i965: Fix wonky indentation left by brw_bo_alloc_tiled rename.
[mesa.git] / src / mesa / drivers / dri / i965 / intel_screen.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <drm_fourcc.h>
27 #include <errno.h>
28 #include <time.h>
29 #include <unistd.h>
30 #include "main/context.h"
31 #include "main/framebuffer.h"
32 #include "main/renderbuffer.h"
33 #include "main/texobj.h"
34 #include "main/hash.h"
35 #include "main/fbobject.h"
36 #include "main/version.h"
37 #include "swrast/s_renderbuffer.h"
38 #include "util/ralloc.h"
39 #include "brw_defines.h"
40 #include "compiler/nir/nir.h"
41
42 #include "utils.h"
43 #include "xmlpool.h"
44
45 #ifndef DRM_FORMAT_MOD_INVALID
46 #define DRM_FORMAT_MOD_INVALID ((1ULL<<56) - 1)
47 #endif
48
49 #ifndef DRM_FORMAT_MOD_LINEAR
50 #define DRM_FORMAT_MOD_LINEAR 0
51 #endif
52
53 static const __DRIconfigOptionsExtension brw_config_options = {
54 .base = { __DRI_CONFIG_OPTIONS, 1 },
55 .xml =
56 DRI_CONF_BEGIN
57 DRI_CONF_SECTION_PERFORMANCE
58 DRI_CONF_VBLANK_MODE(DRI_CONF_VBLANK_ALWAYS_SYNC)
59 /* Options correspond to DRI_CONF_BO_REUSE_DISABLED,
60 * DRI_CONF_BO_REUSE_ALL
61 */
62 DRI_CONF_OPT_BEGIN_V(bo_reuse, enum, 1, "0:1")
63 DRI_CONF_DESC_BEGIN(en, "Buffer object reuse")
64 DRI_CONF_ENUM(0, "Disable buffer object reuse")
65 DRI_CONF_ENUM(1, "Enable reuse of all sizes of buffer objects")
66 DRI_CONF_DESC_END
67 DRI_CONF_OPT_END
68 DRI_CONF_SECTION_END
69
70 DRI_CONF_SECTION_QUALITY
71 DRI_CONF_FORCE_S3TC_ENABLE("false")
72
73 DRI_CONF_PRECISE_TRIG("false")
74
75 DRI_CONF_OPT_BEGIN(clamp_max_samples, int, -1)
76 DRI_CONF_DESC(en, "Clamp the value of GL_MAX_SAMPLES to the "
77 "given integer. If negative, then do not clamp.")
78 DRI_CONF_OPT_END
79 DRI_CONF_SECTION_END
80
81 DRI_CONF_SECTION_DEBUG
82 DRI_CONF_NO_RAST("false")
83 DRI_CONF_ALWAYS_FLUSH_BATCH("false")
84 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
85 DRI_CONF_DISABLE_THROTTLING("false")
86 DRI_CONF_FORCE_GLSL_EXTENSIONS_WARN("false")
87 DRI_CONF_FORCE_GLSL_VERSION(0)
88 DRI_CONF_DISABLE_GLSL_LINE_CONTINUATIONS("false")
89 DRI_CONF_DISABLE_BLEND_FUNC_EXTENDED("false")
90 DRI_CONF_DUAL_COLOR_BLEND_BY_LOCATION("false")
91 DRI_CONF_ALLOW_GLSL_EXTENSION_DIRECTIVE_MIDSHADER("false")
92 DRI_CONF_ALLOW_HIGHER_COMPAT_VERSION("false")
93 DRI_CONF_FORCE_GLSL_ABS_SQRT("false")
94
95 DRI_CONF_OPT_BEGIN_B(shader_precompile, "true")
96 DRI_CONF_DESC(en, "Perform code generation at shader link time.")
97 DRI_CONF_OPT_END
98 DRI_CONF_SECTION_END
99
100 DRI_CONF_SECTION_MISCELLANEOUS
101 DRI_CONF_GLSL_ZERO_INIT("false")
102 DRI_CONF_SECTION_END
103 DRI_CONF_END
104 };
105
106 #include "intel_batchbuffer.h"
107 #include "intel_buffers.h"
108 #include "brw_bufmgr.h"
109 #include "intel_fbo.h"
110 #include "intel_mipmap_tree.h"
111 #include "intel_screen.h"
112 #include "intel_tex.h"
113 #include "intel_image.h"
114
115 #include "brw_context.h"
116
117 #include "i915_drm.h"
118
119 /**
120 * For debugging purposes, this returns a time in seconds.
121 */
122 double
123 get_time(void)
124 {
125 struct timespec tp;
126
127 clock_gettime(CLOCK_MONOTONIC, &tp);
128
129 return tp.tv_sec + tp.tv_nsec / 1000000000.0;
130 }
131
132 static const __DRItexBufferExtension intelTexBufferExtension = {
133 .base = { __DRI_TEX_BUFFER, 3 },
134
135 .setTexBuffer = intelSetTexBuffer,
136 .setTexBuffer2 = intelSetTexBuffer2,
137 .releaseTexBuffer = NULL,
138 };
139
140 static void
141 intel_dri2_flush_with_flags(__DRIcontext *cPriv,
142 __DRIdrawable *dPriv,
143 unsigned flags,
144 enum __DRI2throttleReason reason)
145 {
146 struct brw_context *brw = cPriv->driverPrivate;
147
148 if (!brw)
149 return;
150
151 struct gl_context *ctx = &brw->ctx;
152
153 FLUSH_VERTICES(ctx, 0);
154
155 if (flags & __DRI2_FLUSH_DRAWABLE)
156 intel_resolve_for_dri2_flush(brw, dPriv);
157
158 if (reason == __DRI2_THROTTLE_SWAPBUFFER)
159 brw->need_swap_throttle = true;
160 if (reason == __DRI2_THROTTLE_FLUSHFRONT)
161 brw->need_flush_throttle = true;
162
163 intel_batchbuffer_flush(brw);
164 }
165
166 /**
167 * Provides compatibility with loaders that only support the older (version
168 * 1-3) flush interface.
169 *
170 * That includes libGL up to Mesa 9.0, and the X Server at least up to 1.13.
171 */
172 static void
173 intel_dri2_flush(__DRIdrawable *drawable)
174 {
175 intel_dri2_flush_with_flags(drawable->driContextPriv, drawable,
176 __DRI2_FLUSH_DRAWABLE,
177 __DRI2_THROTTLE_SWAPBUFFER);
178 }
179
180 static const struct __DRI2flushExtensionRec intelFlushExtension = {
181 .base = { __DRI2_FLUSH, 4 },
182
183 .flush = intel_dri2_flush,
184 .invalidate = dri2InvalidateDrawable,
185 .flush_with_flags = intel_dri2_flush_with_flags,
186 };
187
188 static struct intel_image_format intel_image_formats[] = {
189 { __DRI_IMAGE_FOURCC_ARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
190 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
191
192 { __DRI_IMAGE_FOURCC_ABGR8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
193 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
194
195 { __DRI_IMAGE_FOURCC_SARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
196 { { 0, 0, 0, __DRI_IMAGE_FORMAT_SARGB8, 4 } } },
197
198 { __DRI_IMAGE_FOURCC_XRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
199 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB8888, 4 }, } },
200
201 { __DRI_IMAGE_FOURCC_XBGR8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
202 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 }, } },
203
204 { __DRI_IMAGE_FOURCC_ARGB1555, __DRI_IMAGE_COMPONENTS_RGBA, 1,
205 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB1555, 2 } } },
206
207 { __DRI_IMAGE_FOURCC_RGB565, __DRI_IMAGE_COMPONENTS_RGB, 1,
208 { { 0, 0, 0, __DRI_IMAGE_FORMAT_RGB565, 2 } } },
209
210 { __DRI_IMAGE_FOURCC_R8, __DRI_IMAGE_COMPONENTS_R, 1,
211 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 }, } },
212
213 { __DRI_IMAGE_FOURCC_R16, __DRI_IMAGE_COMPONENTS_R, 1,
214 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 1 }, } },
215
216 { __DRI_IMAGE_FOURCC_GR88, __DRI_IMAGE_COMPONENTS_RG, 1,
217 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 }, } },
218
219 { __DRI_IMAGE_FOURCC_GR1616, __DRI_IMAGE_COMPONENTS_RG, 1,
220 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR1616, 2 }, } },
221
222 { __DRI_IMAGE_FOURCC_YUV410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
223 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
224 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
225 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
226
227 { __DRI_IMAGE_FOURCC_YUV411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
228 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
229 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
230 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
231
232 { __DRI_IMAGE_FOURCC_YUV420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
233 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
234 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
235 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
236
237 { __DRI_IMAGE_FOURCC_YUV422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
238 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
239 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
240 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
241
242 { __DRI_IMAGE_FOURCC_YUV444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
243 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
244 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
245 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
246
247 { __DRI_IMAGE_FOURCC_YVU410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
248 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
249 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
250 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
251
252 { __DRI_IMAGE_FOURCC_YVU411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
253 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
254 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
255 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
256
257 { __DRI_IMAGE_FOURCC_YVU420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
258 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
259 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
260 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
261
262 { __DRI_IMAGE_FOURCC_YVU422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
263 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
264 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
265 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
266
267 { __DRI_IMAGE_FOURCC_YVU444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
268 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
269 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
270 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
271
272 { __DRI_IMAGE_FOURCC_NV12, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
273 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
274 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR88, 2 } } },
275
276 { __DRI_IMAGE_FOURCC_NV16, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
277 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
278 { 1, 1, 0, __DRI_IMAGE_FORMAT_GR88, 2 } } },
279
280 /* For YUYV buffers, we set up two overlapping DRI images and treat
281 * them as planar buffers in the compositors. Plane 0 is GR88 and
282 * samples YU or YV pairs and places Y into the R component, while
283 * plane 1 is ARGB and samples YUYV clusters and places pairs and
284 * places U into the G component and V into A. This lets the
285 * texture sampler interpolate the Y components correctly when
286 * sampling from plane 0, and interpolate U and V correctly when
287 * sampling from plane 1. */
288 { __DRI_IMAGE_FOURCC_YUYV, __DRI_IMAGE_COMPONENTS_Y_XUXV, 2,
289 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
290 { 0, 1, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } }
291 };
292
293 static void
294 intel_image_warn_if_unaligned(__DRIimage *image, const char *func)
295 {
296 uint32_t tiling, swizzle;
297 brw_bo_get_tiling(image->bo, &tiling, &swizzle);
298
299 if (tiling != I915_TILING_NONE && (image->offset & 0xfff)) {
300 _mesa_warning(NULL, "%s: offset 0x%08x not on tile boundary",
301 func, image->offset);
302 }
303 }
304
305 static struct intel_image_format *
306 intel_image_format_lookup(int fourcc)
307 {
308 struct intel_image_format *f = NULL;
309
310 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
311 if (intel_image_formats[i].fourcc == fourcc) {
312 f = &intel_image_formats[i];
313 break;
314 }
315 }
316
317 return f;
318 }
319
320 static boolean intel_lookup_fourcc(int dri_format, int *fourcc)
321 {
322 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
323 if (intel_image_formats[i].planes[0].dri_format == dri_format) {
324 *fourcc = intel_image_formats[i].fourcc;
325 return true;
326 }
327 }
328 return false;
329 }
330
331 static __DRIimage *
332 intel_allocate_image(struct intel_screen *screen, int dri_format,
333 void *loaderPrivate)
334 {
335 __DRIimage *image;
336
337 image = calloc(1, sizeof *image);
338 if (image == NULL)
339 return NULL;
340
341 image->screen = screen;
342 image->dri_format = dri_format;
343 image->offset = 0;
344
345 image->format = driImageFormatToGLFormat(dri_format);
346 if (dri_format != __DRI_IMAGE_FORMAT_NONE &&
347 image->format == MESA_FORMAT_NONE) {
348 free(image);
349 return NULL;
350 }
351
352 image->internal_format = _mesa_get_format_base_format(image->format);
353 image->data = loaderPrivate;
354
355 return image;
356 }
357
358 /**
359 * Sets up a DRIImage structure to point to a slice out of a miptree.
