i965: Document the sad story of the kernel command parser.
[mesa.git] / src / mesa / drivers / dri / i965 / intel_screen.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <errno.h>
27 #include <time.h>
28 #include <unistd.h>
29 #include "main/context.h"
30 #include "main/framebuffer.h"
31 #include "main/renderbuffer.h"
32 #include "main/texobj.h"
33 #include "main/hash.h"
34 #include "main/fbobject.h"
35 #include "main/version.h"
36 #include "swrast/s_renderbuffer.h"
37 #include "util/ralloc.h"
38 #include "brw_defines.h"
39 #include "compiler/nir/nir.h"
40
41 #include "utils.h"
42 #include "xmlpool.h"
43
44 #ifndef DRM_FORMAT_MOD_INVALID
45 #define DRM_FORMAT_MOD_INVALID ((1ULL<<56) - 1)
46 #endif
47
48 static const __DRIconfigOptionsExtension brw_config_options = {
49 .base = { __DRI_CONFIG_OPTIONS, 1 },
50 .xml =
51 DRI_CONF_BEGIN
52 DRI_CONF_SECTION_PERFORMANCE
53 DRI_CONF_VBLANK_MODE(DRI_CONF_VBLANK_ALWAYS_SYNC)
54 /* Options correspond to DRI_CONF_BO_REUSE_DISABLED,
55 * DRI_CONF_BO_REUSE_ALL
56 */
57 DRI_CONF_OPT_BEGIN_V(bo_reuse, enum, 1, "0:1")
58 DRI_CONF_DESC_BEGIN(en, "Buffer object reuse")
59 DRI_CONF_ENUM(0, "Disable buffer object reuse")
60 DRI_CONF_ENUM(1, "Enable reuse of all sizes of buffer objects")
61 DRI_CONF_DESC_END
62 DRI_CONF_OPT_END
63 DRI_CONF_SECTION_END
64
65 DRI_CONF_SECTION_QUALITY
66 DRI_CONF_FORCE_S3TC_ENABLE("false")
67
68 DRI_CONF_PRECISE_TRIG("false")
69
70 DRI_CONF_OPT_BEGIN(clamp_max_samples, int, -1)
71 DRI_CONF_DESC(en, "Clamp the value of GL_MAX_SAMPLES to the "
72 "given integer. If negative, then do not clamp.")
73 DRI_CONF_OPT_END
74 DRI_CONF_SECTION_END
75
76 DRI_CONF_SECTION_DEBUG
77 DRI_CONF_NO_RAST("false")
78 DRI_CONF_ALWAYS_FLUSH_BATCH("false")
79 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
80 DRI_CONF_DISABLE_THROTTLING("false")
81 DRI_CONF_FORCE_GLSL_EXTENSIONS_WARN("false")
82 DRI_CONF_FORCE_GLSL_VERSION(0)
83 DRI_CONF_DISABLE_GLSL_LINE_CONTINUATIONS("false")
84 DRI_CONF_DISABLE_BLEND_FUNC_EXTENDED("false")
85 DRI_CONF_DUAL_COLOR_BLEND_BY_LOCATION("false")
86 DRI_CONF_ALLOW_GLSL_EXTENSION_DIRECTIVE_MIDSHADER("false")
87 DRI_CONF_ALLOW_HIGHER_COMPAT_VERSION("false")
88
89 DRI_CONF_OPT_BEGIN_B(shader_precompile, "true")
90 DRI_CONF_DESC(en, "Perform code generation at shader link time.")
91 DRI_CONF_OPT_END
92 DRI_CONF_SECTION_END
93
94 DRI_CONF_SECTION_MISCELLANEOUS
95 DRI_CONF_GLSL_ZERO_INIT("false")
96 DRI_CONF_SECTION_END
97 DRI_CONF_END
98 };
99
100 #include "intel_batchbuffer.h"
101 #include "intel_buffers.h"
102 #include "intel_bufmgr.h"
103 #include "intel_fbo.h"
104 #include "intel_mipmap_tree.h"
105 #include "intel_screen.h"
106 #include "intel_tex.h"
107 #include "intel_image.h"
108
109 #include "brw_context.h"
110
111 #include "i915_drm.h"
112
113 /**
114 * For debugging purposes, this returns a time in seconds.
115 */
116 double
117 get_time(void)
118 {
119 struct timespec tp;
120
121 clock_gettime(CLOCK_MONOTONIC, &tp);
122
123 return tp.tv_sec + tp.tv_nsec / 1000000000.0;
124 }
125
126 static const __DRItexBufferExtension intelTexBufferExtension = {
127 .base = { __DRI_TEX_BUFFER, 3 },
128
129 .setTexBuffer = intelSetTexBuffer,
130 .setTexBuffer2 = intelSetTexBuffer2,
131 .releaseTexBuffer = NULL,
132 };
133
134 static void
135 intel_dri2_flush_with_flags(__DRIcontext *cPriv,
136 __DRIdrawable *dPriv,
137 unsigned flags,
138 enum __DRI2throttleReason reason)
139 {
140 struct brw_context *brw = cPriv->driverPrivate;
141
142 if (!brw)
143 return;
144
145 struct gl_context *ctx = &brw->ctx;
146
147 FLUSH_VERTICES(ctx, 0);
148
149 if (flags & __DRI2_FLUSH_DRAWABLE)
150 intel_resolve_for_dri2_flush(brw, dPriv);
151
152 if (reason == __DRI2_THROTTLE_SWAPBUFFER)
153 brw->need_swap_throttle = true;
154 if (reason == __DRI2_THROTTLE_FLUSHFRONT)
155 brw->need_flush_throttle = true;
156
157 intel_batchbuffer_flush(brw);
158 }
159
160 /**
161 * Provides compatibility with loaders that only support the older (version
162 * 1-3) flush interface.
163 *
164 * That includes libGL up to Mesa 9.0, and the X Server at least up to 1.13.
165 */
166 static void
167 intel_dri2_flush(__DRIdrawable *drawable)
168 {
169 intel_dri2_flush_with_flags(drawable->driContextPriv, drawable,
170 __DRI2_FLUSH_DRAWABLE,
171 __DRI2_THROTTLE_SWAPBUFFER);
172 }
173
174 static const struct __DRI2flushExtensionRec intelFlushExtension = {
175 .base = { __DRI2_FLUSH, 4 },
176
177 .flush = intel_dri2_flush,
178 .invalidate = dri2InvalidateDrawable,
179 .flush_with_flags = intel_dri2_flush_with_flags,
180 };
181
182 static struct intel_image_format intel_image_formats[] = {
183 { __DRI_IMAGE_FOURCC_ARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
184 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
185
186 { __DRI_IMAGE_FOURCC_ABGR8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
187 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
188
189 { __DRI_IMAGE_FOURCC_SARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
190 { { 0, 0, 0, __DRI_IMAGE_FORMAT_SARGB8, 4 } } },
191
192 { __DRI_IMAGE_FOURCC_XRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
193 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB8888, 4 }, } },
194
195 { __DRI_IMAGE_FOURCC_XBGR8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
196 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 }, } },
197
198 { __DRI_IMAGE_FOURCC_ARGB1555, __DRI_IMAGE_COMPONENTS_RGBA, 1,
199 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB1555, 2 } } },
200
201 { __DRI_IMAGE_FOURCC_RGB565, __DRI_IMAGE_COMPONENTS_RGB, 1,
202 { { 0, 0, 0, __DRI_IMAGE_FORMAT_RGB565, 2 } } },
203
204 { __DRI_IMAGE_FOURCC_R8, __DRI_IMAGE_COMPONENTS_R, 1,
205 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 }, } },
206
207 { __DRI_IMAGE_FOURCC_R16, __DRI_IMAGE_COMPONENTS_R, 1,
208 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 1 }, } },
209
210 { __DRI_IMAGE_FOURCC_GR88, __DRI_IMAGE_COMPONENTS_RG, 1,
211 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 }, } },
212
213 { __DRI_IMAGE_FOURCC_GR1616, __DRI_IMAGE_COMPONENTS_RG, 1,
214 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR1616, 2 }, } },
215
216 { __DRI_IMAGE_FOURCC_YUV410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
217 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
218 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
219 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
220
221 { __DRI_IMAGE_FOURCC_YUV411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
222 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
223 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
224 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
225
226 { __DRI_IMAGE_FOURCC_YUV420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
227 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
228 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
229 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
230
231 { __DRI_IMAGE_FOURCC_YUV422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
232 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
233 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
234 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
235
236 { __DRI_IMAGE_FOURCC_YUV444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
237 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
238 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
239 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
240
241 { __DRI_IMAGE_FOURCC_YVU410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
242 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
243 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
244 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
245
246 { __DRI_IMAGE_FOURCC_YVU411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
247 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
248 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
249 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
250
251 { __DRI_IMAGE_FOURCC_YVU420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
252 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
253 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
254 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
255
256 { __DRI_IMAGE_FOURCC_YVU422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
257 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
258 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
259 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
260
261 { __DRI_IMAGE_FOURCC_YVU444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
262 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
263 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
264 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
265
266 { __DRI_IMAGE_FOURCC_NV12, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
267 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
268 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR88, 2 } } },
269
270 { __DRI_IMAGE_FOURCC_NV16, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
271 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
272 { 1, 1, 0, __DRI_IMAGE_FORMAT_GR88, 2 } } },
273
274 /* For YUYV buffers, we set up two overlapping DRI images and treat
275 * them as planar buffers in the compositors. Plane 0 is GR88 and
276 * samples YU or YV pairs and places Y into the R component, while
277 * plane 1 is ARGB and samples YUYV clusters and places pairs and
278 * places U into the G component and V into A. This lets the
279 * texture sampler interpolate the Y components correctly when
280 * sampling from plane 0, and interpolate U and V correctly when
281 * sampling from plane 1. */
282 { __DRI_IMAGE_FOURCC_YUYV, __DRI_IMAGE_COMPONENTS_Y_XUXV, 2,
283 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
284 { 0, 1, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } }
285 };
286
287 static void
288 intel_image_warn_if_unaligned(__DRIimage *image, const char *func)
289 {
290 uint32_t tiling, swizzle;
291 drm_intel_bo_get_tiling(image->bo, &tiling, &swizzle);
292
293 if (tiling != I915_TILING_NONE && (image->offset & 0xfff)) {
294 _mesa_warning(NULL, "%s: offset 0x%08x not on tile boundary",
295 func, image->offset);
296 }
297 }
298
299 static struct intel_image_format *
300 intel_image_format_lookup(int fourcc)
301 {
302 struct intel_image_format *f = NULL;
303
304 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
305 if (intel_image_formats[i].fourcc == fourcc) {
306 f = &intel_image_formats[i];
307 break;
308 }
309 }
310
311 return f;
312 }
313
314 static boolean intel_lookup_fourcc(int dri_format, int *fourcc)
315 {
316 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
317 if (intel_image_formats[i].planes[0].dri_format == dri_format) {
318 *fourcc = intel_image_formats[i].fourcc;
319 return true;
320 }
321 }
322 return false;
323 }
324
325 static __DRIimage *
326 intel_allocate_image(int dri_format, void *loaderPrivate)
327 {
328 __DRIimage *image;
329
330 image = calloc(1, sizeof *image);
331 if (image == NULL)
332 return NULL;
333
334 image->dri_format = dri_format;
335 image->offset = 0;
336
337 image->format = driImageFormatToGLFormat(dri_format);
338 if (dri_format != __DRI_IMAGE_FORMAT_NONE &&
339 image->format == MESA_FORMAT_NONE) {
340 free(image);
341 return NULL;
342 }
343
344 image->internal_format = _mesa_get_format_base_format(image->format);
345 image->data = loaderPrivate;
346
347 return image;
348 }
349
350 /**
351 * Sets up a DRIImage structure to point to a slice out of a miptree.
