesample_samples, 1,
2132 true, false);
2133 configs = driConcatConfigs(configs, new_configs);
2134 }
2135
2136 /* Generate multisample configs.
2137 *
2138 * This loop breaks early, and hence is a no-op, on gen < 6.
2139 *
2140 * Multisample configs must follow the singlesample configs in order to
2141 * work around an X server bug present in 1.12. The X server chooses to
2142 * associate the first listed RGBA888-Z24S8 config, regardless of its
2143 * sample count, with the 32-bit depth visual used for compositing.
2144 *
2145 * Only doublebuffer configs with GLX_SWAP_UNDEFINED_OML behavior are
2146 * supported. Singlebuffer configs are not supported because no one wants
2147 * them.
2148 */
2149 for (unsigned i = 0; i < num_formats; i++) {
2150 if (devinfo->gen < 6)
2151 break;
2152
2153 if (!allow_rgb10_configs &&
2154 (formats[i] == MESA_FORMAT_B10G10R10A2_UNORM ||
2155 formats[i] == MESA_FORMAT_B10G10R10X2_UNORM))
2156 continue;
2157
2158 __DRIconfig **new_configs;
2159 const int num_depth_stencil_bits = 2;
2160 int num_msaa_modes = 0;
2161 const uint8_t *multisample_samples = NULL;
2162
2163 depth_bits[0] = 0;
2164 stencil_bits[0] = 0;
2165
2166 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2167 depth_bits[1] = 16;
2168 stencil_bits[1] = 0;
2169 } else {
2170 depth_bits[1] = 24;
2171 stencil_bits[1] = 8;
2172 }
2173
2174 if (devinfo->gen >= 9) {
2175 static const uint8_t multisample_samples_gen9[] = {2, 4, 8, 16};
2176 multisample_samples = multisample_samples_gen9;
2177 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen9);
2178 } else if (devinfo->gen == 8) {
2179 static const uint8_t multisample_samples_gen8[] = {2, 4, 8};
2180 multisample_samples = multisample_samples_gen8;
2181 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen8);
2182 } else if (devinfo->gen == 7) {
2183 static const uint8_t multisample_samples_gen7[] = {4, 8};
2184 multisample_samples = multisample_samples_gen7;
2185 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen7);
2186 } else if (devinfo->gen == 6) {
2187 static const uint8_t multisample_samples_gen6[] = {4};
2188 multisample_samples = multisample_samples_gen6;
2189 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen6);
2190 }
2191
2192 new_configs = driCreateConfigs(formats[i],
2193 depth_bits,
2194 stencil_bits,
2195 num_depth_stencil_bits,
2196 back_buffer_modes, 1,
2197 multisample_samples,
2198 num_msaa_modes,
2199 false, false);
2200 configs = driConcatConfigs(configs, new_configs);
2201 }
2202
2203 if (configs == NULL) {
2204 fprintf(stderr, "[%s:%u] Error creating FBConfig!\n", __func__,
2205 __LINE__);
2206 return NULL;
2207 }
2208
2209 return configs;
2210 }
2211
2212 static void
2213 set_max_gl_versions(struct intel_screen *screen)
2214 {
2215 __DRIscreen *dri_screen = screen->driScrnPriv;
2216 const bool has_astc = screen->devinfo.gen >= 9;
2217
2218 switch (screen->devinfo.gen) {
2219 case 10:
2220 case 9:
2221 case 8:
2222 dri_screen->max_gl_core_version = 45;
2223 dri_screen->max_gl_compat_version = 30;
2224 dri_screen->max_gl_es1_version = 11;
2225 dri_screen->max_gl_es2_version = has_astc ? 32 : 31;
2226 break;
2227 case 7:
2228 dri_screen->max_gl_core_version = 33;
2229 if (can_do_pipelined_register_writes(screen)) {
2230 dri_screen->max_gl_core_version = 42;
2231 if (screen->devinfo.is_haswell && can_do_compute_dispatch(screen))
2232 dri_screen->max_gl_core_version = 43;
2233 if (screen->devinfo.is_haswell && can_do_mi_math_and_lrr(screen))
2234 dri_screen->max_gl_core_version = 45;
2235 }
2236 dri_screen->max_gl_compat_version = 30;
2237 dri_screen->max_gl_es1_version = 11;
2238 dri_screen->max_gl_es2_version = screen->devinfo.is_haswell ? 31 : 30;
2239 break;
2240 case 6:
2241 dri_screen->max_gl_core_version = 33;
2242 dri_screen->max_gl_compat_version = 30;
2243 dri_screen->max_gl_es1_version = 11;
2244 dri_screen->max_gl_es2_version = 30;
2245 break;
2246 case 5:
2247 case 4:
2248 dri_screen->max_gl_core_version = 0;
2249 dri_screen->max_gl_compat_version = 21;
2250 dri_screen->max_gl_es1_version = 11;
2251 dri_screen->max_gl_es2_version = 20;
2252 break;
2253 default:
2254 unreachable("unrecognized intel_screen::gen");
2255 }
2256 }
2257
2258 /**
2259 * Return the revision (generally the revid field of the PCI header) of the
2260 * graphics device.