360 */
361 static void
362 intel_setup_image_from_mipmap_tree(struct brw_context *brw, __DRIimage *image,
363 struct intel_mipmap_tree *mt, GLuint level,
364 GLuint zoffset)
365 {
366 intel_miptree_make_shareable(brw, mt);
367
368 intel_miptree_check_level_layer(mt, level, zoffset);
369
370 image->width = minify(mt->physical_width0, level - mt->first_level);
371 image->height = minify(mt->physical_height0, level - mt->first_level);
372 image->pitch = mt->pitch;
373
374 image->offset = intel_miptree_get_tile_offsets(mt, level, zoffset,
375 &image->tile_x,
376 &image->tile_y);
377
378 brw_bo_unreference(image->bo);
379 image->bo = mt->bo;
380 brw_bo_reference(mt->bo);
381 }
382
383 static __DRIimage *
384 intel_create_image_from_name(__DRIscreen *dri_screen,
385 int width, int height, int format,
386 int name, int pitch, void *loaderPrivate)
387 {
388 struct intel_screen *screen = dri_screen->driverPrivate;
389 __DRIimage *image;
390 int cpp;
391
392 image = intel_allocate_image(screen, format, loaderPrivate);
393 if (image == NULL)
394 return NULL;
395
396 if (image->format == MESA_FORMAT_NONE)
397 cpp = 1;
398 else
399 cpp = _mesa_get_format_bytes(image->format);
400
401 image->width = width;
402 image->height = height;
403 image->pitch = pitch * cpp;
404 image->bo = brw_bo_gem_create_from_name(screen->bufmgr, "image",
405 name);
406 if (!image->bo) {
407 free(image);
408 return NULL;
409 }
410
411 return image;
412 }
413
414 static __DRIimage *
415 intel_create_image_from_renderbuffer(__DRIcontext *context,
416 int renderbuffer, void *loaderPrivate)
417 {
418 __DRIimage *image;
419 struct brw_context *brw = context->driverPrivate;
420 struct gl_context *ctx = &brw->ctx;
421 struct gl_renderbuffer *rb;
422 struct intel_renderbuffer *irb;
423
424 rb = _mesa_lookup_renderbuffer(ctx, renderbuffer);
425 if (!rb) {
426 _mesa_error(ctx, GL_INVALID_OPERATION, "glRenderbufferExternalMESA");
427 return NULL;
428 }
429
430 irb = intel_renderbuffer(rb);
431 intel_miptree_make_shareable(brw, irb->mt);
432 image = calloc(1, sizeof *image);
433 if (image == NULL)
434 return NULL;
435
436 image->internal_format = rb->InternalFormat;
437 image->format = rb->Format;
438 image->offset = 0;
439 image->data = loaderPrivate;
440 brw_bo_unreference(image->bo);
441 image->bo = irb->mt->bo;
442 brw_bo_reference(irb->mt->bo);
443 image->width = rb->Width;
444 image->height = rb->Height;
445 image->pitch = irb->mt->pitch;
446 image->dri_format = driGLFormatToImageFormat(image->format);
447 image->has_depthstencil = irb->mt->stencil_mt? true : false;
448
449 rb->NeedsFinishRenderTexture = true;
450 return image;
451 }
452
453 static __DRIimage *
454 intel_create_image_from_texture(__DRIcontext *context, int target,
455 unsigned texture, int zoffset,
456 int level,
457 unsigned *error,
458 void *loaderPrivate)
459 {
460 __DRIimage *image;
461 struct brw_context *brw = context->driverPrivate;
462 struct gl_texture_object *obj;
463 struct intel_texture_object *iobj;
464 GLuint face = 0;
465
466 obj = _mesa_lookup_texture(&brw->ctx, texture);
467 if (!obj || obj->Target != target) {
468 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
469 return NULL;
470 }
471
472 if (target == GL_TEXTURE_CUBE_MAP)
473 face = zoffset;
474
475 _mesa_test_texobj_completeness(&brw->ctx, obj);
476 iobj = intel_texture_object(obj);
477 if (!obj->_BaseComplete || (level > 0 && !obj->_MipmapComplete)) {
478 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
479 return NULL;
480 }
481
482 if (level < obj->BaseLevel || level > obj->_MaxLevel) {
483 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
484 return NULL;
485 }
486
487 if (target == GL_TEXTURE_3D && obj->Image[face][level]->Depth < zoffset) {
488 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
489 return NULL;
490 }
491 image = calloc(1, sizeof *image);
492 if (image == NULL) {
493 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
494 return NULL;
495 }
496
497 image->internal_format = obj->Image[face][level]->InternalFormat;
498 image->format = obj->Image[face][level]->TexFormat;
499 image->data = loaderPrivate;
500 intel_setup_image_from_mipmap_tree(brw, image, iobj->mt, level, zoffset);
501 image->dri_format = driGLFormatToImageFormat(image->format);
502 image->has_depthstencil = iobj->mt->stencil_mt? true : false;
503 if (image->dri_format == MESA_FORMAT_NONE) {
504 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
505 free(image);
506 return NULL;
507 }
508
509 *error = __DRI_IMAGE_ERROR_SUCCESS;
510 return image;
511 }
512
513 static void
514 intel_destroy_image(__DRIimage *image)
515 {
516 brw_bo_unreference(image->bo);
517 free(image);
518 }
519
520 enum modifier_priority {
521 MODIFIER_PRIORITY_INVALID = 0,
522 MODIFIER_PRIORITY_LINEAR,
523 MODIFIER_PRIORITY_X,
524 MODIFIER_PRIORITY_Y,
525 };
526
527 const uint64_t priority_to_modifier[] = {
528 [MODIFIER_PRIORITY_INVALID] = DRM_FORMAT_MOD_INVALID,
529 [MODIFIER_PRIORITY_LINEAR] = DRM_FORMAT_MOD_LINEAR,
530 [MODIFIER_PRIORITY_X] = I915_FORMAT_MOD_X_TILED,
531 [MODIFIER_PRIORITY_Y] = I915_FORMAT_MOD_Y_TILED,
532 };
533
534 static uint64_t
535 select_best_modifier(struct gen_device_info *devinfo,
536 const uint64_t *modifiers,
537 const unsigned count)
538 {
539 enum modifier_priority prio = MODIFIER_PRIORITY_INVALID;
540
541 for (int i = 0; i < count; i++) {
542 switch (modifiers[i]) {
543 case I915_FORMAT_MOD_Y_TILED:
544 prio = MAX2(prio, MODIFIER_PRIORITY_Y);
545 break;
546 case I915_FORMAT_MOD_X_TILED:
547 prio = MAX2(prio, MODIFIER_PRIORITY_X);
548 break;
549 case DRM_FORMAT_MOD_LINEAR:
550 prio = MAX2(prio, MODIFIER_PRIORITY_LINEAR);
551 break;
552 case DRM_FORMAT_MOD_INVALID:
553 default:
554 break;
555 }
556 }
557
558 return priority_to_modifier[prio];
559 }
560
561 static __DRIimage *
562 intel_create_image_common(__DRIscreen *dri_screen,
563 int width, int height, int format,
564 unsigned int use,
565 const uint64_t *modifiers,
566 unsigned count,
567 void *loaderPrivate)
568 {
569 __DRIimage *image;
570 struct intel_screen *screen = dri_screen->driverPrivate;
571 /* Historically, X-tiled was the default, and so lack of modifier means
572 * X-tiled.
573 */
574 uint32_t tiling = I915_TILING_X;
575 int cpp;
576 unsigned long pitch;
577
578 /* Callers of this may specify a modifier, or a dri usage, but not both. The
579 * newer modifier interface deprecates the older usage flags newer modifier
580 * interface deprecates the older usage flags.
