i965: Record the presence of the kernel scheduler
[mesa.git] / src / mesa / drivers / dri / i965 / intel_screen.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <drm_fourcc.h>
27 #include <errno.h>
28 #include <time.h>
29 #include <unistd.h>
30 #include "main/context.h"
31 #include "main/framebuffer.h"
32 #include "main/renderbuffer.h"
33 #include "main/texobj.h"
34 #include "main/hash.h"
35 #include "main/fbobject.h"
36 #include "main/version.h"
37 #include "swrast/s_renderbuffer.h"
38 #include "util/ralloc.h"
39 #include "brw_defines.h"
40 #include "brw_state.h"
41 #include "compiler/nir/nir.h"
42
43 #include "utils.h"
44 #include "util/xmlpool.h"
45
46 static const __DRIconfigOptionsExtension brw_config_options = {
47 .base = { __DRI_CONFIG_OPTIONS, 1 },
48 .xml =
49 DRI_CONF_BEGIN
50 DRI_CONF_SECTION_PERFORMANCE
51 /* Options correspond to DRI_CONF_BO_REUSE_DISABLED,
52 * DRI_CONF_BO_REUSE_ALL
53 */
54 DRI_CONF_OPT_BEGIN_V(bo_reuse, enum, 1, "0:1")
55 DRI_CONF_DESC_BEGIN(en, "Buffer object reuse")
56 DRI_CONF_ENUM(0, "Disable buffer object reuse")
57 DRI_CONF_ENUM(1, "Enable reuse of all sizes of buffer objects")
58 DRI_CONF_DESC_END
59 DRI_CONF_OPT_END
60 DRI_CONF_MESA_NO_ERROR("false")
61 DRI_CONF_SECTION_END
62
63 DRI_CONF_SECTION_QUALITY
64 DRI_CONF_PRECISE_TRIG("false")
65
66 DRI_CONF_OPT_BEGIN(clamp_max_samples, int, -1)
67 DRI_CONF_DESC(en, "Clamp the value of GL_MAX_SAMPLES to the "
68 "given integer. If negative, then do not clamp.")
69 DRI_CONF_OPT_END
70 DRI_CONF_SECTION_END
71
72 DRI_CONF_SECTION_DEBUG
73 DRI_CONF_NO_RAST("false")
74 DRI_CONF_ALWAYS_FLUSH_BATCH("false")
75 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
76 DRI_CONF_DISABLE_THROTTLING("false")
77 DRI_CONF_FORCE_GLSL_EXTENSIONS_WARN("false")
78 DRI_CONF_FORCE_GLSL_VERSION(0)
79 DRI_CONF_DISABLE_GLSL_LINE_CONTINUATIONS("false")
80 DRI_CONF_DISABLE_BLEND_FUNC_EXTENDED("false")
81 DRI_CONF_DUAL_COLOR_BLEND_BY_LOCATION("false")
82 DRI_CONF_ALLOW_GLSL_EXTENSION_DIRECTIVE_MIDSHADER("false")
83 DRI_CONF_ALLOW_GLSL_BUILTIN_VARIABLE_REDECLARATION("false")
84 DRI_CONF_ALLOW_HIGHER_COMPAT_VERSION("false")
85 DRI_CONF_FORCE_GLSL_ABS_SQRT("false")
86
87 DRI_CONF_OPT_BEGIN_B(shader_precompile, "true")
88 DRI_CONF_DESC(en, "Perform code generation at shader link time.")
89 DRI_CONF_OPT_END
90 DRI_CONF_SECTION_END
91
92 DRI_CONF_SECTION_MISCELLANEOUS
93 DRI_CONF_GLSL_ZERO_INIT("false")
94 DRI_CONF_SECTION_END
95 DRI_CONF_END
96 };
97
98 #include "intel_batchbuffer.h"
99 #include "intel_buffers.h"
100 #include "brw_bufmgr.h"
101 #include "intel_fbo.h"
102 #include "intel_mipmap_tree.h"
103 #include "intel_screen.h"
104 #include "intel_tex.h"
105 #include "intel_image.h"
106
107 #include "brw_context.h"
108
109 #include "i915_drm.h"
110
111 /**
112 * For debugging purposes, this returns a time in seconds.
113 */
114 double
115 get_time(void)
116 {
117 struct timespec tp;
118
119 clock_gettime(CLOCK_MONOTONIC, &tp);
120
121 return tp.tv_sec + tp.tv_nsec / 1000000000.0;
122 }
123
124 static const __DRItexBufferExtension intelTexBufferExtension = {
125 .base = { __DRI_TEX_BUFFER, 3 },
126
127 .setTexBuffer = intelSetTexBuffer,
128 .setTexBuffer2 = intelSetTexBuffer2,
129 .releaseTexBuffer = NULL,
130 };
131
132 static void
133 intel_dri2_flush_with_flags(__DRIcontext *cPriv,
134 __DRIdrawable *dPriv,
135 unsigned flags,
136 enum __DRI2throttleReason reason)
137 {
138 struct brw_context *brw = cPriv->driverPrivate;
139
140 if (!brw)
141 return;
142
143 struct gl_context *ctx = &brw->ctx;
144
145 FLUSH_VERTICES(ctx, 0);
146
147 if (flags & __DRI2_FLUSH_DRAWABLE)
148 intel_resolve_for_dri2_flush(brw, dPriv);
149
150 if (reason == __DRI2_THROTTLE_SWAPBUFFER)
151 brw->need_swap_throttle = true;
152 if (reason == __DRI2_THROTTLE_FLUSHFRONT)
153 brw->need_flush_throttle = true;
154
155 intel_batchbuffer_flush(brw);
156 }
157
158 /**
159 * Provides compatibility with loaders that only support the older (version
160 * 1-3) flush interface.
161 *
162 * That includes libGL up to Mesa 9.0, and the X Server at least up to 1.13.
163 */
164 static void
165 intel_dri2_flush(__DRIdrawable *drawable)
166 {
167 intel_dri2_flush_with_flags(drawable->driContextPriv, drawable,
168 __DRI2_FLUSH_DRAWABLE,
169 __DRI2_THROTTLE_SWAPBUFFER);
170 }
171
172 static const struct __DRI2flushExtensionRec intelFlushExtension = {
173 .base = { __DRI2_FLUSH, 4 },
174
175 .flush = intel_dri2_flush,
176 .invalidate = dri2InvalidateDrawable,
177 .flush_with_flags = intel_dri2_flush_with_flags,
178 };
179
180 static const struct intel_image_format intel_image_formats[] = {
181 { __DRI_IMAGE_FOURCC_ARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
182 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
183
184 { __DRI_IMAGE_FOURCC_ABGR8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
185 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
186
187 { __DRI_IMAGE_FOURCC_SARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
188 { { 0, 0, 0, __DRI_IMAGE_FORMAT_SARGB8, 4 } } },
189
190 { __DRI_IMAGE_FOURCC_XRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
191 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB8888, 4 }, } },
192
193 { __DRI_IMAGE_FOURCC_XBGR8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
194 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 }, } },
195
196 { __DRI_IMAGE_FOURCC_ARGB1555, __DRI_IMAGE_COMPONENTS_RGBA, 1,
197 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB1555, 2 } } },
198
199 { __DRI_IMAGE_FOURCC_RGB565, __DRI_IMAGE_COMPONENTS_RGB, 1,
200 { { 0, 0, 0, __DRI_IMAGE_FORMAT_RGB565, 2 } } },
201
202 { __DRI_IMAGE_FOURCC_R8, __DRI_IMAGE_COMPONENTS_R, 1,
203 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 }, } },
204
205 { __DRI_IMAGE_FOURCC_R16, __DRI_IMAGE_COMPONENTS_R, 1,
206 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 1 }, } },
207
208 { __DRI_IMAGE_FOURCC_GR88, __DRI_IMAGE_COMPONENTS_RG, 1,
209 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 }, } },
210
211 { __DRI_IMAGE_FOURCC_GR1616, __DRI_IMAGE_COMPONENTS_RG, 1,
212 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR1616, 2 }, } },
213
214 { __DRI_IMAGE_FOURCC_YUV410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
215 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
216 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
217 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
218
219 { __DRI_IMAGE_FOURCC_YUV411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
220 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
221 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
222 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
223
224 { __DRI_IMAGE_FOURCC_YUV420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
225 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
226 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
227 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
228
229 { __DRI_IMAGE_FOURCC_YUV422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
230 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
231 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
232 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
233
234 { __DRI_IMAGE_FOURCC_YUV444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
235 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
236 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
237 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
238
239 { __DRI_IMAGE_FOURCC_YVU410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
240 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
241 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
242 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
243
244 { __DRI_IMAGE_FOURCC_YVU411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
245 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
246 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
247 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
248
249 { __DRI_IMAGE_FOURCC_YVU420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
250 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
251 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
252 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
253
254 { __DRI_IMAGE_FOURCC_YVU422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
255 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
256 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
257 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
258
259 { __DRI_IMAGE_FOURCC_YVU444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
260 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
261 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
262 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
263
264 { __DRI_IMAGE_FOURCC_NV12, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
265 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
266 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR88, 2 } } },
267
268 { __DRI_IMAGE_FOURCC_NV16, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
269 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
270 { 1, 1, 0, __DRI_IMAGE_FORMAT_GR88, 2 } } },
271
272 /* For YUYV and UYVY buffers, we set up two overlapping DRI images
273 * and treat them as planar buffers in the compositors.
274 * Plane 0 is GR88 and samples YU or YV pairs and places Y into
275 * the R component, while plane 1 is ARGB/ABGR and samples YUYV/UYVY
276 * clusters and places pairs and places U into the G component and
277 * V into A. This lets the texture sampler interpolate the Y
278 * components correctly when sampling from plane 0, and interpolate
279 * U and V correctly when sampling from plane 1. */
280 { __DRI_IMAGE_FOURCC_YUYV, __DRI_IMAGE_COMPONENTS_Y_XUXV, 2,
281 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
282 { 0, 1, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
283 { __DRI_IMAGE_FOURCC_UYVY, __DRI_IMAGE_COMPONENTS_Y_UXVX, 2,
284 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
285 { 0, 1, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } }
286 };
287
288 static const struct {
289 uint64_t modifier;
290 unsigned since_gen;
291 } supported_modifiers[] = {
292 { .modifier = DRM_FORMAT_MOD_LINEAR , .since_gen = 1 },
293 { .modifier = I915_FORMAT_MOD_X_TILED , .since_gen = 1 },
294 { .modifier = I915_FORMAT_MOD_Y_TILED , .since_gen = 6 },
295 { .modifier = I915_FORMAT_MOD_Y_TILED_CCS , .since_gen = 9 },
296 };
297
298 static bool
299 modifier_is_supported(const struct gen_device_info *devinfo,
300 const struct intel_image_format *fmt, int dri_format,
301 uint64_t modifier)
302 {
303 const struct isl_drm_modifier_info *modinfo =
304 isl_drm_modifier_get_info(modifier);
305 int i;
306
307 /* ISL had better know about the modifier */
308 if (!modinfo)
309 return false;
310
311 if (modinfo->aux_usage == ISL_AUX_USAGE_CCS_E) {
312 /* If INTEL_DEBUG=norbc is set, don't support any CCS_E modifiers */
313 if (unlikely(INTEL_DEBUG & DEBUG_NO_RBC))
314 return false;
315
316 /* CCS_E is not supported for planar images */
317 if (fmt && fmt->nplanes > 1)
318 return false;
319
320 if (fmt) {
321 assert(dri_format == 0);
322 dri_format = fmt->planes[0].dri_format;
323 }
324
325 mesa_format format = driImageFormatToGLFormat(dri_format);
326 format = _mesa_get_srgb_format_linear(format);
327 if (!isl_format_supports_ccs_e(devinfo,
328 brw_isl_format_for_mesa_format(format)))
329 return false;
330 }
331
332 for (i = 0; i < ARRAY_SIZE(supported_modifiers); i++) {
333 if (supported_modifiers[i].modifier != modifier)
334 continue;
335
336 return supported_modifiers[i].since_gen <= devinfo->gen;
337 }
338
339 return false;
340 }
341
342 static uint64_t
343 tiling_to_modifier(uint32_t tiling)
344 {
345 static const uint64_t map[] = {
346 [I915_TILING_NONE] = DRM_FORMAT_MOD_LINEAR,
347 [I915_TILING_X] = I915_FORMAT_MOD_X_TILED,
348 [I915_TILING_Y] = I915_FORMAT_MOD_Y_TILED,
349 };
350
351 assert(tiling < ARRAY_SIZE(map));
352
353 return map[tiling];
354 }
355
356 static void
357 intel_image_warn_if_unaligned(__DRIimage *image, const char *func)
358 {
359 uint32_t tiling, swizzle;
360 brw_bo_get_tiling(image->bo, &tiling, &swizzle);
361
362 if (tiling != I915_TILING_NONE && (image->offset & 0xfff)) {
363 _mesa_warning(NULL, "%s: offset 0x%08x not on tile boundary",
364 func, image->offset);
365 }
366 }
367
368 static const struct intel_image_format *
369 intel_image_format_lookup(int fourcc)
370 {
371 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
372 if (intel_image_formats[i].fourcc == fourcc)
373 return &intel_image_formats[i];
374 }
375
376 return NULL;
377 }
378
379 static boolean intel_lookup_fourcc(int dri_format, int *fourcc)
380 {
381 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
382 if (intel_image_formats[i].planes[0].dri_format == dri_format) {
383 *fourcc = intel_image_formats[i].fourcc;
384 return true;
385 }
386 }
387 return false;
388 }
389
390 static __DRIimage *
391 intel_allocate_image(struct intel_screen *screen, int dri_format,
392 void *loaderPrivate)
393 {
394 __DRIimage *image;
395
396 image = calloc(1, sizeof *image);
397 if (image == NULL)
398 return NULL;
399
400 image->screen = screen;
401 image->dri_format = dri_format;
402 image->offset = 0;
403
404 image->format = driImageFormatToGLFormat(dri_format);
405 if (dri_format != __DRI_IMAGE_FORMAT_NONE &&
406 image->format == MESA_FORMAT_NONE) {
407 free(image);
408 return NULL;
409 }
410
411 image->internal_format = _mesa_get_format_base_format(image->format);
412 image->data = loaderPrivate;
413
414 return image;
415 }
416
417 /**
418 * Sets up a DRIImage structure to point to a slice out of a miptree.