352 */
353 static void
354 intel_setup_image_from_mipmap_tree(struct brw_context *brw, __DRIimage *image,
355 struct intel_mipmap_tree *mt, GLuint level,
356 GLuint zoffset)
357 {
358 intel_miptree_make_shareable(brw, mt);
359
360 intel_miptree_check_level_layer(mt, level, zoffset);
361
362 image->width = minify(mt->physical_width0, level - mt->first_level);
363 image->height = minify(mt->physical_height0, level - mt->first_level);
364 image->pitch = mt->pitch;
365
366 image->offset = intel_miptree_get_tile_offsets(mt, level, zoffset,
367 &image->tile_x,
368 &image->tile_y);
369
370 drm_intel_bo_unreference(image->bo);
371 image->bo = mt->bo;
372 drm_intel_bo_reference(mt->bo);
373 }
374
375 static __DRIimage *
376 intel_create_image_from_name(__DRIscreen *dri_screen,
377 int width, int height, int format,
378 int name, int pitch, void *loaderPrivate)
379 {
380 struct intel_screen *screen = dri_screen->driverPrivate;
381 __DRIimage *image;
382 int cpp;
383
384 image = intel_allocate_image(format, loaderPrivate);
385 if (image == NULL)
386 return NULL;
387
388 if (image->format == MESA_FORMAT_NONE)
389 cpp = 1;
390 else
391 cpp = _mesa_get_format_bytes(image->format);
392
393 image->width = width;
394 image->height = height;
395 image->pitch = pitch * cpp;
396 image->bo = drm_intel_bo_gem_create_from_name(screen->bufmgr, "image",
397 name);
398 if (!image->bo) {
399 free(image);
400 return NULL;
401 }
402
403 return image;
404 }
405
406 static __DRIimage *
407 intel_create_image_from_renderbuffer(__DRIcontext *context,
408 int renderbuffer, void *loaderPrivate)
409 {
410 __DRIimage *image;
411 struct brw_context *brw = context->driverPrivate;
412 struct gl_context *ctx = &brw->ctx;
413 struct gl_renderbuffer *rb;
414 struct intel_renderbuffer *irb;
415
416 rb = _mesa_lookup_renderbuffer(ctx, renderbuffer);
417 if (!rb) {
418 _mesa_error(ctx, GL_INVALID_OPERATION, "glRenderbufferExternalMESA");
419 return NULL;
420 }
421
422 irb = intel_renderbuffer(rb);
423 intel_miptree_make_shareable(brw, irb->mt);
424 image = calloc(1, sizeof *image);
425 if (image == NULL)
426 return NULL;
427
428 image->internal_format = rb->InternalFormat;
429 image->format = rb->Format;
430 image->offset = 0;
431 image->data = loaderPrivate;
432 drm_intel_bo_unreference(image->bo);
433 image->bo = irb->mt->bo;
434 drm_intel_bo_reference(irb->mt->bo);
435 image->width = rb->Width;
436 image->height = rb->Height;
437 image->pitch = irb->mt->pitch;
438 image->dri_format = driGLFormatToImageFormat(image->format);
439 image->has_depthstencil = irb->mt->stencil_mt? true : false;
440
441 rb->NeedsFinishRenderTexture = true;
442 return image;
443 }
444
445 static __DRIimage *
446 intel_create_image_from_texture(__DRIcontext *context, int target,
447 unsigned texture, int zoffset,
448 int level,
449 unsigned *error,
450 void *loaderPrivate)
451 {
452 __DRIimage *image;
453 struct brw_context *brw = context->driverPrivate;
454 struct gl_texture_object *obj;
455 struct intel_texture_object *iobj;
456 GLuint face = 0;
457
458 obj = _mesa_lookup_texture(&brw->ctx, texture);
459 if (!obj || obj->Target != target) {
460 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
461 return NULL;
462 }
463
464 if (target == GL_TEXTURE_CUBE_MAP)
465 face = zoffset;
466
467 _mesa_test_texobj_completeness(&brw->ctx, obj);
468 iobj = intel_texture_object(obj);
469 if (!obj->_BaseComplete || (level > 0 && !obj->_MipmapComplete)) {
470 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
471 return NULL;
472 }
473
474 if (level < obj->BaseLevel || level > obj->_MaxLevel) {
475 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
476 return NULL;
477 }
478
479 if (target == GL_TEXTURE_3D && obj->Image[face][level]->Depth < zoffset) {
480 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
481 return NULL;
482 }
483 image = calloc(1, sizeof *image);
484 if (image == NULL) {
485 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
486 return NULL;
487 }
488
489 image->internal_format = obj->Image[face][level]->InternalFormat;
490 image->format = obj->Image[face][level]->TexFormat;
491 image->data = loaderPrivate;
492 intel_setup_image_from_mipmap_tree(brw, image, iobj->mt, level, zoffset);
493 image->dri_format = driGLFormatToImageFormat(image->format);
494 image->has_depthstencil = iobj->mt->stencil_mt? true : false;
495 if (image->dri_format == MESA_FORMAT_NONE) {
496 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
497 free(image);
498 return NULL;
499 }
500
501 *error = __DRI_IMAGE_ERROR_SUCCESS;
502 return image;
503 }
504
505 static void
506 intel_destroy_image(__DRIimage *image)
507 {
508 drm_intel_bo_unreference(image->bo);
509 free(image);
510 }
511
512 static uint64_t
513 select_best_modifier(struct gen_device_info *devinfo,
514 const uint64_t *modifiers,
515 const unsigned count)
516 {
517 /* Modifiers are not supported by this DRI driver */
518 return DRM_FORMAT_MOD_INVALID;
519 }
520
521 static __DRIimage *
522 intel_create_image_common(__DRIscreen *dri_screen,
523 int width, int height, int format,
524 unsigned int use,
525 const uint64_t *modifiers,
526 unsigned count,
527 void *loaderPrivate)
528 {
529 __DRIimage *image;
530 struct intel_screen *screen = dri_screen->driverPrivate;
531 uint32_t tiling;
532 int cpp;
533 unsigned long pitch;
534
535 /* Callers of this may specify a modifier, or a dri usage, but not both. The
536 * newer modifier interface deprecates the older usage flags newer modifier
537 * interface deprecates the older usage flags.
538 */
539 assert(!(use && count));
540
541 uint64_t modifier = select_best_modifier(&screen->devinfo, modifiers, count);
542 assert(modifier == DRM_FORMAT_MOD_INVALID);
543
544 /* Historically, X-tiled was the default, and so lack of modifier means
545 * X-tiled.
