i965: use context priority definitions from gen_defines.h
[mesa.git] / src / mesa / drivers / dri / i965 / intel_screen.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <drm_fourcc.h>
27 #include <errno.h>
28 #include <time.h>
29 #include <unistd.h>
30 #include "main/context.h"
31 #include "main/framebuffer.h"
32 #include "main/renderbuffer.h"
33 #include "main/texobj.h"
34 #include "main/hash.h"
35 #include "main/fbobject.h"
36 #include "main/version.h"
37 #include "swrast/s_renderbuffer.h"
38 #include "util/ralloc.h"
39 #include "util/disk_cache.h"
40 #include "brw_defines.h"
41 #include "brw_state.h"
42 #include "compiler/nir/nir.h"
43
44 #include "utils.h"
45 #include "util/disk_cache.h"
46 #include "util/xmlpool.h"
47
48 #include "common/gen_defines.h"
49
50 static const __DRIconfigOptionsExtension brw_config_options = {
51 .base = { __DRI_CONFIG_OPTIONS, 1 },
52 .xml =
53 DRI_CONF_BEGIN
54 DRI_CONF_SECTION_PERFORMANCE
55 /* Options correspond to DRI_CONF_BO_REUSE_DISABLED,
56 * DRI_CONF_BO_REUSE_ALL
57 */
58 DRI_CONF_OPT_BEGIN_V(bo_reuse, enum, 1, "0:1")
59 DRI_CONF_DESC_BEGIN(en, "Buffer object reuse")
60 DRI_CONF_ENUM(0, "Disable buffer object reuse")
61 DRI_CONF_ENUM(1, "Enable reuse of all sizes of buffer objects")
62 DRI_CONF_DESC_END
63 DRI_CONF_OPT_END
64 DRI_CONF_MESA_NO_ERROR("false")
65 DRI_CONF_SECTION_END
66
67 DRI_CONF_SECTION_QUALITY
68 DRI_CONF_PRECISE_TRIG("false")
69
70 DRI_CONF_OPT_BEGIN(clamp_max_samples, int, -1)
71 DRI_CONF_DESC(en, "Clamp the value of GL_MAX_SAMPLES to the "
72 "given integer. If negative, then do not clamp.")
73 DRI_CONF_OPT_END
74 DRI_CONF_SECTION_END
75
76 DRI_CONF_SECTION_DEBUG
77 DRI_CONF_NO_RAST("false")
78 DRI_CONF_ALWAYS_FLUSH_BATCH("false")
79 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
80 DRI_CONF_DISABLE_THROTTLING("false")
81 DRI_CONF_FORCE_GLSL_EXTENSIONS_WARN("false")
82 DRI_CONF_FORCE_GLSL_VERSION(0)
83 DRI_CONF_DISABLE_GLSL_LINE_CONTINUATIONS("false")
84 DRI_CONF_DISABLE_BLEND_FUNC_EXTENDED("false")
85 DRI_CONF_DUAL_COLOR_BLEND_BY_LOCATION("false")
86 DRI_CONF_ALLOW_GLSL_EXTENSION_DIRECTIVE_MIDSHADER("false")
87 DRI_CONF_ALLOW_GLSL_BUILTIN_VARIABLE_REDECLARATION("false")
88 DRI_CONF_ALLOW_GLSL_CROSS_STAGE_INTERPOLATION_MISMATCH("false")
89 DRI_CONF_ALLOW_HIGHER_COMPAT_VERSION("false")
90 DRI_CONF_FORCE_GLSL_ABS_SQRT("false")
91
92 DRI_CONF_OPT_BEGIN_B(shader_precompile, "true")
93 DRI_CONF_DESC(en, "Perform code generation at shader link time.")
94 DRI_CONF_OPT_END
95 DRI_CONF_SECTION_END
96
97 DRI_CONF_SECTION_MISCELLANEOUS
98 DRI_CONF_GLSL_ZERO_INIT("false")
99 DRI_CONF_ALLOW_RGB10_CONFIGS("false")
100 DRI_CONF_SECTION_END
101 DRI_CONF_END
102 };
103
104 #include "intel_batchbuffer.h"
105 #include "intel_buffers.h"
106 #include "brw_bufmgr.h"
107 #include "intel_fbo.h"
108 #include "intel_mipmap_tree.h"
109 #include "intel_screen.h"
110 #include "intel_tex.h"
111 #include "intel_image.h"
112
113 #include "brw_context.h"
114
115 #include "i915_drm.h"
116
117 /**
118 * For debugging purposes, this returns a time in seconds.
119 */
120 double
121 get_time(void)
122 {
123 struct timespec tp;
124
125 clock_gettime(CLOCK_MONOTONIC, &tp);
126
127 return tp.tv_sec + tp.tv_nsec / 1000000000.0;
128 }
129
130 static const __DRItexBufferExtension intelTexBufferExtension = {
131 .base = { __DRI_TEX_BUFFER, 3 },
132
133 .setTexBuffer = intelSetTexBuffer,
134 .setTexBuffer2 = intelSetTexBuffer2,
135 .releaseTexBuffer = intelReleaseTexBuffer,
136 };
137
138 static void
139 intel_dri2_flush_with_flags(__DRIcontext *cPriv,
140 __DRIdrawable *dPriv,
141 unsigned flags,
142 enum __DRI2throttleReason reason)
143 {
144 struct brw_context *brw = cPriv->driverPrivate;
145
146 if (!brw)
147 return;
148
149 struct gl_context *ctx = &brw->ctx;
150
151 FLUSH_VERTICES(ctx, 0);
152
153 if (flags & __DRI2_FLUSH_DRAWABLE)
154 intel_resolve_for_dri2_flush(brw, dPriv);
155
156 if (reason == __DRI2_THROTTLE_SWAPBUFFER)
157 brw->need_swap_throttle = true;
158 if (reason == __DRI2_THROTTLE_FLUSHFRONT)
159 brw->need_flush_throttle = true;
160
161 intel_batchbuffer_flush(brw);
162 }
163
164 /**
165 * Provides compatibility with loaders that only support the older (version
166 * 1-3) flush interface.
167 *
168 * That includes libGL up to Mesa 9.0, and the X Server at least up to 1.13.
169 */
170 static void
171 intel_dri2_flush(__DRIdrawable *drawable)
172 {
173 intel_dri2_flush_with_flags(drawable->driContextPriv, drawable,
174 __DRI2_FLUSH_DRAWABLE,
175 __DRI2_THROTTLE_SWAPBUFFER);
176 }
177
178 static const struct __DRI2flushExtensionRec intelFlushExtension = {
179 .base = { __DRI2_FLUSH, 4 },
180
181 .flush = intel_dri2_flush,
182 .invalidate = dri2InvalidateDrawable,
183 .flush_with_flags = intel_dri2_flush_with_flags,
184 };
185
186 static const struct intel_image_format intel_image_formats[] = {
187 { __DRI_IMAGE_FOURCC_ARGB2101010, __DRI_IMAGE_COMPONENTS_RGBA, 1,
188 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB2101010, 4 } } },
189
190 { __DRI_IMAGE_FOURCC_XRGB2101010, __DRI_IMAGE_COMPONENTS_RGB, 1,
191 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB2101010, 4 } } },
192
193 { __DRI_IMAGE_FOURCC_ARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
194 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
195
196 { __DRI_IMAGE_FOURCC_ABGR8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
197 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
198
199 { __DRI_IMAGE_FOURCC_SARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
200 { { 0, 0, 0, __DRI_IMAGE_FORMAT_SARGB8, 4 } } },
201
202 { __DRI_IMAGE_FOURCC_XRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
203 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB8888, 4 }, } },
204
205 { __DRI_IMAGE_FOURCC_XBGR8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
206 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 }, } },
207
208 { __DRI_IMAGE_FOURCC_ARGB1555, __DRI_IMAGE_COMPONENTS_RGBA, 1,
209 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB1555, 2 } } },
210
211 { __DRI_IMAGE_FOURCC_RGB565, __DRI_IMAGE_COMPONENTS_RGB, 1,
212 { { 0, 0, 0, __DRI_IMAGE_FORMAT_RGB565, 2 } } },
213
214 { __DRI_IMAGE_FOURCC_R8, __DRI_IMAGE_COMPONENTS_R, 1,
215 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 }, } },
216
217 { __DRI_IMAGE_FOURCC_R16, __DRI_IMAGE_COMPONENTS_R, 1,
218 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 1 }, } },
219
220 { __DRI_IMAGE_FOURCC_GR88, __DRI_IMAGE_COMPONENTS_RG, 1,
221 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 }, } },
222
223 { __DRI_IMAGE_FOURCC_GR1616, __DRI_IMAGE_COMPONENTS_RG, 1,
224 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR1616, 2 }, } },
225
226 { __DRI_IMAGE_FOURCC_YUV410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
227 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
228 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
229 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
230
231 { __DRI_IMAGE_FOURCC_YUV411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
232 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
233 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
234 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
235
236 { __DRI_IMAGE_FOURCC_YUV420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
237 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
238 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
239 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
240
241 { __DRI_IMAGE_FOURCC_YUV422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
242 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
243 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
244 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
245
246 { __DRI_IMAGE_FOURCC_YUV444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
247 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
248 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
249 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
250
251 { __DRI_IMAGE_FOURCC_YVU410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
252 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
253 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
254 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
255
256 { __DRI_IMAGE_FOURCC_YVU411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
257 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
258 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
259 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
260
261 { __DRI_IMAGE_FOURCC_YVU420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
262 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
263 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
264 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
265
266 { __DRI_IMAGE_FOURCC_YVU422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
267 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
268 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
269 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
270
271 { __DRI_IMAGE_FOURCC_YVU444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
272 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
273 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
274 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
275
276 { __DRI_IMAGE_FOURCC_NV12, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
277 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
278 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR88, 2 } } },
279
280 { __DRI_IMAGE_FOURCC_NV16, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
281 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
282 { 1, 1, 0, __DRI_IMAGE_FORMAT_GR88, 2 } } },
283
284 /* For YUYV and UYVY buffers, we set up two overlapping DRI images
285 * and treat them as planar buffers in the compositors.
286 * Plane 0 is GR88 and samples YU or YV pairs and places Y into
287 * the R component, while plane 1 is ARGB/ABGR and samples YUYV/UYVY
288 * clusters and places pairs and places U into the G component and
289 * V into A. This lets the texture sampler interpolate the Y
290 * components correctly when sampling from plane 0, and interpolate
291 * U and V correctly when sampling from plane 1. */
292 { __DRI_IMAGE_FOURCC_YUYV, __DRI_IMAGE_COMPONENTS_Y_XUXV, 2,
293 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
294 { 0, 1, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
295 { __DRI_IMAGE_FOURCC_UYVY, __DRI_IMAGE_COMPONENTS_Y_UXVX, 2,
296 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
297 { 0, 1, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } }
298 };
299
300 static const struct {
301 uint64_t modifier;
302 unsigned since_gen;
303 } supported_modifiers[] = {
304 { .modifier = DRM_FORMAT_MOD_LINEAR , .since_gen = 1 },
305 { .modifier = I915_FORMAT_MOD_X_TILED , .since_gen = 1 },
306 { .modifier = I915_FORMAT_MOD_Y_TILED , .since_gen = 6 },
307 { .modifier = I915_FORMAT_MOD_Y_TILED_CCS , .since_gen = 9 },
308 };
309
310 static bool
311 modifier_is_supported(const struct gen_device_info *devinfo,
312 const struct intel_image_format *fmt, int dri_format,
313 uint64_t modifier)
314 {
315 const struct isl_drm_modifier_info *modinfo =
316 isl_drm_modifier_get_info(modifier);
317 int i;
318
319 /* ISL had better know about the modifier */
320 if (!modinfo)
321 return false;
322
323 if (modinfo->aux_usage == ISL_AUX_USAGE_CCS_E) {
324 /* If INTEL_DEBUG=norbc is set, don't support any CCS_E modifiers */
325 if (unlikely(INTEL_DEBUG & DEBUG_NO_RBC))
326 return false;
327
328 /* CCS_E is not supported for planar images */
329 if (fmt && fmt->nplanes > 1)
330 return false;
331
332 if (fmt) {
333 assert(dri_format == 0);
334 dri_format = fmt->planes[0].dri_format;
335 }
336
337 mesa_format format = driImageFormatToGLFormat(dri_format);
338 format = _mesa_get_srgb_format_linear(format);
339 if (!isl_format_supports_ccs_e(devinfo,
340 brw_isl_format_for_mesa_format(format)))
341 return false;
342 }
343
344 for (i = 0; i < ARRAY_SIZE(supported_modifiers); i++) {
345 if (supported_modifiers[i].modifier != modifier)
346 continue;
347
348 return supported_modifiers[i].since_gen <= devinfo->gen;
349 }
350
351 return false;
352 }
353
354 static uint64_t
355 tiling_to_modifier(uint32_t tiling)
356 {
357 static const uint64_t map[] = {
358 [I915_TILING_NONE] = DRM_FORMAT_MOD_LINEAR,
359 [I915_TILING_X] = I915_FORMAT_MOD_X_TILED,
360 [I915_TILING_Y] = I915_FORMAT_MOD_Y_TILED,
361 };
362
363 assert(tiling < ARRAY_SIZE(map));
364
365 return map[tiling];
366 }
367
368 static void
369 intel_image_warn_if_unaligned(__DRIimage *image, const char *func)
370 {
371 uint32_t tiling, swizzle;
372 brw_bo_get_tiling(image->bo, &tiling, &swizzle);
373
374 if (tiling != I915_TILING_NONE && (image->offset & 0xfff)) {
375 _mesa_warning(NULL, "%s: offset 0x%08x not on tile boundary",
376 func, image->offset);
377 }
378 }
379
380 static const struct intel_image_format *
381 intel_image_format_lookup(int fourcc)
382 {
383 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
384 if (intel_image_formats[i].fourcc == fourcc)
385 return &intel_image_formats[i];
386 }
387
388 return NULL;
389 }
390
391 static boolean intel_lookup_fourcc(int dri_format, int *fourcc)
392 {
393 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
394 if (intel_image_formats[i].planes[0].dri_format == dri_format) {
395 *fourcc = intel_image_formats[i].fourcc;
396 return true;
397 }
398 }
399 return false;
400 }
401
402 static __DRIimage *
403 intel_allocate_image(struct intel_screen *screen, int dri_format,
404 void *loaderPrivate)
405 {
406 __DRIimage *image;
407
408 image = calloc(1, sizeof *image);
409 if (image == NULL)
410 return NULL;
411
412 image->screen = screen;
413 image->dri_format = dri_format;
414 image->offset = 0;
415
416 image->format = driImageFormatToGLFormat(dri_format);
417 if (dri_format != __DRI_IMAGE_FORMAT_NONE &&
418 image->format == MESA_FORMAT_NONE) {
419 free(image);
420 return NULL;
421 }
422
423 image->internal_format = _mesa_get_format_base_format(image->format);
424 image->data = loaderPrivate;
425
426 return image;
427 }
428
429 /**
430 * Sets up a DRIImage structure to point to a slice out of a miptree.