2261 */
2262 int
2263 intel_device_get_revision(int fd)
2264 {
2265 struct drm_i915_getparam gp;
2266 int revision;
2267 int ret;
2268
2269 memset(&gp, 0, sizeof(gp));
2270 gp.param = I915_PARAM_REVISION;
2271 gp.value = &revision;
2272
2273 ret = drmCommandWriteRead(fd, DRM_I915_GETPARAM, &gp, sizeof(gp));
2274 if (ret)
2275 revision = -1;
2276
2277 return revision;
2278 }
2279
2280 static void
2281 shader_debug_log_mesa(void *data, const char *fmt, ...)
2282 {
2283 struct brw_context *brw = (struct brw_context *)data;
2284 va_list args;
2285
2286 va_start(args, fmt);
2287 GLuint msg_id = 0;
2288 _mesa_gl_vdebug(&brw->ctx, &msg_id,
2289 MESA_DEBUG_SOURCE_SHADER_COMPILER,
2290 MESA_DEBUG_TYPE_OTHER,
2291 MESA_DEBUG_SEVERITY_NOTIFICATION, fmt, args);
2292 va_end(args);
2293 }
2294
2295 static void
2296 shader_perf_log_mesa(void *data, const char *fmt, ...)
2297 {
2298 struct brw_context *brw = (struct brw_context *)data;
2299
2300 va_list args;
2301 va_start(args, fmt);
2302
2303 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
2304 va_list args_copy;
2305 va_copy(args_copy, args);
2306 vfprintf(stderr, fmt, args_copy);
2307 va_end(args_copy);
2308 }
2309
2310 if (brw->perf_debug) {
2311 GLuint msg_id = 0;
2312 _mesa_gl_vdebug(&brw->ctx, &msg_id,
2313 MESA_DEBUG_SOURCE_SHADER_COMPILER,
2314 MESA_DEBUG_TYPE_PERFORMANCE,
2315 MESA_DEBUG_SEVERITY_MEDIUM, fmt, args);
2316 }
2317 va_end(args);
2318 }
2319
2320 static int
2321 parse_devid_override(const char *devid_override)
2322 {
2323 static const struct {
2324 const char *name;
2325 int pci_id;
2326 } name_map[] = {
2327 { "brw", 0x2a02 },
2328 { "g4x", 0x2a42 },
2329 { "ilk", 0x0042 },
2330 { "snb", 0x0126 },
2331 { "ivb", 0x016a },
2332 { "hsw", 0x0d2e },
2333 { "byt", 0x0f33 },
2334 { "bdw", 0x162e },
2335 { "chv", 0x22B3 },
2336 { "skl", 0x1912 },
2337 { "bxt", 0x5A85 },
2338 { "kbl", 0x5912 },
2339 { "glk", 0x3185 },
2340 { "cnl", 0x5a52 },
2341 };
2342
2343 for (unsigned i = 0; i < ARRAY_SIZE(name_map); i++) {
2344 if (!strcmp(name_map[i].name, devid_override))
2345 return name_map[i].pci_id;
2346 }
2347
2348 return strtol(devid_override, NULL, 0);
2349 }
2350
2351 /**
2352 * Get the PCI ID for the device. This can be overridden by setting the
2353 * INTEL_DEVID_OVERRIDE environment variable to the desired ID.
2354 *
2355 * Returns -1 on ioctl failure.
2356 */
2357 static int
2358 get_pci_device_id(struct intel_screen *screen)
2359 {
2360 if (geteuid() == getuid()) {
2361 char *devid_override = getenv("INTEL_DEVID_OVERRIDE");
2362 if (devid_override) {
2363 screen->no_hw = true;
2364 return parse_devid_override(devid_override);
2365 }
2366 }
2367
2368 return intel_get_integer(screen, I915_PARAM_CHIPSET_ID);
2369 }
2370
2371 /**
2372 * This is the driver specific part of the createNewScreen entry point.