546 */
547 tiling = I915_TILING_X;
548 if (use & __DRI_IMAGE_USE_CURSOR) {
549 if (width != 64 || height != 64)
550 return NULL;
551 tiling = I915_TILING_NONE;
552 }
553
554 if (use & __DRI_IMAGE_USE_LINEAR)
555 tiling = I915_TILING_NONE;
556
557 image = intel_allocate_image(format, loaderPrivate);
558 if (image == NULL)
559 return NULL;
560
561 cpp = _mesa_get_format_bytes(image->format);
562 image->bo = drm_intel_bo_alloc_tiled(screen->bufmgr, "image",
563 width, height, cpp, &tiling,
564 &pitch, 0);
565 if (image->bo == NULL) {
566 free(image);
567 return NULL;
568 }
569 image->width = width;
570 image->height = height;
571 image->pitch = pitch;
572
573 return image;
574 }
575
576 static __DRIimage *
577 intel_create_image(__DRIscreen *dri_screen,
578 int width, int height, int format,
579 unsigned int use,
580 void *loaderPrivate)
581 {
582 return intel_create_image_common(dri_screen, width, height, format, use, NULL, 0,
583 loaderPrivate);
584 }
585
586 static __DRIimage *
587 intel_create_image_with_modifiers(__DRIscreen *dri_screen,
588 int width, int height, int format,
589 const uint64_t *modifiers,
590 const unsigned count,
591 void *loaderPrivate)
592 {
593 return intel_create_image_common(dri_screen, width, height, format, 0, NULL,
594 0, loaderPrivate);
595 }
596
597 static GLboolean
598 intel_query_image(__DRIimage *image, int attrib, int *value)
599 {
600 switch (attrib) {
601 case __DRI_IMAGE_ATTRIB_STRIDE:
602 *value = image->pitch;
603 return true;
604 case __DRI_IMAGE_ATTRIB_HANDLE:
605 *value = image->bo->handle;
606 return true;
607 case __DRI_IMAGE_ATTRIB_NAME:
608 return !drm_intel_bo_flink(image->bo, (uint32_t *) value);
609 case __DRI_IMAGE_ATTRIB_FORMAT:
610 *value = image->dri_format;
611 return true;
612 case __DRI_IMAGE_ATTRIB_WIDTH:
613 *value = image->width;
614 return true;
615 case __DRI_IMAGE_ATTRIB_HEIGHT:
616 *value = image->height;
617 return true;
618 case __DRI_IMAGE_ATTRIB_COMPONENTS:
619 if (image->planar_format == NULL)
620 return false;
621 *value = image->planar_format->components;
622 return true;
623 case __DRI_IMAGE_ATTRIB_FD:
624 return !drm_intel_bo_gem_export_to_prime(image->bo, value);
625 case __DRI_IMAGE_ATTRIB_FOURCC:
626 return intel_lookup_fourcc(image->dri_format, value);
627 case __DRI_IMAGE_ATTRIB_NUM_PLANES:
628 *value = 1;
629 return true;
630 case __DRI_IMAGE_ATTRIB_OFFSET:
631 *value = image->offset;
632 return true;
633
634 default:
635 return false;
636 }
637 }
638
639 static __DRIimage *
640 intel_dup_image(__DRIimage *orig_image, void *loaderPrivate)
641 {
642 __DRIimage *image;
643
644 image = calloc(1, sizeof *image);
645 if (image == NULL)
646 return NULL;
647
648 drm_intel_bo_reference(orig_image->bo);
649 image->bo = orig_image->bo;
650 image->internal_format = orig_image->internal_format;
651 image->planar_format = orig_image->planar_format;
652 image->dri_format = orig_image->dri_format;
653 image->format = orig_image->format;
654 image->offset = orig_image->offset;
655 image->width = orig_image->width;
656 image->height = orig_image->height;
657 image->pitch = orig_image->pitch;
658 image->tile_x = orig_image->tile_x;
659 image->tile_y = orig_image->tile_y;
660 image->has_depthstencil = orig_image->has_depthstencil;
661 image->data = loaderPrivate;
662
663 memcpy(image->strides, orig_image->strides, sizeof(image->strides));
664 memcpy(image->offsets, orig_image->offsets, sizeof(image->offsets));
665
666 return image;
667 }
668
669 static GLboolean
670 intel_validate_usage(__DRIimage *image, unsigned int use)
671 {
672 if (use & __DRI_IMAGE_USE_CURSOR) {
673 if (image->width != 64 || image->height != 64)
674 return GL_FALSE;
675 }
676
677 return GL_TRUE;
678 }
679
680 static __DRIimage *
681 intel_create_image_from_names(__DRIscreen *dri_screen,
682 int width, int height, int fourcc,
683 int *names, int num_names,
684 int *strides, int *offsets,
685 void *loaderPrivate)
686 {
687 struct intel_image_format *f = NULL;
688 __DRIimage *image;
689 int i, index;
690
691 if (dri_screen == NULL || names == NULL || num_names != 1)
692 return NULL;
693
694 f = intel_image_format_lookup(fourcc);
695 if (f == NULL)
696 return NULL;
697
698 image = intel_create_image_from_name(dri_screen, width, height,
699 __DRI_IMAGE_FORMAT_NONE,
700 names[0], strides[0],
701 loaderPrivate);
702
703 if (image == NULL)
704 return NULL;
705
706 image->planar_format = f;
707 for (i = 0; i < f->nplanes; i++) {
708 index = f->planes[i].buffer_index;
709 image->offsets[index] = offsets[index];
710 image->strides[index] = strides[index];
711 }
712
713 return image;
714 }
715
716 static __DRIimage *
717 intel_create_image_from_fds(__DRIscreen *dri_screen,
718 int width, int height, int fourcc,
719 int *fds, int num_fds, int *strides, int *offsets,
720 void *loaderPrivate)
721 {
722 struct intel_screen *screen = dri_screen->driverPrivate;
723 struct intel_image_format *f;
724 __DRIimage *image;
725 int i, index;
726
727 if (fds == NULL || num_fds < 1)
728 return NULL;
729
730 /* We only support all planes from the same bo */
731 for (i = 0; i < num_fds; i++)
732 if (fds[0] != fds[i])
733 return NULL;
734
735 f = intel_image_format_lookup(fourcc);
736 if (f == NULL)
737 return NULL;
738
739 if (f->nplanes == 1)
740 image = intel_allocate_image(f->planes[0].dri_format, loaderPrivate);
741 else
742 image = intel_allocate_image(__DRI_IMAGE_FORMAT_NONE, loaderPrivate);
743
744 if (image == NULL)
745 return NULL;
746
747 image->width = width;
748 image->height = height;
749 image->pitch = strides[0];
750
751 image->planar_format = f;
752 int size = 0;
753 for (i = 0; i < f->nplanes; i++) {
754 index = f->planes[i].buffer_index;
755 image->offsets[index] = offsets[index];
756 image->strides[index] = strides[index];
757
758 const int plane_height = height >> f->planes[i].height_shift;
759 const int end = offsets[index] + plane_height * strides[index];
760 if (size < end)
761 size = end;
762 }
763
764 image->bo = drm_intel_bo_gem_create_from_prime(screen->bufmgr,
765 fds[0], size);
766 if (image->bo == NULL) {
767 free(image);
768 return NULL;
769 }
770
771 if (f->nplanes == 1) {
772 image->offset = image->offsets[0];
773 intel_image_warn_if_unaligned(image, __func__);
774 }
775
776 return image;
777 }
778
779 static __DRIimage *
780 intel_create_image_from_dma_bufs(__DRIscreen *dri_screen,
781 int width, int height, int fourcc,
782 int *fds, int num_fds,
783 int *strides, int *offsets,
784 enum __DRIYUVColorSpace yuv_color_space,
785 enum __DRISampleRange sample_range,
786 enum __DRIChromaSiting horizontal_siting,
787 enum __DRIChromaSiting vertical_siting,
788 unsigned *error,
789 void *loaderPrivate)
790 {
791 __DRIimage *image;
792 struct intel_image_format *f = intel_image_format_lookup(fourcc);
793
794 if (!f) {
795 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
796 return NULL;
797 }
798
799 image = intel_create_image_from_fds(dri_screen, width, height, fourcc, fds,
800 num_fds, strides, offsets,
801 loaderPrivate);
802
803 /*
804 * Invalid parameters and any inconsistencies between are assumed to be
805 * checked by the caller. Therefore besides unsupported formats one can fail
806 * only in allocation.