581 */
582 assert(!(use && count));
583
584 uint64_t modifier = select_best_modifier(&screen->devinfo, modifiers, count);
585 switch (modifier) {
586 case I915_FORMAT_MOD_X_TILED:
587 assert(tiling == I915_TILING_X);
588 break;
589 case DRM_FORMAT_MOD_LINEAR:
590 tiling = I915_TILING_NONE;
591 break;
592 case I915_FORMAT_MOD_Y_TILED:
593 tiling = I915_TILING_Y;
594 break;
595 case DRM_FORMAT_MOD_INVALID:
596 if (modifiers)
597 return NULL;
598 default:
599 break;
600 }
601
602 if (use & __DRI_IMAGE_USE_CURSOR) {
603 if (width != 64 || height != 64)
604 return NULL;
605 tiling = I915_TILING_NONE;
606 }
607
608 if (use & __DRI_IMAGE_USE_LINEAR)
609 tiling = I915_TILING_NONE;
610
611 image = intel_allocate_image(screen, format, loaderPrivate);
612 if (image == NULL)
613 return NULL;
614
615 cpp = _mesa_get_format_bytes(image->format);
616 image->bo = brw_bo_alloc_tiled(screen->bufmgr, "image",
617 width, height, cpp, &tiling,
618 &pitch, 0);
619 if (image->bo == NULL) {
620 free(image);
621 return NULL;
622 }
623 image->width = width;
624 image->height = height;
625 image->pitch = pitch;
626 image->modifier = modifier;
627
628 return image;
629 }
630
631 static __DRIimage *
632 intel_create_image(__DRIscreen *dri_screen,
633 int width, int height, int format,
634 unsigned int use,
635 void *loaderPrivate)
636 {
637 return intel_create_image_common(dri_screen, width, height, format, use, NULL, 0,
638 loaderPrivate);
639 }
640
641 static __DRIimage *
642 intel_create_image_with_modifiers(__DRIscreen *dri_screen,
643 int width, int height, int format,
644 const uint64_t *modifiers,
645 const unsigned count,
646 void *loaderPrivate)
647 {
648 return intel_create_image_common(dri_screen, width, height, format, 0,
649 modifiers, count, loaderPrivate);
650 }
651
652 static GLboolean
653 intel_query_image(__DRIimage *image, int attrib, int *value)
654 {
655 switch (attrib) {
656 case __DRI_IMAGE_ATTRIB_STRIDE:
657 *value = image->pitch;
658 return true;
659 case __DRI_IMAGE_ATTRIB_HANDLE:
660 *value = image->bo->gem_handle;
661 return true;
662 case __DRI_IMAGE_ATTRIB_NAME:
663 return !brw_bo_flink(image->bo, (uint32_t *) value);
664 case __DRI_IMAGE_ATTRIB_FORMAT:
665 *value = image->dri_format;
666 return true;
667 case __DRI_IMAGE_ATTRIB_WIDTH:
668 *value = image->width;
669 return true;
670 case __DRI_IMAGE_ATTRIB_HEIGHT:
671 *value = image->height;
672 return true;
673 case __DRI_IMAGE_ATTRIB_COMPONENTS:
674 if (image->planar_format == NULL)
675 return false;
676 *value = image->planar_format->components;
677 return true;
678 case __DRI_IMAGE_ATTRIB_FD:
679 return !brw_bo_gem_export_to_prime(image->bo, value);
680 case __DRI_IMAGE_ATTRIB_FOURCC:
681 return intel_lookup_fourcc(image->dri_format, value);
682 case __DRI_IMAGE_ATTRIB_NUM_PLANES:
683 *value = 1;
684 return true;
685 case __DRI_IMAGE_ATTRIB_OFFSET:
686 *value = image->offset;
687 return true;
688 case __DRI_IMAGE_ATTRIB_MODIFIER_LOWER:
689 *value = (image->modifier & 0xffffffff);
690 return true;
691 case __DRI_IMAGE_ATTRIB_MODIFIER_UPPER:
692 *value = ((image->modifier >> 32) & 0xffffffff);
693 return true;
694
695 default:
696 return false;
697 }
698 }
699
700 static __DRIimage *
701 intel_dup_image(__DRIimage *orig_image, void *loaderPrivate)
702 {
703 __DRIimage *image;
704
705 image = calloc(1, sizeof *image);
706 if (image == NULL)
707 return NULL;
708
709 brw_bo_reference(orig_image->bo);
710 image->bo = orig_image->bo;
711 image->internal_format = orig_image->internal_format;
712 image->planar_format = orig_image->planar_format;
713 image->dri_format = orig_image->dri_format;
714 image->format = orig_image->format;
715 image->offset = orig_image->offset;
716 image->width = orig_image->width;
717 image->height = orig_image->height;
718 image->pitch = orig_image->pitch;
719 image->tile_x = orig_image->tile_x;
720 image->tile_y = orig_image->tile_y;
721 image->has_depthstencil = orig_image->has_depthstencil;
722 image->data = loaderPrivate;
723
724 memcpy(image->strides, orig_image->strides, sizeof(image->strides));
725 memcpy(image->offsets, orig_image->offsets, sizeof(image->offsets));
726
727 return image;
728 }
729
730 static GLboolean
731 intel_validate_usage(__DRIimage *image, unsigned int use)
732 {
733 if (use & __DRI_IMAGE_USE_CURSOR) {
734 if (image->width != 64 || image->height != 64)
735 return GL_FALSE;
736 }
737
738 return GL_TRUE;
739 }
740
741 static __DRIimage *
742 intel_create_image_from_names(__DRIscreen *dri_screen,
743 int width, int height, int fourcc,
744 int *names, int num_names,
745 int *strides, int *offsets,
746 void *loaderPrivate)
747 {
748 struct intel_image_format *f = NULL;
749 __DRIimage *image;
750 int i, index;
751
752 if (dri_screen == NULL || names == NULL || num_names != 1)
753 return NULL;
754
755 f = intel_image_format_lookup(fourcc);
756 if (f == NULL)
757 return NULL;
758
759 image = intel_create_image_from_name(dri_screen, width, height,
760 __DRI_IMAGE_FORMAT_NONE,
761 names[0], strides[0],
762 loaderPrivate);
763
764 if (image == NULL)
765 return NULL;
766
767 image->planar_format = f;
768 for (i = 0; i < f->nplanes; i++) {
769 index = f->planes[i].buffer_index;
770 image->offsets[index] = offsets[index];
771 image->strides[index] = strides[index];
772 }
773
774 return image;
775 }
776
777 static __DRIimage *
778 intel_create_image_from_fds(__DRIscreen *dri_screen,
779 int width, int height, int fourcc,
780 int *fds, int num_fds, int *strides, int *offsets,
781 void *loaderPrivate)
782 {
783 struct intel_screen *screen = dri_screen->driverPrivate;
784 struct intel_image_format *f;
785 __DRIimage *image;
786 int i, index;
787
788 if (fds == NULL || num_fds < 1)
789 return NULL;
790
791 /* We only support all planes from the same bo */
792 for (i = 0; i < num_fds; i++)
793 if (fds[0] != fds[i])
794 return NULL;
795
796 f = intel_image_format_lookup(fourcc);
797 if (f == NULL)
798 return NULL;
799
800 if (f->nplanes == 1)
801 image = intel_allocate_image(screen, f->planes[0].dri_format,
802 loaderPrivate);
803 else
804 image = intel_allocate_image(screen, __DRI_IMAGE_FORMAT_NONE,
805 loaderPrivate);
806
807 if (image == NULL)
808 return NULL;
809
810 image->width = width;
811 image->height = height;
812 image->pitch = strides[0];
813
814 image->planar_format = f;
815 int size = 0;
816 for (i = 0; i < f->nplanes; i++) {
817 index = f->planes[i].buffer_index;
818 image->offsets[index] = offsets[index];
819 image->strides[index] = strides[index];
820
821 const int plane_height = height >> f->planes[i].height_shift;
822 const int end = offsets[index] + plane_height * strides[index];
823 if (size < end)
824 size = end;
825 }
826
827 image->bo = brw_bo_gem_create_from_prime(screen->bufmgr,
828 fds[0], size);
829 if (image->bo == NULL) {
830 free(image);
831 return NULL;
832 }
833
834 if (f->nplanes == 1) {
835 image->offset = image->offsets[0];
836 intel_image_warn_if_unaligned(image, __func__);
837 }
838
839 return image;
840 }
841
842 static __DRIimage *
843 intel_create_image_from_dma_bufs(__DRIscreen *dri_screen,
844 int width, int height, int fourcc,
845 int *fds, int num_fds,
846 int *strides, int *offsets,
847 enum __DRIYUVColorSpace yuv_color_space,
848 enum __DRISampleRange sample_range,
849 enum __DRIChromaSiting horizontal_siting,
850 enum __DRIChromaSiting vertical_siting,
851 unsigned *error,
852 void *loaderPrivate)
853 {
854 __DRIimage *image;
855 struct intel_image_format *f = intel_image_format_lookup(fourcc);
856
857 if (!f) {
858 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
859 return NULL;
860 }
861
862 image = intel_create_image_from_fds(dri_screen, width, height, fourcc, fds,
863 num_fds, strides, offsets,
864 loaderPrivate);
865
866 /*
867 * Invalid parameters and any inconsistencies between are assumed to be
868 * checked by the caller. Therefore besides unsupported formats one can fail
869 * only in allocation.