2373 * Called when using DRI2.
2374 *
2375 * \return the struct gl_config supported by this driver
2376 */
2377 static const
2378 __DRIconfig **intelInitScreen2(__DRIscreen *dri_screen)
2379 {
2380 struct intel_screen *screen;
2381
2382 if (dri_screen->image.loader) {
2383 } else if (dri_screen->dri2.loader->base.version <= 2 ||
2384 dri_screen->dri2.loader->getBuffersWithFormat == NULL) {
2385 fprintf(stderr,
2386 "\nERROR! DRI2 loader with getBuffersWithFormat() "
2387 "support required\n");
2388 return NULL;
2389 }
2390
2391 /* Allocate the private area */
2392 screen = rzalloc(NULL, struct intel_screen);
2393 if (!screen) {
2394 fprintf(stderr, "\nERROR! Allocating private area failed\n");
2395 return NULL;
2396 }
2397 /* parse information in __driConfigOptions */
2398 driOptionCache options;
2399 memset(&options, 0, sizeof(options));
2400
2401 driParseOptionInfo(&options, brw_config_options.xml);
2402 driParseConfigFiles(&screen->optionCache, &options, dri_screen->myNum, "i965");
2403 driDestroyOptionCache(&options);
2404
2405 screen->driScrnPriv = dri_screen;
2406 dri_screen->driverPrivate = (void *) screen;
2407
2408 screen->deviceID = get_pci_device_id(screen);
2409
2410 if (!gen_get_device_info(screen->deviceID, &screen->devinfo))
2411 return NULL;
2412
2413 if (!intel_init_bufmgr(screen))
2414 return NULL;
2415
2416 const struct gen_device_info *devinfo = &screen->devinfo;
2417
2418 brw_process_intel_debug_variable();
2419
2420 if ((INTEL_DEBUG & DEBUG_SHADER_TIME) && devinfo->gen < 7) {
2421 fprintf(stderr,
2422 "shader_time debugging requires gen7 (Ivybridge) or better.\n");
2423 INTEL_DEBUG &= ~DEBUG_SHADER_TIME;
2424 }
2425
2426 if (intel_get_integer(screen, I915_PARAM_MMAP_GTT_VERSION) >= 1) {
2427 /* Theorectically unlimited! At least for individual objects...
2428 *
2429 * Currently the entire (global) address space for all GTT maps is
2430 * limited to 64bits. That is all objects on the system that are
2431 * setup for GTT mmapping must fit within 64bits. An attempt to use
2432 * one that exceeds the limit with fail in brw_bo_map_gtt().
2433 *
2434 * Long before we hit that limit, we will be practically limited by
2435 * that any single object must fit in physical memory (RAM). The upper
2436 * limit on the CPU's address space is currently 48bits (Skylake), of
2437 * which only 39bits can be physical memory. (The GPU itself also has
2438 * a 48bit addressable virtual space.) We can fit over 32 million
2439 * objects of the current maximum allocable size before running out
2440 * of mmap space.
2441 */
2442 screen->max_gtt_map_object_size = UINT64_MAX;
2443 } else {
2444 /* Estimate the size of the mappable aperture into the GTT. There's an
2445 * ioctl to get the whole GTT size, but not one to get the mappable subset.
2446 * It turns out it's basically always 256MB, though some ancient hardware
2447 * was smaller.
2448 */
2449 uint32_t gtt_size = 256 * 1024 * 1024;
2450
2451 /* We don't want to map two objects such that a memcpy between them would
2452 * just fault one mapping in and then the other over and over forever. So
2453 * we would need to divide the GTT size by 2. Additionally, some GTT is
2454 * taken up by things like the framebuffer and the ringbuffer and such, so
2455 * be more conservative.
2456 */
2457 screen->max_gtt_map_object_size = gtt_size / 4;
2458 }
2459
2460 screen->aperture_threshold = get_aperture_size(dri_screen->fd) * 3 / 4;
2461
2462 screen->hw_has_swizzling = intel_detect_swizzling(screen);
2463 screen->hw_has_timestamp = intel_detect_timestamp(screen);
2464
2465 isl_device_init(&screen->isl_dev, &screen->devinfo,
2466 screen->hw_has_swizzling);
2467
2468 if (devinfo->gen >= 10)
2469 intel_cs_timestamp_frequency(screen);
2470
2471 /* GENs prior to 8 do not support EU/Subslice info */
2472 if (devinfo->gen >= 8) {
2473 intel_detect_sseu(screen);
2474 } else if (devinfo->gen == 7) {
2475 screen->subslice_total = 1 << (devinfo->gt - 1);
2476 }
2477
2478 /* Gen7-7.5 kernel requirements / command parser saga:
2479 *
2480 * - pre-v3.16:
2481 * Haswell and Baytrail cannot use any privileged batchbuffer features.