807 */
808 if (!image) {
809 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
810 return NULL;
811 }
812
813 image->dma_buf_imported = true;
814 image->yuv_color_space = yuv_color_space;
815 image->sample_range = sample_range;
816 image->horizontal_siting = horizontal_siting;
817 image->vertical_siting = vertical_siting;
818
819 *error = __DRI_IMAGE_ERROR_SUCCESS;
820 return image;
821 }
822
823 static __DRIimage *
824 intel_from_planar(__DRIimage *parent, int plane, void *loaderPrivate)
825 {
826 int width, height, offset, stride, dri_format, index;
827 struct intel_image_format *f;
828 __DRIimage *image;
829
830 if (parent == NULL || parent->planar_format == NULL)
831 return NULL;
832
833 f = parent->planar_format;
834
835 if (plane >= f->nplanes)
836 return NULL;
837
838 width = parent->width >> f->planes[plane].width_shift;
839 height = parent->height >> f->planes[plane].height_shift;
840 dri_format = f->planes[plane].dri_format;
841 index = f->planes[plane].buffer_index;
842 offset = parent->offsets[index];
843 stride = parent->strides[index];
844
845 image = intel_allocate_image(dri_format, loaderPrivate);
846 if (image == NULL)
847 return NULL;
848
849 if (offset + height * stride > parent->bo->size) {
850 _mesa_warning(NULL, "intel_create_sub_image: subimage out of bounds");
851 free(image);
852 return NULL;
853 }
854
855 image->bo = parent->bo;
856 drm_intel_bo_reference(parent->bo);
857
858 image->width = width;
859 image->height = height;
860 image->pitch = stride;
861 image->offset = offset;
862
863 intel_image_warn_if_unaligned(image, __func__);
864
865 return image;
866 }
867
868 static const __DRIimageExtension intelImageExtension = {
869 .base = { __DRI_IMAGE, 13 },
870
871 .createImageFromName = intel_create_image_from_name,
872 .createImageFromRenderbuffer = intel_create_image_from_renderbuffer,
873 .destroyImage = intel_destroy_image,
874 .createImage = intel_create_image,
875 .queryImage = intel_query_image,
876 .dupImage = intel_dup_image,
877 .validateUsage = intel_validate_usage,
878 .createImageFromNames = intel_create_image_from_names,
879 .fromPlanar = intel_from_planar,
880 .createImageFromTexture = intel_create_image_from_texture,
881 .createImageFromFds = intel_create_image_from_fds,
882 .createImageFromDmaBufs = intel_create_image_from_dma_bufs,
883 .blitImage = NULL,
884 .getCapabilities = NULL,
885 .mapImage = NULL,
886 .unmapImage = NULL,
887 .createImageWithModifiers = intel_create_image_with_modifiers,
888 };
889
890 static int
891 brw_query_renderer_integer(__DRIscreen *dri_screen,
892 int param, unsigned int *value)
893 {
894 const struct intel_screen *const screen =
895 (struct intel_screen *) dri_screen->driverPrivate;
896
897 switch (param) {
898 case __DRI2_RENDERER_VENDOR_ID:
899 value[0] = 0x8086;
900 return 0;
901 case __DRI2_RENDERER_DEVICE_ID:
902 value[0] = screen->deviceID;
903 return 0;
904 case __DRI2_RENDERER_ACCELERATED:
905 value[0] = 1;
906 return 0;
907 case __DRI2_RENDERER_VIDEO_MEMORY: {
908 /* Once a batch uses more than 75% of the maximum mappable size, we
909 * assume that there's some fragmentation, and we start doing extra
910 * flushing, etc. That's the big cliff apps will care about.
911 */
912 size_t aper_size;
913 size_t mappable_size;
914
915 drm_intel_get_aperture_sizes(dri_screen->fd, &mappable_size, &aper_size);
916
917 const unsigned gpu_mappable_megabytes =
918 (aper_size / (1024 * 1024)) * 3 / 4;
919
920 const long system_memory_pages = sysconf(_SC_PHYS_PAGES);
921 const long system_page_size = sysconf(_SC_PAGE_SIZE);
922
923 if (system_memory_pages <= 0 || system_page_size <= 0)
924 return -1;
925
926 const uint64_t system_memory_bytes = (uint64_t) system_memory_pages
927 * (uint64_t) system_page_size;
928
929 const unsigned system_memory_megabytes =
930 (unsigned) (system_memory_bytes / (1024 * 1024));
931
932 value[0] = MIN2(system_memory_megabytes, gpu_mappable_megabytes);
933 return 0;
934 }
935 case __DRI2_RENDERER_UNIFIED_MEMORY_ARCHITECTURE:
936 value[0] = 1;
937 return 0;
938 case __DRI2_RENDERER_HAS_TEXTURE_3D:
939 value[0] = 1;
940 return 0;
941 default:
942 return driQueryRendererIntegerCommon(dri_screen, param, value);
943 }
944
945 return -1;
946 }
947
948 static int
949 brw_query_renderer_string(__DRIscreen *dri_screen,
950 int param, const char **value)
951 {
952 const struct intel_screen *screen =
953 (struct intel_screen *) dri_screen->driverPrivate;
954
955 switch (param) {
956 case __DRI2_RENDERER_VENDOR_ID:
957 value[0] = brw_vendor_string;
958 return 0;
959 case __DRI2_RENDERER_DEVICE_ID:
960 value[0] = brw_get_renderer_string(screen);
961 return 0;
962 default:
963 break;
964 }
965
966 return -1;
967 }
968
969 static const __DRI2rendererQueryExtension intelRendererQueryExtension = {
970 .base = { __DRI2_RENDERER_QUERY, 1 },
971
972 .queryInteger = brw_query_renderer_integer,
973 .queryString = brw_query_renderer_string
974 };
975
976 static const __DRIrobustnessExtension dri2Robustness = {
977 .base = { __DRI2_ROBUSTNESS, 1 }
978 };
979
980 static const __DRIextension *screenExtensions[] = {
981 &intelTexBufferExtension.base,
982 &intelFenceExtension.base,
983 &intelFlushExtension.base,
984 &intelImageExtension.base,
985 &intelRendererQueryExtension.base,
986 &dri2ConfigQueryExtension.base,
987 NULL
988 };
989
990 static const __DRIextension *intelRobustScreenExtensions[] = {
991 &intelTexBufferExtension.base,
992 &intelFenceExtension.base,
993 &intelFlushExtension.base,
994 &intelImageExtension.base,
995 &intelRendererQueryExtension.base,
996 &dri2ConfigQueryExtension.base,
997 &dri2Robustness.base,
998 NULL
999 };
1000
1001 static int
1002 intel_get_param(struct intel_screen *screen, int param, int *value)
1003 {
1004 int ret = 0;
1005 struct drm_i915_getparam gp;
1006
1007 memset(&gp, 0, sizeof(gp));
1008 gp.param = param;
1009 gp.value = value;
1010
1011 if (drmIoctl(screen->driScrnPriv->fd, DRM_IOCTL_I915_GETPARAM, &gp) == -1) {
1012 ret = -errno;
1013 if (ret != -EINVAL)
1014 _mesa_warning(NULL, "drm_i915_getparam: %d", ret);
1015 }
1016
1017 return ret;
1018 }
1019
1020 static bool
1021 intel_get_boolean(struct intel_screen *screen, int param)
1022 {
1023 int value = 0;
1024 return (intel_get_param(screen, param, &value) == 0) && value;
1025 }
1026
1027 static int
1028 intel_get_integer(struct intel_screen *screen, int param)
1029 {
1030 int value = -1;
1031
1032 if (intel_get_param(screen, param, &value) == 0)
1033 return value;
1034
1035 return -1;
1036 }
1037
1038 static void
1039 intelDestroyScreen(__DRIscreen * sPriv)
1040 {
1041 struct intel_screen *screen = sPriv->driverPrivate;
1042
1043 dri_bufmgr_destroy(screen->bufmgr);
1044 driDestroyOptionInfo(&screen->optionCache);
1045
1046 ralloc_free(screen);
1047 sPriv->driverPrivate = NULL;
1048 }
1049
1050
1051 /**
1052 * This is called when we need to set up GL rendering to a new X window.
1053 */
1054 static GLboolean
1055 intelCreateBuffer(__DRIscreen *dri_screen,
1056 __DRIdrawable * driDrawPriv,
1057 const struct gl_config * mesaVis, GLboolean isPixmap)
1058 {
1059 struct intel_renderbuffer *rb;
1060 struct intel_screen *screen = (struct intel_screen *)
1061 dri_screen->driverPrivate;
1062 mesa_format rgbFormat;
1063 unsigned num_samples =
1064 intel_quantize_num_samples(screen, mesaVis->samples);
1065 struct gl_framebuffer *fb;
1066
1067 if (isPixmap)
1068 return false;
1069
1070 fb = CALLOC_STRUCT(gl_framebuffer);
1071 if (!fb)
1072 return false;
1073
1074 _mesa_initialize_window_framebuffer(fb, mesaVis);
1075
1076 if (screen->winsys_msaa_samples_override != -1) {
1077 num_samples = screen->winsys_msaa_samples_override;
1078 fb->Visual.samples = num_samples;
1079 }
1080
1081 if (mesaVis->redBits == 5) {
1082 rgbFormat = mesaVis->redMask == 0x1f ? MESA_FORMAT_R5G6B5_UNORM
1083 : MESA_FORMAT_B5G6R5_UNORM;
1084 } else if (mesaVis->sRGBCapable) {
1085 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1086 : MESA_FORMAT_B8G8R8A8_SRGB;
1087 } else if (mesaVis->alphaBits == 0) {
1088 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8X8_UNORM
1089 : MESA_FORMAT_B8G8R8X8_UNORM;
1090 } else {
1091 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1092 : MESA_FORMAT_B8G8R8A8_SRGB;
1093 fb->Visual.sRGBCapable = true;
1094 }
1095
1096 /* setup the hardware-based renderbuffers */
1097 rb = intel_create_renderbuffer(rgbFormat, num_samples);
1098 _mesa_add_renderbuffer(fb, BUFFER_FRONT_LEFT, &rb->Base.Base);
1099
1100 if (mesaVis->doubleBufferMode) {
1101 rb = intel_create_renderbuffer(rgbFormat, num_samples);
1102 _mesa_add_renderbuffer(fb, BUFFER_BACK_LEFT, &rb->Base.Base);
1103 }
1104
1105 /*
1106 * Assert here that the gl_config has an expected depth/stencil bit
1107 * combination: one of d24/s8, d16/s0, d0/s0. (See intelInitScreen2(),
1108 * which constructs the advertised configs.)