419 */
420 static void
421 intel_setup_image_from_mipmap_tree(struct brw_context *brw, __DRIimage *image,
422 struct intel_mipmap_tree *mt, GLuint level,
423 GLuint zoffset)
424 {
425 intel_miptree_make_shareable(brw, mt);
426
427 intel_miptree_check_level_layer(mt, level, zoffset);
428
429 image->width = minify(mt->surf.phys_level0_sa.width,
430 level - mt->first_level);
431 image->height = minify(mt->surf.phys_level0_sa.height,
432 level - mt->first_level);
433 image->pitch = mt->surf.row_pitch;
434
435 image->offset = intel_miptree_get_tile_offsets(mt, level, zoffset,
436 &image->tile_x,
437 &image->tile_y);
438
439 brw_bo_unreference(image->bo);
440 image->bo = mt->bo;
441 brw_bo_reference(mt->bo);
442 }
443
444 static __DRIimage *
445 intel_create_image_from_name(__DRIscreen *dri_screen,
446 int width, int height, int format,
447 int name, int pitch, void *loaderPrivate)
448 {
449 struct intel_screen *screen = dri_screen->driverPrivate;
450 __DRIimage *image;
451 int cpp;
452
453 image = intel_allocate_image(screen, format, loaderPrivate);
454 if (image == NULL)
455 return NULL;
456
457 if (image->format == MESA_FORMAT_NONE)
458 cpp = 1;
459 else
460 cpp = _mesa_get_format_bytes(image->format);
461
462 image->width = width;
463 image->height = height;
464 image->pitch = pitch * cpp;
465 image->bo = brw_bo_gem_create_from_name(screen->bufmgr, "image",
466 name);
467 if (!image->bo) {
468 free(image);
469 return NULL;
470 }
471 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
472
473 return image;
474 }
475
476 static __DRIimage *
477 intel_create_image_from_renderbuffer(__DRIcontext *context,
478 int renderbuffer, void *loaderPrivate)
479 {
480 __DRIimage *image;
481 struct brw_context *brw = context->driverPrivate;
482 struct gl_context *ctx = &brw->ctx;
483 struct gl_renderbuffer *rb;
484 struct intel_renderbuffer *irb;
485
486 rb = _mesa_lookup_renderbuffer(ctx, renderbuffer);
487 if (!rb) {
488 _mesa_error(ctx, GL_INVALID_OPERATION, "glRenderbufferExternalMESA");
489 return NULL;
490 }
491
492 irb = intel_renderbuffer(rb);
493 intel_miptree_make_shareable(brw, irb->mt);
494 image = calloc(1, sizeof *image);
495 if (image == NULL)
496 return NULL;
497
498 image->internal_format = rb->InternalFormat;
499 image->format = rb->Format;
500 image->modifier = tiling_to_modifier(
501 isl_tiling_to_i915_tiling(irb->mt->surf.tiling));
502 image->offset = 0;
503 image->data = loaderPrivate;
504 brw_bo_unreference(image->bo);
505 image->bo = irb->mt->bo;
506 brw_bo_reference(irb->mt->bo);
507 image->width = rb->Width;
508 image->height = rb->Height;
509 image->pitch = irb->mt->surf.row_pitch;
510 image->dri_format = driGLFormatToImageFormat(image->format);
511 image->has_depthstencil = irb->mt->stencil_mt? true : false;
512
513 rb->NeedsFinishRenderTexture = true;
514 return image;
515 }
516
517 static __DRIimage *
518 intel_create_image_from_texture(__DRIcontext *context, int target,
519 unsigned texture, int zoffset,
520 int level,
521 unsigned *error,
522 void *loaderPrivate)
523 {
524 __DRIimage *image;
525 struct brw_context *brw = context->driverPrivate;
526 struct gl_texture_object *obj;
527 struct intel_texture_object *iobj;
528 GLuint face = 0;
529
530 obj = _mesa_lookup_texture(&brw->ctx, texture);
531 if (!obj || obj->Target != target) {
532 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
533 return NULL;
534 }
535
536 if (target == GL_TEXTURE_CUBE_MAP)
537 face = zoffset;
538
539 _mesa_test_texobj_completeness(&brw->ctx, obj);
540 iobj = intel_texture_object(obj);
541 if (!obj->_BaseComplete || (level > 0 && !obj->_MipmapComplete)) {
542 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
543 return NULL;
544 }
545
546 if (level < obj->BaseLevel || level > obj->_MaxLevel) {
547 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
548 return NULL;
549 }
550
551 if (target == GL_TEXTURE_3D && obj->Image[face][level]->Depth < zoffset) {
552 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
553 return NULL;
554 }
555 image = calloc(1, sizeof *image);
556 if (image == NULL) {
557 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
558 return NULL;
559 }
560
561 image->internal_format = obj->Image[face][level]->InternalFormat;
562 image->format = obj->Image[face][level]->TexFormat;
563 image->modifier = tiling_to_modifier(
564 isl_tiling_to_i915_tiling(iobj->mt->surf.tiling));
565 image->data = loaderPrivate;
566 intel_setup_image_from_mipmap_tree(brw, image, iobj->mt, level, zoffset);
567 image->dri_format = driGLFormatToImageFormat(image->format);
568 image->has_depthstencil = iobj->mt->stencil_mt? true : false;
569 if (image->dri_format == MESA_FORMAT_NONE) {
570 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
571 free(image);
572 return NULL;
573 }
574
575 *error = __DRI_IMAGE_ERROR_SUCCESS;
576 return image;
577 }
578
579 static void
580 intel_destroy_image(__DRIimage *image)
581 {
582 brw_bo_unreference(image->bo);
583 free(image);
584 }
585
586 enum modifier_priority {
587 MODIFIER_PRIORITY_INVALID = 0,
588 MODIFIER_PRIORITY_LINEAR,
589 MODIFIER_PRIORITY_X,
590 MODIFIER_PRIORITY_Y,
591 MODIFIER_PRIORITY_Y_CCS,
592 };
593
594 const uint64_t priority_to_modifier[] = {
595 [MODIFIER_PRIORITY_INVALID] = DRM_FORMAT_MOD_INVALID,
596 [MODIFIER_PRIORITY_LINEAR] = DRM_FORMAT_MOD_LINEAR,
597 [MODIFIER_PRIORITY_X] = I915_FORMAT_MOD_X_TILED,
598 [MODIFIER_PRIORITY_Y] = I915_FORMAT_MOD_Y_TILED,
599 [MODIFIER_PRIORITY_Y_CCS] = I915_FORMAT_MOD_Y_TILED_CCS,
600 };
601
602 static uint64_t
603 select_best_modifier(struct gen_device_info *devinfo,
604 int dri_format,
605 const uint64_t *modifiers,
606 const unsigned count)
607 {
608 enum modifier_priority prio = MODIFIER_PRIORITY_INVALID;
609
610 for (int i = 0; i < count; i++) {
611 if (!modifier_is_supported(devinfo, NULL, dri_format, modifiers[i]))
612 continue;
613
614 switch (modifiers[i]) {
615 case I915_FORMAT_MOD_Y_TILED_CCS:
616 prio = MAX2(prio, MODIFIER_PRIORITY_Y_CCS);
617 break;
618 case I915_FORMAT_MOD_Y_TILED:
619 prio = MAX2(prio, MODIFIER_PRIORITY_Y);
620 break;
621 case I915_FORMAT_MOD_X_TILED:
622 prio = MAX2(prio, MODIFIER_PRIORITY_X);
623 break;
624 case DRM_FORMAT_MOD_LINEAR:
625 prio = MAX2(prio, MODIFIER_PRIORITY_LINEAR);
626 break;
627 case DRM_FORMAT_MOD_INVALID:
628 default:
629 break;
630 }
631 }
632
633 return priority_to_modifier[prio];
634 }
635
636 static __DRIimage *
637 intel_create_image_common(__DRIscreen *dri_screen,
638 int width, int height, int format,
639 unsigned int use,
640 const uint64_t *modifiers,
641 unsigned count,
642 void *loaderPrivate)
643 {
644 __DRIimage *image;
645 struct intel_screen *screen = dri_screen->driverPrivate;
646 uint64_t modifier = DRM_FORMAT_MOD_INVALID;
647 bool ok;
648
649 /* Callers of this may specify a modifier, or a dri usage, but not both. The
650 * newer modifier interface deprecates the older usage flags newer modifier
651 * interface deprecates the older usage flags.
652 */
653 assert(!(use && count));
654
655 if (use & __DRI_IMAGE_USE_CURSOR) {
656 if (width != 64 || height != 64)
657 return NULL;
658 modifier = DRM_FORMAT_MOD_LINEAR;
659 }
660
661 if (use & __DRI_IMAGE_USE_LINEAR)
662 modifier = DRM_FORMAT_MOD_LINEAR;
663
664 if (modifier == DRM_FORMAT_MOD_INVALID) {
665 if (modifiers) {
666 /* User requested specific modifiers */
667 modifier = select_best_modifier(&screen->devinfo, format,
668 modifiers, count);
669 if (modifier == DRM_FORMAT_MOD_INVALID)
670 return NULL;
671 } else {
672 /* Historically, X-tiled was the default, and so lack of modifier means
673 * X-tiled.