431 */
432 static void
433 intel_setup_image_from_mipmap_tree(struct brw_context *brw, __DRIimage *image,
434 struct intel_mipmap_tree *mt, GLuint level,
435 GLuint zoffset)
436 {
437 intel_miptree_make_shareable(brw, mt);
438
439 intel_miptree_check_level_layer(mt, level, zoffset);
440
441 image->width = minify(mt->surf.phys_level0_sa.width,
442 level - mt->first_level);
443 image->height = minify(mt->surf.phys_level0_sa.height,
444 level - mt->first_level);
445 image->pitch = mt->surf.row_pitch;
446
447 image->offset = intel_miptree_get_tile_offsets(mt, level, zoffset,
448 &image->tile_x,
449 &image->tile_y);
450
451 brw_bo_unreference(image->bo);
452 image->bo = mt->bo;
453 brw_bo_reference(mt->bo);
454 }
455
456 static __DRIimage *
457 intel_create_image_from_name(__DRIscreen *dri_screen,
458 int width, int height, int format,
459 int name, int pitch, void *loaderPrivate)
460 {
461 struct intel_screen *screen = dri_screen->driverPrivate;
462 __DRIimage *image;
463 int cpp;
464
465 image = intel_allocate_image(screen, format, loaderPrivate);
466 if (image == NULL)
467 return NULL;
468
469 if (image->format == MESA_FORMAT_NONE)
470 cpp = 1;
471 else
472 cpp = _mesa_get_format_bytes(image->format);
473
474 image->width = width;
475 image->height = height;
476 image->pitch = pitch * cpp;
477 image->bo = brw_bo_gem_create_from_name(screen->bufmgr, "image",
478 name);
479 if (!image->bo) {
480 free(image);
481 return NULL;
482 }
483 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
484
485 return image;
486 }
487
488 static __DRIimage *
489 intel_create_image_from_renderbuffer(__DRIcontext *context,
490 int renderbuffer, void *loaderPrivate)
491 {
492 __DRIimage *image;
493 struct brw_context *brw = context->driverPrivate;
494 struct gl_context *ctx = &brw->ctx;
495 struct gl_renderbuffer *rb;
496 struct intel_renderbuffer *irb;
497
498 rb = _mesa_lookup_renderbuffer(ctx, renderbuffer);
499 if (!rb) {
500 _mesa_error(ctx, GL_INVALID_OPERATION, "glRenderbufferExternalMESA");
501 return NULL;
502 }
503
504 irb = intel_renderbuffer(rb);
505 intel_miptree_make_shareable(brw, irb->mt);
506 image = calloc(1, sizeof *image);
507 if (image == NULL)
508 return NULL;
509
510 image->internal_format = rb->InternalFormat;
511 image->format = rb->Format;
512 image->modifier = tiling_to_modifier(
513 isl_tiling_to_i915_tiling(irb->mt->surf.tiling));
514 image->offset = 0;
515 image->data = loaderPrivate;
516 brw_bo_unreference(image->bo);
517 image->bo = irb->mt->bo;
518 brw_bo_reference(irb->mt->bo);
519 image->width = rb->Width;
520 image->height = rb->Height;
521 image->pitch = irb->mt->surf.row_pitch;
522 image->dri_format = driGLFormatToImageFormat(image->format);
523 image->has_depthstencil = irb->mt->stencil_mt? true : false;
524
525 rb->NeedsFinishRenderTexture = true;
526 return image;
527 }
528
529 static __DRIimage *
530 intel_create_image_from_texture(__DRIcontext *context, int target,
531 unsigned texture, int zoffset,
532 int level,
533 unsigned *error,
534 void *loaderPrivate)
535 {
536 __DRIimage *image;
537 struct brw_context *brw = context->driverPrivate;
538 struct gl_texture_object *obj;
539 struct intel_texture_object *iobj;
540 GLuint face = 0;
541
542 obj = _mesa_lookup_texture(&brw->ctx, texture);
543 if (!obj || obj->Target != target) {
544 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
545 return NULL;
546 }
547
548 if (target == GL_TEXTURE_CUBE_MAP)
549 face = zoffset;
550
551 _mesa_test_texobj_completeness(&brw->ctx, obj);
552 iobj = intel_texture_object(obj);
553 if (!obj->_BaseComplete || (level > 0 && !obj->_MipmapComplete)) {
554 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
555 return NULL;
556 }
557
558 if (level < obj->BaseLevel || level > obj->_MaxLevel) {
559 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
560 return NULL;
561 }
562
563 if (target == GL_TEXTURE_3D && obj->Image[face][level]->Depth < zoffset) {
564 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
565 return NULL;
566 }
567 image = calloc(1, sizeof *image);
568 if (image == NULL) {
569 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
570 return NULL;
571 }
572
573 image->internal_format = obj->Image[face][level]->InternalFormat;
574 image->format = obj->Image[face][level]->TexFormat;
575 image->modifier = tiling_to_modifier(
576 isl_tiling_to_i915_tiling(iobj->mt->surf.tiling));
577 image->data = loaderPrivate;
578 intel_setup_image_from_mipmap_tree(brw, image, iobj->mt, level, zoffset);
579 image->dri_format = driGLFormatToImageFormat(image->format);
580 image->has_depthstencil = iobj->mt->stencil_mt? true : false;
581 if (image->dri_format == MESA_FORMAT_NONE) {
582 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
583 free(image);
584 return NULL;
585 }
586
587 *error = __DRI_IMAGE_ERROR_SUCCESS;
588 return image;
589 }
590
591 static void
592 intel_destroy_image(__DRIimage *image)
593 {
594 brw_bo_unreference(image->bo);
595 free(image);
596 }
597
598 enum modifier_priority {
599 MODIFIER_PRIORITY_INVALID = 0,
600 MODIFIER_PRIORITY_LINEAR,
601 MODIFIER_PRIORITY_X,
602 MODIFIER_PRIORITY_Y,
603 MODIFIER_PRIORITY_Y_CCS,
604 };
605
606 const uint64_t priority_to_modifier[] = {
607 [MODIFIER_PRIORITY_INVALID] = DRM_FORMAT_MOD_INVALID,
608 [MODIFIER_PRIORITY_LINEAR] = DRM_FORMAT_MOD_LINEAR,
609 [MODIFIER_PRIORITY_X] = I915_FORMAT_MOD_X_TILED,
610 [MODIFIER_PRIORITY_Y] = I915_FORMAT_MOD_Y_TILED,
611 [MODIFIER_PRIORITY_Y_CCS] = I915_FORMAT_MOD_Y_TILED_CCS,
612 };
613
614 static uint64_t
615 select_best_modifier(struct gen_device_info *devinfo,
616 int dri_format,
617 const uint64_t *modifiers,
618 const unsigned count)
619 {
620 enum modifier_priority prio = MODIFIER_PRIORITY_INVALID;
621
622 for (int i = 0; i < count; i++) {
623 if (!modifier_is_supported(devinfo, NULL, dri_format, modifiers[i]))
624 continue;
625
626 switch (modifiers[i]) {
627 case I915_FORMAT_MOD_Y_TILED_CCS:
628 prio = MAX2(prio, MODIFIER_PRIORITY_Y_CCS);
629 break;
630 case I915_FORMAT_MOD_Y_TILED:
631 prio = MAX2(prio, MODIFIER_PRIORITY_Y);
632 break;
633 case I915_FORMAT_MOD_X_TILED:
634 prio = MAX2(prio, MODIFIER_PRIORITY_X);
635 break;
636 case DRM_FORMAT_MOD_LINEAR:
637 prio = MAX2(prio, MODIFIER_PRIORITY_LINEAR);
638 break;
639 case DRM_FORMAT_MOD_INVALID:
640 default:
641 break;
642 }
643 }
644
645 return priority_to_modifier[prio];
646 }
647
648 static __DRIimage *
649 intel_create_image_common(__DRIscreen *dri_screen,
650 int width, int height, int format,
651 unsigned int use,
652 const uint64_t *modifiers,
653 unsigned count,
654 void *loaderPrivate)
655 {
656 __DRIimage *image;
657 struct intel_screen *screen = dri_screen->driverPrivate;
658 uint64_t modifier = DRM_FORMAT_MOD_INVALID;
659 bool ok;
660
661 /* Callers of this may specify a modifier, or a dri usage, but not both. The
662 * newer modifier interface deprecates the older usage flags newer modifier
663 * interface deprecates the older usage flags.
664 */
665 assert(!(use && count));
666
667 if (use & __DRI_IMAGE_USE_CURSOR) {
668 if (width != 64 || height != 64)
669 return NULL;
670 modifier = DRM_FORMAT_MOD_LINEAR;
671 }
672
673 if (use & __DRI_IMAGE_USE_LINEAR)
674 modifier = DRM_FORMAT_MOD_LINEAR;
675
676 if (modifier == DRM_FORMAT_MOD_INVALID) {
677 if (modifiers) {
678 /* User requested specific modifiers */
679 modifier = select_best_modifier(&screen->devinfo, format,
680 modifiers, count);
681 if (modifier == DRM_FORMAT_MOD_INVALID)
682 return NULL;
683 } else {
684 /* Historically, X-tiled was the default, and so lack of modifier means
685 * X-tiled.
686 */
687 modifier = I915_FORMAT_MOD_X_TILED;
688 }
689 }
690
691 image = intel_allocate_image(screen, format, loaderPrivate);
692 if (image == NULL)
693 return NULL;
694
695 const struct isl_drm_modifier_info *mod_info =
696 isl_drm_modifier_get_info(modifier);
697
698 struct isl_surf surf;
699 ok = isl_surf_init(&screen->isl_dev, &surf,
700 .dim = ISL_SURF_DIM_2D,
701 .format = brw_isl_format_for_mesa_format(image->format),
702 .width = width,
703 .height = height,
704 .depth = 1,
705 .levels = 1,
706 .array_len = 1,
707 .samples = 1,
708 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
709 ISL_SURF_USAGE_TEXTURE_BIT |
710 ISL_SURF_USAGE_STORAGE_BIT,
711 .tiling_flags = (1 << mod_info->tiling));
712 assert(ok);
713 if (!ok) {
714 free(image);
715 return NULL;
716 }
717
718 struct isl_surf aux_surf;
719 if (mod_info->aux_usage == ISL_AUX_USAGE_CCS_E) {
720 ok = isl_surf_get_ccs_surf(&screen->isl_dev, &surf, &aux_surf, 0);
721 if (!ok) {
722 free(image);
723 return NULL;
724 }
725 } else {
726 assert(mod_info->aux_usage == ISL_AUX_USAGE_NONE);
727 aux_surf.size = 0;
728 }
729
730 /* We request that the bufmgr zero the buffer for us for two reasons:
731 *
732 * 1) If a buffer gets re-used from the pool, we don't want to leak random
733 * garbage from our process to some other.