870 */
871 if (!image) {
872 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
873 return NULL;
874 }
875
876 image->dma_buf_imported = true;
877 image->yuv_color_space = yuv_color_space;
878 image->sample_range = sample_range;
879 image->horizontal_siting = horizontal_siting;
880 image->vertical_siting = vertical_siting;
881
882 *error = __DRI_IMAGE_ERROR_SUCCESS;
883 return image;
884 }
885
886 static __DRIimage *
887 intel_from_planar(__DRIimage *parent, int plane, void *loaderPrivate)
888 {
889 int width, height, offset, stride, dri_format, index;
890 struct intel_image_format *f;
891 __DRIimage *image;
892
893 if (parent == NULL || parent->planar_format == NULL)
894 return NULL;
895
896 f = parent->planar_format;
897
898 if (plane >= f->nplanes)
899 return NULL;
900
901 width = parent->width >> f->planes[plane].width_shift;
902 height = parent->height >> f->planes[plane].height_shift;
903 dri_format = f->planes[plane].dri_format;
904 index = f->planes[plane].buffer_index;
905 offset = parent->offsets[index];
906 stride = parent->strides[index];
907
908 image = intel_allocate_image(parent->screen, dri_format, loaderPrivate);
909 if (image == NULL)
910 return NULL;
911
912 if (offset + height * stride > parent->bo->size) {
913 _mesa_warning(NULL, "intel_create_sub_image: subimage out of bounds");
914 free(image);
915 return NULL;
916 }
917
918 image->bo = parent->bo;
919 brw_bo_reference(parent->bo);
920
921 image->width = width;
922 image->height = height;
923 image->pitch = stride;
924 image->offset = offset;
925
926 intel_image_warn_if_unaligned(image, __func__);
927
928 return image;
929 }
930
931 static const __DRIimageExtension intelImageExtension = {
932 .base = { __DRI_IMAGE, 14 },
933
934 .createImageFromName = intel_create_image_from_name,
935 .createImageFromRenderbuffer = intel_create_image_from_renderbuffer,
936 .destroyImage = intel_destroy_image,
937 .createImage = intel_create_image,
938 .queryImage = intel_query_image,
939 .dupImage = intel_dup_image,
940 .validateUsage = intel_validate_usage,
941 .createImageFromNames = intel_create_image_from_names,
942 .fromPlanar = intel_from_planar,
943 .createImageFromTexture = intel_create_image_from_texture,
944 .createImageFromFds = intel_create_image_from_fds,
945 .createImageFromDmaBufs = intel_create_image_from_dma_bufs,
946 .blitImage = NULL,
947 .getCapabilities = NULL,
948 .mapImage = NULL,
949 .unmapImage = NULL,
950 .createImageWithModifiers = intel_create_image_with_modifiers,
951 };
952
953 static uint64_t
954 get_aperture_size(int fd)
955 {
956 struct drm_i915_gem_get_aperture aperture;
957
958 if (drmIoctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture) != 0)
959 return 0;
960
961 return aperture.aper_size;
962 }
963
964 static int
965 brw_query_renderer_integer(__DRIscreen *dri_screen,
966 int param, unsigned int *value)
967 {
968 const struct intel_screen *const screen =
969 (struct intel_screen *) dri_screen->driverPrivate;
970
971 switch (param) {
972 case __DRI2_RENDERER_VENDOR_ID:
973 value[0] = 0x8086;
974 return 0;
975 case __DRI2_RENDERER_DEVICE_ID:
976 value[0] = screen->deviceID;
977 return 0;
978 case __DRI2_RENDERER_ACCELERATED:
979 value[0] = 1;
980 return 0;
981 case __DRI2_RENDERER_VIDEO_MEMORY: {
982 /* Once a batch uses more than 75% of the maximum mappable size, we
983 * assume that there's some fragmentation, and we start doing extra
984 * flushing, etc. That's the big cliff apps will care about.
985 */
986 const unsigned gpu_mappable_megabytes =
987 screen->aperture_threshold / (1024 * 1024);
988
989 const long system_memory_pages = sysconf(_SC_PHYS_PAGES);
990 const long system_page_size = sysconf(_SC_PAGE_SIZE);
991
992 if (system_memory_pages <= 0 || system_page_size <= 0)
993 return -1;
994
995 const uint64_t system_memory_bytes = (uint64_t) system_memory_pages
996 * (uint64_t) system_page_size;
997
998 const unsigned system_memory_megabytes =
999 (unsigned) (system_memory_bytes / (1024 * 1024));
1000
1001 value[0] = MIN2(system_memory_megabytes, gpu_mappable_megabytes);
1002 return 0;
1003 }
1004 case __DRI2_RENDERER_UNIFIED_MEMORY_ARCHITECTURE:
1005 value[0] = 1;
1006 return 0;
1007 case __DRI2_RENDERER_HAS_TEXTURE_3D:
1008 value[0] = 1;
1009 return 0;
1010 default:
1011 return driQueryRendererIntegerCommon(dri_screen, param, value);
1012 }
1013
1014 return -1;
1015 }
1016
1017 static int
1018 brw_query_renderer_string(__DRIscreen *dri_screen,
1019 int param, const char **value)
1020 {
1021 const struct intel_screen *screen =
1022 (struct intel_screen *) dri_screen->driverPrivate;
1023
1024 switch (param) {
1025 case __DRI2_RENDERER_VENDOR_ID:
1026 value[0] = brw_vendor_string;
1027 return 0;
1028 case __DRI2_RENDERER_DEVICE_ID:
1029 value[0] = brw_get_renderer_string(screen);
1030 return 0;
1031 default:
1032 break;
1033 }
1034
1035 return -1;
1036 }
1037
1038 static const __DRI2rendererQueryExtension intelRendererQueryExtension = {
1039 .base = { __DRI2_RENDERER_QUERY, 1 },
1040
1041 .queryInteger = brw_query_renderer_integer,
1042 .queryString = brw_query_renderer_string
1043 };
1044
1045 static const __DRIrobustnessExtension dri2Robustness = {
1046 .base = { __DRI2_ROBUSTNESS, 1 }
1047 };
1048
1049 static const __DRIextension *screenExtensions[] = {
1050 &intelTexBufferExtension.base,
1051 &intelFenceExtension.base,
1052 &intelFlushExtension.base,
1053 &intelImageExtension.base,
1054 &intelRendererQueryExtension.base,
1055 &dri2ConfigQueryExtension.base,
1056 NULL
1057 };
1058
1059 static const __DRIextension *intelRobustScreenExtensions[] = {
1060 &intelTexBufferExtension.base,
1061 &intelFenceExtension.base,
1062 &intelFlushExtension.base,
1063 &intelImageExtension.base,
1064 &intelRendererQueryExtension.base,
1065 &dri2ConfigQueryExtension.base,
1066 &dri2Robustness.base,
1067 NULL
1068 };
1069
1070 static int
1071 intel_get_param(struct intel_screen *screen, int param, int *value)
1072 {
1073 int ret = 0;
1074 struct drm_i915_getparam gp;
1075
1076 memset(&gp, 0, sizeof(gp));
1077 gp.param = param;
1078 gp.value = value;
1079
1080 if (drmIoctl(screen->driScrnPriv->fd, DRM_IOCTL_I915_GETPARAM, &gp) == -1) {
1081 ret = -errno;
1082 if (ret != -EINVAL)
1083 _mesa_warning(NULL, "drm_i915_getparam: %d", ret);
1084 }
1085
1086 return ret;
1087 }
1088
1089 static bool
1090 intel_get_boolean(struct intel_screen *screen, int param)
1091 {
1092 int value = 0;
1093 return (intel_get_param(screen, param, &value) == 0) && value;
1094 }
1095
1096 static int
1097 intel_get_integer(struct intel_screen *screen, int param)
1098 {
1099 int value = -1;
1100
1101 if (intel_get_param(screen, param, &value) == 0)
1102 return value;
1103
1104 return -1;
1105 }
1106
1107 static void
1108 intelDestroyScreen(__DRIscreen * sPriv)
1109 {
1110 struct intel_screen *screen = sPriv->driverPrivate;
1111
1112 brw_bufmgr_destroy(screen->bufmgr);
1113 driDestroyOptionInfo(&screen->optionCache);
1114
1115 ralloc_free(screen);
1116 sPriv->driverPrivate = NULL;
1117 }
1118
1119
1120 /**
1121 * This is called when we need to set up GL rendering to a new X window.
1122 */
1123 static GLboolean
1124 intelCreateBuffer(__DRIscreen *dri_screen,
1125 __DRIdrawable * driDrawPriv,
1126 const struct gl_config * mesaVis, GLboolean isPixmap)
1127 {
1128 struct intel_renderbuffer *rb;
1129 struct intel_screen *screen = (struct intel_screen *)
1130 dri_screen->driverPrivate;
1131 mesa_format rgbFormat;
1132 unsigned num_samples =
1133 intel_quantize_num_samples(screen, mesaVis->samples);
1134 struct gl_framebuffer *fb;
1135
1136 if (isPixmap)
1137 return false;
1138
1139 fb = CALLOC_STRUCT(gl_framebuffer);
1140 if (!fb)
1141 return false;
1142
1143 _mesa_initialize_window_framebuffer(fb, mesaVis);
1144
1145 if (screen->winsys_msaa_samples_override != -1) {
1146 num_samples = screen->winsys_msaa_samples_override;
1147 fb->Visual.samples = num_samples;
1148 }
1149
1150 if (mesaVis->redBits == 5) {
1151 rgbFormat = mesaVis->redMask == 0x1f ? MESA_FORMAT_R5G6B5_UNORM
1152 : MESA_FORMAT_B5G6R5_UNORM;
1153 } else if (mesaVis->sRGBCapable) {
1154 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1155 : MESA_FORMAT_B8G8R8A8_SRGB;
1156 } else if (mesaVis->alphaBits == 0) {
1157 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8X8_UNORM
1158 : MESA_FORMAT_B8G8R8X8_UNORM;
1159 } else {
1160 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1161 : MESA_FORMAT_B8G8R8A8_SRGB;
1162 fb->Visual.sRGBCapable = true;
1163 }
1164
1165 /* setup the hardware-based renderbuffers */
1166 rb = intel_create_renderbuffer(rgbFormat, num_samples);
1167 _mesa_add_renderbuffer_without_ref(fb, BUFFER_FRONT_LEFT, &rb->Base.Base);
1168
1169 if (mesaVis->doubleBufferMode) {
1170 rb = intel_create_renderbuffer(rgbFormat, num_samples);
1171 _mesa_add_renderbuffer_without_ref(fb, BUFFER_BACK_LEFT, &rb->Base.Base);
1172 }
1173
1174 /*
1175 * Assert here that the gl_config has an expected depth/stencil bit
1176 * combination: one of d24/s8, d16/s0, d0/s0. (See intelInitScreen2(),
1177 * which constructs the advertised configs.)