2482 *
2483 * Ivybridge has aliasing PPGTT on by default, which accidentally marks
2484 * all batches secure, allowing them to use any feature with no checking.
2485 * This is effectively equivalent to a command parser version of
2486 * \infinity - everything is possible.
2487 *
2488 * The command parser does not exist, and querying the version will
2489 * return -EINVAL.
2490 *
2491 * - v3.16:
2492 * The kernel enables the command parser by default, for systems with
2493 * aliasing PPGTT enabled (Ivybridge and Haswell). However, the
2494 * hardware checker is still enabled, so Haswell and Baytrail cannot
2495 * do anything.
2496 *
2497 * Ivybridge goes from "everything is possible" to "only what the
2498 * command parser allows" (if the user boots with i915.cmd_parser=0,
2499 * then everything is possible again). We can only safely use features
2500 * allowed by the supported command parser version.
2501 *
2502 * Annoyingly, I915_PARAM_CMD_PARSER_VERSION reports the static version
2503 * implemented by the kernel, even if it's turned off. So, checking
2504 * for version > 0 does not mean that you can write registers. We have
2505 * to try it and see. The version does, however, indicate the age of
2506 * the kernel.
2507 *
2508 * Instead of matching the hardware checker's behavior of converting
2509 * privileged commands to MI_NOOP, it makes execbuf2 start returning
2510 * -EINVAL, making it dangerous to try and use privileged features.
2511 *
2512 * Effective command parser versions:
2513 * - Haswell: 0 (reporting 1, writes don't work)
2514 * - Baytrail: 0 (reporting 1, writes don't work)
2515 * - Ivybridge: 1 (enabled) or infinite (disabled)
2516 *
2517 * - v3.17:
2518 * Baytrail aliasing PPGTT is enabled, making it like Ivybridge:
2519 * effectively version 1 (enabled) or infinite (disabled).
2520 *
2521 * - v3.19: f1f55cc0556031c8ee3fe99dae7251e78b9b653b
2522 * Command parser v2 supports predicate writes.
2523 *
2524 * - Haswell: 0 (reporting 1, writes don't work)
2525 * - Baytrail: 2 (enabled) or infinite (disabled)
2526 * - Ivybridge: 2 (enabled) or infinite (disabled)
2527 *
2528 * So version >= 2 is enough to know that Ivybridge and Baytrail
2529 * will work. Haswell still can't do anything.
2530 *
2531 * - v4.0: Version 3 happened. Largely not relevant.
2532 *
2533 * - v4.1: 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
2534 * L3 config registers are properly saved and restored as part
2535 * of the hardware context. We can approximately detect this point
2536 * in time by checking if I915_PARAM_REVISION is recognized - it
2537 * landed in a later commit, but in the same release cycle.
2538 *
2539 * - v4.2: 245054a1fe33c06ad233e0d58a27ec7b64db9284
2540 * Command parser finally gains secure batch promotion. On Haswell,
2541 * the hardware checker gets disabled, which finally allows it to do
2542 * privileged commands.
2543 *
2544 * I915_PARAM_CMD_PARSER_VERSION reports 3. Effective versions:
2545 * - Haswell: 3 (enabled) or 0 (disabled)
2546 * - Baytrail: 3 (enabled) or infinite (disabled)
2547 * - Ivybridge: 3 (enabled) or infinite (disabled)
2548 *
2549 * Unfortunately, detecting this point in time is tricky, because
2550 * no version bump happened when this important change occurred.
2551 * On Haswell, if we can write any register, then the kernel is at
2552 * least this new, and we can start trusting the version number.
2553 *
2554 * - v4.4: 2bbe6bbb0dc94fd4ce287bdac9e1bd184e23057b and
2555 * Command parser reaches version 4, allowing access to Haswell
2556 * atomic scratch and chicken3 registers. If version >= 4, we know
2557 * the kernel is new enough to support privileged features on all
2558 * hardware. However, the user might have disabled it...and the
2559 * kernel will still report version 4. So we still have to guess
2560 * and check.