1109 */
1110 if (mesaVis->depthBits == 24) {
1111 assert(mesaVis->stencilBits == 8);
1112
1113 if (screen->devinfo.has_hiz_and_separate_stencil) {
1114 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z24_UNORM_X8_UINT,
1115 num_samples);
1116 _mesa_add_renderbuffer(fb, BUFFER_DEPTH, &rb->Base.Base);
1117 rb = intel_create_private_renderbuffer(MESA_FORMAT_S_UINT8,
1118 num_samples);
1119 _mesa_add_renderbuffer(fb, BUFFER_STENCIL, &rb->Base.Base);
1120 } else {
1121 /*
1122 * Use combined depth/stencil. Note that the renderbuffer is
1123 * attached to two attachment points.
1124 */
1125 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z24_UNORM_S8_UINT,
1126 num_samples);
1127 _mesa_add_renderbuffer(fb, BUFFER_DEPTH, &rb->Base.Base);
1128 _mesa_add_renderbuffer(fb, BUFFER_STENCIL, &rb->Base.Base);
1129 }
1130 }
1131 else if (mesaVis->depthBits == 16) {
1132 assert(mesaVis->stencilBits == 0);
1133 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z_UNORM16,
1134 num_samples);
1135 _mesa_add_renderbuffer(fb, BUFFER_DEPTH, &rb->Base.Base);
1136 }
1137 else {
1138 assert(mesaVis->depthBits == 0);
1139 assert(mesaVis->stencilBits == 0);
1140 }
1141
1142 /* now add any/all software-based renderbuffers we may need */
1143 _swrast_add_soft_renderbuffers(fb,
1144 false, /* never sw color */
1145 false, /* never sw depth */
1146 false, /* never sw stencil */
1147 mesaVis->accumRedBits > 0,
1148 false, /* never sw alpha */
1149 false /* never sw aux */ );
1150 driDrawPriv->driverPrivate = fb;
1151
1152 return true;
1153 }
1154
1155 static void
1156 intelDestroyBuffer(__DRIdrawable * driDrawPriv)
1157 {
1158 struct gl_framebuffer *fb = driDrawPriv->driverPrivate;
1159
1160 _mesa_reference_framebuffer(&fb, NULL);
1161 }
1162
1163 static void
1164 intel_detect_sseu(struct intel_screen *screen)
1165 {
1166 assert(screen->devinfo.gen >= 8);
1167 int ret;
1168
1169 screen->subslice_total = -1;
1170 screen->eu_total = -1;
1171
1172 ret = intel_get_param(screen, I915_PARAM_SUBSLICE_TOTAL,
1173 &screen->subslice_total);
1174 if (ret < 0 && ret != -EINVAL)
1175 goto err_out;
1176
1177 ret = intel_get_param(screen,
1178 I915_PARAM_EU_TOTAL, &screen->eu_total);
1179 if (ret < 0 && ret != -EINVAL)
1180 goto err_out;
1181
1182 /* Without this information, we cannot get the right Braswell brandstrings,
1183 * and we have to use conservative numbers for GPGPU on many platforms, but
1184 * otherwise, things will just work.
1185 */
1186 if (screen->subslice_total < 1 || screen->eu_total < 1)
1187 _mesa_warning(NULL,
1188 "Kernel 4.1 required to properly query GPU properties.\n");
1189
1190 return;
1191
1192 err_out:
1193 screen->subslice_total = -1;
1194 screen->eu_total = -1;
1195 _mesa_warning(NULL, "Failed to query GPU properties (%s).\n", strerror(-ret));
1196 }
1197
1198 static bool
1199 intel_init_bufmgr(struct intel_screen *screen)
1200 {
1201 __DRIscreen *dri_screen = screen->driScrnPriv;
1202
1203 screen->no_hw = getenv("INTEL_NO_HW") != NULL;
1204
1205 screen->bufmgr = intel_bufmgr_gem_init(dri_screen->fd, BATCH_SZ);
1206 if (screen->bufmgr == NULL) {
1207 fprintf(stderr, "[%s:%u] Error initializing buffer manager.\n",
1208 __func__, __LINE__);
1209 return false;
1210 }
1211
1212 drm_intel_bufmgr_gem_enable_fenced_relocs(screen->bufmgr);
1213
1214 if (!intel_get_boolean(screen, I915_PARAM_HAS_RELAXED_DELTA)) {
1215 fprintf(stderr, "[%s: %u] Kernel 2.6.39 required.\n", __func__, __LINE__);
1216 return false;
1217 }
1218
1219 return true;
1220 }
1221
1222 static bool
1223 intel_detect_swizzling(struct intel_screen *screen)
1224 {
1225 drm_intel_bo *buffer;
1226 unsigned long flags = 0;
1227 unsigned long aligned_pitch;
1228 uint32_t tiling = I915_TILING_X;
1229 uint32_t swizzle_mode = 0;
1230
1231 buffer = drm_intel_bo_alloc_tiled(screen->bufmgr, "swizzle test",
1232 64, 64, 4,
1233 &tiling, &aligned_pitch, flags);
1234 if (buffer == NULL)
1235 return false;
1236
1237 drm_intel_bo_get_tiling(buffer, &tiling, &swizzle_mode);
1238 drm_intel_bo_unreference(buffer);
1239
1240 if (swizzle_mode == I915_BIT_6_SWIZZLE_NONE)
1241 return false;
1242 else
1243 return true;
1244 }
1245
1246 static int
1247 intel_detect_timestamp(struct intel_screen *screen)
1248 {
1249 uint64_t dummy = 0, last = 0;
1250 int upper, lower, loops;
1251
1252 /* On 64bit systems, some old kernels trigger a hw bug resulting in the
1253 * TIMESTAMP register being shifted and the low 32bits always zero.
1254 *
1255 * More recent kernels offer an interface to read the full 36bits
1256 * everywhere.
1257 */
1258 if (drm_intel_reg_read(screen->bufmgr, TIMESTAMP | 1, &dummy) == 0)
1259 return 3;
1260
1261 /* Determine if we have a 32bit or 64bit kernel by inspecting the
1262 * upper 32bits for a rapidly changing timestamp.
1263 */
1264 if (drm_intel_reg_read(screen->bufmgr, TIMESTAMP, &last))
1265 return 0;
1266
1267 upper = lower = 0;
1268 for (loops = 0; loops < 10; loops++) {
1269 /* The TIMESTAMP should change every 80ns, so several round trips
1270 * through the kernel should be enough to advance it.
1271 */
1272 if (drm_intel_reg_read(screen->bufmgr, TIMESTAMP, &dummy))
1273 return 0;
1274
1275 upper += (dummy >> 32) != (last >> 32);
1276 if (upper > 1) /* beware 32bit counter overflow */
1277 return 2; /* upper dword holds the low 32bits of the timestamp */
1278
1279 lower += (dummy & 0xffffffff) != (last & 0xffffffff);
1280 if (lower > 1)
1281 return 1; /* timestamp is unshifted */
1282
1283 last = dummy;
1284 }
1285
1286 /* No advancement? No timestamp! */
1287 return 0;
1288 }
1289
1290 /**
1291 * Test if we can use MI_LOAD_REGISTER_MEM from an untrusted batchbuffer.
1292 *
1293 * Some combinations of hardware and kernel versions allow this feature,
1294 * while others don't. Instead of trying to enumerate every case, just
1295 * try and write a register and see if works.