734 *
735 * 2) For images with CCS_E, we want to ensure that the CCS starts off in
736 * a valid state. A CCS value of 0 indicates that the given block is
737 * in the pass-through state which is what we want.
738 */
739 image->bo = brw_bo_alloc_tiled(screen->bufmgr, "image",
740 surf.size + aux_surf.size,
741 isl_tiling_to_i915_tiling(mod_info->tiling),
742 surf.row_pitch, BO_ALLOC_ZEROED);
743 if (image->bo == NULL) {
744 free(image);
745 return NULL;
746 }
747 image->width = width;
748 image->height = height;
749 image->pitch = surf.row_pitch;
750 image->modifier = modifier;
751
752 if (aux_surf.size) {
753 image->aux_offset = surf.size;
754 image->aux_pitch = aux_surf.row_pitch;
755 image->aux_size = aux_surf.size;
756 }
757
758 return image;
759 }
760
761 static __DRIimage *
762 intel_create_image(__DRIscreen *dri_screen,
763 int width, int height, int format,
764 unsigned int use,
765 void *loaderPrivate)
766 {
767 return intel_create_image_common(dri_screen, width, height, format, use, NULL, 0,
768 loaderPrivate);
769 }
770
771 static void *
772 intel_map_image(__DRIcontext *context, __DRIimage *image,
773 int x0, int y0, int width, int height,
774 unsigned int flags, int *stride, void **map_info)
775 {
776 struct brw_context *brw = NULL;
777 struct brw_bo *bo = NULL;
778 void *raw_data = NULL;
779 GLuint pix_w = 1;
780 GLuint pix_h = 1;
781 GLint pix_bytes = 1;
782
783 if (!context || !image || !stride || !map_info || *map_info)
784 return NULL;
785
786 if (x0 < 0 || x0 >= image->width || width > image->width - x0)
787 return NULL;
788
789 if (y0 < 0 || y0 >= image->height || height > image->height - y0)
790 return NULL;
791
792 if (flags & MAP_INTERNAL_MASK)
793 return NULL;
794
795 brw = context->driverPrivate;
796 bo = image->bo;
797
798 assert(brw);
799 assert(bo);
800
801 /* DRI flags and GL_MAP.*_BIT flags are the same, so just pass them on. */
802 raw_data = brw_bo_map(brw, bo, flags);
803 if (!raw_data)
804 return NULL;
805
806 _mesa_get_format_block_size(image->format, &pix_w, &pix_h);
807 pix_bytes = _mesa_get_format_bytes(image->format);
808
809 assert(pix_w);
810 assert(pix_h);
811 assert(pix_bytes > 0);
812
813 raw_data += (x0 / pix_w) * pix_bytes + (y0 / pix_h) * image->pitch;
814
815 brw_bo_reference(bo);
816
817 *stride = image->pitch;
818 *map_info = bo;
819
820 return raw_data;
821 }
822
823 static void
824 intel_unmap_image(__DRIcontext *context, __DRIimage *image, void *map_info)
825 {
826 struct brw_bo *bo = map_info;
827
828 brw_bo_unmap(bo);
829 brw_bo_unreference(bo);
830 }
831
832 static __DRIimage *
833 intel_create_image_with_modifiers(__DRIscreen *dri_screen,
834 int width, int height, int format,
835 const uint64_t *modifiers,
836 const unsigned count,
837 void *loaderPrivate)
838 {
839 return intel_create_image_common(dri_screen, width, height, format, 0,
840 modifiers, count, loaderPrivate);
841 }
842
843 static GLboolean
844 intel_query_image(__DRIimage *image, int attrib, int *value)
845 {
846 switch (attrib) {
847 case __DRI_IMAGE_ATTRIB_STRIDE:
848 *value = image->pitch;
849 return true;
850 case __DRI_IMAGE_ATTRIB_HANDLE:
851 *value = brw_bo_export_gem_handle(image->bo);
852 return true;
853 case __DRI_IMAGE_ATTRIB_NAME:
854 return !brw_bo_flink(image->bo, (uint32_t *) value);
855 case __DRI_IMAGE_ATTRIB_FORMAT:
856 *value = image->dri_format;
857 return true;
858 case __DRI_IMAGE_ATTRIB_WIDTH:
859 *value = image->width;
860 return true;
861 case __DRI_IMAGE_ATTRIB_HEIGHT:
862 *value = image->height;
863 return true;
864 case __DRI_IMAGE_ATTRIB_COMPONENTS:
865 if (image->planar_format == NULL)
866 return false;
867 *value = image->planar_format->components;
868 return true;
869 case __DRI_IMAGE_ATTRIB_FD:
870 return !brw_bo_gem_export_to_prime(image->bo, value);
871 case __DRI_IMAGE_ATTRIB_FOURCC:
872 return intel_lookup_fourcc(image->dri_format, value);
873 case __DRI_IMAGE_ATTRIB_NUM_PLANES:
874 if (isl_drm_modifier_has_aux(image->modifier)) {
875 assert(!image->planar_format || image->planar_format->nplanes == 1);
876 *value = 2;
877 } else if (image->planar_format) {
878 *value = image->planar_format->nplanes;
879 } else {
880 *value = 1;
881 }
882 return true;
883 case __DRI_IMAGE_ATTRIB_OFFSET:
884 *value = image->offset;
885 return true;
886 case __DRI_IMAGE_ATTRIB_MODIFIER_LOWER:
887 *value = (image->modifier & 0xffffffff);
888 return true;
889 case __DRI_IMAGE_ATTRIB_MODIFIER_UPPER:
890 *value = ((image->modifier >> 32) & 0xffffffff);
891 return true;
892
893 default:
894 return false;
895 }
896 }
897
898 static GLboolean
899 intel_query_format_modifier_attribs(__DRIscreen *dri_screen,
900 uint32_t fourcc, uint64_t modifier,
901 int attrib, uint64_t *value)
902 {
903 struct intel_screen *screen = dri_screen->driverPrivate;
904 const struct intel_image_format *f = intel_image_format_lookup(fourcc);
905
906 if (!modifier_is_supported(&screen->devinfo, f, 0, modifier))
907 return false;
908
909 switch (attrib) {
910 case __DRI_IMAGE_FORMAT_MODIFIER_ATTRIB_PLANE_COUNT:
911 *value = isl_drm_modifier_has_aux(modifier) ? 2 : f->nplanes;
912 return true;
913
914 default:
915 return false;
916 }
917 }
918
919 static __DRIimage *
920 intel_dup_image(__DRIimage *orig_image, void *loaderPrivate)
921 {
922 __DRIimage *image;
923
924 image = calloc(1, sizeof *image);
925 if (image == NULL)
926 return NULL;
927
928 brw_bo_reference(orig_image->bo);
929 image->bo = orig_image->bo;
930 image->internal_format = orig_image->internal_format;
931 image->planar_format = orig_image->planar_format;
932 image->dri_format = orig_image->dri_format;
933 image->format = orig_image->format;
934 image->modifier = orig_image->modifier;
935 image->offset = orig_image->offset;
936 image->width = orig_image->width;
937 image->height = orig_image->height;
938 image->pitch = orig_image->pitch;
939 image->tile_x = orig_image->tile_x;
940 image->tile_y = orig_image->tile_y;
941 image->has_depthstencil = orig_image->has_depthstencil;
942 image->data = loaderPrivate;
943 image->dma_buf_imported = orig_image->dma_buf_imported;
944 image->aux_offset = orig_image->aux_offset;
945 image->aux_pitch = orig_image->aux_pitch;
946
947 memcpy(image->strides, orig_image->strides, sizeof(image->strides));
948 memcpy(image->offsets, orig_image->offsets, sizeof(image->offsets));
949
950 return image;
951 }
952
953 static GLboolean
954 intel_validate_usage(__DRIimage *image, unsigned int use)
955 {
956 if (use & __DRI_IMAGE_USE_CURSOR) {
957 if (image->width != 64 || image->height != 64)
958 return GL_FALSE;
959 }
960
961 return GL_TRUE;
962 }
963
964 static __DRIimage *
965 intel_create_image_from_names(__DRIscreen *dri_screen,
966 int width, int height, int fourcc,
967 int *names, int num_names,
968 int *strides, int *offsets,
969 void *loaderPrivate)
970 {
971 const struct intel_image_format *f = NULL;
972 __DRIimage *image;
973 int i, index;
974
975 if (dri_screen == NULL || names == NULL || num_names != 1)
976 return NULL;
977
978 f = intel_image_format_lookup(fourcc);
979 if (f == NULL)
980 return NULL;
981
982 image = intel_create_image_from_name(dri_screen, width, height,
983 __DRI_IMAGE_FORMAT_NONE,
984 names[0], strides[0],
985 loaderPrivate);
986
987 if (image == NULL)
988 return NULL;
989
990 image->planar_format = f;
991 for (i = 0; i < f->nplanes; i++) {
992 index = f->planes[i].buffer_index;
993 image->offsets[index] = offsets[index];
994 image->strides[index] = strides[index];
995 }
996
997 return image;
998 }
999
1000 static __DRIimage *
1001 intel_create_image_from_fds_common(__DRIscreen *dri_screen,
1002 int width, int height, int fourcc,
1003 uint64_t modifier, int *fds, int num_fds,
1004 int *strides, int *offsets,
1005 void *loaderPrivate)
1006 {
1007 struct intel_screen *screen = dri_screen->driverPrivate;
1008 const struct intel_image_format *f;
1009 __DRIimage *image;
1010 int i, index;
1011 bool ok;
1012
1013 if (fds == NULL || num_fds < 1)
1014 return NULL;
1015
1016 f = intel_image_format_lookup(fourcc);
1017 if (f == NULL)
1018 return NULL;
1019
1020 if (modifier != DRM_FORMAT_MOD_INVALID &&
1021 !modifier_is_supported(&screen->devinfo, f, 0, modifier))
1022 return NULL;
1023
1024 if (f->nplanes == 1)
1025 image = intel_allocate_image(screen, f->planes[0].dri_format,
1026 loaderPrivate);
1027 else
1028 image = intel_allocate_image(screen, __DRI_IMAGE_FORMAT_NONE,
1029 loaderPrivate);
1030
1031 if (image == NULL)
1032 return NULL;
1033
1034 image->width = width;
1035 image->height = height;
1036 image->pitch = strides[0];
1037
1038 image->planar_format = f;
1039
1040 if (modifier != DRM_FORMAT_MOD_INVALID) {
1041 const struct isl_drm_modifier_info *mod_info =
1042 isl_drm_modifier_get_info(modifier);
1043 uint32_t tiling = isl_tiling_to_i915_tiling(mod_info->tiling);
1044 image->bo = brw_bo_gem_create_from_prime_tiled(screen->bufmgr, fds[0],
1045 tiling, strides[0]);
1046 } else {
1047 image->bo = brw_bo_gem_create_from_prime(screen->bufmgr, fds[0]);
1048 }
1049
1050 if (image->bo == NULL) {
1051 free(image);
1052 return NULL;
1053 }
1054
1055 /* We only support all planes from the same bo.
1056 * brw_bo_gem_create_from_prime() should return the same pointer for all
1057 * fds received here */
1058 for (i = 1; i < num_fds; i++) {
1059 struct brw_bo *aux = brw_bo_gem_create_from_prime(screen->bufmgr, fds[i]);
1060 brw_bo_unreference(aux);
1061 if (aux != image->bo) {
1062 brw_bo_unreference(image->bo);
1063 free(image);
1064 return NULL;
1065 }
1066 }
1067
1068 if (modifier != DRM_FORMAT_MOD_INVALID)
1069 image->modifier = modifier;
1070 else
1071 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
1072
1073 const struct isl_drm_modifier_info *mod_info =
1074 isl_drm_modifier_get_info(image->modifier);
1075
1076 int size = 0;
1077 struct isl_surf surf;
1078 for (i = 0; i < f->nplanes; i++) {
1079 index = f->planes[i].buffer_index;
1080 image->offsets[index] = offsets[index];
1081 image->strides[index] = strides[index];
1082
1083 mesa_format format = driImageFormatToGLFormat(f->planes[i].dri_format);
1084
1085 ok = isl_surf_init(&screen->isl_dev, &surf,
1086 .dim = ISL_SURF_DIM_2D,
1087 .format = brw_isl_format_for_mesa_format(format),
1088 .width = image->width >> f->planes[i].width_shift,
1089 .height = image->height >> f->planes[i].height_shift,
1090 .depth = 1,
1091 .levels = 1,
1092 .array_len = 1,
1093 .samples = 1,
1094 .row_pitch = strides[index],
1095 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
1096 ISL_SURF_USAGE_TEXTURE_BIT |
1097 ISL_SURF_USAGE_STORAGE_BIT,
1098 .tiling_flags = (1 << mod_info->tiling));
1099 if (!ok) {
1100 brw_bo_unreference(image->bo);
1101 free(image);
1102 return NULL;
1103 }
1104
1105 const int end = offsets[index] + surf.size;
1106 if (size < end)
1107 size = end;
1108 }
1109
1110 if (mod_info->aux_usage == ISL_AUX_USAGE_CCS_E) {
1111 /* Even though we initialize surf in the loop above, we know that
1112 * anything with CCS_E will have exactly one plane so surf is properly
1113 * initialized when we get here.