2561 *
2562 * - v4.4: 7b9748cb513a6bef4af87b79f0da3ff7e8b56cd8
2563 * Command parser v5 whitelists indirect compute shader dispatch
2564 * registers, needed for OpenGL 4.3 and later.
2565 *
2566 * - v4.8:
2567 * Command parser v7 lets us use MI_MATH on Haswell.
2568 *
2569 * Additionally, the kernel begins reporting version 0 when
2570 * the command parser is disabled, allowing us to skip the
2571 * guess-and-check step on Haswell. Unfortunately, this also
2572 * means that we can no longer use it as an indicator of the
2573 * age of the kernel.
2574 */
2575 if (intel_get_param(screen, I915_PARAM_CMD_PARSER_VERSION,
2576 &screen->cmd_parser_version) < 0) {
2577 /* Command parser does not exist - getparam is unrecognized */
2578 screen->cmd_parser_version = 0;
2579 }
2580
2581 /* Kernel 4.13 retuired for exec object capture */
2582 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_CAPTURE)) {
2583 screen->kernel_features |= KERNEL_ALLOWS_EXEC_CAPTURE;
2584 }
2585
2586 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_BATCH_FIRST)) {
2587 screen->kernel_features |= KERNEL_ALLOWS_EXEC_BATCH_FIRST;
2588 }
2589
2590 if (!intel_detect_pipelined_so(screen)) {
2591 /* We can't do anything, so the effective version is 0. */
2592 screen->cmd_parser_version = 0;
2593 } else {
2594 screen->kernel_features |= KERNEL_ALLOWS_SOL_OFFSET_WRITES;
2595 }
2596
2597 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 2)
2598 screen->kernel_features |= KERNEL_ALLOWS_PREDICATE_WRITES;
2599
2600 /* Haswell requires command parser version 4 in order to have L3
2601 * atomic scratch1 and chicken3 bits
2602 */
2603 if (devinfo->is_haswell && screen->cmd_parser_version >= 4) {
2604 screen->kernel_features |=
2605 KERNEL_ALLOWS_HSW_SCRATCH1_AND_ROW_CHICKEN3;
2606 }
2607
2608 /* Haswell requires command parser version 6 in order to write to the
2609 * MI_MATH GPR registers, and version 7 in order to use
2610 * MI_LOAD_REGISTER_REG (which all users of MI_MATH use).
2611 */
2612 if (devinfo->gen >= 8 ||
2613 (devinfo->is_haswell && screen->cmd_parser_version >= 7)) {
2614 screen->kernel_features |= KERNEL_ALLOWS_MI_MATH_AND_LRR;
2615 }
2616
2617 /* Gen7 needs at least command parser version 5 to support compute */
2618 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 5)
2619 screen->kernel_features |= KERNEL_ALLOWS_COMPUTE_DISPATCH;
2620
2621 const char *force_msaa = getenv("INTEL_FORCE_MSAA");
2622 if (force_msaa) {
2623 screen->winsys_msaa_samples_override =
2624 intel_quantize_num_samples(screen, atoi(force_msaa));
2625 printf("Forcing winsys sample count to %d\n",
2626 screen->winsys_msaa_samples_override);
2627 } else {
2628 screen->winsys_msaa_samples_override = -1;
2629 }
2630
2631 set_max_gl_versions(screen);
2632
2633 /* Notification of GPU resets requires hardware contexts and a kernel new
2634 * enough to support DRM_IOCTL_I915_GET_RESET_STATS. If the ioctl is
2635 * supported, calling it with a context of 0 will either generate EPERM or
2636 * no error. If the ioctl is not supported, it always generate EINVAL.
2637 * Use this to determine whether to advertise the __DRI2_ROBUSTNESS
2638 * extension to the loader.
2639 *
2640 * Don't even try on pre-Gen6, since we don't attempt to use contexts there.