1296 */
1297 static bool
1298 intel_detect_pipelined_register(struct intel_screen *screen,
1299 int reg, uint32_t expected_value, bool reset)
1300 {
1301 drm_intel_bo *results, *bo;
1302 uint32_t *batch;
1303 uint32_t offset = 0;
1304 bool success = false;
1305
1306 /* Create a zero'ed temporary buffer for reading our results */
1307 results = drm_intel_bo_alloc(screen->bufmgr, "registers", 4096, 0);
1308 if (results == NULL)
1309 goto err;
1310
1311 bo = drm_intel_bo_alloc(screen->bufmgr, "batchbuffer", 4096, 0);
1312 if (bo == NULL)
1313 goto err_results;
1314
1315 if (drm_intel_bo_map(bo, 1))
1316 goto err_batch;
1317
1318 batch = bo->virtual;
1319
1320 /* Write the register. */
1321 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1322 *batch++ = reg;
1323 *batch++ = expected_value;
1324
1325 /* Save the register's value back to the buffer. */
1326 *batch++ = MI_STORE_REGISTER_MEM | (3 - 2);
1327 *batch++ = reg;
1328 drm_intel_bo_emit_reloc(bo, (char *)batch -(char *)bo->virtual,
1329 results, offset*sizeof(uint32_t),
1330 I915_GEM_DOMAIN_INSTRUCTION,
1331 I915_GEM_DOMAIN_INSTRUCTION);
1332 *batch++ = results->offset + offset*sizeof(uint32_t);
1333
1334 /* And afterwards clear the register */
1335 if (reset) {
1336 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1337 *batch++ = reg;
1338 *batch++ = 0;
1339 }
1340
1341 *batch++ = MI_BATCH_BUFFER_END;
1342
1343 drm_intel_bo_mrb_exec(bo, ALIGN((char *)batch - (char *)bo->virtual, 8),
1344 NULL, 0, 0,
1345 I915_EXEC_RENDER);
1346
1347 /* Check whether the value got written. */
1348 if (drm_intel_bo_map(results, false) == 0) {
1349 success = *((uint32_t *)results->virtual + offset) == expected_value;
1350 drm_intel_bo_unmap(results);
1351 }
1352
1353 err_batch:
1354 drm_intel_bo_unreference(bo);
1355 err_results:
1356 drm_intel_bo_unreference(results);
1357 err:
1358 return success;
1359 }
1360
1361 static bool
1362 intel_detect_pipelined_so(struct intel_screen *screen)
1363 {
1364 /* Supposedly, Broadwell just works. */
1365 if (screen->devinfo.gen >= 8)
1366 return true;
1367
1368 if (screen->devinfo.gen <= 6)
1369 return false;
1370
1371 /* We use SO_WRITE_OFFSET0 since you're supposed to write it (unlike the
1372 * statistics registers), and we already reset it to zero before using it.
1373 */
1374 return intel_detect_pipelined_register(screen,
1375 GEN7_SO_WRITE_OFFSET(0),
1376 0x1337d0d0,
1377 false);
1378 }
1379
1380 /**
1381 * Return array of MSAA modes supported by the hardware. The array is
1382 * zero-terminated and sorted in decreasing order.
1383 */
1384 const int*
1385 intel_supported_msaa_modes(const struct intel_screen *screen)
1386 {
1387 static const int gen9_modes[] = {16, 8, 4, 2, 0, -1};
1388 static const int gen8_modes[] = {8, 4, 2, 0, -1};
1389 static const int gen7_modes[] = {8, 4, 0, -1};
1390 static const int gen6_modes[] = {4, 0, -1};
1391 static const int gen4_modes[] = {0, -1};
1392
1393 if (screen->devinfo.gen >= 9) {
1394 return gen9_modes;
1395 } else if (screen->devinfo.gen >= 8) {
1396 return gen8_modes;
1397 } else if (screen->devinfo.gen >= 7) {
1398 return gen7_modes;
1399 } else if (screen->devinfo.gen == 6) {
1400 return gen6_modes;
1401 } else {
1402 return gen4_modes;
1403 }
1404 }
1405
1406 static __DRIconfig**
1407 intel_screen_make_configs(__DRIscreen *dri_screen)
1408 {
1409 static const mesa_format formats[] = {
1410 MESA_FORMAT_B5G6R5_UNORM,
1411 MESA_FORMAT_B8G8R8A8_UNORM,
1412 MESA_FORMAT_B8G8R8X8_UNORM
1413 };
1414
1415 /* GLX_SWAP_COPY_OML is not supported due to page flipping. */
1416 static const GLenum back_buffer_modes[] = {
1417 GLX_SWAP_UNDEFINED_OML, GLX_NONE,
1418 };
1419
1420 static const uint8_t singlesample_samples[1] = {0};
1421 static const uint8_t multisample_samples[2] = {4, 8};
1422
1423 struct intel_screen *screen = dri_screen->driverPrivate;
1424 const struct gen_device_info *devinfo = &screen->devinfo;
1425 uint8_t depth_bits[4], stencil_bits[4];
1426 __DRIconfig **configs = NULL;
1427
1428 /* Generate singlesample configs without accumulation buffer. */
1429 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1430 __DRIconfig **new_configs;
1431 int num_depth_stencil_bits = 2;
1432
1433 /* Starting with DRI2 protocol version 1.1 we can request a depth/stencil
1434 * buffer that has a different number of bits per pixel than the color
1435 * buffer, gen >= 6 supports this.
1436 */
1437 depth_bits[0] = 0;
1438 stencil_bits[0] = 0;
1439
1440 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1441 depth_bits[1] = 16;
1442 stencil_bits[1] = 0;
1443 if (devinfo->gen >= 6) {
1444 depth_bits[2] = 24;
1445 stencil_bits[2] = 8;
1446 num_depth_stencil_bits = 3;
1447 }
1448 } else {
1449 depth_bits[1] = 24;
1450 stencil_bits[1] = 8;
1451 }
1452
1453 new_configs = driCreateConfigs(formats[i],
1454 depth_bits,
1455 stencil_bits,
1456 num_depth_stencil_bits,
1457 back_buffer_modes, 2,
1458 singlesample_samples, 1,
1459 false, false);
1460 configs = driConcatConfigs(configs, new_configs);
1461 }
1462
1463 /* Generate the minimum possible set of configs that include an
1464 * accumulation buffer.
1465 */
1466 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1467 __DRIconfig **new_configs;
1468
1469 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1470 depth_bits[0] = 16;
1471 stencil_bits[0] = 0;
1472 } else {
1473 depth_bits[0] = 24;
1474 stencil_bits[0] = 8;
1475 }
1476
1477 new_configs = driCreateConfigs(formats[i],
1478 depth_bits, stencil_bits, 1,
1479 back_buffer_modes, 1,
1480 singlesample_samples, 1,
1481 true, false);
1482 configs = driConcatConfigs(configs, new_configs);
1483 }
1484
1485 /* Generate multisample configs.
1486 *
1487 * This loop breaks early, and hence is a no-op, on gen < 6.
1488 *
1489 * Multisample configs must follow the singlesample configs in order to
1490 * work around an X server bug present in 1.12. The X server chooses to
1491 * associate the first listed RGBA888-Z24S8 config, regardless of its
1492 * sample count, with the 32-bit depth visual used for compositing.
1493 *
1494 * Only doublebuffer configs with GLX_SWAP_UNDEFINED_OML behavior are
1495 * supported. Singlebuffer configs are not supported because no one wants
1496 * them.
1497 */
1498 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1499 if (devinfo->gen < 6)
1500 break;
1501
1502 __DRIconfig **new_configs;
1503 const int num_depth_stencil_bits = 2;
1504 int num_msaa_modes = 0;
1505
1506 depth_bits[0] = 0;
1507 stencil_bits[0] = 0;
1508
1509 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1510 depth_bits[1] = 16;
1511 stencil_bits[1] = 0;
1512 } else {
1513 depth_bits[1] = 24;
1514 stencil_bits[1] = 8;
1515 }
1516
1517 if (devinfo->gen >= 7)
1518 num_msaa_modes = 2;
1519 else if (devinfo->gen == 6)
1520 num_msaa_modes = 1;
1521
1522 new_configs = driCreateConfigs(formats[i],
1523 depth_bits,
1524 stencil_bits,
1525 num_depth_stencil_bits,
1526 back_buffer_modes, 1,
1527 multisample_samples,
1528 num_msaa_modes,
1529 false, false);
1530 configs = driConcatConfigs(configs, new_configs);
1531 }
1532
1533 if (configs == NULL) {
1534 fprintf(stderr, "[%s:%u] Error creating FBConfig!\n", __func__,
1535 __LINE__);
1536 return NULL;
1537 }
1538
1539 return configs;
1540 }
1541
1542 static void
1543 set_max_gl_versions(struct intel_screen *screen)
1544 {
1545 __DRIscreen *dri_screen = screen->driScrnPriv;
1546 const bool has_astc = screen->devinfo.gen >= 9;
1547
1548 switch (screen->devinfo.gen) {
1549 case 9:
1550 case 8:
1551 dri_screen->max_gl_core_version = 45;
1552 dri_screen->max_gl_compat_version = 30;
1553 dri_screen->max_gl_es1_version = 11;
1554 dri_screen->max_gl_es2_version = has_astc ? 32 : 31;
1555 break;
1556 case 7:
1557 dri_screen->max_gl_core_version = 33;
1558 if (screen->devinfo.is_haswell &&
1559 can_do_pipelined_register_writes(screen)) {
1560 dri_screen->max_gl_core_version = 42;
1561 if (can_do_compute_dispatch(screen))
1562 dri_screen->max_gl_core_version = 43;
1563 if (can_do_mi_math_and_lrr(screen))
1564 dri_screen->max_gl_core_version = 45;
1565 }
1566 dri_screen->max_gl_compat_version = 30;
1567 dri_screen->max_gl_es1_version = 11;
1568 dri_screen->max_gl_es2_version = screen->devinfo.is_haswell ? 31 : 30;
1569 break;
1570 case 6:
1571 dri_screen->max_gl_core_version = 33;
1572 dri_screen->max_gl_compat_version = 30;
1573 dri_screen->max_gl_es1_version = 11;
1574 dri_screen->max_gl_es2_version = 30;
1575 break;
1576 case 5:
1577 case 4:
1578 dri_screen->max_gl_core_version = 0;
1579 dri_screen->max_gl_compat_version = 21;
1580 dri_screen->max_gl_es1_version = 11;
1581 dri_screen->max_gl_es2_version = 20;
1582 break;
1583 default:
1584 unreachable("unrecognized intel_screen::gen");
1585 }
1586 }
1587
1588 /**
1589 * Return the revision (generally the revid field of the PCI header) of the
1590 * graphics device.