1114 */
1115 assert(f->nplanes == 1);
1116
1117 image->aux_offset = offsets[1];
1118 image->aux_pitch = strides[1];
1119
1120 /* Scanout hardware requires that the CCS be placed after the main
1121 * surface in memory. We consider any CCS that is placed any earlier in
1122 * memory to be invalid and reject it.
1123 *
1124 * At some point in the future, this restriction may be relaxed if the
1125 * hardware becomes less strict but we may need a new modifier for that.
1126 */
1127 assert(size > 0);
1128 if (image->aux_offset < size) {
1129 brw_bo_unreference(image->bo);
1130 free(image);
1131 return NULL;
1132 }
1133
1134 struct isl_surf aux_surf;
1135 ok = isl_surf_get_ccs_surf(&screen->isl_dev, &surf, &aux_surf,
1136 image->aux_pitch);
1137 if (!ok) {
1138 brw_bo_unreference(image->bo);
1139 free(image);
1140 return NULL;
1141 }
1142
1143 image->aux_size = aux_surf.size;
1144
1145 const int end = image->aux_offset + aux_surf.size;
1146 if (size < end)
1147 size = end;
1148 } else {
1149 assert(mod_info->aux_usage == ISL_AUX_USAGE_NONE);
1150 }
1151
1152 /* Check that the requested image actually fits within the BO. 'size'
1153 * is already relative to the offsets, so we don't need to add that. */
1154 if (image->bo->size == 0) {
1155 image->bo->size = size;
1156 } else if (size > image->bo->size) {
1157 brw_bo_unreference(image->bo);
1158 free(image);
1159 return NULL;
1160 }
1161
1162 if (f->nplanes == 1) {
1163 image->offset = image->offsets[0];
1164 intel_image_warn_if_unaligned(image, __func__);
1165 }
1166
1167 return image;
1168 }
1169
1170 static __DRIimage *
1171 intel_create_image_from_fds(__DRIscreen *dri_screen,
1172 int width, int height, int fourcc,
1173 int *fds, int num_fds, int *strides, int *offsets,
1174 void *loaderPrivate)
1175 {
1176 return intel_create_image_from_fds_common(dri_screen, width, height, fourcc,
1177 DRM_FORMAT_MOD_INVALID,
1178 fds, num_fds, strides, offsets,
1179 loaderPrivate);
1180 }
1181
1182 static __DRIimage *
1183 intel_create_image_from_dma_bufs2(__DRIscreen *dri_screen,
1184 int width, int height,
1185 int fourcc, uint64_t modifier,
1186 int *fds, int num_fds,
1187 int *strides, int *offsets,
1188 enum __DRIYUVColorSpace yuv_color_space,
1189 enum __DRISampleRange sample_range,
1190 enum __DRIChromaSiting horizontal_siting,
1191 enum __DRIChromaSiting vertical_siting,
1192 unsigned *error,
1193 void *loaderPrivate)
1194 {
1195 __DRIimage *image;
1196 const struct intel_image_format *f = intel_image_format_lookup(fourcc);
1197
1198 if (!f) {
1199 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
1200 return NULL;
1201 }
1202
1203 image = intel_create_image_from_fds_common(dri_screen, width, height,
1204 fourcc, modifier,
1205 fds, num_fds, strides, offsets,
1206 loaderPrivate);
1207
1208 /*
1209 * Invalid parameters and any inconsistencies between are assumed to be
1210 * checked by the caller. Therefore besides unsupported formats one can fail
1211 * only in allocation.
1212 */
1213 if (!image) {
1214 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
1215 return NULL;
1216 }
1217
1218 image->dma_buf_imported = true;
1219 image->yuv_color_space = yuv_color_space;
1220 image->sample_range = sample_range;
1221 image->horizontal_siting = horizontal_siting;
1222 image->vertical_siting = vertical_siting;
1223
1224 *error = __DRI_IMAGE_ERROR_SUCCESS;
1225 return image;
1226 }
1227
1228 static __DRIimage *
1229 intel_create_image_from_dma_bufs(__DRIscreen *dri_screen,
1230 int width, int height, int fourcc,
1231 int *fds, int num_fds,
1232 int *strides, int *offsets,
1233 enum __DRIYUVColorSpace yuv_color_space,
1234 enum __DRISampleRange sample_range,
1235 enum __DRIChromaSiting horizontal_siting,
1236 enum __DRIChromaSiting vertical_siting,
1237 unsigned *error,
1238 void *loaderPrivate)
1239 {
1240 return intel_create_image_from_dma_bufs2(dri_screen, width, height,
1241 fourcc, DRM_FORMAT_MOD_INVALID,
1242 fds, num_fds, strides, offsets,
1243 yuv_color_space,
1244 sample_range,
1245 horizontal_siting,
1246 vertical_siting,
1247 error,
1248 loaderPrivate);
1249 }
1250
1251 static GLboolean
1252 intel_query_dma_buf_formats(__DRIscreen *screen, int max,
1253 int *formats, int *count)
1254 {
1255 int i, j = 0;
1256
1257 if (max == 0) {
1258 *count = ARRAY_SIZE(intel_image_formats) - 1; /* not SARGB */
1259 return true;
1260 }
1261
1262 for (i = 0; i < (ARRAY_SIZE(intel_image_formats)) && j < max; i++) {
1263 if (intel_image_formats[i].fourcc == __DRI_IMAGE_FOURCC_SARGB8888)
1264 continue;
1265 formats[j++] = intel_image_formats[i].fourcc;
1266 }
1267
1268 *count = j;
1269 return true;
1270 }
1271
1272 static GLboolean
1273 intel_query_dma_buf_modifiers(__DRIscreen *_screen, int fourcc, int max,
1274 uint64_t *modifiers,
1275 unsigned int *external_only,
1276 int *count)
1277 {
1278 struct intel_screen *screen = _screen->driverPrivate;
1279 const struct intel_image_format *f;
1280 int num_mods = 0, i;
1281
1282 f = intel_image_format_lookup(fourcc);
1283 if (f == NULL)
1284 return false;
1285
1286 for (i = 0; i < ARRAY_SIZE(supported_modifiers); i++) {
1287 uint64_t modifier = supported_modifiers[i].modifier;
1288 if (!modifier_is_supported(&screen->devinfo, f, 0, modifier))
1289 continue;
1290
1291 num_mods++;
1292 if (max == 0)
1293 continue;
1294
1295 modifiers[num_mods - 1] = modifier;
1296 if (num_mods >= max)
1297 break;
1298 }
1299
1300 if (external_only != NULL) {
1301 for (i = 0; i < num_mods && i < max; i++) {
1302 if (f->components == __DRI_IMAGE_COMPONENTS_Y_U_V ||
1303 f->components == __DRI_IMAGE_COMPONENTS_Y_UV ||
1304 f->components == __DRI_IMAGE_COMPONENTS_Y_XUXV) {
1305 external_only[i] = GL_TRUE;
1306 }
1307 else {
1308 external_only[i] = GL_FALSE;
1309 }
1310 }
1311 }
1312
1313 *count = num_mods;
1314 return true;
1315 }
1316
1317 static __DRIimage *
1318 intel_from_planar(__DRIimage *parent, int plane, void *loaderPrivate)
1319 {
1320 int width, height, offset, stride, size, dri_format;
1321 __DRIimage *image;
1322
1323 if (parent == NULL)
1324 return NULL;
1325
1326 width = parent->width;
1327 height = parent->height;
1328
1329 const struct intel_image_format *f = parent->planar_format;
1330
1331 if (f && plane < f->nplanes) {
1332 /* Use the planar format definition. */
1333 width >>= f->planes[plane].width_shift;
1334 height >>= f->planes[plane].height_shift;
1335 dri_format = f->planes[plane].dri_format;
1336 int index = f->planes[plane].buffer_index;
1337 offset = parent->offsets[index];
1338 stride = parent->strides[index];
1339 size = height * stride;
1340 } else if (plane == 0) {
1341 /* The only plane of a non-planar image: copy the parent definition
1342 * directly. */
1343 dri_format = parent->dri_format;
1344 offset = parent->offset;
1345 stride = parent->pitch;
1346 size = height * stride;
1347 } else if (plane == 1 && parent->modifier != DRM_FORMAT_MOD_INVALID &&
1348 isl_drm_modifier_has_aux(parent->modifier)) {
1349 /* Auxiliary plane */
1350 dri_format = parent->dri_format;
1351 offset = parent->aux_offset;
1352 stride = parent->aux_pitch;
1353 size = parent->aux_size;
1354 } else {
1355 return NULL;
1356 }
1357
1358 if (offset + size > parent->bo->size) {
1359 _mesa_warning(NULL, "intel_from_planar: subimage out of bounds");
1360 return NULL;
1361 }
1362
1363 image = intel_allocate_image(parent->screen, dri_format, loaderPrivate);
1364 if (image == NULL)
1365 return NULL;
1366
1367 image->bo = parent->bo;
1368 brw_bo_reference(parent->bo);
1369 image->modifier = parent->modifier;
1370
1371 image->width = width;
1372 image->height = height;
1373 image->pitch = stride;
1374 image->offset = offset;
1375
1376 intel_image_warn_if_unaligned(image, __func__);
1377
1378 return image;
1379 }
1380
1381 static const __DRIimageExtension intelImageExtension = {
1382 .base = { __DRI_IMAGE, 16 },
1383
1384 .createImageFromName = intel_create_image_from_name,
1385 .createImageFromRenderbuffer = intel_create_image_from_renderbuffer,
1386 .destroyImage = intel_destroy_image,
1387 .createImage = intel_create_image,
1388 .queryImage = intel_query_image,
1389 .dupImage = intel_dup_image,
1390 .validateUsage = intel_validate_usage,
1391 .createImageFromNames = intel_create_image_from_names,
1392 .fromPlanar = intel_from_planar,
1393 .createImageFromTexture = intel_create_image_from_texture,
1394 .createImageFromFds = intel_create_image_from_fds,
1395 .createImageFromDmaBufs = intel_create_image_from_dma_bufs,
1396 .blitImage = NULL,
1397 .getCapabilities = NULL,
1398 .mapImage = intel_map_image,
1399 .unmapImage = intel_unmap_image,
1400 .createImageWithModifiers = intel_create_image_with_modifiers,
1401 .createImageFromDmaBufs2 = intel_create_image_from_dma_bufs2,
1402 .queryDmaBufFormats = intel_query_dma_buf_formats,
1403 .queryDmaBufModifiers = intel_query_dma_buf_modifiers,
1404 .queryDmaBufFormatModifierAttribs = intel_query_format_modifier_attribs,
1405 };
1406
1407 static uint64_t
1408 get_aperture_size(int fd)
1409 {
1410 struct drm_i915_gem_get_aperture aperture;
1411
1412 if (drmIoctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture) != 0)
1413 return 0;
1414
1415 return aperture.aper_size;
1416 }
1417
1418 static int
1419 brw_query_renderer_integer(__DRIscreen *dri_screen,
1420 int param, unsigned int *value)
1421 {
1422 const struct intel_screen *const screen =
1423 (struct intel_screen *) dri_screen->driverPrivate;
1424
1425 switch (param) {
1426 case __DRI2_RENDERER_VENDOR_ID:
1427 value[0] = 0x8086;
1428 return 0;
1429 case __DRI2_RENDERER_DEVICE_ID:
1430 value[0] = screen->deviceID;
1431 return 0;
1432 case __DRI2_RENDERER_ACCELERATED:
1433 value[0] = 1;
1434 return 0;
1435 case __DRI2_RENDERER_VIDEO_MEMORY: {
1436 /* Once a batch uses more than 75% of the maximum mappable size, we
1437 * assume that there's some fragmentation, and we start doing extra
1438 * flushing, etc. That's the big cliff apps will care about.