674 */
675 modifier = I915_FORMAT_MOD_X_TILED;
676 }
677 }
678
679 image = intel_allocate_image(screen, format, loaderPrivate);
680 if (image == NULL)
681 return NULL;
682
683 const struct isl_drm_modifier_info *mod_info =
684 isl_drm_modifier_get_info(modifier);
685
686 struct isl_surf surf;
687 ok = isl_surf_init(&screen->isl_dev, &surf,
688 .dim = ISL_SURF_DIM_2D,
689 .format = brw_isl_format_for_mesa_format(image->format),
690 .width = width,
691 .height = height,
692 .depth = 1,
693 .levels = 1,
694 .array_len = 1,
695 .samples = 1,
696 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
697 ISL_SURF_USAGE_TEXTURE_BIT |
698 ISL_SURF_USAGE_STORAGE_BIT,
699 .tiling_flags = (1 << mod_info->tiling));
700 assert(ok);
701 if (!ok) {
702 free(image);
703 return NULL;
704 }
705
706 struct isl_surf aux_surf;
707 if (mod_info->aux_usage == ISL_AUX_USAGE_CCS_E) {
708 ok = isl_surf_get_ccs_surf(&screen->isl_dev, &surf, &aux_surf, 0);
709 if (!ok) {
710 free(image);
711 return NULL;
712 }
713 } else {
714 assert(mod_info->aux_usage == ISL_AUX_USAGE_NONE);
715 aux_surf.size = 0;
716 }
717
718 /* We request that the bufmgr zero the buffer for us for two reasons:
719 *
720 * 1) If a buffer gets re-used from the pool, we don't want to leak random
721 * garbage from our process to some other.
722 *
723 * 2) For images with CCS_E, we want to ensure that the CCS starts off in
724 * a valid state. A CCS value of 0 indicates that the given block is
725 * in the pass-through state which is what we want.
726 */
727 image->bo = brw_bo_alloc_tiled(screen->bufmgr, "image",
728 surf.size + aux_surf.size,
729 isl_tiling_to_i915_tiling(mod_info->tiling),
730 surf.row_pitch, BO_ALLOC_ZEROED);
731 if (image->bo == NULL) {
732 free(image);
733 return NULL;
734 }
735 image->width = width;
736 image->height = height;
737 image->pitch = surf.row_pitch;
738 image->modifier = modifier;
739
740 if (aux_surf.size) {
741 image->aux_offset = surf.size;
742 image->aux_pitch = aux_surf.row_pitch;
743 }
744
745 return image;
746 }
747
748 static __DRIimage *
749 intel_create_image(__DRIscreen *dri_screen,
750 int width, int height, int format,
751 unsigned int use,
752 void *loaderPrivate)
753 {
754 return intel_create_image_common(dri_screen, width, height, format, use, NULL, 0,
755 loaderPrivate);
756 }
757
758 static __DRIimage *
759 intel_create_image_with_modifiers(__DRIscreen *dri_screen,
760 int width, int height, int format,
761 const uint64_t *modifiers,
762 const unsigned count,
763 void *loaderPrivate)
764 {
765 return intel_create_image_common(dri_screen, width, height, format, 0,
766 modifiers, count, loaderPrivate);
767 }
768
769 static GLboolean
770 intel_query_image(__DRIimage *image, int attrib, int *value)
771 {
772 switch (attrib) {
773 case __DRI_IMAGE_ATTRIB_STRIDE:
774 *value = image->pitch;
775 return true;
776 case __DRI_IMAGE_ATTRIB_HANDLE:
777 *value = image->bo->gem_handle;
778 return true;
779 case __DRI_IMAGE_ATTRIB_NAME:
780 return !brw_bo_flink(image->bo, (uint32_t *) value);
781 case __DRI_IMAGE_ATTRIB_FORMAT:
782 *value = image->dri_format;
783 return true;
784 case __DRI_IMAGE_ATTRIB_WIDTH:
785 *value = image->width;
786 return true;
787 case __DRI_IMAGE_ATTRIB_HEIGHT:
788 *value = image->height;
789 return true;
790 case __DRI_IMAGE_ATTRIB_COMPONENTS:
791 if (image->planar_format == NULL)
792 return false;
793 *value = image->planar_format->components;
794 return true;
795 case __DRI_IMAGE_ATTRIB_FD:
796 return !brw_bo_gem_export_to_prime(image->bo, value);
797 case __DRI_IMAGE_ATTRIB_FOURCC:
798 return intel_lookup_fourcc(image->dri_format, value);
799 case __DRI_IMAGE_ATTRIB_NUM_PLANES:
800 if (isl_drm_modifier_has_aux(image->modifier)) {
801 assert(!image->planar_format || image->planar_format->nplanes == 1);
802 *value = 2;
803 } else if (image->planar_format) {
804 *value = image->planar_format->nplanes;
805 } else {
806 *value = 1;
807 }
808 return true;
809 case __DRI_IMAGE_ATTRIB_OFFSET:
810 *value = image->offset;
811 return true;
812 case __DRI_IMAGE_ATTRIB_MODIFIER_LOWER:
813 *value = (image->modifier & 0xffffffff);
814 return true;
815 case __DRI_IMAGE_ATTRIB_MODIFIER_UPPER:
816 *value = ((image->modifier >> 32) & 0xffffffff);
817 return true;
818
819 default:
820 return false;
821 }
822 }
823
824 static GLboolean
825 intel_query_format_modifier_attribs(__DRIscreen *dri_screen,
826 uint32_t fourcc, uint64_t modifier,
827 int attrib, uint64_t *value)
828 {
829 struct intel_screen *screen = dri_screen->driverPrivate;
830 const struct intel_image_format *f = intel_image_format_lookup(fourcc);
831
832 if (!modifier_is_supported(&screen->devinfo, f, 0, modifier))
833 return false;
834
835 switch (attrib) {
836 case __DRI_IMAGE_FORMAT_MODIFIER_ATTRIB_PLANE_COUNT:
837 *value = isl_drm_modifier_has_aux(modifier) ? 2 : f->nplanes;
838 return true;
839
840 default:
841 return false;
842 }
843 }
844
845 static __DRIimage *
846 intel_dup_image(__DRIimage *orig_image, void *loaderPrivate)
847 {
848 __DRIimage *image;
849
850 image = calloc(1, sizeof *image);
851 if (image == NULL)
852 return NULL;
853
854 brw_bo_reference(orig_image->bo);
855 image->bo = orig_image->bo;
856 image->internal_format = orig_image->internal_format;
857 image->planar_format = orig_image->planar_format;
858 image->dri_format = orig_image->dri_format;
859 image->format = orig_image->format;
860 image->modifier = orig_image->modifier;
861 image->offset = orig_image->offset;
862 image->width = orig_image->width;
863 image->height = orig_image->height;
864 image->pitch = orig_image->pitch;
865 image->tile_x = orig_image->tile_x;
866 image->tile_y = orig_image->tile_y;
867 image->has_depthstencil = orig_image->has_depthstencil;
868 image->data = loaderPrivate;
869 image->dma_buf_imported = orig_image->dma_buf_imported;
870 image->aux_offset = orig_image->aux_offset;
871 image->aux_pitch = orig_image->aux_pitch;
872
873 memcpy(image->strides, orig_image->strides, sizeof(image->strides));
874 memcpy(image->offsets, orig_image->offsets, sizeof(image->offsets));
875
876 return image;
877 }
878
879 static GLboolean
880 intel_validate_usage(__DRIimage *image, unsigned int use)
881 {
882 if (use & __DRI_IMAGE_USE_CURSOR) {
883 if (image->width != 64 || image->height != 64)
884 return GL_FALSE;
885 }
886
887 return GL_TRUE;
888 }
889
890 static __DRIimage *
891 intel_create_image_from_names(__DRIscreen *dri_screen,
892 int width, int height, int fourcc,
893 int *names, int num_names,
894 int *strides, int *offsets,
895 void *loaderPrivate)
896 {
897 const struct intel_image_format *f = NULL;
898 __DRIimage *image;
899 int i, index;
900
901 if (dri_screen == NULL || names == NULL || num_names != 1)
902 return NULL;
903
904 f = intel_image_format_lookup(fourcc);
905 if (f == NULL)
906 return NULL;
907
908 image = intel_create_image_from_name(dri_screen, width, height,
909 __DRI_IMAGE_FORMAT_NONE,
910 names[0], strides[0],
911 loaderPrivate);
912
913 if (image == NULL)
914 return NULL;
915
916 image->planar_format = f;
917 for (i = 0; i < f->nplanes; i++) {
918 index = f->planes[i].buffer_index;
919 image->offsets[index] = offsets[index];
920 image->strides[index] = strides[index];
921 }
922
923 return image;
924 }
925
926 static __DRIimage *
927 intel_create_image_from_fds_common(__DRIscreen *dri_screen,
928 int width, int height, int fourcc,
929 uint64_t modifier, int *fds, int num_fds,
930 int *strides, int *offsets,
931 void *loaderPrivate)
932 {
933 struct intel_screen *screen = dri_screen->driverPrivate;
934 const struct intel_image_format *f;
935 __DRIimage *image;
936 int i, index;
937 bool ok;
938
939 if (fds == NULL || num_fds < 1)
940 return NULL;
941
942 f = intel_image_format_lookup(fourcc);
943 if (f == NULL)
944 return NULL;
945
946 if (modifier != DRM_FORMAT_MOD_INVALID &&
947 !modifier_is_supported(&screen->devinfo, f, 0, modifier))
948 return NULL;
949
950 if (f->nplanes == 1)
951 image = intel_allocate_image(screen, f->planes[0].dri_format,
952 loaderPrivate);
953 else
954 image = intel_allocate_image(screen, __DRI_IMAGE_FORMAT_NONE,
955 loaderPrivate);
956
957 if (image == NULL)
958 return NULL;
959
960 image->width = width;
961 image->height = height;
962 image->pitch = strides[0];
963
964 image->planar_format = f;
965
966 image->bo = brw_bo_gem_create_from_prime(screen->bufmgr, fds[0]);
967 if (image->bo == NULL) {
968 free(image);
969 return NULL;
970 }
971
972 /* We only support all planes from the same bo.
973 * brw_bo_gem_create_from_prime() should return the same pointer for all
974 * fds received here */
975 for (i = 1; i < num_fds; i++) {
976 struct brw_bo *aux = brw_bo_gem_create_from_prime(screen->bufmgr, fds[i]);
977 brw_bo_unreference(aux);
978 if (aux != image->bo) {
979 brw_bo_unreference(image->bo);
980 free(image);
981 return NULL;
982 }
983 }
984
985 if (modifier != DRM_FORMAT_MOD_INVALID)
986 image->modifier = modifier;
987 else
988 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
989
990 const struct isl_drm_modifier_info *mod_info =
991 isl_drm_modifier_get_info(image->modifier);
992
993 int size = 0;
994 struct isl_surf surf;
995 for (i = 0; i < f->nplanes; i++) {
996 index = f->planes[i].buffer_index;
997 image->offsets[index] = offsets[index];
998 image->strides[index] = strides[index];
999
1000 mesa_format format = driImageFormatToGLFormat(f->planes[i].dri_format);
1001
1002 ok = isl_surf_init(&screen->isl_dev, &surf,
1003 .dim = ISL_SURF_DIM_2D,
1004 .format = brw_isl_format_for_mesa_format(format),
1005 .width = image->width >> f->planes[i].width_shift,
1006 .height = image->height >> f->planes[i].height_shift,
1007 .depth = 1,
1008 .levels = 1,
1009 .array_len = 1,
1010 .samples = 1,
1011 .row_pitch = strides[index],
1012 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
1013 ISL_SURF_USAGE_TEXTURE_BIT |
1014 ISL_SURF_USAGE_STORAGE_BIT,
1015 .tiling_flags = (1 << mod_info->tiling));
1016 if (!ok) {
1017 brw_bo_unreference(image->bo);
1018 free(image);
1019 return NULL;
1020 }
1021
1022 const int end = offsets[index] + surf.size;
1023 if (size < end)
1024 size = end;
1025 }
1026
1027 if (mod_info->aux_usage == ISL_AUX_USAGE_CCS_E) {
1028 /* Even though we initialize surf in the loop above, we know that
1029 * anything with CCS_E will have exactly one plane so surf is properly
1030 * initialized when we get here.
1031 */
1032 assert(f->nplanes == 1);
1033
1034 image->aux_offset = offsets[1];
1035 image->aux_pitch = strides[1];
1036
1037 /* Scanout hardware requires that the CCS be placed after the main
1038 * surface in memory. We consider any CCS that is placed any earlier in
1039 * memory to be invalid and reject it.
1040 *
1041 * At some point in the future, this restriction may be relaxed if the
1042 * hardware becomes less strict but we may need a new modifier for that.