2641 */
2642 if (devinfo->gen >= 6) {
2643 struct drm_i915_reset_stats stats;
2644 memset(&stats, 0, sizeof(stats));
2645
2646 const int ret = drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats);
2647
2648 screen->has_context_reset_notification =
2649 (ret != -1 || errno != EINVAL);
2650 }
2651
2652 dri_screen->extensions = !screen->has_context_reset_notification
2653 ? screenExtensions : intelRobustScreenExtensions;
2654
2655 screen->compiler = brw_compiler_create(screen, devinfo);
2656 screen->compiler->shader_debug_log = shader_debug_log_mesa;
2657 screen->compiler->shader_perf_log = shader_perf_log_mesa;
2658 screen->compiler->constant_buffer_0_is_relative = true;
2659 screen->compiler->supports_pull_constants = true;
2660
2661 screen->has_exec_fence =
2662 intel_get_boolean(screen, I915_PARAM_HAS_EXEC_FENCE);
2663
2664 intel_screen_init_surface_formats(screen);
2665
2666 if (INTEL_DEBUG & (DEBUG_BATCH | DEBUG_SUBMIT)) {
2667 unsigned int caps = intel_get_integer(screen, I915_PARAM_HAS_SCHEDULER);
2668 if (caps) {
2669 fprintf(stderr, "Kernel scheduler detected: %08x\n", caps);
2670 if (caps & I915_SCHEDULER_CAP_PRIORITY)
2671 fprintf(stderr, " - User priority sorting enabled\n");
2672 if (caps & I915_SCHEDULER_CAP_PREEMPTION)
2673 fprintf(stderr, " - Preemption enabled\n");
2674 }
2675 }
2676
2677 return (const __DRIconfig**) intel_screen_make_configs(dri_screen);
2678 }
2679
2680 struct intel_buffer {
2681 __DRIbuffer base;
2682 struct brw_bo *bo;
2683 };
2684
2685 static __DRIbuffer *
2686 intelAllocateBuffer(__DRIscreen *dri_screen,
2687 unsigned attachment, unsigned format,
2688 int width, int height)
2689 {
2690 struct intel_buffer *intelBuffer;
2691 struct intel_screen *screen = dri_screen->driverPrivate;
2692
2693 assert(attachment == __DRI_BUFFER_FRONT_LEFT ||
2694 attachment == __DRI_BUFFER_BACK_LEFT);
2695
2696 intelBuffer = calloc(1, sizeof *intelBuffer);
2697 if (intelBuffer == NULL)
2698 return NULL;
2699
2700 /* The front and back buffers are color buffers, which are X tiled. GEN9+
2701 * supports Y tiled and compressed buffers, but there is no way to plumb that
2702 * through to here. */
2703 uint32_t pitch;
2704 int cpp = format / 8;
2705 intelBuffer->bo = brw_bo_alloc_tiled_2d(screen->bufmgr,
2706 "intelAllocateBuffer",
2707 width,
2708 height,
2709 cpp,
2710 I915_TILING_X, &pitch,
2711 BO_ALLOC_BUSY);
2712
2713 if (intelBuffer->bo == NULL) {
2714 free(intelBuffer);
2715 return NULL;
2716 }
2717
2718 brw_bo_flink(intelBuffer->bo, &intelBuffer->base.name);
2719
2720 intelBuffer->base.attachment = attachment;
2721 intelBuffer->base.cpp = cpp;
2722 intelBuffer->base.pitch = pitch;
2723
2724 return &intelBuffer->base;
2725 }
2726
2727 static void
2728 intelReleaseBuffer(__DRIscreen *dri_screen, __DRIbuffer *buffer)
2729 {
2730 struct intel_buffer *intelBuffer = (struct intel_buffer *) buffer;
2731
2732 brw_bo_unreference(intelBuffer->bo);
2733 free(intelBuffer);
2734 }
2735
2736 static const struct __DriverAPIRec brw_driver_api = {
2737 .InitScreen = intelInitScreen2,
2738 .DestroyScreen = intelDestroyScreen,
2739 .CreateContext = brwCreateContext,
2740 .DestroyContext = intelDestroyContext,
2741 .CreateBuffer = intelCreateBuffer,
2742 .DestroyBuffer = intelDestroyBuffer,
2743 .MakeCurrent = intelMakeCurrent,
2744 .UnbindContext = intelUnbindContext,
2745 .AllocateBuffer = intelAllocateBuffer,
2746 .ReleaseBuffer = intelReleaseBuffer
2747 };
2748
2749 static const struct __DRIDriverVtableExtensionRec brw_vtable = {
2750 .base = { __DRI_DRIVER_VTABLE, 1 },
2751 .vtable = &brw_driver_api,
2752 };
2753
2754 static const __DRIextension *brw_driver_extensions[] = {
2755 &driCoreExtension.base,
2756 &driImageDriverExtension.base,
2757 &driDRI2Extension.base,
2758 &brw_vtable.base,
2759 &brw_config_options.base,
2760 NULL
2761 };
2762
2763 PUBLIC const __DRIextension **__driDriverGetExtensions_i965(void)
2764 {
2765 globalDriverAPI = &brw_driver_api;
2766
2767 return brw_driver_extensions;
2768 }