1439 */
1440 const unsigned gpu_mappable_megabytes =
1441 screen->aperture_threshold / (1024 * 1024);
1442
1443 const long system_memory_pages = sysconf(_SC_PHYS_PAGES);
1444 const long system_page_size = sysconf(_SC_PAGE_SIZE);
1445
1446 if (system_memory_pages <= 0 || system_page_size <= 0)
1447 return -1;
1448
1449 const uint64_t system_memory_bytes = (uint64_t) system_memory_pages
1450 * (uint64_t) system_page_size;
1451
1452 const unsigned system_memory_megabytes =
1453 (unsigned) (system_memory_bytes / (1024 * 1024));
1454
1455 value[0] = MIN2(system_memory_megabytes, gpu_mappable_megabytes);
1456 return 0;
1457 }
1458 case __DRI2_RENDERER_UNIFIED_MEMORY_ARCHITECTURE:
1459 value[0] = 1;
1460 return 0;
1461 case __DRI2_RENDERER_HAS_TEXTURE_3D:
1462 value[0] = 1;
1463 return 0;
1464 case __DRI2_RENDERER_HAS_CONTEXT_PRIORITY:
1465 value[0] = 0;
1466 if (brw_hw_context_set_priority(screen->bufmgr,
1467 0, GEN_CONTEXT_HIGH_PRIORITY) == 0)
1468 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_HIGH;
1469 if (brw_hw_context_set_priority(screen->bufmgr,
1470 0, GEN_CONTEXT_LOW_PRIORITY) == 0)
1471 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_LOW;
1472 /* reset to default last, just in case */
1473 if (brw_hw_context_set_priority(screen->bufmgr,
1474 0, GEN_CONTEXT_MEDIUM_PRIORITY) == 0)
1475 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_MEDIUM;
1476 return 0;
1477 case __DRI2_RENDERER_HAS_FRAMEBUFFER_SRGB:
1478 value[0] = 1;
1479 return 0;
1480 default:
1481 return driQueryRendererIntegerCommon(dri_screen, param, value);
1482 }
1483
1484 return -1;
1485 }
1486
1487 static int
1488 brw_query_renderer_string(__DRIscreen *dri_screen,
1489 int param, const char **value)
1490 {
1491 const struct intel_screen *screen =
1492 (struct intel_screen *) dri_screen->driverPrivate;
1493
1494 switch (param) {
1495 case __DRI2_RENDERER_VENDOR_ID:
1496 value[0] = brw_vendor_string;
1497 return 0;
1498 case __DRI2_RENDERER_DEVICE_ID:
1499 value[0] = brw_get_renderer_string(screen);
1500 return 0;
1501 default:
1502 break;
1503 }
1504
1505 return -1;
1506 }
1507
1508 static void
1509 brw_set_cache_funcs(__DRIscreen *dri_screen,
1510 __DRIblobCacheSet set, __DRIblobCacheGet get)
1511 {
1512 const struct intel_screen *const screen =
1513 (struct intel_screen *) dri_screen->driverPrivate;
1514
1515 if (!screen->disk_cache)
1516 return;
1517
1518 disk_cache_set_callbacks(screen->disk_cache, set, get);
1519 }
1520
1521 static const __DRI2rendererQueryExtension intelRendererQueryExtension = {
1522 .base = { __DRI2_RENDERER_QUERY, 1 },
1523
1524 .queryInteger = brw_query_renderer_integer,
1525 .queryString = brw_query_renderer_string
1526 };
1527
1528 static const __DRIrobustnessExtension dri2Robustness = {
1529 .base = { __DRI2_ROBUSTNESS, 1 }
1530 };
1531
1532 static const __DRI2blobExtension intelBlobExtension = {
1533 .base = { __DRI2_BLOB, 1 },
1534 .set_cache_funcs = brw_set_cache_funcs
1535 };
1536
1537 static const __DRIextension *screenExtensions[] = {
1538 &intelTexBufferExtension.base,
1539 &intelFenceExtension.base,
1540 &intelFlushExtension.base,
1541 &intelImageExtension.base,
1542 &intelRendererQueryExtension.base,
1543 &dri2ConfigQueryExtension.base,
1544 &dri2NoErrorExtension.base,
1545 &intelBlobExtension.base,
1546 NULL
1547 };
1548
1549 static const __DRIextension *intelRobustScreenExtensions[] = {
1550 &intelTexBufferExtension.base,
1551 &intelFenceExtension.base,
1552 &intelFlushExtension.base,
1553 &intelImageExtension.base,
1554 &intelRendererQueryExtension.base,
1555 &dri2ConfigQueryExtension.base,
1556 &dri2Robustness.base,
1557 &dri2NoErrorExtension.base,
1558 &intelBlobExtension.base,
1559 NULL
1560 };
1561
1562 static int
1563 intel_get_param(struct intel_screen *screen, int param, int *value)
1564 {
1565 int ret = 0;
1566 struct drm_i915_getparam gp;
1567
1568 memset(&gp, 0, sizeof(gp));
1569 gp.param = param;
1570 gp.value = value;
1571
1572 if (drmIoctl(screen->driScrnPriv->fd, DRM_IOCTL_I915_GETPARAM, &gp) == -1) {
1573 ret = -errno;
1574 if (ret != -EINVAL)
1575 _mesa_warning(NULL, "drm_i915_getparam: %d", ret);
1576 }
1577
1578 return ret;
1579 }
1580
1581 static bool
1582 intel_get_boolean(struct intel_screen *screen, int param)
1583 {
1584 int value = 0;
1585 return (intel_get_param(screen, param, &value) == 0) && value;
1586 }
1587
1588 static int
1589 intel_get_integer(struct intel_screen *screen, int param)
1590 {
1591 int value = -1;
1592
1593 if (intel_get_param(screen, param, &value) == 0)
1594 return value;
1595
1596 return -1;
1597 }
1598
1599 static void
1600 intelDestroyScreen(__DRIscreen * sPriv)
1601 {
1602 struct intel_screen *screen = sPriv->driverPrivate;
1603
1604 brw_bufmgr_destroy(screen->bufmgr);
1605 driDestroyOptionInfo(&screen->optionCache);
1606
1607 disk_cache_destroy(screen->disk_cache);
1608
1609 ralloc_free(screen);
1610 sPriv->driverPrivate = NULL;
1611 }
1612
1613
1614 /**
1615 * Create a gl_framebuffer and attach it to __DRIdrawable::driverPrivate.
1616 *
1617 *_This implements driDriverAPI::createNewDrawable, which the DRI layer calls
1618 * when creating a EGLSurface, GLXDrawable, or GLXPixmap. Despite the name,
1619 * this does not allocate GPU memory.
1620 */
1621 static GLboolean
1622 intelCreateBuffer(__DRIscreen *dri_screen,
1623 __DRIdrawable * driDrawPriv,
1624 const struct gl_config * mesaVis, GLboolean isPixmap)
1625 {
1626 struct intel_renderbuffer *rb;
1627 struct intel_screen *screen = (struct intel_screen *)
1628 dri_screen->driverPrivate;
1629 mesa_format rgbFormat;
1630 unsigned num_samples =
1631 intel_quantize_num_samples(screen, mesaVis->samples);
1632
1633 if (isPixmap)
1634 return false;
1635
1636 struct gl_framebuffer *fb = CALLOC_STRUCT(gl_framebuffer);
1637 if (!fb)
1638 return false;
1639
1640 _mesa_initialize_window_framebuffer(fb, mesaVis);
1641
1642 if (screen->winsys_msaa_samples_override != -1) {
1643 num_samples = screen->winsys_msaa_samples_override;
1644 fb->Visual.samples = num_samples;
1645 }
1646
1647 if (mesaVis->redBits == 10 && mesaVis->alphaBits > 0) {
1648 rgbFormat = mesaVis->redMask == 0x3ff00000 ? MESA_FORMAT_B10G10R10A2_UNORM
1649 : MESA_FORMAT_R10G10B10A2_UNORM;
1650 } else if (mesaVis->redBits == 10) {
1651 rgbFormat = mesaVis->redMask == 0x3ff00000 ? MESA_FORMAT_B10G10R10X2_UNORM
1652 : MESA_FORMAT_R10G10B10X2_UNORM;
1653 } else if (mesaVis->redBits == 5) {
1654 rgbFormat = mesaVis->redMask == 0x1f ? MESA_FORMAT_R5G6B5_UNORM
1655 : MESA_FORMAT_B5G6R5_UNORM;
1656 } else if (mesaVis->sRGBCapable) {
1657 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1658 : MESA_FORMAT_B8G8R8A8_SRGB;
1659 } else if (mesaVis->alphaBits == 0) {
1660 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8X8_UNORM
1661 : MESA_FORMAT_B8G8R8X8_UNORM;
1662 } else {
1663 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1664 : MESA_FORMAT_B8G8R8A8_SRGB;
1665 fb->Visual.sRGBCapable = true;
1666 }
1667
1668 /* mesaVis->sRGBCapable was set, user is asking for sRGB */
1669 bool srgb_cap_set = mesaVis->redBits >= 8 && mesaVis->sRGBCapable;
1670
1671 /* setup the hardware-based renderbuffers */
1672 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1673 _mesa_attach_and_own_rb(fb, BUFFER_FRONT_LEFT, &rb->Base.Base);
1674 rb->need_srgb = srgb_cap_set;
1675
1676 if (mesaVis->doubleBufferMode) {
1677 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1678 _mesa_attach_and_own_rb(fb, BUFFER_BACK_LEFT, &rb->Base.Base);
1679 rb->need_srgb = srgb_cap_set;
1680 }
1681
1682 /*
1683 * Assert here that the gl_config has an expected depth/stencil bit
1684 * combination: one of d24/s8, d16/s0, d0/s0. (See intelInitScreen2(),
1685 * which constructs the advertised configs.)
1686 */
1687 if (mesaVis->depthBits == 24) {
1688 assert(mesaVis->stencilBits == 8);
1689
1690 if (screen->devinfo.has_hiz_and_separate_stencil) {
1691 rb = intel_create_private_renderbuffer(screen,
1692 MESA_FORMAT_Z24_UNORM_X8_UINT,
1693 num_samples);
1694 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1695 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_S_UINT8,
1696 num_samples);
1697 _mesa_attach_and_own_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1698 } else {
1699 /*
1700 * Use combined depth/stencil. Note that the renderbuffer is
1701 * attached to two attachment points.
1702 */
1703 rb = intel_create_private_renderbuffer(screen,
1704 MESA_FORMAT_Z24_UNORM_S8_UINT,
1705 num_samples);
1706 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1707 _mesa_attach_and_reference_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1708 }
1709 }
1710 else if (mesaVis->depthBits == 16) {
1711 assert(mesaVis->stencilBits == 0);
1712 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_Z_UNORM16,
1713 num_samples);
1714 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1715 }
1716 else {
1717 assert(mesaVis->depthBits == 0);
1718 assert(mesaVis->stencilBits == 0);
1719 }
1720
1721 /* now add any/all software-based renderbuffers we may need */
1722 _swrast_add_soft_renderbuffers(fb,
1723 false, /* never sw color */
1724 false, /* never sw depth */
1725 false, /* never sw stencil */
1726 mesaVis->accumRedBits > 0,
1727 false, /* never sw alpha */
1728 false /* never sw aux */ );
1729 driDrawPriv->driverPrivate = fb;
1730
1731 return true;
1732 }
1733
1734 static void
1735 intelDestroyBuffer(__DRIdrawable * driDrawPriv)
1736 {
1737 struct gl_framebuffer *fb = driDrawPriv->driverPrivate;
1738
1739 _mesa_reference_framebuffer(&fb, NULL);
1740 }
1741
1742 static void
1743 intel_cs_timestamp_frequency(struct intel_screen *screen)
1744 {
1745 /* We shouldn't need to update gen_device_info.timestamp_frequency prior to
1746 * gen10, PCI-id is enough to figure it out.
1747 */
1748 assert(screen->devinfo.gen >= 10);
1749
1750 int ret, freq;
1751
1752 ret = intel_get_param(screen, I915_PARAM_CS_TIMESTAMP_FREQUENCY,
1753 &freq);
1754 if (ret < 0) {
1755 _mesa_warning(NULL,
1756 "Kernel 4.15 required to read the CS timestamp frequency.\n");
1757 return;
1758 }
1759
1760 screen->devinfo.timestamp_frequency = freq;
1761 }
1762
1763 static void
1764 intel_detect_sseu(struct intel_screen *screen)
1765 {
1766 assert(screen->devinfo.gen >= 8);
1767 int ret;
1768
1769 screen->subslice_total = -1;
1770 screen->eu_total = -1;
1771
1772 ret = intel_get_param(screen, I915_PARAM_SUBSLICE_TOTAL,
1773 &screen->subslice_total);
1774 if (ret < 0 && ret != -EINVAL)
1775 goto err_out;
1776
1777 ret = intel_get_param(screen,
1778 I915_PARAM_EU_TOTAL, &screen->eu_total);
1779 if (ret < 0 && ret != -EINVAL)
1780 goto err_out;
1781
1782 /* Without this information, we cannot get the right Braswell brandstrings,
1783 * and we have to use conservative numbers for GPGPU on many platforms, but
1784 * otherwise, things will just work.