1591 *
1592 * XXX: This function is useful to keep around even if it is not currently in
1593 * use. It is necessary for new platforms and revision specific workarounds or
1594 * features. Please don't remove it so that we know it at least continues to
1595 * build.
1596 */
1597 static __attribute__((__unused__)) int
1598 brw_get_revision(int fd)
1599 {
1600 struct drm_i915_getparam gp;
1601 int revision;
1602 int ret;
1603
1604 memset(&gp, 0, sizeof(gp));
1605 gp.param = I915_PARAM_REVISION;
1606 gp.value = &revision;
1607
1608 ret = drmCommandWriteRead(fd, DRM_I915_GETPARAM, &gp, sizeof(gp));
1609 if (ret)
1610 revision = -1;
1611
1612 return revision;
1613 }
1614
1615 static void
1616 shader_debug_log_mesa(void *data, const char *fmt, ...)
1617 {
1618 struct brw_context *brw = (struct brw_context *)data;
1619 va_list args;
1620
1621 va_start(args, fmt);
1622 GLuint msg_id = 0;
1623 _mesa_gl_vdebug(&brw->ctx, &msg_id,
1624 MESA_DEBUG_SOURCE_SHADER_COMPILER,
1625 MESA_DEBUG_TYPE_OTHER,
1626 MESA_DEBUG_SEVERITY_NOTIFICATION, fmt, args);
1627 va_end(args);
1628 }
1629
1630 static void
1631 shader_perf_log_mesa(void *data, const char *fmt, ...)
1632 {
1633 struct brw_context *brw = (struct brw_context *)data;
1634
1635 va_list args;
1636 va_start(args, fmt);
1637
1638 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
1639 va_list args_copy;
1640 va_copy(args_copy, args);
1641 vfprintf(stderr, fmt, args_copy);
1642 va_end(args_copy);
1643 }
1644
1645 if (brw->perf_debug) {
1646 GLuint msg_id = 0;
1647 _mesa_gl_vdebug(&brw->ctx, &msg_id,
1648 MESA_DEBUG_SOURCE_SHADER_COMPILER,
1649 MESA_DEBUG_TYPE_PERFORMANCE,
1650 MESA_DEBUG_SEVERITY_MEDIUM, fmt, args);
1651 }
1652 va_end(args);
1653 }
1654
1655 /**
1656 * This is the driver specific part of the createNewScreen entry point.
1657 * Called when using DRI2.
1658 *
1659 * \return the struct gl_config supported by this driver
1660 */
1661 static const
1662 __DRIconfig **intelInitScreen2(__DRIscreen *dri_screen)
1663 {
1664 struct intel_screen *screen;
1665
1666 if (dri_screen->image.loader) {
1667 } else if (dri_screen->dri2.loader->base.version <= 2 ||
1668 dri_screen->dri2.loader->getBuffersWithFormat == NULL) {
1669 fprintf(stderr,
1670 "\nERROR! DRI2 loader with getBuffersWithFormat() "
1671 "support required\n");
1672 return NULL;
1673 }
1674
1675 /* Allocate the private area */
1676 screen = rzalloc(NULL, struct intel_screen);
1677 if (!screen) {
1678 fprintf(stderr, "\nERROR! Allocating private area failed\n");
1679 return NULL;
1680 }
1681 /* parse information in __driConfigOptions */
1682 driParseOptionInfo(&screen->optionCache, brw_config_options.xml);
1683
1684 screen->driScrnPriv = dri_screen;
1685 dri_screen->driverPrivate = (void *) screen;
1686
1687 if (!intel_init_bufmgr(screen))
1688 return NULL;
1689
1690 screen->deviceID = drm_intel_bufmgr_gem_get_devid(screen->bufmgr);
1691 if (!gen_get_device_info(screen->deviceID, &screen->devinfo))
1692 return NULL;
1693
1694 const struct gen_device_info *devinfo = &screen->devinfo;
1695
1696 brw_process_intel_debug_variable();
1697
1698 if (INTEL_DEBUG & DEBUG_BUFMGR)
1699 dri_bufmgr_set_debug(screen->bufmgr, true);
1700
1701 if ((INTEL_DEBUG & DEBUG_SHADER_TIME) && devinfo->gen < 7) {
1702 fprintf(stderr,
1703 "shader_time debugging requires gen7 (Ivybridge) or better.\n");
1704 INTEL_DEBUG &= ~DEBUG_SHADER_TIME;
1705 }
1706
1707 if (intel_get_integer(screen, I915_PARAM_MMAP_GTT_VERSION) >= 1) {
1708 /* Theorectically unlimited! At least for individual objects...
1709 *
1710 * Currently the entire (global) address space for all GTT maps is
1711 * limited to 64bits. That is all objects on the system that are
1712 * setup for GTT mmapping must fit within 64bits. An attempt to use
1713 * one that exceeds the limit with fail in drm_intel_bo_map_gtt().
1714 *
1715 * Long before we hit that limit, we will be practically limited by
1716 * that any single object must fit in physical memory (RAM). The upper
1717 * limit on the CPU's address space is currently 48bits (Skylake), of
1718 * which only 39bits can be physical memory. (The GPU itself also has
1719 * a 48bit addressable virtual space.) We can fit over 32 million
1720 * objects of the current maximum allocable size before running out
1721 * of mmap space.
1722 */
1723 screen->max_gtt_map_object_size = UINT64_MAX;
1724 } else {
1725 /* Estimate the size of the mappable aperture into the GTT. There's an
1726 * ioctl to get the whole GTT size, but not one to get the mappable subset.
1727 * It turns out it's basically always 256MB, though some ancient hardware
1728 * was smaller.
1729 */
1730 uint32_t gtt_size = 256 * 1024 * 1024;
1731
1732 /* We don't want to map two objects such that a memcpy between them would
1733 * just fault one mapping in and then the other over and over forever. So
1734 * we would need to divide the GTT size by 2. Additionally, some GTT is
1735 * taken up by things like the framebuffer and the ringbuffer and such, so
1736 * be more conservative.
1737 */
1738 screen->max_gtt_map_object_size = gtt_size / 4;
1739 }
1740
1741 screen->hw_has_swizzling = intel_detect_swizzling(screen);
1742 screen->hw_has_timestamp = intel_detect_timestamp(screen);
1743
1744 /* GENs prior to 8 do not support EU/Subslice info */
1745 if (devinfo->gen >= 8) {
1746 intel_detect_sseu(screen);
1747 } else if (devinfo->gen == 7) {
1748 screen->subslice_total = 1 << (devinfo->gt - 1);
1749 }
1750
1751 /* Gen7-7.5 kernel requirements / command parser saga:
1752 *
1753 * - pre-v3.16:
1754 * Haswell and Baytrail cannot use any privileged batchbuffer features.
1755 *
1756 * Ivybridge has aliasing PPGTT on by default, which accidentally marks
1757 * all batches secure, allowing them to use any feature with no checking.
1758 * This is effectively equivalent to a command parser version of
1759 * \infinity - everything is possible.
1760 *
1761 * The command parser does not exist, and querying the version will
1762 * return -EINVAL.
1763 *
1764 * - v3.16:
1765 * The kernel enables the command parser by default, for systems with
1766 * aliasing PPGTT enabled (Ivybridge and Haswell). However, the
1767 * hardware checker is still enabled, so Haswell and Baytrail cannot
1768 * do anything.
1769 *
1770 * Ivybridge goes from "everything is possible" to "only what the
1771 * command parser allows" (if the user boots with i915.cmd_parser=0,
1772 * then everything is possible again). We can only safely use features
1773 * allowed by the supported command parser version.
1774 *
1775 * Annoyingly, I915_PARAM_CMD_PARSER_VERSION reports the static version
1776 * implemented by the kernel, even if it's turned off. So, checking
1777 * for version > 0 does not mean that you can write registers. We have
1778 * to try it and see. The version does, however, indicate the age of
1779 * the kernel.
1780 *
1781 * Instead of matching the hardware checker's behavior of converting
1782 * privileged commands to MI_NOOP, it makes execbuf2 start returning
1783 * -EINVAL, making it dangerous to try and use privileged features.
1784 *
1785 * Effective command parser versions:
1786 * - Haswell: 0 (reporting 1, writes don't work)
1787 * - Baytrail: 0 (reporting 1, writes don't work)
1788 * - Ivybridge: 1 (enabled) or infinite (disabled)
1789 *
1790 * - v3.17:
1791 * Baytrail aliasing PPGTT is enabled, making it like Ivybridge:
1792 * effectively version 1 (enabled) or infinite (disabled).
1793 *
1794 * - v3.19: f1f55cc0556031c8ee3fe99dae7251e78b9b653b
1795 * Command parser v2 supports predicate writes.
1796 *
1797 * - Haswell: 0 (reporting 1, writes don't work)
1798 * - Baytrail: 2 (enabled) or infinite (disabled)
1799 * - Ivybridge: 2 (enabled) or infinite (disabled)
1800 *
1801 * So version >= 2 is enough to know that Ivybridge and Baytrail
1802 * will work. Haswell still can't do anything.