1043 */
1044 assert(size > 0);
1045 if (image->aux_offset < size) {
1046 brw_bo_unreference(image->bo);
1047 free(image);
1048 return NULL;
1049 }
1050
1051 struct isl_surf aux_surf;
1052 ok = isl_surf_get_ccs_surf(&screen->isl_dev, &surf, &aux_surf,
1053 image->aux_pitch);
1054 if (!ok) {
1055 brw_bo_unreference(image->bo);
1056 free(image);
1057 return NULL;
1058 }
1059
1060 const int end = image->aux_offset + aux_surf.size;
1061 if (size < end)
1062 size = end;
1063 } else {
1064 assert(mod_info->aux_usage == ISL_AUX_USAGE_NONE);
1065 }
1066
1067 /* Check that the requested image actually fits within the BO. 'size'
1068 * is already relative to the offsets, so we don't need to add that. */
1069 if (image->bo->size == 0) {
1070 image->bo->size = size;
1071 } else if (size > image->bo->size) {
1072 brw_bo_unreference(image->bo);
1073 free(image);
1074 return NULL;
1075 }
1076
1077 if (f->nplanes == 1) {
1078 image->offset = image->offsets[0];
1079 intel_image_warn_if_unaligned(image, __func__);
1080 }
1081
1082 return image;
1083 }
1084
1085 static __DRIimage *
1086 intel_create_image_from_fds(__DRIscreen *dri_screen,
1087 int width, int height, int fourcc,
1088 int *fds, int num_fds, int *strides, int *offsets,
1089 void *loaderPrivate)
1090 {
1091 return intel_create_image_from_fds_common(dri_screen, width, height, fourcc,
1092 DRM_FORMAT_MOD_INVALID,
1093 fds, num_fds, strides, offsets,
1094 loaderPrivate);
1095 }
1096
1097 static __DRIimage *
1098 intel_create_image_from_dma_bufs2(__DRIscreen *dri_screen,
1099 int width, int height,
1100 int fourcc, uint64_t modifier,
1101 int *fds, int num_fds,
1102 int *strides, int *offsets,
1103 enum __DRIYUVColorSpace yuv_color_space,
1104 enum __DRISampleRange sample_range,
1105 enum __DRIChromaSiting horizontal_siting,
1106 enum __DRIChromaSiting vertical_siting,
1107 unsigned *error,
1108 void *loaderPrivate)
1109 {
1110 __DRIimage *image;
1111 const struct intel_image_format *f = intel_image_format_lookup(fourcc);
1112
1113 if (!f) {
1114 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
1115 return NULL;
1116 }
1117
1118 image = intel_create_image_from_fds_common(dri_screen, width, height,
1119 fourcc, modifier,
1120 fds, num_fds, strides, offsets,
1121 loaderPrivate);
1122
1123 /*
1124 * Invalid parameters and any inconsistencies between are assumed to be
1125 * checked by the caller. Therefore besides unsupported formats one can fail
1126 * only in allocation.
1127 */
1128 if (!image) {
1129 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
1130 return NULL;
1131 }
1132
1133 image->dma_buf_imported = true;
1134 image->yuv_color_space = yuv_color_space;
1135 image->sample_range = sample_range;
1136 image->horizontal_siting = horizontal_siting;
1137 image->vertical_siting = vertical_siting;
1138
1139 *error = __DRI_IMAGE_ERROR_SUCCESS;
1140 return image;
1141 }
1142
1143 static __DRIimage *
1144 intel_create_image_from_dma_bufs(__DRIscreen *dri_screen,
1145 int width, int height, int fourcc,
1146 int *fds, int num_fds,
1147 int *strides, int *offsets,
1148 enum __DRIYUVColorSpace yuv_color_space,
1149 enum __DRISampleRange sample_range,
1150 enum __DRIChromaSiting horizontal_siting,
1151 enum __DRIChromaSiting vertical_siting,
1152 unsigned *error,
1153 void *loaderPrivate)
1154 {
1155 return intel_create_image_from_dma_bufs2(dri_screen, width, height,
1156 fourcc, DRM_FORMAT_MOD_INVALID,
1157 fds, num_fds, strides, offsets,
1158 yuv_color_space,
1159 sample_range,
1160 horizontal_siting,
1161 vertical_siting,
1162 error,
1163 loaderPrivate);
1164 }
1165
1166 static GLboolean
1167 intel_query_dma_buf_formats(__DRIscreen *screen, int max,
1168 int *formats, int *count)
1169 {
1170 int i, j = 0;
1171
1172 if (max == 0) {
1173 *count = ARRAY_SIZE(intel_image_formats) - 1; /* not SARGB */
1174 return true;
1175 }
1176
1177 for (i = 0; i < (ARRAY_SIZE(intel_image_formats)) && j < max; i++) {
1178 if (intel_image_formats[i].fourcc == __DRI_IMAGE_FOURCC_SARGB8888)
1179 continue;
1180 formats[j++] = intel_image_formats[i].fourcc;
1181 }
1182
1183 *count = j;
1184 return true;
1185 }
1186
1187 static GLboolean
1188 intel_query_dma_buf_modifiers(__DRIscreen *_screen, int fourcc, int max,
1189 uint64_t *modifiers,
1190 unsigned int *external_only,
1191 int *count)
1192 {
1193 struct intel_screen *screen = _screen->driverPrivate;
1194 const struct intel_image_format *f;
1195 int num_mods = 0, i;
1196
1197 f = intel_image_format_lookup(fourcc);
1198 if (f == NULL)
1199 return false;
1200
1201 for (i = 0; i < ARRAY_SIZE(supported_modifiers); i++) {
1202 uint64_t modifier = supported_modifiers[i].modifier;
1203 if (!modifier_is_supported(&screen->devinfo, f, 0, modifier))
1204 continue;
1205
1206 num_mods++;
1207 if (max == 0)
1208 continue;
1209
1210 modifiers[num_mods - 1] = modifier;
1211 if (num_mods >= max)
1212 break;
1213 }
1214
1215 if (external_only != NULL) {
1216 for (i = 0; i < num_mods && i < max; i++) {
1217 if (f->components == __DRI_IMAGE_COMPONENTS_Y_U_V ||
1218 f->components == __DRI_IMAGE_COMPONENTS_Y_UV ||
1219 f->components == __DRI_IMAGE_COMPONENTS_Y_XUXV) {
1220 external_only[i] = GL_TRUE;
1221 }
1222 else {
1223 external_only[i] = GL_FALSE;
1224 }
1225 }
1226 }
1227
1228 *count = num_mods;
1229 return true;
1230 }
1231
1232 static __DRIimage *
1233 intel_from_planar(__DRIimage *parent, int plane, void *loaderPrivate)
1234 {
1235 int width, height, offset, stride, dri_format, index;
1236 const struct intel_image_format *f;
1237 __DRIimage *image;
1238
1239 if (parent == NULL) {
1240 return NULL;
1241 } else if (parent->planar_format == NULL) {
1242 const bool is_aux =
1243 isl_drm_modifier_has_aux(parent->modifier) && plane == 1;
1244 if (!is_aux)
1245 return NULL;
1246
1247 width = parent->width;
1248 height = parent->height;
1249 dri_format = parent->dri_format;
1250 offset = parent->aux_offset;
1251 stride = parent->aux_pitch;
1252 } else {
1253 /* Planar formats don't support aux buffers/images */
1254 assert(!isl_drm_modifier_has_aux(parent->modifier));
1255 f = parent->planar_format;
1256
1257 if (plane >= f->nplanes)
1258 return NULL;
1259
1260 width = parent->width >> f->planes[plane].width_shift;
1261 height = parent->height >> f->planes[plane].height_shift;
1262 dri_format = f->planes[plane].dri_format;
1263 index = f->planes[plane].buffer_index;
1264 offset = parent->offsets[index];
1265 stride = parent->strides[index];
1266
1267 if (offset + height * stride > parent->bo->size) {
1268 _mesa_warning(NULL, "intel_create_sub_image: subimage out of bounds");
1269 return NULL;
1270 }
1271 }
1272
1273 image = intel_allocate_image(parent->screen, dri_format, loaderPrivate);
1274 if (image == NULL)
1275 return NULL;
1276
1277 image->bo = parent->bo;
1278 brw_bo_reference(parent->bo);
1279 image->modifier = parent->modifier;
1280
1281 image->width = width;
1282 image->height = height;
1283 image->pitch = stride;
1284 image->offset = offset;
1285
1286 intel_image_warn_if_unaligned(image, __func__);
1287
1288 return image;
1289 }
1290
1291 static const __DRIimageExtension intelImageExtension = {
1292 .base = { __DRI_IMAGE, 16 },
1293
1294 .createImageFromName = intel_create_image_from_name,
1295 .createImageFromRenderbuffer = intel_create_image_from_renderbuffer,
1296 .destroyImage = intel_destroy_image,
1297 .createImage = intel_create_image,
1298 .queryImage = intel_query_image,
1299 .dupImage = intel_dup_image,
1300 .validateUsage = intel_validate_usage,
1301 .createImageFromNames = intel_create_image_from_names,
1302 .fromPlanar = intel_from_planar,
1303 .createImageFromTexture = intel_create_image_from_texture,
1304 .createImageFromFds = intel_create_image_from_fds,
1305 .createImageFromDmaBufs = intel_create_image_from_dma_bufs,
1306 .blitImage = NULL,
1307 .getCapabilities = NULL,
1308 .mapImage = NULL,
1309 .unmapImage = NULL,
1310 .createImageWithModifiers = intel_create_image_with_modifiers,
1311 .createImageFromDmaBufs2 = intel_create_image_from_dma_bufs2,
1312 .queryDmaBufFormats = intel_query_dma_buf_formats,
1313 .queryDmaBufModifiers = intel_query_dma_buf_modifiers,
1314 .queryDmaBufFormatModifierAttribs = intel_query_format_modifier_attribs,
1315 };
1316
1317 static uint64_t
1318 get_aperture_size(int fd)
1319 {
1320 struct drm_i915_gem_get_aperture aperture;
1321
1322 if (drmIoctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture) != 0)
1323 return 0;
1324
1325 return aperture.aper_size;
1326 }
1327
1328 static int
1329 brw_query_renderer_integer(__DRIscreen *dri_screen,
1330 int param, unsigned int *value)
1331 {
1332 const struct intel_screen *const screen =
1333 (struct intel_screen *) dri_screen->driverPrivate;
1334
1335 switch (param) {
1336 case __DRI2_RENDERER_VENDOR_ID:
1337 value[0] = 0x8086;
1338 return 0;
1339 case __DRI2_RENDERER_DEVICE_ID:
1340 value[0] = screen->deviceID;
1341 return 0;
1342 case __DRI2_RENDERER_ACCELERATED:
1343 value[0] = 1;
1344 return 0;
1345 case __DRI2_RENDERER_VIDEO_MEMORY: {
1346 /* Once a batch uses more than 75% of the maximum mappable size, we
1347 * assume that there's some fragmentation, and we start doing extra
1348 * flushing, etc. That's the big cliff apps will care about.