1785 */
1786 if (screen->subslice_total < 1 || screen->eu_total < 1)
1787 _mesa_warning(NULL,
1788 "Kernel 4.1 required to properly query GPU properties.\n");
1789
1790 return;
1791
1792 err_out:
1793 screen->subslice_total = -1;
1794 screen->eu_total = -1;
1795 _mesa_warning(NULL, "Failed to query GPU properties (%s).\n", strerror(-ret));
1796 }
1797
1798 static bool
1799 intel_init_bufmgr(struct intel_screen *screen)
1800 {
1801 __DRIscreen *dri_screen = screen->driScrnPriv;
1802
1803 if (getenv("INTEL_NO_HW") != NULL)
1804 screen->no_hw = true;
1805
1806 screen->bufmgr = brw_bufmgr_init(&screen->devinfo, dri_screen->fd);
1807 if (screen->bufmgr == NULL) {
1808 fprintf(stderr, "[%s:%u] Error initializing buffer manager.\n",
1809 __func__, __LINE__);
1810 return false;
1811 }
1812
1813 if (!intel_get_boolean(screen, I915_PARAM_HAS_EXEC_NO_RELOC)) {
1814 fprintf(stderr, "[%s: %u] Kernel 3.9 required.\n", __func__, __LINE__);
1815 return false;
1816 }
1817
1818 return true;
1819 }
1820
1821 static bool
1822 intel_detect_swizzling(struct intel_screen *screen)
1823 {
1824 struct brw_bo *buffer;
1825 unsigned flags = 0;
1826 uint32_t aligned_pitch;
1827 uint32_t tiling = I915_TILING_X;
1828 uint32_t swizzle_mode = 0;
1829
1830 buffer = brw_bo_alloc_tiled_2d(screen->bufmgr, "swizzle test",
1831 64, 64, 4, tiling, &aligned_pitch, flags);
1832 if (buffer == NULL)
1833 return false;
1834
1835 brw_bo_get_tiling(buffer, &tiling, &swizzle_mode);
1836 brw_bo_unreference(buffer);
1837
1838 if (swizzle_mode == I915_BIT_6_SWIZZLE_NONE)
1839 return false;
1840 else
1841 return true;
1842 }
1843
1844 static int
1845 intel_detect_timestamp(struct intel_screen *screen)
1846 {
1847 uint64_t dummy = 0, last = 0;
1848 int upper, lower, loops;
1849
1850 /* On 64bit systems, some old kernels trigger a hw bug resulting in the
1851 * TIMESTAMP register being shifted and the low 32bits always zero.
1852 *
1853 * More recent kernels offer an interface to read the full 36bits
1854 * everywhere.
1855 */
1856 if (brw_reg_read(screen->bufmgr, TIMESTAMP | 1, &dummy) == 0)
1857 return 3;
1858
1859 /* Determine if we have a 32bit or 64bit kernel by inspecting the
1860 * upper 32bits for a rapidly changing timestamp.
1861 */
1862 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &last))
1863 return 0;
1864
1865 upper = lower = 0;
1866 for (loops = 0; loops < 10; loops++) {
1867 /* The TIMESTAMP should change every 80ns, so several round trips
1868 * through the kernel should be enough to advance it.
1869 */
1870 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &dummy))
1871 return 0;
1872
1873 upper += (dummy >> 32) != (last >> 32);
1874 if (upper > 1) /* beware 32bit counter overflow */
1875 return 2; /* upper dword holds the low 32bits of the timestamp */
1876
1877 lower += (dummy & 0xffffffff) != (last & 0xffffffff);
1878 if (lower > 1)
1879 return 1; /* timestamp is unshifted */
1880
1881 last = dummy;
1882 }
1883
1884 /* No advancement? No timestamp! */
1885 return 0;
1886 }
1887
1888 /**
1889 * Test if we can use MI_LOAD_REGISTER_MEM from an untrusted batchbuffer.
1890 *
1891 * Some combinations of hardware and kernel versions allow this feature,
1892 * while others don't. Instead of trying to enumerate every case, just
1893 * try and write a register and see if works.
1894 */
1895 static bool
1896 intel_detect_pipelined_register(struct intel_screen *screen,
1897 int reg, uint32_t expected_value, bool reset)
1898 {
1899 if (screen->no_hw)
1900 return false;
1901
1902 struct brw_bo *results, *bo;
1903 uint32_t *batch;
1904 uint32_t offset = 0;
1905 void *map;
1906 bool success = false;
1907
1908 /* Create a zero'ed temporary buffer for reading our results */
1909 results = brw_bo_alloc(screen->bufmgr, "registers", 4096, 0);
1910 if (results == NULL)
1911 goto err;
1912
1913 bo = brw_bo_alloc(screen->bufmgr, "batchbuffer", 4096, 0);
1914 if (bo == NULL)
1915 goto err_results;
1916
1917 map = brw_bo_map(NULL, bo, MAP_WRITE);
1918 if (!map)
1919 goto err_batch;
1920
1921 batch = map;
1922
1923 /* Write the register. */
1924 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1925 *batch++ = reg;
1926 *batch++ = expected_value;
1927
1928 /* Save the register's value back to the buffer. */
1929 *batch++ = MI_STORE_REGISTER_MEM | (3 - 2);
1930 *batch++ = reg;
1931 struct drm_i915_gem_relocation_entry reloc = {
1932 .offset = (char *) batch - (char *) map,
1933 .delta = offset * sizeof(uint32_t),
1934 .target_handle = results->gem_handle,
1935 .read_domains = I915_GEM_DOMAIN_INSTRUCTION,
1936 .write_domain = I915_GEM_DOMAIN_INSTRUCTION,
1937 };
1938 *batch++ = reloc.presumed_offset + reloc.delta;
1939
1940 /* And afterwards clear the register */
1941 if (reset) {
1942 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1943 *batch++ = reg;
1944 *batch++ = 0;
1945 }
1946
1947 *batch++ = MI_BATCH_BUFFER_END;
1948
1949 struct drm_i915_gem_exec_object2 exec_objects[2] = {
1950 {
1951 .handle = results->gem_handle,
1952 },
1953 {
1954 .handle = bo->gem_handle,
1955 .relocation_count = 1,
1956 .relocs_ptr = (uintptr_t) &reloc,
1957 }
1958 };
1959
1960 struct drm_i915_gem_execbuffer2 execbuf = {
1961 .buffers_ptr = (uintptr_t) exec_objects,
1962 .buffer_count = 2,
1963 .batch_len = ALIGN((char *) batch - (char *) map, 8),
1964 .flags = I915_EXEC_RENDER,
1965 };
1966
1967 /* Don't bother with error checking - if the execbuf fails, the
1968 * value won't be written and we'll just report that there's no access.
1969 */
1970 __DRIscreen *dri_screen = screen->driScrnPriv;
1971 drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf);
1972
1973 /* Check whether the value got written. */
1974 void *results_map = brw_bo_map(NULL, results, MAP_READ);
1975 if (results_map) {
1976 success = *((uint32_t *)results_map + offset) == expected_value;
1977 brw_bo_unmap(results);
1978 }
1979
1980 err_batch:
1981 brw_bo_unreference(bo);
1982 err_results:
1983 brw_bo_unreference(results);
1984 err:
1985 return success;
1986 }
1987
1988 static bool
1989 intel_detect_pipelined_so(struct intel_screen *screen)
1990 {
1991 const struct gen_device_info *devinfo = &screen->devinfo;
1992
1993 /* Supposedly, Broadwell just works. */
1994 if (devinfo->gen >= 8)
1995 return true;
1996
1997 if (devinfo->gen <= 6)
1998 return false;
1999
2000 /* See the big explanation about command parser versions below */
2001 if (screen->cmd_parser_version >= (devinfo->is_haswell ? 7 : 2))
2002 return true;
2003
2004 /* We use SO_WRITE_OFFSET0 since you're supposed to write it (unlike the
2005 * statistics registers), and we already reset it to zero before using it.
2006 */
2007 return intel_detect_pipelined_register(screen,
2008 GEN7_SO_WRITE_OFFSET(0),
2009 0x1337d0d0,
2010 false);
2011 }
2012
2013 /**
2014 * Return array of MSAA modes supported by the hardware. The array is
2015 * zero-terminated and sorted in decreasing order.
2016 */
2017 const int*
2018 intel_supported_msaa_modes(const struct intel_screen *screen)
2019 {
2020 static const int gen9_modes[] = {16, 8, 4, 2, 0, -1};
2021 static const int gen8_modes[] = {8, 4, 2, 0, -1};
2022 static const int gen7_modes[] = {8, 4, 0, -1};
2023 static const int gen6_modes[] = {4, 0, -1};
2024 static const int gen4_modes[] = {0, -1};
2025
2026 if (screen->devinfo.gen >= 9) {
2027 return gen9_modes;
2028 } else if (screen->devinfo.gen >= 8) {
2029 return gen8_modes;
2030 } else if (screen->devinfo.gen >= 7) {
2031 return gen7_modes;
2032 } else if (screen->devinfo.gen == 6) {
2033 return gen6_modes;
2034 } else {
2035 return gen4_modes;
2036 }
2037 }
2038
2039 static unsigned
2040 intel_loader_get_cap(const __DRIscreen *dri_screen, enum dri_loader_cap cap)
2041 {
2042 if (dri_screen->dri2.loader && dri_screen->dri2.loader->base.version >= 4 &&
2043 dri_screen->dri2.loader->getCapability)
2044 return dri_screen->dri2.loader->getCapability(dri_screen->loaderPrivate, cap);
2045
2046 if (dri_screen->image.loader && dri_screen->image.loader->base.version >= 2 &&
2047 dri_screen->image.loader->getCapability)
2048 return dri_screen->image.loader->getCapability(dri_screen->loaderPrivate, cap);
2049
2050 return 0;
2051 }
2052
2053 static __DRIconfig**
2054 intel_screen_make_configs(__DRIscreen *dri_screen)
2055 {
2056 static const mesa_format formats[] = {
2057 MESA_FORMAT_B5G6R5_UNORM,
2058 MESA_FORMAT_B8G8R8A8_UNORM,
2059 MESA_FORMAT_B8G8R8X8_UNORM,
2060
2061 MESA_FORMAT_B8G8R8A8_SRGB,
2062
2063 /* For 10 bpc, 30 bit depth framebuffers. */
2064 MESA_FORMAT_B10G10R10A2_UNORM,
2065 MESA_FORMAT_B10G10R10X2_UNORM,
2066
2067 /* The 32-bit RGBA format must not precede the 32-bit BGRA format.
2068 * Likewise for RGBX and BGRX. Otherwise, the GLX client and the GLX
2069 * server may disagree on which format the GLXFBConfig represents,
2070 * resulting in swapped color channels.
2071 *
2072 * The problem, as of 2017-05-30:
2073 * When matching a GLXFBConfig to a __DRIconfig, GLX ignores the channel
2074 * order and chooses the first __DRIconfig with the expected channel
2075 * sizes. Specifically, GLX compares the GLXFBConfig's and __DRIconfig's
2076 * __DRI_ATTRIB_{CHANNEL}_SIZE but ignores __DRI_ATTRIB_{CHANNEL}_MASK.
2077 *
2078 * EGL does not suffer from this problem. It correctly compares the
2079 * channel masks when matching EGLConfig to __DRIconfig.
2080 */
2081
2082 /* Required by Android, for HAL_PIXEL_FORMAT_RGBA_8888. */
2083 MESA_FORMAT_R8G8B8A8_UNORM,
2084
2085 /* Required by Android, for HAL_PIXEL_FORMAT_RGBX_8888. */
2086 MESA_FORMAT_R8G8B8X8_UNORM,
2087 };
2088
2089 /* GLX_SWAP_COPY_OML is not supported due to page flipping. */
2090 static const GLenum back_buffer_modes[] = {
2091 __DRI_ATTRIB_SWAP_UNDEFINED, __DRI_ATTRIB_SWAP_NONE
2092 };
2093
2094 static const uint8_t singlesample_samples[1] = {0};
2095
2096 struct intel_screen *screen = dri_screen->driverPrivate;
2097 const struct gen_device_info *devinfo = &screen->devinfo;
2098 uint8_t depth_bits[4], stencil_bits[4];
2099 __DRIconfig **configs = NULL;
2100
2101 /* Expose only BGRA ordering if the loader doesn't support RGBA ordering. */
2102 unsigned num_formats;
2103 if (intel_loader_get_cap(dri_screen, DRI_LOADER_CAP_RGBA_ORDERING))
2104 num_formats = ARRAY_SIZE(formats);
2105 else
2106 num_formats = ARRAY_SIZE(formats) - 2; /* all - RGBA_ORDERING formats */
2107
2108 /* Shall we expose 10 bpc formats? */
2109 bool allow_rgb10_configs = driQueryOptionb(&screen->optionCache,
2110 "allow_rgb10_configs");
2111
2112 /* Generate singlesample configs without accumulation buffer. */
2113 for (unsigned i = 0; i < num_formats; i++) {
2114 __DRIconfig **new_configs;
2115 int num_depth_stencil_bits = 2;
2116
2117 if (!allow_rgb10_configs &&
2118 (formats[i] == MESA_FORMAT_B10G10R10A2_UNORM ||
2119 formats[i] == MESA_FORMAT_B10G10R10X2_UNORM))
2120 continue;
2121
2122 /* Starting with DRI2 protocol version 1.1 we can request a depth/stencil
2123 * buffer that has a different number of bits per pixel than the color
2124 * buffer, gen >= 6 supports this.