1178 */
1179 if (mesaVis->depthBits == 24) {
1180 assert(mesaVis->stencilBits == 8);
1181
1182 if (screen->devinfo.has_hiz_and_separate_stencil) {
1183 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z24_UNORM_X8_UINT,
1184 num_samples);
1185 _mesa_add_renderbuffer_without_ref(fb, BUFFER_DEPTH, &rb->Base.Base);
1186 rb = intel_create_private_renderbuffer(MESA_FORMAT_S_UINT8,
1187 num_samples);
1188 _mesa_add_renderbuffer_without_ref(fb, BUFFER_STENCIL,
1189 &rb->Base.Base);
1190 } else {
1191 /*
1192 * Use combined depth/stencil. Note that the renderbuffer is
1193 * attached to two attachment points.
1194 */
1195 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z24_UNORM_S8_UINT,
1196 num_samples);
1197 _mesa_add_renderbuffer_without_ref(fb, BUFFER_DEPTH, &rb->Base.Base);
1198 _mesa_add_renderbuffer(fb, BUFFER_STENCIL, &rb->Base.Base);
1199 }
1200 }
1201 else if (mesaVis->depthBits == 16) {
1202 assert(mesaVis->stencilBits == 0);
1203 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z_UNORM16,
1204 num_samples);
1205 _mesa_add_renderbuffer_without_ref(fb, BUFFER_DEPTH, &rb->Base.Base);
1206 }
1207 else {
1208 assert(mesaVis->depthBits == 0);
1209 assert(mesaVis->stencilBits == 0);
1210 }
1211
1212 /* now add any/all software-based renderbuffers we may need */
1213 _swrast_add_soft_renderbuffers(fb,
1214 false, /* never sw color */
1215 false, /* never sw depth */
1216 false, /* never sw stencil */
1217 mesaVis->accumRedBits > 0,
1218 false, /* never sw alpha */
1219 false /* never sw aux */ );
1220 driDrawPriv->driverPrivate = fb;
1221
1222 return true;
1223 }
1224
1225 static void
1226 intelDestroyBuffer(__DRIdrawable * driDrawPriv)
1227 {
1228 struct gl_framebuffer *fb = driDrawPriv->driverPrivate;
1229
1230 _mesa_reference_framebuffer(&fb, NULL);
1231 }
1232
1233 static void
1234 intel_detect_sseu(struct intel_screen *screen)
1235 {
1236 assert(screen->devinfo.gen >= 8);
1237 int ret;
1238
1239 screen->subslice_total = -1;
1240 screen->eu_total = -1;
1241
1242 ret = intel_get_param(screen, I915_PARAM_SUBSLICE_TOTAL,
1243 &screen->subslice_total);
1244 if (ret < 0 && ret != -EINVAL)
1245 goto err_out;
1246
1247 ret = intel_get_param(screen,
1248 I915_PARAM_EU_TOTAL, &screen->eu_total);
1249 if (ret < 0 && ret != -EINVAL)
1250 goto err_out;
1251
1252 /* Without this information, we cannot get the right Braswell brandstrings,
1253 * and we have to use conservative numbers for GPGPU on many platforms, but
1254 * otherwise, things will just work.
1255 */
1256 if (screen->subslice_total < 1 || screen->eu_total < 1)
1257 _mesa_warning(NULL,
1258 "Kernel 4.1 required to properly query GPU properties.\n");
1259
1260 return;
1261
1262 err_out:
1263 screen->subslice_total = -1;
1264 screen->eu_total = -1;
1265 _mesa_warning(NULL, "Failed to query GPU properties (%s).\n", strerror(-ret));
1266 }
1267
1268 static bool
1269 intel_init_bufmgr(struct intel_screen *screen)
1270 {
1271 __DRIscreen *dri_screen = screen->driScrnPriv;
1272
1273 if (getenv("INTEL_NO_HW") != NULL)
1274 screen->no_hw = true;
1275
1276 screen->bufmgr = brw_bufmgr_init(&screen->devinfo, dri_screen->fd, BATCH_SZ);
1277 if (screen->bufmgr == NULL) {
1278 fprintf(stderr, "[%s:%u] Error initializing buffer manager.\n",
1279 __func__, __LINE__);
1280 return false;
1281 }
1282
1283 if (!intel_get_boolean(screen, I915_PARAM_HAS_WAIT_TIMEOUT)) {
1284 fprintf(stderr, "[%s: %u] Kernel 3.6 required.\n", __func__, __LINE__);
1285 return false;
1286 }
1287
1288 return true;
1289 }
1290
1291 static bool
1292 intel_detect_swizzling(struct intel_screen *screen)
1293 {
1294 struct brw_bo *buffer;
1295 unsigned long flags = 0;
1296 unsigned long aligned_pitch;
1297 uint32_t tiling = I915_TILING_X;
1298 uint32_t swizzle_mode = 0;
1299
1300 buffer = brw_bo_alloc_tiled(screen->bufmgr, "swizzle test",
1301 64, 64, 4, &tiling, &aligned_pitch, flags);
1302 if (buffer == NULL)
1303 return false;
1304
1305 brw_bo_get_tiling(buffer, &tiling, &swizzle_mode);
1306 brw_bo_unreference(buffer);
1307
1308 if (swizzle_mode == I915_BIT_6_SWIZZLE_NONE)
1309 return false;
1310 else
1311 return true;
1312 }
1313
1314 static int
1315 intel_detect_timestamp(struct intel_screen *screen)
1316 {
1317 uint64_t dummy = 0, last = 0;
1318 int upper, lower, loops;
1319
1320 /* On 64bit systems, some old kernels trigger a hw bug resulting in the
1321 * TIMESTAMP register being shifted and the low 32bits always zero.
1322 *
1323 * More recent kernels offer an interface to read the full 36bits
1324 * everywhere.
1325 */
1326 if (brw_reg_read(screen->bufmgr, TIMESTAMP | 1, &dummy) == 0)
1327 return 3;
1328
1329 /* Determine if we have a 32bit or 64bit kernel by inspecting the
1330 * upper 32bits for a rapidly changing timestamp.
1331 */
1332 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &last))
1333 return 0;
1334
1335 upper = lower = 0;
1336 for (loops = 0; loops < 10; loops++) {
1337 /* The TIMESTAMP should change every 80ns, so several round trips
1338 * through the kernel should be enough to advance it.
1339 */
1340 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &dummy))
1341 return 0;
1342
1343 upper += (dummy >> 32) != (last >> 32);
1344 if (upper > 1) /* beware 32bit counter overflow */
1345 return 2; /* upper dword holds the low 32bits of the timestamp */
1346
1347 lower += (dummy & 0xffffffff) != (last & 0xffffffff);
1348 if (lower > 1)
1349 return 1; /* timestamp is unshifted */
1350
1351 last = dummy;
1352 }
1353
1354 /* No advancement? No timestamp! */
1355 return 0;
1356 }
1357
1358 /**
1359 * Test if we can use MI_LOAD_REGISTER_MEM from an untrusted batchbuffer.
1360 *
1361 * Some combinations of hardware and kernel versions allow this feature,
1362 * while others don't. Instead of trying to enumerate every case, just
1363 * try and write a register and see if works.
1364 */
1365 static bool
1366 intel_detect_pipelined_register(struct intel_screen *screen,
1367 int reg, uint32_t expected_value, bool reset)
1368 {
1369 if (screen->no_hw)
1370 return false;
1371
1372 struct brw_bo *results, *bo;
1373 uint32_t *batch;
1374 uint32_t offset = 0;
1375 bool success = false;
1376
1377 /* Create a zero'ed temporary buffer for reading our results */
1378 results = brw_bo_alloc(screen->bufmgr, "registers", 4096, 0);
1379 if (results == NULL)
1380 goto err;
1381
1382 bo = brw_bo_alloc(screen->bufmgr, "batchbuffer", 4096, 0);
1383 if (bo == NULL)
1384 goto err_results;
1385
1386 if (brw_bo_map(NULL, bo, 1))
1387 goto err_batch;
1388
1389 batch = bo->virtual;
1390
1391 /* Write the register. */
1392 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1393 *batch++ = reg;
1394 *batch++ = expected_value;
1395
1396 /* Save the register's value back to the buffer. */
1397 *batch++ = MI_STORE_REGISTER_MEM | (3 - 2);
1398 *batch++ = reg;
1399 struct drm_i915_gem_relocation_entry reloc = {
1400 .offset = (char *) batch - (char *) bo->virtual,
1401 .delta = offset * sizeof(uint32_t),
1402 .target_handle = results->gem_handle,
1403 .read_domains = I915_GEM_DOMAIN_INSTRUCTION,
1404 .write_domain = I915_GEM_DOMAIN_INSTRUCTION,
1405 };
1406 *batch++ = reloc.presumed_offset + reloc.delta;
1407
1408 /* And afterwards clear the register */
1409 if (reset) {
1410 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1411 *batch++ = reg;
1412 *batch++ = 0;
1413 }
1414
1415 *batch++ = MI_BATCH_BUFFER_END;
1416
1417 struct drm_i915_gem_exec_object2 exec_objects[2] = {
1418 {
1419 .handle = results->gem_handle,
1420 },
1421 {
1422 .handle = bo->gem_handle,
1423 .relocation_count = 1,
1424 .relocs_ptr = (uintptr_t) &reloc,
1425 }
1426 };
1427
1428 struct drm_i915_gem_execbuffer2 execbuf = {
1429 .buffers_ptr = (uintptr_t) exec_objects,
1430 .buffer_count = 2,
1431 .batch_len = ALIGN((char *) batch - (char *) bo->virtual, 8),
1432 .flags = I915_EXEC_RENDER,
1433 };
1434
1435 /* Don't bother with error checking - if the execbuf fails, the
1436 * value won't be written and we'll just report that there's no access.