1349 */
1350 const unsigned gpu_mappable_megabytes =
1351 screen->aperture_threshold / (1024 * 1024);
1352
1353 const long system_memory_pages = sysconf(_SC_PHYS_PAGES);
1354 const long system_page_size = sysconf(_SC_PAGE_SIZE);
1355
1356 if (system_memory_pages <= 0 || system_page_size <= 0)
1357 return -1;
1358
1359 const uint64_t system_memory_bytes = (uint64_t) system_memory_pages
1360 * (uint64_t) system_page_size;
1361
1362 const unsigned system_memory_megabytes =
1363 (unsigned) (system_memory_bytes / (1024 * 1024));
1364
1365 value[0] = MIN2(system_memory_megabytes, gpu_mappable_megabytes);
1366 return 0;
1367 }
1368 case __DRI2_RENDERER_UNIFIED_MEMORY_ARCHITECTURE:
1369 value[0] = 1;
1370 return 0;
1371 case __DRI2_RENDERER_HAS_TEXTURE_3D:
1372 value[0] = 1;
1373 return 0;
1374 default:
1375 return driQueryRendererIntegerCommon(dri_screen, param, value);
1376 }
1377
1378 return -1;
1379 }
1380
1381 static int
1382 brw_query_renderer_string(__DRIscreen *dri_screen,
1383 int param, const char **value)
1384 {
1385 const struct intel_screen *screen =
1386 (struct intel_screen *) dri_screen->driverPrivate;
1387
1388 switch (param) {
1389 case __DRI2_RENDERER_VENDOR_ID:
1390 value[0] = brw_vendor_string;
1391 return 0;
1392 case __DRI2_RENDERER_DEVICE_ID:
1393 value[0] = brw_get_renderer_string(screen);
1394 return 0;
1395 default:
1396 break;
1397 }
1398
1399 return -1;
1400 }
1401
1402 static const __DRI2rendererQueryExtension intelRendererQueryExtension = {
1403 .base = { __DRI2_RENDERER_QUERY, 1 },
1404
1405 .queryInteger = brw_query_renderer_integer,
1406 .queryString = brw_query_renderer_string
1407 };
1408
1409 static const __DRIrobustnessExtension dri2Robustness = {
1410 .base = { __DRI2_ROBUSTNESS, 1 }
1411 };
1412
1413 static const __DRIextension *screenExtensions[] = {
1414 &intelTexBufferExtension.base,
1415 &intelFenceExtension.base,
1416 &intelFlushExtension.base,
1417 &intelImageExtension.base,
1418 &intelRendererQueryExtension.base,
1419 &dri2ConfigQueryExtension.base,
1420 &dri2NoErrorExtension.base,
1421 NULL
1422 };
1423
1424 static const __DRIextension *intelRobustScreenExtensions[] = {
1425 &intelTexBufferExtension.base,
1426 &intelFenceExtension.base,
1427 &intelFlushExtension.base,
1428 &intelImageExtension.base,
1429 &intelRendererQueryExtension.base,
1430 &dri2ConfigQueryExtension.base,
1431 &dri2Robustness.base,
1432 &dri2NoErrorExtension.base,
1433 NULL
1434 };
1435
1436 static int
1437 intel_get_param(struct intel_screen *screen, int param, int *value)
1438 {
1439 int ret = 0;
1440 struct drm_i915_getparam gp;
1441
1442 memset(&gp, 0, sizeof(gp));
1443 gp.param = param;
1444 gp.value = value;
1445
1446 if (drmIoctl(screen->driScrnPriv->fd, DRM_IOCTL_I915_GETPARAM, &gp) == -1) {
1447 ret = -errno;
1448 if (ret != -EINVAL)
1449 _mesa_warning(NULL, "drm_i915_getparam: %d", ret);
1450 }
1451
1452 return ret;
1453 }
1454
1455 static bool
1456 intel_get_boolean(struct intel_screen *screen, int param)
1457 {
1458 int value = 0;
1459 return (intel_get_param(screen, param, &value) == 0) && value;
1460 }
1461
1462 static int
1463 intel_get_integer(struct intel_screen *screen, int param)
1464 {
1465 int value = -1;
1466
1467 if (intel_get_param(screen, param, &value) == 0)
1468 return value;
1469
1470 return -1;
1471 }
1472
1473 static void
1474 intelDestroyScreen(__DRIscreen * sPriv)
1475 {
1476 struct intel_screen *screen = sPriv->driverPrivate;
1477
1478 brw_bufmgr_destroy(screen->bufmgr);
1479 driDestroyOptionInfo(&screen->optionCache);
1480
1481 ralloc_free(screen);
1482 sPriv->driverPrivate = NULL;
1483 }
1484
1485
1486 /**
1487 * Create a gl_framebuffer and attach it to __DRIdrawable::driverPrivate.
1488 *
1489 *_This implements driDriverAPI::createNewDrawable, which the DRI layer calls
1490 * when creating a EGLSurface, GLXDrawable, or GLXPixmap. Despite the name,
1491 * this does not allocate GPU memory.
1492 */
1493 static GLboolean
1494 intelCreateBuffer(__DRIscreen *dri_screen,
1495 __DRIdrawable * driDrawPriv,
1496 const struct gl_config * mesaVis, GLboolean isPixmap)
1497 {
1498 struct intel_renderbuffer *rb;
1499 struct intel_screen *screen = (struct intel_screen *)
1500 dri_screen->driverPrivate;
1501 mesa_format rgbFormat;
1502 unsigned num_samples =
1503 intel_quantize_num_samples(screen, mesaVis->samples);
1504
1505 if (isPixmap)
1506 return false;
1507
1508 struct gl_framebuffer *fb = CALLOC_STRUCT(gl_framebuffer);
1509 if (!fb)
1510 return false;
1511
1512 _mesa_initialize_window_framebuffer(fb, mesaVis);
1513
1514 if (screen->winsys_msaa_samples_override != -1) {
1515 num_samples = screen->winsys_msaa_samples_override;
1516 fb->Visual.samples = num_samples;
1517 }
1518
1519 if (mesaVis->redBits == 5) {
1520 rgbFormat = mesaVis->redMask == 0x1f ? MESA_FORMAT_R5G6B5_UNORM
1521 : MESA_FORMAT_B5G6R5_UNORM;
1522 } else if (mesaVis->sRGBCapable) {
1523 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1524 : MESA_FORMAT_B8G8R8A8_SRGB;
1525 } else if (mesaVis->alphaBits == 0) {
1526 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8X8_UNORM
1527 : MESA_FORMAT_B8G8R8X8_UNORM;
1528 } else {
1529 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1530 : MESA_FORMAT_B8G8R8A8_SRGB;
1531 fb->Visual.sRGBCapable = true;
1532 }
1533
1534 /* setup the hardware-based renderbuffers */
1535 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1536 _mesa_attach_and_own_rb(fb, BUFFER_FRONT_LEFT, &rb->Base.Base);
1537
1538 if (mesaVis->doubleBufferMode) {
1539 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1540 _mesa_attach_and_own_rb(fb, BUFFER_BACK_LEFT, &rb->Base.Base);
1541 }
1542
1543 /*
1544 * Assert here that the gl_config has an expected depth/stencil bit
1545 * combination: one of d24/s8, d16/s0, d0/s0. (See intelInitScreen2(),
1546 * which constructs the advertised configs.)
1547 */
1548 if (mesaVis->depthBits == 24) {
1549 assert(mesaVis->stencilBits == 8);
1550
1551 if (screen->devinfo.has_hiz_and_separate_stencil) {
1552 rb = intel_create_private_renderbuffer(screen,
1553 MESA_FORMAT_Z24_UNORM_X8_UINT,
1554 num_samples);
1555 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1556 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_S_UINT8,
1557 num_samples);
1558 _mesa_attach_and_own_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1559 } else {
1560 /*
1561 * Use combined depth/stencil. Note that the renderbuffer is
1562 * attached to two attachment points.
1563 */
1564 rb = intel_create_private_renderbuffer(screen,
1565 MESA_FORMAT_Z24_UNORM_S8_UINT,
1566 num_samples);
1567 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1568 _mesa_attach_and_reference_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1569 }
1570 }
1571 else if (mesaVis->depthBits == 16) {
1572 assert(mesaVis->stencilBits == 0);
1573 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_Z_UNORM16,
1574 num_samples);
1575 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1576 }
1577 else {
1578 assert(mesaVis->depthBits == 0);
1579 assert(mesaVis->stencilBits == 0);
1580 }
1581
1582 /* now add any/all software-based renderbuffers we may need */
1583 _swrast_add_soft_renderbuffers(fb,
1584 false, /* never sw color */
1585 false, /* never sw depth */
1586 false, /* never sw stencil */
1587 mesaVis->accumRedBits > 0,
1588 false, /* never sw alpha */
1589 false /* never sw aux */ );
1590 driDrawPriv->driverPrivate = fb;
1591
1592 return true;
1593 }
1594
1595 static void
1596 intelDestroyBuffer(__DRIdrawable * driDrawPriv)
1597 {
1598 struct gl_framebuffer *fb = driDrawPriv->driverPrivate;
1599
1600 _mesa_reference_framebuffer(&fb, NULL);
1601 }
1602
1603 static void
1604 intel_detect_sseu(struct intel_screen *screen)
1605 {
1606 assert(screen->devinfo.gen >= 8);
1607 int ret;
1608
1609 screen->subslice_total = -1;
1610 screen->eu_total = -1;
1611
1612 ret = intel_get_param(screen, I915_PARAM_SUBSLICE_TOTAL,
1613 &screen->subslice_total);
1614 if (ret < 0 && ret != -EINVAL)
1615 goto err_out;
1616
1617 ret = intel_get_param(screen,
1618 I915_PARAM_EU_TOTAL, &screen->eu_total);
1619 if (ret < 0 && ret != -EINVAL)
1620 goto err_out;
1621
1622 /* Without this information, we cannot get the right Braswell brandstrings,
1623 * and we have to use conservative numbers for GPGPU on many platforms, but
1624 * otherwise, things will just work.
1625 */
1626 if (screen->subslice_total < 1 || screen->eu_total < 1)
1627 _mesa_warning(NULL,
1628 "Kernel 4.1 required to properly query GPU properties.\n");
1629
1630 return;
1631
1632 err_out:
1633 screen->subslice_total = -1;
1634 screen->eu_total = -1;
1635 _mesa_warning(NULL, "Failed to query GPU properties (%s).\n", strerror(-ret));
1636 }
1637
1638 static bool
1639 intel_init_bufmgr(struct intel_screen *screen)
1640 {
1641 __DRIscreen *dri_screen = screen->driScrnPriv;
1642
1643 if (getenv("INTEL_NO_HW") != NULL)
1644 screen->no_hw = true;
1645
1646 screen->bufmgr = brw_bufmgr_init(&screen->devinfo, dri_screen->fd);
1647 if (screen->bufmgr == NULL) {
1648 fprintf(stderr, "[%s:%u] Error initializing buffer manager.\n",
1649 __func__, __LINE__);
1650 return false;
1651 }
1652
1653 if (!intel_get_boolean(screen, I915_PARAM_HAS_WAIT_TIMEOUT)) {
1654 fprintf(stderr, "[%s: %u] Kernel 3.6 required.\n", __func__, __LINE__);
1655 return false;
1656 }
1657
1658 return true;
1659 }
1660
1661 static bool
1662 intel_detect_swizzling(struct intel_screen *screen)
1663 {
1664 struct brw_bo *buffer;
1665 unsigned flags = 0;
1666 uint32_t aligned_pitch;
1667 uint32_t tiling = I915_TILING_X;
1668 uint32_t swizzle_mode = 0;
1669
1670 buffer = brw_bo_alloc_tiled_2d(screen->bufmgr, "swizzle test",
1671 64, 64, 4, tiling, &aligned_pitch, flags);
1672 if (buffer == NULL)
1673 return false;
1674
1675 brw_bo_get_tiling(buffer, &tiling, &swizzle_mode);
1676 brw_bo_unreference(buffer);
1677
1678 if (swizzle_mode == I915_BIT_6_SWIZZLE_NONE)
1679 return false;
1680 else
1681 return true;
1682 }
1683
1684 static int
1685 intel_detect_timestamp(struct intel_screen *screen)
1686 {
1687 uint64_t dummy = 0, last = 0;
1688 int upper, lower, loops;
1689
1690 /* On 64bit systems, some old kernels trigger a hw bug resulting in the
1691 * TIMESTAMP register being shifted and the low 32bits always zero.
1692 *
1693 * More recent kernels offer an interface to read the full 36bits
1694 * everywhere.
1695 */
1696 if (brw_reg_read(screen->bufmgr, TIMESTAMP | 1, &dummy) == 0)
1697 return 3;
1698
1699 /* Determine if we have a 32bit or 64bit kernel by inspecting the
1700 * upper 32bits for a rapidly changing timestamp.
1701 */
1702 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &last))
1703 return 0;
1704
1705 upper = lower = 0;
1706 for (loops = 0; loops < 10; loops++) {
1707 /* The TIMESTAMP should change every 80ns, so several round trips
1708 * through the kernel should be enough to advance it.
1709 */
1710 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &dummy))
1711 return 0;
1712
1713 upper += (dummy >> 32) != (last >> 32);
1714 if (upper > 1) /* beware 32bit counter overflow */
1715 return 2; /* upper dword holds the low 32bits of the timestamp */
1716
1717 lower += (dummy & 0xffffffff) != (last & 0xffffffff);
1718 if (lower > 1)
1719 return 1; /* timestamp is unshifted */
1720
1721 last = dummy;
1722 }
1723
1724 /* No advancement? No timestamp! */
1725 return 0;
1726 }
1727
1728 /**
1729 * Test if we can use MI_LOAD_REGISTER_MEM from an untrusted batchbuffer.