2125 */
2126 depth_bits[0] = 0;
2127 stencil_bits[0] = 0;
2128
2129 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2130 depth_bits[1] = 16;
2131 stencil_bits[1] = 0;
2132 if (devinfo->gen >= 6) {
2133 depth_bits[2] = 24;
2134 stencil_bits[2] = 8;
2135 num_depth_stencil_bits = 3;
2136 }
2137 } else {
2138 depth_bits[1] = 24;
2139 stencil_bits[1] = 8;
2140 }
2141
2142 new_configs = driCreateConfigs(formats[i],
2143 depth_bits,
2144 stencil_bits,
2145 num_depth_stencil_bits,
2146 back_buffer_modes, 2,
2147 singlesample_samples, 1,
2148 false, false);
2149 configs = driConcatConfigs(configs, new_configs);
2150 }
2151
2152 /* Generate the minimum possible set of configs that include an
2153 * accumulation buffer.
2154 */
2155 for (unsigned i = 0; i < num_formats; i++) {
2156 __DRIconfig **new_configs;
2157
2158 if (!allow_rgb10_configs &&
2159 (formats[i] == MESA_FORMAT_B10G10R10A2_UNORM ||
2160 formats[i] == MESA_FORMAT_B10G10R10X2_UNORM))
2161 continue;
2162
2163 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2164 depth_bits[0] = 16;
2165 stencil_bits[0] = 0;
2166 } else {
2167 depth_bits[0] = 24;
2168 stencil_bits[0] = 8;
2169 }
2170
2171 new_configs = driCreateConfigs(formats[i],
2172 depth_bits, stencil_bits, 1,
2173 back_buffer_modes, 1,
2174 singlesample_samples, 1,
2175 true, false);
2176 configs = driConcatConfigs(configs, new_configs);
2177 }
2178
2179 /* Generate multisample configs.
2180 *
2181 * This loop breaks early, and hence is a no-op, on gen < 6.
2182 *
2183 * Multisample configs must follow the singlesample configs in order to
2184 * work around an X server bug present in 1.12. The X server chooses to
2185 * associate the first listed RGBA888-Z24S8 config, regardless of its
2186 * sample count, with the 32-bit depth visual used for compositing.
2187 *
2188 * Only doublebuffer configs with GLX_SWAP_UNDEFINED_OML behavior are
2189 * supported. Singlebuffer configs are not supported because no one wants
2190 * them.
2191 */
2192 for (unsigned i = 0; i < num_formats; i++) {
2193 if (devinfo->gen < 6)
2194 break;
2195
2196 if (!allow_rgb10_configs &&
2197 (formats[i] == MESA_FORMAT_B10G10R10A2_UNORM ||
2198 formats[i] == MESA_FORMAT_B10G10R10X2_UNORM))
2199 continue;
2200
2201 __DRIconfig **new_configs;
2202 const int num_depth_stencil_bits = 2;
2203 int num_msaa_modes = 0;
2204 const uint8_t *multisample_samples = NULL;
2205
2206 depth_bits[0] = 0;
2207 stencil_bits[0] = 0;
2208
2209 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2210 depth_bits[1] = 16;
2211 stencil_bits[1] = 0;
2212 } else {
2213 depth_bits[1] = 24;
2214 stencil_bits[1] = 8;
2215 }
2216
2217 if (devinfo->gen >= 9) {
2218 static const uint8_t multisample_samples_gen9[] = {2, 4, 8, 16};
2219 multisample_samples = multisample_samples_gen9;
2220 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen9);
2221 } else if (devinfo->gen == 8) {
2222 static const uint8_t multisample_samples_gen8[] = {2, 4, 8};
2223 multisample_samples = multisample_samples_gen8;
2224 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen8);
2225 } else if (devinfo->gen == 7) {
2226 static const uint8_t multisample_samples_gen7[] = {4, 8};
2227 multisample_samples = multisample_samples_gen7;
2228 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen7);
2229 } else if (devinfo->gen == 6) {
2230 static const uint8_t multisample_samples_gen6[] = {4};
2231 multisample_samples = multisample_samples_gen6;
2232 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen6);
2233 }
2234
2235 new_configs = driCreateConfigs(formats[i],
2236 depth_bits,
2237 stencil_bits,
2238 num_depth_stencil_bits,
2239 back_buffer_modes, 1,
2240 multisample_samples,
2241 num_msaa_modes,
2242 false, false);
2243 configs = driConcatConfigs(configs, new_configs);
2244 }
2245
2246 if (configs == NULL) {
2247 fprintf(stderr, "[%s:%u] Error creating FBConfig!\n", __func__,
2248 __LINE__);
2249 return NULL;
2250 }
2251
2252 return configs;
2253 }
2254
2255 static void
2256 set_max_gl_versions(struct intel_screen *screen)
2257 {
2258 __DRIscreen *dri_screen = screen->driScrnPriv;
2259 const bool has_astc = screen->devinfo.gen >= 9;
2260
2261 switch (screen->devinfo.gen) {
2262 case 11:
2263 case 10:
2264 case 9:
2265 case 8:
2266 dri_screen->max_gl_core_version = 45;
2267 dri_screen->max_gl_compat_version = 30;
2268 dri_screen->max_gl_es1_version = 11;
2269 dri_screen->max_gl_es2_version = has_astc ? 32 : 31;
2270 break;
2271 case 7:
2272 dri_screen->max_gl_core_version = 33;
2273 if (can_do_pipelined_register_writes(screen)) {
2274 dri_screen->max_gl_core_version = 42;
2275 if (screen->devinfo.is_haswell && can_do_compute_dispatch(screen))
2276 dri_screen->max_gl_core_version = 43;
2277 if (screen->devinfo.is_haswell && can_do_mi_math_and_lrr(screen))
2278 dri_screen->max_gl_core_version = 45;
2279 }
2280 dri_screen->max_gl_compat_version = 30;
2281 dri_screen->max_gl_es1_version = 11;
2282 dri_screen->max_gl_es2_version = screen->devinfo.is_haswell ? 31 : 30;
2283 break;
2284 case 6:
2285 dri_screen->max_gl_core_version = 33;
2286 dri_screen->max_gl_compat_version = 30;
2287 dri_screen->max_gl_es1_version = 11;
2288 dri_screen->max_gl_es2_version = 30;
2289 break;
2290 case 5:
2291 case 4:
2292 dri_screen->max_gl_core_version = 0;
2293 dri_screen->max_gl_compat_version = 21;
2294 dri_screen->max_gl_es1_version = 11;
2295 dri_screen->max_gl_es2_version = 20;
2296 break;
2297 default:
2298 unreachable("unrecognized intel_screen::gen");
2299 }
2300 }
2301
2302 /**
2303 * Return the revision (generally the revid field of the PCI header) of the
2304 * graphics device.
2305 */
2306 int
2307 intel_device_get_revision(int fd)
2308 {
2309 struct drm_i915_getparam gp;
2310 int revision;
2311 int ret;
2312
2313 memset(&gp, 0, sizeof(gp));
2314 gp.param = I915_PARAM_REVISION;
2315 gp.value = &revision;
2316
2317 ret = drmCommandWriteRead(fd, DRM_I915_GETPARAM, &gp, sizeof(gp));
2318 if (ret)
2319 revision = -1;
2320
2321 return revision;
2322 }
2323
2324 static void
2325 shader_debug_log_mesa(void *data, const char *fmt, ...)
2326 {
2327 struct brw_context *brw = (struct brw_context *)data;
2328 va_list args;
2329
2330 va_start(args, fmt);
2331 GLuint msg_id = 0;
2332 _mesa_gl_vdebug(&brw->ctx, &msg_id,
2333 MESA_DEBUG_SOURCE_SHADER_COMPILER,
2334 MESA_DEBUG_TYPE_OTHER,
2335 MESA_DEBUG_SEVERITY_NOTIFICATION, fmt, args);
2336 va_end(args);
2337 }
2338
2339 static void
2340 shader_perf_log_mesa(void *data, const char *fmt, ...)
2341 {
2342 struct brw_context *brw = (struct brw_context *)data;
2343
2344 va_list args;
2345 va_start(args, fmt);
2346
2347 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
2348 va_list args_copy;
2349 va_copy(args_copy, args);
2350 vfprintf(stderr, fmt, args_copy);
2351 va_end(args_copy);
2352 }
2353
2354 if (brw->perf_debug) {
2355 GLuint msg_id = 0;
2356 _mesa_gl_vdebug(&brw->ctx, &msg_id,
2357 MESA_DEBUG_SOURCE_SHADER_COMPILER,
2358 MESA_DEBUG_TYPE_PERFORMANCE,
2359 MESA_DEBUG_SEVERITY_MEDIUM, fmt, args);
2360 }
2361 va_end(args);
2362 }
2363
2364 /**
2365 * This is the driver specific part of the createNewScreen entry point.
2366 * Called when using DRI2.
2367 *
2368 * \return the struct gl_config supported by this driver
2369 */
2370 static const
2371 __DRIconfig **intelInitScreen2(__DRIscreen *dri_screen)
2372 {
2373 struct intel_screen *screen;
2374
2375 if (dri_screen->image.loader) {
2376 } else if (dri_screen->dri2.loader->base.version <= 2 ||
2377 dri_screen->dri2.loader->getBuffersWithFormat == NULL) {
2378 fprintf(stderr,
2379 "\nERROR! DRI2 loader with getBuffersWithFormat() "
2380 "support required\n");
2381 return NULL;
2382 }
2383
2384 /* Allocate the private area */
2385 screen = rzalloc(NULL, struct intel_screen);
2386 if (!screen) {
2387 fprintf(stderr, "\nERROR! Allocating private area failed\n");
2388 return NULL;
2389 }
2390 /* parse information in __driConfigOptions */
2391 driOptionCache options;
2392 memset(&options, 0, sizeof(options));
2393
2394 driParseOptionInfo(&options, brw_config_options.xml);
2395 driParseConfigFiles(&screen->optionCache, &options, dri_screen->myNum, "i965");
2396 driDestroyOptionCache(&options);
2397
2398 screen->driScrnPriv = dri_screen;
2399 dri_screen->driverPrivate = (void *) screen;
2400
2401 screen->deviceID = gen_get_pci_device_id_override();
2402 if (screen->deviceID < 0)
2403 screen->deviceID = intel_get_integer(screen, I915_PARAM_CHIPSET_ID);
2404 else
2405 screen->no_hw = true;
2406
2407 if (!gen_get_device_info(screen->deviceID, &screen->devinfo))
2408 return NULL;
2409
2410 if (!intel_init_bufmgr(screen))
2411 return NULL;
2412
2413 const struct gen_device_info *devinfo = &screen->devinfo;
2414
2415 brw_process_intel_debug_variable();
2416
2417 if ((INTEL_DEBUG & DEBUG_SHADER_TIME) && devinfo->gen < 7) {
2418 fprintf(stderr,
2419 "shader_time debugging requires gen7 (Ivybridge) or better.\n");
2420 INTEL_DEBUG &= ~DEBUG_SHADER_TIME;
2421 }
2422
2423 if (intel_get_integer(screen, I915_PARAM_MMAP_GTT_VERSION) >= 1) {
2424 /* Theorectically unlimited! At least for individual objects...
2425 *
2426 * Currently the entire (global) address space for all GTT maps is
2427 * limited to 64bits. That is all objects on the system that are
2428 * setup for GTT mmapping must fit within 64bits. An attempt to use
2429 * one that exceeds the limit with fail in brw_bo_map_gtt().
2430 *
2431 * Long before we hit that limit, we will be practically limited by
2432 * that any single object must fit in physical memory (RAM). The upper
2433 * limit on the CPU's address space is currently 48bits (Skylake), of
2434 * which only 39bits can be physical memory. (The GPU itself also has
2435 * a 48bit addressable virtual space.) We can fit over 32 million
2436 * objects of the current maximum allocable size before running out
2437 * of mmap space.
2438 */
2439 screen->max_gtt_map_object_size = UINT64_MAX;
2440 } else {
2441 /* Estimate the size of the mappable aperture into the GTT. There's an
2442 * ioctl to get the whole GTT size, but not one to get the mappable subset.