1437 */
1438 __DRIscreen *dri_screen = screen->driScrnPriv;
1439 drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf);
1440
1441 /* Check whether the value got written. */
1442 if (brw_bo_map(NULL, results, false) == 0) {
1443 success = *((uint32_t *)results->virtual + offset) == expected_value;
1444 brw_bo_unmap(results);
1445 }
1446
1447 err_batch:
1448 brw_bo_unreference(bo);
1449 err_results:
1450 brw_bo_unreference(results);
1451 err:
1452 return success;
1453 }
1454
1455 static bool
1456 intel_detect_pipelined_so(struct intel_screen *screen)
1457 {
1458 const struct gen_device_info *devinfo = &screen->devinfo;
1459
1460 /* Supposedly, Broadwell just works. */
1461 if (devinfo->gen >= 8)
1462 return true;
1463
1464 if (devinfo->gen <= 6)
1465 return false;
1466
1467 /* See the big explanation about command parser versions below */
1468 if (screen->cmd_parser_version >= (devinfo->is_haswell ? 7 : 2))
1469 return true;
1470
1471 /* We use SO_WRITE_OFFSET0 since you're supposed to write it (unlike the
1472 * statistics registers), and we already reset it to zero before using it.
1473 */
1474 return intel_detect_pipelined_register(screen,
1475 GEN7_SO_WRITE_OFFSET(0),
1476 0x1337d0d0,
1477 false);
1478 }
1479
1480 /**
1481 * Return array of MSAA modes supported by the hardware. The array is
1482 * zero-terminated and sorted in decreasing order.
1483 */
1484 const int*
1485 intel_supported_msaa_modes(const struct intel_screen *screen)
1486 {
1487 static const int gen9_modes[] = {16, 8, 4, 2, 0, -1};
1488 static const int gen8_modes[] = {8, 4, 2, 0, -1};
1489 static const int gen7_modes[] = {8, 4, 0, -1};
1490 static const int gen6_modes[] = {4, 0, -1};
1491 static const int gen4_modes[] = {0, -1};
1492
1493 if (screen->devinfo.gen >= 9) {
1494 return gen9_modes;
1495 } else if (screen->devinfo.gen >= 8) {
1496 return gen8_modes;
1497 } else if (screen->devinfo.gen >= 7) {
1498 return gen7_modes;
1499 } else if (screen->devinfo.gen == 6) {
1500 return gen6_modes;
1501 } else {
1502 return gen4_modes;
1503 }
1504 }
1505
1506 static __DRIconfig**
1507 intel_screen_make_configs(__DRIscreen *dri_screen)
1508 {
1509 static const mesa_format formats[] = {
1510 MESA_FORMAT_B5G6R5_UNORM,
1511 MESA_FORMAT_B8G8R8A8_UNORM,
1512 MESA_FORMAT_B8G8R8X8_UNORM
1513 };
1514
1515 /* GLX_SWAP_COPY_OML is not supported due to page flipping. */
1516 static const GLenum back_buffer_modes[] = {
1517 GLX_SWAP_UNDEFINED_OML, GLX_NONE,
1518 };
1519
1520 static const uint8_t singlesample_samples[1] = {0};
1521 static const uint8_t multisample_samples[2] = {4, 8};
1522
1523 struct intel_screen *screen = dri_screen->driverPrivate;
1524 const struct gen_device_info *devinfo = &screen->devinfo;
1525 uint8_t depth_bits[4], stencil_bits[4];
1526 __DRIconfig **configs = NULL;
1527
1528 /* Generate singlesample configs without accumulation buffer. */
1529 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1530 __DRIconfig **new_configs;
1531 int num_depth_stencil_bits = 2;
1532
1533 /* Starting with DRI2 protocol version 1.1 we can request a depth/stencil
1534 * buffer that has a different number of bits per pixel than the color
1535 * buffer, gen >= 6 supports this.
1536 */
1537 depth_bits[0] = 0;
1538 stencil_bits[0] = 0;
1539
1540 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1541 depth_bits[1] = 16;
1542 stencil_bits[1] = 0;
1543 if (devinfo->gen >= 6) {
1544 depth_bits[2] = 24;
1545 stencil_bits[2] = 8;
1546 num_depth_stencil_bits = 3;
1547 }
1548 } else {
1549 depth_bits[1] = 24;
1550 stencil_bits[1] = 8;
1551 }
1552
1553 new_configs = driCreateConfigs(formats[i],
1554 depth_bits,
1555 stencil_bits,
1556 num_depth_stencil_bits,
1557 back_buffer_modes, 2,
1558 singlesample_samples, 1,
1559 false, false);
1560 configs = driConcatConfigs(configs, new_configs);
1561 }
1562
1563 /* Generate the minimum possible set of configs that include an
1564 * accumulation buffer.
1565 */
1566 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1567 __DRIconfig **new_configs;
1568
1569 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1570 depth_bits[0] = 16;
1571 stencil_bits[0] = 0;
1572 } else {
1573 depth_bits[0] = 24;
1574 stencil_bits[0] = 8;
1575 }
1576
1577 new_configs = driCreateConfigs(formats[i],
1578 depth_bits, stencil_bits, 1,
1579 back_buffer_modes, 1,
1580 singlesample_samples, 1,
1581 true, false);
1582 configs = driConcatConfigs(configs, new_configs);
1583 }
1584
1585 /* Generate multisample configs.
1586 *
1587 * This loop breaks early, and hence is a no-op, on gen < 6.
1588 *
1589 * Multisample configs must follow the singlesample configs in order to
1590 * work around an X server bug present in 1.12. The X server chooses to
1591 * associate the first listed RGBA888-Z24S8 config, regardless of its
1592 * sample count, with the 32-bit depth visual used for compositing.
1593 *
1594 * Only doublebuffer configs with GLX_SWAP_UNDEFINED_OML behavior are
1595 * supported. Singlebuffer configs are not supported because no one wants
1596 * them.
1597 */
1598 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1599 if (devinfo->gen < 6)
1600 break;
1601
1602 __DRIconfig **new_configs;
1603 const int num_depth_stencil_bits = 2;
1604 int num_msaa_modes = 0;
1605
1606 depth_bits[0] = 0;
1607 stencil_bits[0] = 0;
1608
1609 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1610 depth_bits[1] = 16;
1611 stencil_bits[1] = 0;
1612 } else {
1613 depth_bits[1] = 24;
1614 stencil_bits[1] = 8;
1615 }
1616
1617 if (devinfo->gen >= 7)
1618 num_msaa_modes = 2;
1619 else if (devinfo->gen == 6)
1620 num_msaa_modes = 1;
1621
1622 new_configs = driCreateConfigs(formats[i],
1623 depth_bits,
1624 stencil_bits,
1625 num_depth_stencil_bits,
1626 back_buffer_modes, 1,
1627 multisample_samples,
1628 num_msaa_modes,
1629 false, false);
1630 configs = driConcatConfigs(configs, new_configs);
1631 }
1632
1633 if (configs == NULL) {
1634 fprintf(stderr, "[%s:%u] Error creating FBConfig!\n", __func__,
1635 __LINE__);
1636 return NULL;
1637 }
1638
1639 return configs;
1640 }
1641
1642 static void
1643 set_max_gl_versions(struct intel_screen *screen)
1644 {
1645 __DRIscreen *dri_screen = screen->driScrnPriv;
1646 const bool has_astc = screen->devinfo.gen >= 9;
1647
1648 switch (screen->devinfo.gen) {
1649 case 9:
1650 case 8:
1651 dri_screen->max_gl_core_version = 45;
1652 dri_screen->max_gl_compat_version = 30;
1653 dri_screen->max_gl_es1_version = 11;
1654 dri_screen->max_gl_es2_version = has_astc ? 32 : 31;
1655 break;
1656 case 7:
1657 dri_screen->max_gl_core_version = 33;
1658 if (screen->devinfo.is_haswell &&
1659 can_do_pipelined_register_writes(screen)) {
1660 dri_screen->max_gl_core_version = 42;
1661 if (can_do_compute_dispatch(screen))
1662 dri_screen->max_gl_core_version = 43;
1663 if (can_do_mi_math_and_lrr(screen))
1664 dri_screen->max_gl_core_version = 45;
1665 }
1666 dri_screen->max_gl_compat_version = 30;
1667 dri_screen->max_gl_es1_version = 11;
1668 dri_screen->max_gl_es2_version = screen->devinfo.is_haswell ? 31 : 30;
1669 break;
1670 case 6:
1671 dri_screen->max_gl_core_version = 33;
1672 dri_screen->max_gl_compat_version = 30;
1673 dri_screen->max_gl_es1_version = 11;
1674 dri_screen->max_gl_es2_version = 30;
1675 break;
1676 case 5:
1677 case 4:
1678 dri_screen->max_gl_core_version = 0;
1679 dri_screen->max_gl_compat_version = 21;
1680 dri_screen->max_gl_es1_version = 11;
1681 dri_screen->max_gl_es2_version = 20;
1682 break;
1683 default:
1684 unreachable("unrecognized intel_screen::gen");
1685 }
1686 }
1687
1688 /**
1689 * Return the revision (generally the revid field of the PCI header) of the
1690 * graphics device.
1691 *
1692 * XXX: This function is useful to keep around even if it is not currently in
1693 * use. It is necessary for new platforms and revision specific workarounds or
1694 * features. Please don't remove it so that we know it at least continues to
1695 * build.