1730 *
1731 * Some combinations of hardware and kernel versions allow this feature,
1732 * while others don't. Instead of trying to enumerate every case, just
1733 * try and write a register and see if works.
1734 */
1735 static bool
1736 intel_detect_pipelined_register(struct intel_screen *screen,
1737 int reg, uint32_t expected_value, bool reset)
1738 {
1739 if (screen->no_hw)
1740 return false;
1741
1742 struct brw_bo *results, *bo;
1743 uint32_t *batch;
1744 uint32_t offset = 0;
1745 void *map;
1746 bool success = false;
1747
1748 /* Create a zero'ed temporary buffer for reading our results */
1749 results = brw_bo_alloc(screen->bufmgr, "registers", 4096, 0);
1750 if (results == NULL)
1751 goto err;
1752
1753 bo = brw_bo_alloc(screen->bufmgr, "batchbuffer", 4096, 0);
1754 if (bo == NULL)
1755 goto err_results;
1756
1757 map = brw_bo_map(NULL, bo, MAP_WRITE);
1758 if (!map)
1759 goto err_batch;
1760
1761 batch = map;
1762
1763 /* Write the register. */
1764 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1765 *batch++ = reg;
1766 *batch++ = expected_value;
1767
1768 /* Save the register's value back to the buffer. */
1769 *batch++ = MI_STORE_REGISTER_MEM | (3 - 2);
1770 *batch++ = reg;
1771 struct drm_i915_gem_relocation_entry reloc = {
1772 .offset = (char *) batch - (char *) map,
1773 .delta = offset * sizeof(uint32_t),
1774 .target_handle = results->gem_handle,
1775 .read_domains = I915_GEM_DOMAIN_INSTRUCTION,
1776 .write_domain = I915_GEM_DOMAIN_INSTRUCTION,
1777 };
1778 *batch++ = reloc.presumed_offset + reloc.delta;
1779
1780 /* And afterwards clear the register */
1781 if (reset) {
1782 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1783 *batch++ = reg;
1784 *batch++ = 0;
1785 }
1786
1787 *batch++ = MI_BATCH_BUFFER_END;
1788
1789 struct drm_i915_gem_exec_object2 exec_objects[2] = {
1790 {
1791 .handle = results->gem_handle,
1792 },
1793 {
1794 .handle = bo->gem_handle,
1795 .relocation_count = 1,
1796 .relocs_ptr = (uintptr_t) &reloc,
1797 }
1798 };
1799
1800 struct drm_i915_gem_execbuffer2 execbuf = {
1801 .buffers_ptr = (uintptr_t) exec_objects,
1802 .buffer_count = 2,
1803 .batch_len = ALIGN((char *) batch - (char *) map, 8),
1804 .flags = I915_EXEC_RENDER,
1805 };
1806
1807 /* Don't bother with error checking - if the execbuf fails, the
1808 * value won't be written and we'll just report that there's no access.
1809 */
1810 __DRIscreen *dri_screen = screen->driScrnPriv;
1811 drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf);
1812
1813 /* Check whether the value got written. */
1814 void *results_map = brw_bo_map(NULL, results, MAP_READ);
1815 if (results_map) {
1816 success = *((uint32_t *)results_map + offset) == expected_value;
1817 brw_bo_unmap(results);
1818 }
1819
1820 err_batch:
1821 brw_bo_unreference(bo);
1822 err_results:
1823 brw_bo_unreference(results);
1824 err:
1825 return success;
1826 }
1827
1828 static bool
1829 intel_detect_pipelined_so(struct intel_screen *screen)
1830 {
1831 const struct gen_device_info *devinfo = &screen->devinfo;
1832
1833 /* Supposedly, Broadwell just works. */
1834 if (devinfo->gen >= 8)
1835 return true;
1836
1837 if (devinfo->gen <= 6)
1838 return false;
1839
1840 /* See the big explanation about command parser versions below */
1841 if (screen->cmd_parser_version >= (devinfo->is_haswell ? 7 : 2))
1842 return true;
1843
1844 /* We use SO_WRITE_OFFSET0 since you're supposed to write it (unlike the
1845 * statistics registers), and we already reset it to zero before using it.
1846 */
1847 return intel_detect_pipelined_register(screen,
1848 GEN7_SO_WRITE_OFFSET(0),
1849 0x1337d0d0,
1850 false);
1851 }
1852
1853 /**
1854 * Return array of MSAA modes supported by the hardware. The array is
1855 * zero-terminated and sorted in decreasing order.
1856 */
1857 const int*
1858 intel_supported_msaa_modes(const struct intel_screen *screen)
1859 {
1860 static const int gen9_modes[] = {16, 8, 4, 2, 0, -1};
1861 static const int gen8_modes[] = {8, 4, 2, 0, -1};
1862 static const int gen7_modes[] = {8, 4, 0, -1};
1863 static const int gen6_modes[] = {4, 0, -1};
1864 static const int gen4_modes[] = {0, -1};
1865
1866 if (screen->devinfo.gen >= 9) {
1867 return gen9_modes;
1868 } else if (screen->devinfo.gen >= 8) {
1869 return gen8_modes;
1870 } else if (screen->devinfo.gen >= 7) {
1871 return gen7_modes;
1872 } else if (screen->devinfo.gen == 6) {
1873 return gen6_modes;
1874 } else {
1875 return gen4_modes;
1876 }
1877 }
1878
1879 static unsigned
1880 intel_loader_get_cap(const __DRIscreen *dri_screen, enum dri_loader_cap cap)
1881 {
1882 if (dri_screen->dri2.loader && dri_screen->dri2.loader->base.version >= 4 &&
1883 dri_screen->dri2.loader->getCapability)
1884 return dri_screen->dri2.loader->getCapability(dri_screen->loaderPrivate, cap);
1885
1886 if (dri_screen->image.loader && dri_screen->image.loader->base.version >= 2 &&
1887 dri_screen->image.loader->getCapability)
1888 return dri_screen->image.loader->getCapability(dri_screen->loaderPrivate, cap);
1889
1890 return 0;
1891 }
1892
1893 static __DRIconfig**
1894 intel_screen_make_configs(__DRIscreen *dri_screen)
1895 {
1896 static const mesa_format formats[] = {
1897 MESA_FORMAT_B5G6R5_UNORM,
1898 MESA_FORMAT_B8G8R8A8_UNORM,
1899 MESA_FORMAT_B8G8R8X8_UNORM,
1900
1901 /* The 32-bit RGBA format must not precede the 32-bit BGRA format.
1902 * Likewise for RGBX and BGRX. Otherwise, the GLX client and the GLX
1903 * server may disagree on which format the GLXFBConfig represents,
1904 * resulting in swapped color channels.
1905 *
1906 * The problem, as of 2017-05-30:
1907 * When matching a GLXFBConfig to a __DRIconfig, GLX ignores the channel
1908 * order and chooses the first __DRIconfig with the expected channel
1909 * sizes. Specifically, GLX compares the GLXFBConfig's and __DRIconfig's
1910 * __DRI_ATTRIB_{CHANNEL}_SIZE but ignores __DRI_ATTRIB_{CHANNEL}_MASK.
1911 *
1912 * EGL does not suffer from this problem. It correctly compares the
1913 * channel masks when matching EGLConfig to __DRIconfig.
1914 */
1915
1916 /* Required by Android, for HAL_PIXEL_FORMAT_RGBA_8888. */
1917 MESA_FORMAT_R8G8B8A8_UNORM,
1918
1919 /* Required by Android, for HAL_PIXEL_FORMAT_RGBX_8888. */
1920 MESA_FORMAT_R8G8B8X8_UNORM,
1921 };
1922
1923 /* GLX_SWAP_COPY_OML is not supported due to page flipping. */
1924 static const GLenum back_buffer_modes[] = {
1925 __DRI_ATTRIB_SWAP_UNDEFINED, __DRI_ATTRIB_SWAP_NONE
1926 };
1927
1928 static const uint8_t singlesample_samples[1] = {0};
1929
1930 struct intel_screen *screen = dri_screen->driverPrivate;
1931 const struct gen_device_info *devinfo = &screen->devinfo;
1932 uint8_t depth_bits[4], stencil_bits[4];
1933 __DRIconfig **configs = NULL;
1934
1935 /* Expose only BGRA ordering if the loader doesn't support RGBA ordering. */
1936 unsigned num_formats;
1937 if (intel_loader_get_cap(dri_screen, DRI_LOADER_CAP_RGBA_ORDERING))
1938 num_formats = ARRAY_SIZE(formats);
1939 else
1940 num_formats = 3;
1941
1942 /* Generate singlesample configs without accumulation buffer. */
1943 for (unsigned i = 0; i < num_formats; i++) {
1944 __DRIconfig **new_configs;
1945 int num_depth_stencil_bits = 2;
1946
1947 /* Starting with DRI2 protocol version 1.1 we can request a depth/stencil
1948 * buffer that has a different number of bits per pixel than the color
1949 * buffer, gen >= 6 supports this.
1950 */
1951 depth_bits[0] = 0;
1952 stencil_bits[0] = 0;
1953
1954 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1955 depth_bits[1] = 16;
1956 stencil_bits[1] = 0;
1957 if (devinfo->gen >= 6) {
1958 depth_bits[2] = 24;
1959 stencil_bits[2] = 8;
1960 num_depth_stencil_bits = 3;
1961 }
1962 } else {
1963 depth_bits[1] = 24;
1964 stencil_bits[1] = 8;
1965 }
1966
1967 new_configs = driCreateConfigs(formats[i],
1968 depth_bits,
1969 stencil_bits,
1970 num_depth_stencil_bits,
1971 back_buffer_modes, 2,
1972 singlesample_samples, 1,
1973 false, false);
1974 configs = driConcatConfigs(configs, new_configs);
1975 }
1976
1977 /* Generate the minimum possible set of configs that include an
1978 * accumulation buffer.
1979 */
1980 for (unsigned i = 0; i < num_formats; i++) {
1981 __DRIconfig **new_configs;
1982
1983 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1984 depth_bits[0] = 16;
1985 stencil_bits[0] = 0;
1986 } else {
1987 depth_bits[0] = 24;
1988 stencil_bits[0] = 8;
1989 }
1990
1991 new_configs = driCreateConfigs(formats[i],
1992 depth_bits, stencil_bits, 1,
1993 back_buffer_modes, 1,
1994 singlesample_samples, 1,
1995 true, false);
1996 configs = driConcatConfigs(configs, new_configs);
1997 }
1998
1999 /* Generate multisample configs.
2000 *
2001 * This loop breaks early, and hence is a no-op, on gen < 6.
2002 *
2003 * Multisample configs must follow the singlesample configs in order to
2004 * work around an X server bug present in 1.12. The X server chooses to
2005 * associate the first listed RGBA888-Z24S8 config, regardless of its
2006 * sample count, with the 32-bit depth visual used for compositing.
2007 *
2008 * Only doublebuffer configs with GLX_SWAP_UNDEFINED_OML behavior are
2009 * supported. Singlebuffer configs are not supported because no one wants
2010 * them.