1803 *
1804 * - v4.0: Version 3 happened. Largely not relevant.
1805 *
1806 * - v4.1: 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
1807 * L3 config registers are properly saved and restored as part
1808 * of the hardware context. We can approximately detect this point
1809 * in time by checking if I915_PARAM_REVISION is recognized - it
1810 * landed in a later commit, but in the same release cycle.
1811 *
1812 * - v4.2: 245054a1fe33c06ad233e0d58a27ec7b64db9284
1813 * Command parser finally gains secure batch promotion. On Haswell,
1814 * the hardware checker gets disabled, which finally allows it to do
1815 * privileged commands.
1816 *
1817 * I915_PARAM_CMD_PARSER_VERSION reports 3. Effective versions:
1818 * - Haswell: 3 (enabled) or 0 (disabled)
1819 * - Baytrail: 3 (enabled) or infinite (disabled)
1820 * - Ivybridge: 3 (enabled) or infinite (disabled)
1821 *
1822 * Unfortunately, detecting this point in time is tricky, because
1823 * no version bump happened when this important change occurred.
1824 * On Haswell, if we can write any register, then the kernel is at
1825 * least this new, and we can start trusting the version number.
1826 *
1827 * - v4.4: 2bbe6bbb0dc94fd4ce287bdac9e1bd184e23057b and
1828 * Command parser reaches version 4, allowing access to Haswell
1829 * atomic scratch and chicken3 registers. If version >= 4, we know
1830 * the kernel is new enough to support privileged features on all
1831 * hardware. However, the user might have disabled it...and the
1832 * kernel will still report version 4. So we still have to guess
1833 * and check.
1834 *
1835 * - v4.4: 7b9748cb513a6bef4af87b79f0da3ff7e8b56cd8
1836 * Command parser v5 whitelists indirect compute shader dispatch
1837 * registers, needed for OpenGL 4.3 and later.
1838 *
1839 * - v4.8:
1840 * Command parser v7 lets us use MI_MATH on Haswell.
1841 *
1842 * Additionally, the kernel begins reporting version 0 when
1843 * the command parser is disabled, allowing us to skip the
1844 * guess-and-check step on Haswell. Unfortunately, this also
1845 * means that we can no longer use it as an indicator of the
1846 * age of the kernel.
1847 */
1848 if (intel_detect_pipelined_so(screen))
1849 screen->kernel_features |= KERNEL_ALLOWS_SOL_OFFSET_WRITES;
1850
1851 const char *force_msaa = getenv("INTEL_FORCE_MSAA");
1852 if (force_msaa) {
1853 screen->winsys_msaa_samples_override =
1854 intel_quantize_num_samples(screen, atoi(force_msaa));
1855 printf("Forcing winsys sample count to %d\n",
1856 screen->winsys_msaa_samples_override);
1857 } else {
1858 screen->winsys_msaa_samples_override = -1;
1859 }
1860
1861 set_max_gl_versions(screen);
1862
1863 /* Notification of GPU resets requires hardware contexts and a kernel new
1864 * enough to support DRM_IOCTL_I915_GET_RESET_STATS. If the ioctl is
1865 * supported, calling it with a context of 0 will either generate EPERM or
1866 * no error. If the ioctl is not supported, it always generate EINVAL.
1867 * Use this to determine whether to advertise the __DRI2_ROBUSTNESS
1868 * extension to the loader.
1869 *
1870 * Don't even try on pre-Gen6, since we don't attempt to use contexts there.
1871 */
1872 if (devinfo->gen >= 6) {
1873 struct drm_i915_reset_stats stats;
1874 memset(&stats, 0, sizeof(stats));
1875
1876 const int ret = drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats);
1877
1878 screen->has_context_reset_notification =
1879 (ret != -1 || errno != EINVAL);
1880 }
1881
1882 if (intel_get_param(screen, I915_PARAM_CMD_PARSER_VERSION,
1883 &screen->cmd_parser_version) < 0) {
1884 screen->cmd_parser_version = 0;
1885 }
1886
1887 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 2)
1888 screen->kernel_features |= KERNEL_ALLOWS_PREDICATE_WRITES;
1889
1890 /* Haswell requires command parser version 4 in order to have L3
1891 * atomic scratch1 and chicken3 bits
1892 */
1893 if (devinfo->is_haswell && screen->cmd_parser_version >= 4) {
1894 screen->kernel_features |=
1895 KERNEL_ALLOWS_HSW_SCRATCH1_AND_ROW_CHICKEN3;
1896 }
1897
1898 /* Haswell requires command parser version 6 in order to write to the
1899 * MI_MATH GPR registers, and version 7 in order to use
1900 * MI_LOAD_REGISTER_REG (which all users of MI_MATH use).
1901 */
1902 if (devinfo->gen >= 8 ||
1903 (devinfo->is_haswell && screen->cmd_parser_version >= 7)) {
1904 screen->kernel_features |= KERNEL_ALLOWS_MI_MATH_AND_LRR;
1905 }
1906
1907 /* Gen7 needs at least command parser version 5 to support compute */
1908 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 5)
1909 screen->kernel_features |= KERNEL_ALLOWS_COMPUTE_DISPATCH;
1910
1911 dri_screen->extensions = !screen->has_context_reset_notification
1912 ? screenExtensions : intelRobustScreenExtensions;
1913
1914 screen->compiler = brw_compiler_create(screen, devinfo);
1915 screen->compiler->shader_debug_log = shader_debug_log_mesa;
1916 screen->compiler->shader_perf_log = shader_perf_log_mesa;
1917 screen->program_id = 1;
1918
1919 screen->has_exec_fence =
1920 intel_get_boolean(screen, I915_PARAM_HAS_EXEC_FENCE);
1921
1922 return (const __DRIconfig**) intel_screen_make_configs(dri_screen);
1923 }
1924
1925 struct intel_buffer {
1926 __DRIbuffer base;
1927 drm_intel_bo *bo;
1928 };
1929
1930 static __DRIbuffer *
1931 intelAllocateBuffer(__DRIscreen *dri_screen,
1932 unsigned attachment, unsigned format,
1933 int width, int height)
1934 {
1935 struct intel_buffer *intelBuffer;
1936 struct intel_screen *screen = dri_screen->driverPrivate;
1937
1938 assert(attachment == __DRI_BUFFER_FRONT_LEFT ||
1939 attachment == __DRI_BUFFER_BACK_LEFT);
1940
1941 intelBuffer = calloc(1, sizeof *intelBuffer);
1942 if (intelBuffer == NULL)
1943 return NULL;
1944
1945 /* The front and back buffers are color buffers, which are X tiled. */
1946 uint32_t tiling = I915_TILING_X;
1947 unsigned long pitch;
1948 int cpp = format / 8;
1949 intelBuffer->bo = drm_intel_bo_alloc_tiled(screen->bufmgr,
1950 "intelAllocateBuffer",
1951 width,
1952 height,
1953 cpp,
1954 &tiling, &pitch,
1955 BO_ALLOC_FOR_RENDER);
1956
1957 if (intelBuffer->bo == NULL) {
1958 free(intelBuffer);
1959 return NULL;
1960 }
1961
1962 drm_intel_bo_flink(intelBuffer->bo, &intelBuffer->base.name);
1963
1964 intelBuffer->base.attachment = attachment;
1965 intelBuffer->base.cpp = cpp;
1966 intelBuffer->base.pitch = pitch;
1967
1968 return &intelBuffer->base;
1969 }
1970
1971 static void
1972 intelReleaseBuffer(__DRIscreen *dri_screen, __DRIbuffer *buffer)
1973 {
1974 struct intel_buffer *intelBuffer = (struct intel_buffer *) buffer;
1975
1976 drm_intel_bo_unreference(intelBuffer->bo);
1977 free(intelBuffer);
1978 }
1979
1980 static const struct __DriverAPIRec brw_driver_api = {
1981 .InitScreen = intelInitScreen2,
1982 .DestroyScreen = intelDestroyScreen,
1983 .CreateContext = brwCreateContext,
1984 .DestroyContext = intelDestroyContext,
1985 .CreateBuffer = intelCreateBuffer,
1986 .DestroyBuffer = intelDestroyBuffer,
1987 .MakeCurrent = intelMakeCurrent,
1988 .UnbindContext = intelUnbindContext,
1989 .AllocateBuffer = intelAllocateBuffer,
1990 .ReleaseBuffer = intelReleaseBuffer
1991 };
1992
1993 static const struct __DRIDriverVtableExtensionRec brw_vtable = {
1994 .base = { __DRI_DRIVER_VTABLE, 1 },
1995 .vtable = &brw_driver_api,
1996 };
1997
1998 static const __DRIextension *brw_driver_extensions[] = {
1999 &driCoreExtension.base,
2000 &driImageDriverExtension.base,
2001 &driDRI2Extension.base,
2002 &brw_vtable.base,
2003 &brw_config_options.base,
2004 NULL
2005 };
2006
2007 PUBLIC const __DRIextension **__driDriverGetExtensions_i965(void)
2008 {
2009 globalDriverAPI = &brw_driver_api;
2010
2011 return brw_driver_extensions;
2012 }