1696 */
1697 static __attribute__((__unused__)) int
1698 brw_get_revision(int fd)
1699 {
1700 struct drm_i915_getparam gp;
1701 int revision;
1702 int ret;
1703
1704 memset(&gp, 0, sizeof(gp));
1705 gp.param = I915_PARAM_REVISION;
1706 gp.value = &revision;
1707
1708 ret = drmCommandWriteRead(fd, DRM_I915_GETPARAM, &gp, sizeof(gp));
1709 if (ret)
1710 revision = -1;
1711
1712 return revision;
1713 }
1714
1715 static void
1716 shader_debug_log_mesa(void *data, const char *fmt, ...)
1717 {
1718 struct brw_context *brw = (struct brw_context *)data;
1719 va_list args;
1720
1721 va_start(args, fmt);
1722 GLuint msg_id = 0;
1723 _mesa_gl_vdebug(&brw->ctx, &msg_id,
1724 MESA_DEBUG_SOURCE_SHADER_COMPILER,
1725 MESA_DEBUG_TYPE_OTHER,
1726 MESA_DEBUG_SEVERITY_NOTIFICATION, fmt, args);
1727 va_end(args);
1728 }
1729
1730 static void
1731 shader_perf_log_mesa(void *data, const char *fmt, ...)
1732 {
1733 struct brw_context *brw = (struct brw_context *)data;
1734
1735 va_list args;
1736 va_start(args, fmt);
1737
1738 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
1739 va_list args_copy;
1740 va_copy(args_copy, args);
1741 vfprintf(stderr, fmt, args_copy);
1742 va_end(args_copy);
1743 }
1744
1745 if (brw->perf_debug) {
1746 GLuint msg_id = 0;
1747 _mesa_gl_vdebug(&brw->ctx, &msg_id,
1748 MESA_DEBUG_SOURCE_SHADER_COMPILER,
1749 MESA_DEBUG_TYPE_PERFORMANCE,
1750 MESA_DEBUG_SEVERITY_MEDIUM, fmt, args);
1751 }
1752 va_end(args);
1753 }
1754
1755 static int
1756 parse_devid_override(const char *devid_override)
1757 {
1758 static const struct {
1759 const char *name;
1760 int pci_id;
1761 } name_map[] = {
1762 { "brw", 0x2a02 },
1763 { "g4x", 0x2a42 },
1764 { "ilk", 0x0042 },
1765 { "snb", 0x0126 },
1766 { "ivb", 0x016a },
1767 { "hsw", 0x0d2e },
1768 { "byt", 0x0f33 },
1769 { "bdw", 0x162e },
1770 { "skl", 0x1912 },
1771 { "kbl", 0x5912 },
1772 };
1773
1774 for (unsigned i = 0; i < ARRAY_SIZE(name_map); i++) {
1775 if (!strcmp(name_map[i].name, devid_override))
1776 return name_map[i].pci_id;
1777 }
1778
1779 return strtod(devid_override, NULL);
1780 }
1781
1782 /**
1783 * Get the PCI ID for the device. This can be overridden by setting the
1784 * INTEL_DEVID_OVERRIDE environment variable to the desired ID.
1785 *
1786 * Returns -1 on ioctl failure.
1787 */
1788 static int
1789 get_pci_device_id(struct intel_screen *screen)
1790 {
1791 if (geteuid() == getuid()) {
1792 char *devid_override = getenv("INTEL_DEVID_OVERRIDE");
1793 if (devid_override) {
1794 screen->no_hw = true;
1795 return parse_devid_override(devid_override);
1796 }
1797 }
1798
1799 return intel_get_integer(screen, I915_PARAM_CHIPSET_ID);
1800 }
1801
1802 /**
1803 * This is the driver specific part of the createNewScreen entry point.
1804 * Called when using DRI2.
1805 *
1806 * \return the struct gl_config supported by this driver
1807 */
1808 static const
1809 __DRIconfig **intelInitScreen2(__DRIscreen *dri_screen)
1810 {
1811 struct intel_screen *screen;
1812
1813 if (dri_screen->image.loader) {
1814 } else if (dri_screen->dri2.loader->base.version <= 2 ||
1815 dri_screen->dri2.loader->getBuffersWithFormat == NULL) {
1816 fprintf(stderr,
1817 "\nERROR! DRI2 loader with getBuffersWithFormat() "
1818 "support required\n");
1819 return NULL;
1820 }
1821
1822 /* Allocate the private area */
1823 screen = rzalloc(NULL, struct intel_screen);
1824 if (!screen) {
1825 fprintf(stderr, "\nERROR! Allocating private area failed\n");
1826 return NULL;
1827 }
1828 /* parse information in __driConfigOptions */
1829 driParseOptionInfo(&screen->optionCache, brw_config_options.xml);
1830
1831 screen->driScrnPriv = dri_screen;
1832 dri_screen->driverPrivate = (void *) screen;
1833
1834 screen->deviceID = get_pci_device_id(screen);
1835
1836 if (!gen_get_device_info(screen->deviceID, &screen->devinfo))
1837 return NULL;
1838
1839 if (!intel_init_bufmgr(screen))
1840 return NULL;
1841
1842 const struct gen_device_info *devinfo = &screen->devinfo;
1843
1844 brw_process_intel_debug_variable();
1845
1846 if ((INTEL_DEBUG & DEBUG_SHADER_TIME) && devinfo->gen < 7) {
1847 fprintf(stderr,
1848 "shader_time debugging requires gen7 (Ivybridge) or better.\n");
1849 INTEL_DEBUG &= ~DEBUG_SHADER_TIME;
1850 }
1851
1852 if (intel_get_integer(screen, I915_PARAM_MMAP_GTT_VERSION) >= 1) {
1853 /* Theorectically unlimited! At least for individual objects...
1854 *
1855 * Currently the entire (global) address space for all GTT maps is
1856 * limited to 64bits. That is all objects on the system that are
1857 * setup for GTT mmapping must fit within 64bits. An attempt to use
1858 * one that exceeds the limit with fail in brw_bo_map_gtt().
1859 *
1860 * Long before we hit that limit, we will be practically limited by
1861 * that any single object must fit in physical memory (RAM). The upper
1862 * limit on the CPU's address space is currently 48bits (Skylake), of
1863 * which only 39bits can be physical memory. (The GPU itself also has
1864 * a 48bit addressable virtual space.) We can fit over 32 million
1865 * objects of the current maximum allocable size before running out
1866 * of mmap space.
1867 */
1868 screen->max_gtt_map_object_size = UINT64_MAX;
1869 } else {
1870 /* Estimate the size of the mappable aperture into the GTT. There's an
1871 * ioctl to get the whole GTT size, but not one to get the mappable subset.
1872 * It turns out it's basically always 256MB, though some ancient hardware
1873 * was smaller.
1874 */
1875 uint32_t gtt_size = 256 * 1024 * 1024;
1876
1877 /* We don't want to map two objects such that a memcpy between them would
1878 * just fault one mapping in and then the other over and over forever. So
1879 * we would need to divide the GTT size by 2. Additionally, some GTT is
1880 * taken up by things like the framebuffer and the ringbuffer and such, so
1881 * be more conservative.
1882 */
1883 screen->max_gtt_map_object_size = gtt_size / 4;
1884 }
1885
1886 screen->aperture_threshold = get_aperture_size(dri_screen->fd) * 3 / 4;
1887
1888 screen->hw_has_swizzling = intel_detect_swizzling(screen);
1889 screen->hw_has_timestamp = intel_detect_timestamp(screen);
1890
1891 /* GENs prior to 8 do not support EU/Subslice info */
1892 if (devinfo->gen >= 8) {
1893 intel_detect_sseu(screen);
1894 } else if (devinfo->gen == 7) {
1895 screen->subslice_total = 1 << (devinfo->gt - 1);
1896 }
1897
1898 /* Gen7-7.5 kernel requirements / command parser saga:
1899 *
1900 * - pre-v3.16:
1901 * Haswell and Baytrail cannot use any privileged batchbuffer features.
1902 *
1903 * Ivybridge has aliasing PPGTT on by default, which accidentally marks
1904 * all batches secure, allowing them to use any feature with no checking.
1905 * This is effectively equivalent to a command parser version of
1906 * \infinity - everything is possible.
1907 *
1908 * The command parser does not exist, and querying the version will
1909 * return -EINVAL.
1910 *
1911 * - v3.16:
1912 * The kernel enables the command parser by default, for systems with
1913 * aliasing PPGTT enabled (Ivybridge and Haswell). However, the
1914 * hardware checker is still enabled, so Haswell and Baytrail cannot
1915 * do anything.
1916 *
1917 * Ivybridge goes from "everything is possible" to "only what the
1918 * command parser allows" (if the user boots with i915.cmd_parser=0,
1919 * then everything is possible again). We can only safely use features
1920 * allowed by the supported command parser version.
1921 *
1922 * Annoyingly, I915_PARAM_CMD_PARSER_VERSION reports the static version
1923 * implemented by the kernel, even if it's turned off. So, checking
1924 * for version > 0 does not mean that you can write registers. We have
1925 * to try it and see. The version does, however, indicate the age of
1926 * the kernel.
1927 *
1928 * Instead of matching the hardware checker's behavior of converting
1929 * privileged commands to MI_NOOP, it makes execbuf2 start returning
1930 * -EINVAL, making it dangerous to try and use privileged features.
1931 *
1932 * Effective command parser versions:
1933 * - Haswell: 0 (reporting 1, writes don't work)
1934 * - Baytrail: 0 (reporting 1, writes don't work)
1935 * - Ivybridge: 1 (enabled) or infinite (disabled)
1936 *
1937 * - v3.17:
1938 * Baytrail aliasing PPGTT is enabled, making it like Ivybridge:
1939 * effectively version 1 (enabled) or infinite (disabled).