2011 */
2012 for (unsigned i = 0; i < num_formats; i++) {
2013 if (devinfo->gen < 6)
2014 break;
2015
2016 __DRIconfig **new_configs;
2017 const int num_depth_stencil_bits = 2;
2018 int num_msaa_modes = 0;
2019 const uint8_t *multisample_samples = NULL;
2020
2021 depth_bits[0] = 0;
2022 stencil_bits[0] = 0;
2023
2024 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2025 depth_bits[1] = 16;
2026 stencil_bits[1] = 0;
2027 } else {
2028 depth_bits[1] = 24;
2029 stencil_bits[1] = 8;
2030 }
2031
2032 if (devinfo->gen >= 9) {
2033 static const uint8_t multisample_samples_gen9[] = {2, 4, 8, 16};
2034 multisample_samples = multisample_samples_gen9;
2035 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen9);
2036 } else if (devinfo->gen == 8) {
2037 static const uint8_t multisample_samples_gen8[] = {2, 4, 8};
2038 multisample_samples = multisample_samples_gen8;
2039 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen8);
2040 } else if (devinfo->gen == 7) {
2041 static const uint8_t multisample_samples_gen7[] = {4, 8};
2042 multisample_samples = multisample_samples_gen7;
2043 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen7);
2044 } else if (devinfo->gen == 6) {
2045 static const uint8_t multisample_samples_gen6[] = {4};
2046 multisample_samples = multisample_samples_gen6;
2047 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen6);
2048 }
2049
2050 new_configs = driCreateConfigs(formats[i],
2051 depth_bits,
2052 stencil_bits,
2053 num_depth_stencil_bits,
2054 back_buffer_modes, 1,
2055 multisample_samples,
2056 num_msaa_modes,
2057 false, false);
2058 configs = driConcatConfigs(configs, new_configs);
2059 }
2060
2061 if (configs == NULL) {
2062 fprintf(stderr, "[%s:%u] Error creating FBConfig!\n", __func__,
2063 __LINE__);
2064 return NULL;
2065 }
2066
2067 return configs;
2068 }
2069
2070 static void
2071 set_max_gl_versions(struct intel_screen *screen)
2072 {
2073 __DRIscreen *dri_screen = screen->driScrnPriv;
2074 const bool has_astc = screen->devinfo.gen >= 9;
2075
2076 switch (screen->devinfo.gen) {
2077 case 10:
2078 case 9:
2079 case 8:
2080 dri_screen->max_gl_core_version = 45;
2081 dri_screen->max_gl_compat_version = 30;
2082 dri_screen->max_gl_es1_version = 11;
2083 dri_screen->max_gl_es2_version = has_astc ? 32 : 31;
2084 break;
2085 case 7:
2086 dri_screen->max_gl_core_version = 33;
2087 if (can_do_pipelined_register_writes(screen)) {
2088 dri_screen->max_gl_core_version = 42;
2089 if (screen->devinfo.is_haswell && can_do_compute_dispatch(screen))
2090 dri_screen->max_gl_core_version = 43;
2091 if (screen->devinfo.is_haswell && can_do_mi_math_and_lrr(screen))
2092 dri_screen->max_gl_core_version = 45;
2093 }
2094 dri_screen->max_gl_compat_version = 30;
2095 dri_screen->max_gl_es1_version = 11;
2096 dri_screen->max_gl_es2_version = screen->devinfo.is_haswell ? 31 : 30;
2097 break;
2098 case 6:
2099 dri_screen->max_gl_core_version = 33;
2100 dri_screen->max_gl_compat_version = 30;
2101 dri_screen->max_gl_es1_version = 11;
2102 dri_screen->max_gl_es2_version = 30;
2103 break;
2104 case 5:
2105 case 4:
2106 dri_screen->max_gl_core_version = 0;
2107 dri_screen->max_gl_compat_version = 21;
2108 dri_screen->max_gl_es1_version = 11;
2109 dri_screen->max_gl_es2_version = 20;
2110 break;
2111 default:
2112 unreachable("unrecognized intel_screen::gen");
2113 }
2114 }
2115
2116 /**
2117 * Return the revision (generally the revid field of the PCI header) of the
2118 * graphics device.
2119 *
2120 * XXX: This function is useful to keep around even if it is not currently in
2121 * use. It is necessary for new platforms and revision specific workarounds or
2122 * features. Please don't remove it so that we know it at least continues to
2123 * build.
2124 */
2125 static __attribute__((__unused__)) int
2126 brw_get_revision(int fd)
2127 {
2128 struct drm_i915_getparam gp;
2129 int revision;
2130 int ret;
2131
2132 memset(&gp, 0, sizeof(gp));
2133 gp.param = I915_PARAM_REVISION;
2134 gp.value = &revision;
2135
2136 ret = drmCommandWriteRead(fd, DRM_I915_GETPARAM, &gp, sizeof(gp));
2137 if (ret)
2138 revision = -1;
2139
2140 return revision;
2141 }
2142
2143 static void
2144 shader_debug_log_mesa(void *data, const char *fmt, ...)
2145 {
2146 struct brw_context *brw = (struct brw_context *)data;
2147 va_list args;
2148
2149 va_start(args, fmt);
2150 GLuint msg_id = 0;
2151 _mesa_gl_vdebug(&brw->ctx, &msg_id,
2152 MESA_DEBUG_SOURCE_SHADER_COMPILER,
2153 MESA_DEBUG_TYPE_OTHER,
2154 MESA_DEBUG_SEVERITY_NOTIFICATION, fmt, args);
2155 va_end(args);
2156 }
2157
2158 static void
2159 shader_perf_log_mesa(void *data, const char *fmt, ...)
2160 {
2161 struct brw_context *brw = (struct brw_context *)data;
2162
2163 va_list args;
2164 va_start(args, fmt);
2165
2166 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
2167 va_list args_copy;
2168 va_copy(args_copy, args);
2169 vfprintf(stderr, fmt, args_copy);
2170 va_end(args_copy);
2171 }
2172
2173 if (brw->perf_debug) {
2174 GLuint msg_id = 0;
2175 _mesa_gl_vdebug(&brw->ctx, &msg_id,
2176 MESA_DEBUG_SOURCE_SHADER_COMPILER,
2177 MESA_DEBUG_TYPE_PERFORMANCE,
2178 MESA_DEBUG_SEVERITY_MEDIUM, fmt, args);
2179 }
2180 va_end(args);
2181 }
2182
2183 static int
2184 parse_devid_override(const char *devid_override)
2185 {
2186 static const struct {
2187 const char *name;
2188 int pci_id;
2189 } name_map[] = {
2190 { "brw", 0x2a02 },
2191 { "g4x", 0x2a42 },
2192 { "ilk", 0x0042 },
2193 { "snb", 0x0126 },
2194 { "ivb", 0x016a },
2195 { "hsw", 0x0d2e },
2196 { "byt", 0x0f33 },
2197 { "bdw", 0x162e },
2198 { "chv", 0x22B3 },
2199 { "skl", 0x1912 },
2200 { "bxt", 0x5A85 },
2201 { "kbl", 0x5912 },
2202 { "glk", 0x3185 },
2203 { "cnl", 0x5a52 },
2204 };
2205
2206 for (unsigned i = 0; i < ARRAY_SIZE(name_map); i++) {
2207 if (!strcmp(name_map[i].name, devid_override))
2208 return name_map[i].pci_id;
2209 }
2210
2211 return strtol(devid_override, NULL, 0);
2212 }
2213
2214 /**
2215 * Get the PCI ID for the device. This can be overridden by setting the
2216 * INTEL_DEVID_OVERRIDE environment variable to the desired ID.
2217 *
2218 * Returns -1 on ioctl failure.
2219 */
2220 static int
2221 get_pci_device_id(struct intel_screen *screen)
2222 {
2223 if (geteuid() == getuid()) {
2224 char *devid_override = getenv("INTEL_DEVID_OVERRIDE");
2225 if (devid_override) {
2226 screen->no_hw = true;
2227 return parse_devid_override(devid_override);
2228 }
2229 }
2230
2231 return intel_get_integer(screen, I915_PARAM_CHIPSET_ID);
2232 }
2233
2234 /**
2235 * This is the driver specific part of the createNewScreen entry point.
2236 * Called when using DRI2.
2237 *
2238 * \return the struct gl_config supported by this driver
2239 */
2240 static const
2241 __DRIconfig **intelInitScreen2(__DRIscreen *dri_screen)
2242 {
2243 struct intel_screen *screen;
2244
2245 if (dri_screen->image.loader) {
2246 } else if (dri_screen->dri2.loader->base.version <= 2 ||
2247 dri_screen->dri2.loader->getBuffersWithFormat == NULL) {
2248 fprintf(stderr,
2249 "\nERROR! DRI2 loader with getBuffersWithFormat() "
2250 "support required\n");
2251 return NULL;
2252 }
2253
2254 /* Allocate the private area */
2255 screen = rzalloc(NULL, struct intel_screen);
2256 if (!screen) {
2257 fprintf(stderr, "\nERROR! Allocating private area failed\n");
2258 return NULL;
2259 }
2260 /* parse information in __driConfigOptions */
2261 driParseOptionInfo(&screen->optionCache, brw_config_options.xml);
2262
2263 screen->driScrnPriv = dri_screen;
2264 dri_screen->driverPrivate = (void *) screen;
2265
2266 screen->deviceID = get_pci_device_id(screen);
2267
2268 if (!gen_get_device_info(screen->deviceID, &screen->devinfo))
2269 return NULL;
2270
2271 if (!intel_init_bufmgr(screen))
2272 return NULL;
2273
2274 const struct gen_device_info *devinfo = &screen->devinfo;
2275
2276 brw_process_intel_debug_variable();
2277
2278 if ((INTEL_DEBUG & DEBUG_SHADER_TIME) && devinfo->gen < 7) {
2279 fprintf(stderr,
2280 "shader_time debugging requires gen7 (Ivybridge) or better.\n");
2281 INTEL_DEBUG &= ~DEBUG_SHADER_TIME;
2282 }
2283
2284 if (intel_get_integer(screen, I915_PARAM_MMAP_GTT_VERSION) >= 1) {
2285 /* Theorectically unlimited! At least for individual objects...
2286 *
2287 * Currently the entire (global) address space for all GTT maps is
2288 * limited to 64bits. That is all objects on the system that are
2289 * setup for GTT mmapping must fit within 64bits. An attempt to use
2290 * one that exceeds the limit with fail in brw_bo_map_gtt().
2291 *
2292 * Long before we hit that limit, we will be practically limited by
2293 * that any single object must fit in physical memory (RAM). The upper
2294 * limit on the CPU's address space is currently 48bits (Skylake), of
2295 * which only 39bits can be physical memory. (The GPU itself also has
2296 * a 48bit addressable virtual space.) We can fit over 32 million
2297 * objects of the current maximum allocable size before running out
2298 * of mmap space.
2299 */
2300 screen->max_gtt_map_object_size = UINT64_MAX;
2301 } else {
2302 /* Estimate the size of the mappable aperture into the GTT. There's an
2303 * ioctl to get the whole GTT size, but not one to get the mappable subset.
2304 * It turns out it's basically always 256MB, though some ancient hardware
2305 * was smaller.
2306 */
2307 uint32_t gtt_size = 256 * 1024 * 1024;
2308
2309 /* We don't want to map two objects such that a memcpy between them would
2310 * just fault one mapping in and then the other over and over forever. So
2311 * we would need to divide the GTT size by 2. Additionally, some GTT is
2312 * taken up by things like the framebuffer and the ringbuffer and such, so
2313 * be more conservative.
2314 */
2315 screen->max_gtt_map_object_size = gtt_size / 4;
2316 }
2317
2318 screen->aperture_threshold = get_aperture_size(dri_screen->fd) * 3 / 4;
2319
2320 screen->hw_has_swizzling = intel_detect_swizzling(screen);
2321 screen->hw_has_timestamp = intel_detect_timestamp(screen);
2322
2323 isl_device_init(&screen->isl_dev, &screen->devinfo,
2324 screen->hw_has_swizzling);
2325
2326 /* GENs prior to 8 do not support EU/Subslice info */
2327 if (devinfo->gen >= 8) {
2328 intel_detect_sseu(screen);
2329 } else if (devinfo->gen == 7) {
2330 screen->subslice_total = 1 << (devinfo->gt - 1);
2331 }
2332
2333 /* Gen7-7.5 kernel requirements / command parser saga:
2334 *
2335 * - pre-v3.16:
2336 * Haswell and Baytrail cannot use any privileged batchbuffer features.
2337 *
2338 * Ivybridge has aliasing PPGTT on by default, which accidentally marks
2339 * all batches secure, allowing them to use any feature with no checking.
2340 * This is effectively equivalent to a command parser version of
2341 * \infinity - everything is possible.
2342 *
2343 * The command parser does not exist, and querying the version will
2344 * return -EINVAL.
2345 *
2346 * - v3.16:
2347 * The kernel enables the command parser by default, for systems with
2348 * aliasing PPGTT enabled (Ivybridge and Haswell). However, the
2349 * hardware checker is still enabled, so Haswell and Baytrail cannot
2350 * do anything.
2351 *
2352 * Ivybridge goes from "everything is possible" to "only what the
2353 * command parser allows" (if the user boots with i915.cmd_parser=0,
2354 * then everything is possible again). We can only safely use features
2355 * allowed by the supported command parser version.
2356 *
2357 * Annoyingly, I915_PARAM_CMD_PARSER_VERSION reports the static version
2358 * implemented by the kernel, even if it's turned off. So, checking
2359 * for version > 0 does not mean that you can write registers. We have
2360 * to try it and see. The version does, however, indicate the age of
2361 * the kernel.
2362 *
2363 * Instead of matching the hardware checker's behavior of converting
2364 * privileged commands to MI_NOOP, it makes execbuf2 start returning
2365 * -EINVAL, making it dangerous to try and use privileged features.
2366 *
2367 * Effective command parser versions:
2368 * - Haswell: 0 (reporting 1, writes don't work)
2369 * - Baytrail: 0 (reporting 1, writes don't work)
2370 * - Ivybridge: 1 (enabled) or infinite (disabled)
2371 *
2372 * - v3.17:
2373 * Baytrail aliasing PPGTT is enabled, making it like Ivybridge:
2374 * effectively version 1 (enabled) or infinite (disabled).
2375 *
2376 * - v3.19: f1f55cc0556031c8ee3fe99dae7251e78b9b653b
2377 * Command parser v2 supports predicate writes.
2378 *
2379 * - Haswell: 0 (reporting 1, writes don't work)
2380 * - Baytrail: 2 (enabled) or infinite (disabled)
2381 * - Ivybridge: 2 (enabled) or infinite (disabled)
2382 *
2383 * So version >= 2 is enough to know that Ivybridge and Baytrail
2384 * will work. Haswell still can't do anything.
2385 *
2386 * - v4.0: Version 3 happened. Largely not relevant.
2387 *
2388 * - v4.1: 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
2389 * L3 config registers are properly saved and restored as part
2390 * of the hardware context. We can approximately detect this point
2391 * in time by checking if I915_PARAM_REVISION is recognized - it
2392 * landed in a later commit, but in the same release cycle.
2393 *
2394 * - v4.2: 245054a1fe33c06ad233e0d58a27ec7b64db9284
2395 * Command parser finally gains secure batch promotion. On Haswell,
2396 * the hardware checker gets disabled, which finally allows it to do
2397 * privileged commands.
2398 *
2399 * I915_PARAM_CMD_PARSER_VERSION reports 3. Effective versions:
2400 * - Haswell: 3 (enabled) or 0 (disabled)
2401 * - Baytrail: 3 (enabled) or infinite (disabled)
2402 * - Ivybridge: 3 (enabled) or infinite (disabled)
2403 *
2404 * Unfortunately, detecting this point in time is tricky, because
2405 * no version bump happened when this important change occurred.
2406 * On Haswell, if we can write any register, then the kernel is at
2407 * least this new, and we can start trusting the version number.
2408 *
2409 * - v4.4: 2bbe6bbb0dc94fd4ce287bdac9e1bd184e23057b and
2410 * Command parser reaches version 4, allowing access to Haswell
2411 * atomic scratch and chicken3 registers. If version >= 4, we know
2412 * the kernel is new enough to support privileged features on all
2413 * hardware. However, the user might have disabled it...and the
2414 * kernel will still report version 4. So we still have to guess
2415 * and check.
2416 *
2417 * - v4.4: 7b9748cb513a6bef4af87b79f0da3ff7e8b56cd8
2418 * Command parser v5 whitelists indirect compute shader dispatch
2419 * registers, needed for OpenGL 4.3 and later.
2420 *
2421 * - v4.8:
2422 * Command parser v7 lets us use MI_MATH on Haswell.
2423 *
2424 * Additionally, the kernel begins reporting version 0 when
2425 * the command parser is disabled, allowing us to skip the
2426 * guess-and-check step on Haswell. Unfortunately, this also
2427 * means that we can no longer use it as an indicator of the
2428 * age of the kernel.
2429 */
2430 if (intel_get_param(screen, I915_PARAM_CMD_PARSER_VERSION,
2431 &screen->cmd_parser_version) < 0) {
2432 /* Command parser does not exist - getparam is unrecognized */
2433 screen->cmd_parser_version = 0;
2434 }
2435
2436 /* Kernel 4.13 retuired for exec object capture */
2437 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_CAPTURE)) {
2438 screen->kernel_features |= KERNEL_ALLOWS_EXEC_CAPTURE;
2439 }
2440
2441 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_BATCH_FIRST)) {
2442 screen->kernel_features |= KERNEL_ALLOWS_EXEC_BATCH_FIRST;
2443 }
2444
2445 if (!intel_detect_pipelined_so(screen)) {
2446 /* We can't do anything, so the effective version is 0. */
2447 screen->cmd_parser_version = 0;
2448 } else {
2449 screen->kernel_features |= KERNEL_ALLOWS_SOL_OFFSET_WRITES;
2450 }
2451
2452 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 2)
2453 screen->kernel_features |= KERNEL_ALLOWS_PREDICATE_WRITES;
2454
2455 /* Haswell requires command parser version 4 in order to have L3
2456 * atomic scratch1 and chicken3 bits
2457 */
2458 if (devinfo->is_haswell && screen->cmd_parser_version >= 4) {
2459 screen->kernel_features |=
2460 KERNEL_ALLOWS_HSW_SCRATCH1_AND_ROW_CHICKEN3;
2461 }
2462
2463 /* Haswell requires command parser version 6 in order to write to the
2464 * MI_MATH GPR registers, and version 7 in order to use
2465 * MI_LOAD_REGISTER_REG (which all users of MI_MATH use).
2466 */
2467 if (devinfo->gen >= 8 ||
2468 (devinfo->is_haswell && screen->cmd_parser_version >= 7)) {
2469 screen->kernel_features |= KERNEL_ALLOWS_MI_MATH_AND_LRR;
2470 }
2471
2472 /* Gen7 needs at least command parser version 5 to support compute */
2473 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 5)
2474 screen->kernel_features |= KERNEL_ALLOWS_COMPUTE_DISPATCH;
2475
2476 const char *force_msaa = getenv("INTEL_FORCE_MSAA");
2477 if (force_msaa) {
2478 screen->winsys_msaa_samples_override =
2479 intel_quantize_num_samples(screen, atoi(force_msaa));
2480 printf("Forcing winsys sample count to %d\n",
2481 screen->winsys_msaa_samples_override);
2482 } else {
2483 screen->winsys_msaa_samples_override = -1;
2484 }
2485
2486 set_max_gl_versions(screen);
2487
2488 /* Notification of GPU resets requires hardware contexts and a kernel new
2489 * enough to support DRM_IOCTL_I915_GET_RESET_STATS. If the ioctl is
2490 * supported, calling it with a context of 0 will either generate EPERM or
2491 * no error. If the ioctl is not supported, it always generate EINVAL.
2492 * Use this to determine whether to advertise the __DRI2_ROBUSTNESS
2493 * extension to the loader.
2494 *
2495 * Don't even try on pre-Gen6, since we don't attempt to use contexts there.
2496 */
2497 if (devinfo->gen >= 6) {
2498 struct drm_i915_reset_stats stats;
2499 memset(&stats, 0, sizeof(stats));
2500
2501 const int ret = drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats);
2502
2503 screen->has_context_reset_notification =
2504 (ret != -1 || errno != EINVAL);
2505 }
2506
2507 dri_screen->extensions = !screen->has_context_reset_notification
2508 ? screenExtensions : intelRobustScreenExtensions;
2509
2510 screen->compiler = brw_compiler_create(screen, devinfo);
2511 screen->compiler->shader_debug_log = shader_debug_log_mesa;
2512 screen->compiler->shader_perf_log = shader_perf_log_mesa;
2513 screen->compiler->constant_buffer_0_is_relative = devinfo->gen < 8;
2514 screen->compiler->supports_pull_constants = true;
2515
2516 screen->has_exec_fence =
2517 intel_get_boolean(screen, I915_PARAM_HAS_EXEC_FENCE);
2518
2519 intel_screen_init_surface_formats(screen);
2520
2521 if (INTEL_DEBUG & (DEBUG_BATCH | DEBUG_SUBMIT)) {
2522 unsigned int caps = intel_get_integer(screen, I915_PARAM_HAS_SCHEDULER);
2523 if (caps) {
2524 fprintf(stderr, "Kernel scheduler detected: %08x\n", caps);
2525 if (caps & I915_SCHEDULER_CAP_PRIORITY)
2526 fprintf(stderr, " - User priority sorting enabled\n");
2527 if (caps & I915_SCHEDULER_CAP_PREEMPTION)
2528 fprintf(stderr, " - Preemption enabled\n");
2529 }
2530 }
2531
2532 return (const __DRIconfig**) intel_screen_make_configs(dri_screen);
2533 }
2534
2535 struct intel_buffer {
2536 __DRIbuffer base;
2537 struct brw_bo *bo;
2538 };
2539
2540 static __DRIbuffer *
2541 intelAllocateBuffer(__DRIscreen *dri_screen,
2542 unsigned attachment, unsigned format,
2543 int width, int height)
2544 {
2545 struct intel_buffer *intelBuffer;
2546 struct intel_screen *screen = dri_screen->driverPrivate;
2547
2548 assert(attachment == __DRI_BUFFER_FRONT_LEFT ||
2549 attachment == __DRI_BUFFER_BACK_LEFT);
2550
2551 intelBuffer = calloc(1, sizeof *intelBuffer);
2552 if (intelBuffer == NULL)
2553 return NULL;
2554
2555 /* The front and back buffers are color buffers, which are X tiled. GEN9+
2556 * supports Y tiled and compressed buffers, but there is no way to plumb that
2557 * through to here. */
2558 uint32_t pitch;
2559 int cpp = format / 8;
2560 intelBuffer->bo = brw_bo_alloc_tiled_2d(screen->bufmgr,
2561 "intelAllocateBuffer",
2562 width,
2563 height,
2564 cpp,
2565 I915_TILING_X, &pitch,
2566 BO_ALLOC_BUSY);
2567
2568 if (intelBuffer->bo == NULL) {
2569 free(intelBuffer);
2570 return NULL;
2571 }
2572
2573 brw_bo_flink(intelBuffer->bo, &intelBuffer->base.name);
2574
2575 intelBuffer->base.attachment = attachment;
2576 intelBuffer->base.cpp = cpp;
2577 intelBuffer->base.pitch = pitch;
2578
2579 return &intelBuffer->base;
2580 }
2581
2582 static void
2583 intelReleaseBuffer(__DRIscreen *dri_screen, __DRIbuffer *buffer)
2584 {
2585 struct intel_buffer *intelBuffer = (struct intel_buffer *) buffer;
2586
2587 brw_bo_unreference(intelBuffer->bo);
2588 free(intelBuffer);
2589 }
2590
2591 static const struct __DriverAPIRec brw_driver_api = {
2592 .InitScreen = intelInitScreen2,
2593 .DestroyScreen = intelDestroyScreen,
2594 .CreateContext = brwCreateContext,
2595 .DestroyContext = intelDestroyContext,
2596 .CreateBuffer = intelCreateBuffer,
2597 .DestroyBuffer = intelDestroyBuffer,
2598 .MakeCurrent = intelMakeCurrent,
2599 .UnbindContext = intelUnbindContext,
2600 .AllocateBuffer = intelAllocateBuffer,
2601 .ReleaseBuffer = intelReleaseBuffer
2602 };
2603
2604 static const struct __DRIDriverVtableExtensionRec brw_vtable = {
2605 .base = { __DRI_DRIVER_VTABLE, 1 },
2606 .vtable = &brw_driver_api,
2607 };
2608
2609 static const __DRIextension *brw_driver_extensions[] = {
2610 &driCoreExtension.base,
2611 &driImageDriverExtension.base,
2612 &driDRI2Extension.base,
2613 &brw_vtable.base,
2614 &brw_config_options.base,
2615 NULL
2616 };
2617
2618 PUBLIC const __DRIextension **__driDriverGetExtensions_i965(void)
2619 {
2620 globalDriverAPI = &brw_driver_api;
2621
2622 return brw_driver_extensions;
2623 }