1940 *
1941 * - v3.19: f1f55cc0556031c8ee3fe99dae7251e78b9b653b
1942 * Command parser v2 supports predicate writes.
1943 *
1944 * - Haswell: 0 (reporting 1, writes don't work)
1945 * - Baytrail: 2 (enabled) or infinite (disabled)
1946 * - Ivybridge: 2 (enabled) or infinite (disabled)
1947 *
1948 * So version >= 2 is enough to know that Ivybridge and Baytrail
1949 * will work. Haswell still can't do anything.
1950 *
1951 * - v4.0: Version 3 happened. Largely not relevant.
1952 *
1953 * - v4.1: 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
1954 * L3 config registers are properly saved and restored as part
1955 * of the hardware context. We can approximately detect this point
1956 * in time by checking if I915_PARAM_REVISION is recognized - it
1957 * landed in a later commit, but in the same release cycle.
1958 *
1959 * - v4.2: 245054a1fe33c06ad233e0d58a27ec7b64db9284
1960 * Command parser finally gains secure batch promotion. On Haswell,
1961 * the hardware checker gets disabled, which finally allows it to do
1962 * privileged commands.
1963 *
1964 * I915_PARAM_CMD_PARSER_VERSION reports 3. Effective versions:
1965 * - Haswell: 3 (enabled) or 0 (disabled)
1966 * - Baytrail: 3 (enabled) or infinite (disabled)
1967 * - Ivybridge: 3 (enabled) or infinite (disabled)
1968 *
1969 * Unfortunately, detecting this point in time is tricky, because
1970 * no version bump happened when this important change occurred.
1971 * On Haswell, if we can write any register, then the kernel is at
1972 * least this new, and we can start trusting the version number.
1973 *
1974 * - v4.4: 2bbe6bbb0dc94fd4ce287bdac9e1bd184e23057b and
1975 * Command parser reaches version 4, allowing access to Haswell
1976 * atomic scratch and chicken3 registers. If version >= 4, we know
1977 * the kernel is new enough to support privileged features on all
1978 * hardware. However, the user might have disabled it...and the
1979 * kernel will still report version 4. So we still have to guess
1980 * and check.
1981 *
1982 * - v4.4: 7b9748cb513a6bef4af87b79f0da3ff7e8b56cd8
1983 * Command parser v5 whitelists indirect compute shader dispatch
1984 * registers, needed for OpenGL 4.3 and later.
1985 *
1986 * - v4.8:
1987 * Command parser v7 lets us use MI_MATH on Haswell.
1988 *
1989 * Additionally, the kernel begins reporting version 0 when
1990 * the command parser is disabled, allowing us to skip the
1991 * guess-and-check step on Haswell. Unfortunately, this also
1992 * means that we can no longer use it as an indicator of the
1993 * age of the kernel.
1994 */
1995 if (intel_get_param(screen, I915_PARAM_CMD_PARSER_VERSION,
1996 &screen->cmd_parser_version) < 0) {
1997 /* Command parser does not exist - getparam is unrecognized */
1998 screen->cmd_parser_version = 0;
1999 }
2000
2001 if (!intel_detect_pipelined_so(screen)) {
2002 /* We can't do anything, so the effective version is 0. */
2003 screen->cmd_parser_version = 0;
2004 } else {
2005 screen->kernel_features |= KERNEL_ALLOWS_SOL_OFFSET_WRITES;
2006 }
2007
2008 const char *force_msaa = getenv("INTEL_FORCE_MSAA");
2009 if (force_msaa) {
2010 screen->winsys_msaa_samples_override =
2011 intel_quantize_num_samples(screen, atoi(force_msaa));
2012 printf("Forcing winsys sample count to %d\n",
2013 screen->winsys_msaa_samples_override);
2014 } else {
2015 screen->winsys_msaa_samples_override = -1;
2016 }
2017
2018 set_max_gl_versions(screen);
2019
2020 /* Notification of GPU resets requires hardware contexts and a kernel new
2021 * enough to support DRM_IOCTL_I915_GET_RESET_STATS. If the ioctl is
2022 * supported, calling it with a context of 0 will either generate EPERM or
2023 * no error. If the ioctl is not supported, it always generate EINVAL.
2024 * Use this to determine whether to advertise the __DRI2_ROBUSTNESS
2025 * extension to the loader.
2026 *
2027 * Don't even try on pre-Gen6, since we don't attempt to use contexts there.
2028 */
2029 if (devinfo->gen >= 6) {
2030 struct drm_i915_reset_stats stats;
2031 memset(&stats, 0, sizeof(stats));
2032
2033 const int ret = drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats);
2034
2035 screen->has_context_reset_notification =
2036 (ret != -1 || errno != EINVAL);
2037 }
2038
2039 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 2)
2040 screen->kernel_features |= KERNEL_ALLOWS_PREDICATE_WRITES;
2041
2042 /* Haswell requires command parser version 4 in order to have L3
2043 * atomic scratch1 and chicken3 bits
2044 */
2045 if (devinfo->is_haswell && screen->cmd_parser_version >= 4) {
2046 screen->kernel_features |=
2047 KERNEL_ALLOWS_HSW_SCRATCH1_AND_ROW_CHICKEN3;
2048 }
2049
2050 /* Haswell requires command parser version 6 in order to write to the
2051 * MI_MATH GPR registers, and version 7 in order to use
2052 * MI_LOAD_REGISTER_REG (which all users of MI_MATH use).
2053 */
2054 if (devinfo->gen >= 8 ||
2055 (devinfo->is_haswell && screen->cmd_parser_version >= 7)) {
2056 screen->kernel_features |= KERNEL_ALLOWS_MI_MATH_AND_LRR;
2057 }
2058
2059 /* Gen7 needs at least command parser version 5 to support compute */
2060 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 5)
2061 screen->kernel_features |= KERNEL_ALLOWS_COMPUTE_DISPATCH;
2062
2063 dri_screen->extensions = !screen->has_context_reset_notification
2064 ? screenExtensions : intelRobustScreenExtensions;
2065
2066 screen->compiler = brw_compiler_create(screen, devinfo);
2067 screen->compiler->shader_debug_log = shader_debug_log_mesa;
2068 screen->compiler->shader_perf_log = shader_perf_log_mesa;
2069 screen->program_id = 1;
2070
2071 screen->has_exec_fence =
2072 intel_get_boolean(screen, I915_PARAM_HAS_EXEC_FENCE);
2073
2074 return (const __DRIconfig**) intel_screen_make_configs(dri_screen);
2075 }
2076
2077 struct intel_buffer {
2078 __DRIbuffer base;
2079 struct brw_bo *bo;
2080 };
2081
2082 static __DRIbuffer *
2083 intelAllocateBuffer(__DRIscreen *dri_screen,
2084 unsigned attachment, unsigned format,
2085 int width, int height)
2086 {
2087 struct intel_buffer *intelBuffer;
2088 struct intel_screen *screen = dri_screen->driverPrivate;
2089
2090 assert(attachment == __DRI_BUFFER_FRONT_LEFT ||
2091 attachment == __DRI_BUFFER_BACK_LEFT);
2092
2093 intelBuffer = calloc(1, sizeof *intelBuffer);
2094 if (intelBuffer == NULL)
2095 return NULL;
2096
2097 /* The front and back buffers are color buffers, which are X tiled. GEN9+
2098 * supports Y tiled and compressed buffers, but there is no way to plumb that
2099 * through to here. */
2100 uint32_t tiling = I915_TILING_X;
2101 unsigned long pitch;
2102 int cpp = format / 8;
2103 intelBuffer->bo = brw_bo_alloc_tiled(screen->bufmgr,
2104 "intelAllocateBuffer",
2105 width,
2106 height,
2107 cpp,
2108 &tiling, &pitch,
2109 BO_ALLOC_FOR_RENDER);
2110
2111 if (intelBuffer->bo == NULL) {
2112 free(intelBuffer);
2113 return NULL;
2114 }
2115
2116 brw_bo_flink(intelBuffer->bo, &intelBuffer->base.name);
2117
2118 intelBuffer->base.attachment = attachment;
2119 intelBuffer->base.cpp = cpp;
2120 intelBuffer->base.pitch = pitch;
2121
2122 return &intelBuffer->base;
2123 }
2124
2125 static void
2126 intelReleaseBuffer(__DRIscreen *dri_screen, __DRIbuffer *buffer)
2127 {
2128 struct intel_buffer *intelBuffer = (struct intel_buffer *) buffer;
2129
2130 brw_bo_unreference(intelBuffer->bo);
2131 free(intelBuffer);
2132 }
2133
2134 static const struct __DriverAPIRec brw_driver_api = {
2135 .InitScreen = intelInitScreen2,
2136 .DestroyScreen = intelDestroyScreen,
2137 .CreateContext = brwCreateContext,
2138 .DestroyContext = intelDestroyContext,
2139 .CreateBuffer = intelCreateBuffer,
2140 .DestroyBuffer = intelDestroyBuffer,
2141 .MakeCurrent = intelMakeCurrent,
2142 .UnbindContext = intelUnbindContext,
2143 .AllocateBuffer = intelAllocateBuffer,
2144 .ReleaseBuffer = intelReleaseBuffer
2145 };
2146
2147 static const struct __DRIDriverVtableExtensionRec brw_vtable = {
2148 .base = { __DRI_DRIVER_VTABLE, 1 },
2149 .vtable = &brw_driver_api,
2150 };
2151
2152 static const __DRIextension *brw_driver_extensions[] = {
2153 &driCoreExtension.base,
2154 &driImageDriverExtension.base,
2155 &driDRI2Extension.base,
2156 &brw_vtable.base,
2157 &brw_config_options.base,
2158 NULL
2159 };
2160
2161 PUBLIC const __DRIextension **__driDriverGetExtensions_i965(void)
2162 {
2163 globalDriverAPI = &brw_driver_api;
2164
2165 return brw_driver_extensions;
2166 }