2443 * It turns out it's basically always 256MB, though some ancient hardware
2444 * was smaller.
2445 */
2446 uint32_t gtt_size = 256 * 1024 * 1024;
2447
2448 /* We don't want to map two objects such that a memcpy between them would
2449 * just fault one mapping in and then the other over and over forever. So
2450 * we would need to divide the GTT size by 2. Additionally, some GTT is
2451 * taken up by things like the framebuffer and the ringbuffer and such, so
2452 * be more conservative.
2453 */
2454 screen->max_gtt_map_object_size = gtt_size / 4;
2455 }
2456
2457 screen->aperture_threshold = get_aperture_size(dri_screen->fd) * 3 / 4;
2458
2459 screen->hw_has_swizzling = intel_detect_swizzling(screen);
2460 screen->hw_has_timestamp = intel_detect_timestamp(screen);
2461
2462 isl_device_init(&screen->isl_dev, &screen->devinfo,
2463 screen->hw_has_swizzling);
2464
2465 if (devinfo->gen >= 10)
2466 intel_cs_timestamp_frequency(screen);
2467
2468 /* GENs prior to 8 do not support EU/Subslice info */
2469 if (devinfo->gen >= 8) {
2470 intel_detect_sseu(screen);
2471 } else if (devinfo->gen == 7) {
2472 screen->subslice_total = 1 << (devinfo->gt - 1);
2473 }
2474
2475 /* Gen7-7.5 kernel requirements / command parser saga:
2476 *
2477 * - pre-v3.16:
2478 * Haswell and Baytrail cannot use any privileged batchbuffer features.
2479 *
2480 * Ivybridge has aliasing PPGTT on by default, which accidentally marks
2481 * all batches secure, allowing them to use any feature with no checking.
2482 * This is effectively equivalent to a command parser version of
2483 * \infinity - everything is possible.
2484 *
2485 * The command parser does not exist, and querying the version will
2486 * return -EINVAL.
2487 *
2488 * - v3.16:
2489 * The kernel enables the command parser by default, for systems with
2490 * aliasing PPGTT enabled (Ivybridge and Haswell). However, the
2491 * hardware checker is still enabled, so Haswell and Baytrail cannot
2492 * do anything.
2493 *
2494 * Ivybridge goes from "everything is possible" to "only what the
2495 * command parser allows" (if the user boots with i915.cmd_parser=0,
2496 * then everything is possible again). We can only safely use features
2497 * allowed by the supported command parser version.
2498 *
2499 * Annoyingly, I915_PARAM_CMD_PARSER_VERSION reports the static version
2500 * implemented by the kernel, even if it's turned off. So, checking
2501 * for version > 0 does not mean that you can write registers. We have
2502 * to try it and see. The version does, however, indicate the age of
2503 * the kernel.
2504 *
2505 * Instead of matching the hardware checker's behavior of converting
2506 * privileged commands to MI_NOOP, it makes execbuf2 start returning
2507 * -EINVAL, making it dangerous to try and use privileged features.
2508 *
2509 * Effective command parser versions:
2510 * - Haswell: 0 (reporting 1, writes don't work)
2511 * - Baytrail: 0 (reporting 1, writes don't work)
2512 * - Ivybridge: 1 (enabled) or infinite (disabled)
2513 *
2514 * - v3.17:
2515 * Baytrail aliasing PPGTT is enabled, making it like Ivybridge:
2516 * effectively version 1 (enabled) or infinite (disabled).
2517 *
2518 * - v3.19: f1f55cc0556031c8ee3fe99dae7251e78b9b653b
2519 * Command parser v2 supports predicate writes.
2520 *
2521 * - Haswell: 0 (reporting 1, writes don't work)
2522 * - Baytrail: 2 (enabled) or infinite (disabled)
2523 * - Ivybridge: 2 (enabled) or infinite (disabled)
2524 *
2525 * So version >= 2 is enough to know that Ivybridge and Baytrail
2526 * will work. Haswell still can't do anything.
2527 *
2528 * - v4.0: Version 3 happened. Largely not relevant.
2529 *
2530 * - v4.1: 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
2531 * L3 config registers are properly saved and restored as part
2532 * of the hardware context. We can approximately detect this point
2533 * in time by checking if I915_PARAM_REVISION is recognized - it
2534 * landed in a later commit, but in the same release cycle.
2535 *
2536 * - v4.2: 245054a1fe33c06ad233e0d58a27ec7b64db9284
2537 * Command parser finally gains secure batch promotion. On Haswell,
2538 * the hardware checker gets disabled, which finally allows it to do
2539 * privileged commands.
2540 *
2541 * I915_PARAM_CMD_PARSER_VERSION reports 3. Effective versions:
2542 * - Haswell: 3 (enabled) or 0 (disabled)
2543 * - Baytrail: 3 (enabled) or infinite (disabled)
2544 * - Ivybridge: 3 (enabled) or infinite (disabled)
2545 *
2546 * Unfortunately, detecting this point in time is tricky, because
2547 * no version bump happened when this important change occurred.
2548 * On Haswell, if we can write any register, then the kernel is at
2549 * least this new, and we can start trusting the version number.
2550 *
2551 * - v4.4: 2bbe6bbb0dc94fd4ce287bdac9e1bd184e23057b and
2552 * Command parser reaches version 4, allowing access to Haswell
2553 * atomic scratch and chicken3 registers. If version >= 4, we know
2554 * the kernel is new enough to support privileged features on all
2555 * hardware. However, the user might have disabled it...and the
2556 * kernel will still report version 4. So we still have to guess
2557 * and check.
2558 *
2559 * - v4.4: 7b9748cb513a6bef4af87b79f0da3ff7e8b56cd8
2560 * Command parser v5 whitelists indirect compute shader dispatch
2561 * registers, needed for OpenGL 4.3 and later.
2562 *
2563 * - v4.8:
2564 * Command parser v7 lets us use MI_MATH on Haswell.
2565 *
2566 * Additionally, the kernel begins reporting version 0 when
2567 * the command parser is disabled, allowing us to skip the
2568 * guess-and-check step on Haswell. Unfortunately, this also
2569 * means that we can no longer use it as an indicator of the
2570 * age of the kernel.
2571 */
2572 if (intel_get_param(screen, I915_PARAM_CMD_PARSER_VERSION,
2573 &screen->cmd_parser_version) < 0) {
2574 /* Command parser does not exist - getparam is unrecognized */
2575 screen->cmd_parser_version = 0;
2576 }
2577
2578 /* Kernel 4.13 retuired for exec object capture */
2579 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_CAPTURE)) {
2580 screen->kernel_features |= KERNEL_ALLOWS_EXEC_CAPTURE;
2581 }
2582
2583 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_BATCH_FIRST)) {
2584 screen->kernel_features |= KERNEL_ALLOWS_EXEC_BATCH_FIRST;
2585 }
2586
2587 if (!intel_detect_pipelined_so(screen)) {
2588 /* We can't do anything, so the effective version is 0. */
2589 screen->cmd_parser_version = 0;
2590 } else {
2591 screen->kernel_features |= KERNEL_ALLOWS_SOL_OFFSET_WRITES;
2592 }
2593
2594 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 2)
2595 screen->kernel_features |= KERNEL_ALLOWS_PREDICATE_WRITES;
2596
2597 /* Haswell requires command parser version 4 in order to have L3
2598 * atomic scratch1 and chicken3 bits
2599 */
2600 if (devinfo->is_haswell && screen->cmd_parser_version >= 4) {
2601 screen->kernel_features |=
2602 KERNEL_ALLOWS_HSW_SCRATCH1_AND_ROW_CHICKEN3;
2603 }
2604
2605 /* Haswell requires command parser version 6 in order to write to the
2606 * MI_MATH GPR registers, and version 7 in order to use
2607 * MI_LOAD_REGISTER_REG (which all users of MI_MATH use).
2608 */
2609 if (devinfo->gen >= 8 ||
2610 (devinfo->is_haswell && screen->cmd_parser_version >= 7)) {
2611 screen->kernel_features |= KERNEL_ALLOWS_MI_MATH_AND_LRR;
2612 }
2613
2614 /* Gen7 needs at least command parser version 5 to support compute */
2615 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 5)
2616 screen->kernel_features |= KERNEL_ALLOWS_COMPUTE_DISPATCH;
2617
2618 if (intel_get_boolean(screen, I915_PARAM_HAS_CONTEXT_ISOLATION))
2619 screen->kernel_features |= KERNEL_ALLOWS_CONTEXT_ISOLATION;
2620
2621 const char *force_msaa = getenv("INTEL_FORCE_MSAA");
2622 if (force_msaa) {
2623 screen->winsys_msaa_samples_override =
2624 intel_quantize_num_samples(screen, atoi(force_msaa));
2625 printf("Forcing winsys sample count to %d\n",
2626 screen->winsys_msaa_samples_override);
2627 } else {
2628 screen->winsys_msaa_samples_override = -1;
2629 }
2630
2631 set_max_gl_versions(screen);
2632
2633 /* Notification of GPU resets requires hardware contexts and a kernel new
2634 * enough to support DRM_IOCTL_I915_GET_RESET_STATS. If the ioctl is
2635 * supported, calling it with a context of 0 will either generate EPERM or
2636 * no error. If the ioctl is not supported, it always generate EINVAL.
2637 * Use this to determine whether to advertise the __DRI2_ROBUSTNESS
2638 * extension to the loader.
2639 *
2640 * Don't even try on pre-Gen6, since we don't attempt to use contexts there.
2641 */
2642 if (devinfo->gen >= 6) {
2643 struct drm_i915_reset_stats stats;
2644 memset(&stats, 0, sizeof(stats));
2645
2646 const int ret = drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats);
2647
2648 screen->has_context_reset_notification =
2649 (ret != -1 || errno != EINVAL);
2650 }
2651
2652 dri_screen->extensions = !screen->has_context_reset_notification
2653 ? screenExtensions : intelRobustScreenExtensions;
2654
2655 screen->compiler = brw_compiler_create(screen, devinfo);
2656 screen->compiler->shader_debug_log = shader_debug_log_mesa;
2657 screen->compiler->shader_perf_log = shader_perf_log_mesa;
2658
2659 /* Changing the meaning of constant buffer pointers from a dynamic state
2660 * offset to an absolute address is only safe if the kernel isolates other
2661 * contexts from our changes.
2662 */
2663 screen->compiler->constant_buffer_0_is_relative = devinfo->gen < 8 ||
2664 !(screen->kernel_features & KERNEL_ALLOWS_CONTEXT_ISOLATION);
2665
2666 screen->compiler->supports_pull_constants = true;
2667
2668 screen->has_exec_fence =
2669 intel_get_boolean(screen, I915_PARAM_HAS_EXEC_FENCE);
2670
2671 intel_screen_init_surface_formats(screen);
2672
2673 if (INTEL_DEBUG & (DEBUG_BATCH | DEBUG_SUBMIT)) {
2674 unsigned int caps = intel_get_integer(screen, I915_PARAM_HAS_SCHEDULER);
2675 if (caps) {
2676 fprintf(stderr, "Kernel scheduler detected: %08x\n", caps);
2677 if (caps & I915_SCHEDULER_CAP_PRIORITY)
2678 fprintf(stderr, " - User priority sorting enabled\n");
2679 if (caps & I915_SCHEDULER_CAP_PREEMPTION)
2680 fprintf(stderr, " - Preemption enabled\n");
2681 }
2682 }
2683
2684 brw_disk_cache_init(screen);
2685
2686 return (const __DRIconfig**) intel_screen_make_configs(dri_screen);
2687 }
2688
2689 struct intel_buffer {
2690 __DRIbuffer base;
2691 struct brw_bo *bo;
2692 };
2693
2694 static __DRIbuffer *
2695 intelAllocateBuffer(__DRIscreen *dri_screen,
2696 unsigned attachment, unsigned format,
2697 int width, int height)
2698 {
2699 struct intel_buffer *intelBuffer;
2700 struct intel_screen *screen = dri_screen->driverPrivate;
2701
2702 assert(attachment == __DRI_BUFFER_FRONT_LEFT ||
2703 attachment == __DRI_BUFFER_BACK_LEFT);
2704
2705 intelBuffer = calloc(1, sizeof *intelBuffer);
2706 if (intelBuffer == NULL)
2707 return NULL;
2708
2709 /* The front and back buffers are color buffers, which are X tiled. GEN9+
2710 * supports Y tiled and compressed buffers, but there is no way to plumb that
2711 * through to here. */
2712 uint32_t pitch;
2713 int cpp = format / 8;
2714 intelBuffer->bo = brw_bo_alloc_tiled_2d(screen->bufmgr,
2715 "intelAllocateBuffer",
2716 width,
2717 height,
2718 cpp,
2719 I915_TILING_X, &pitch,
2720 BO_ALLOC_BUSY);
2721
2722 if (intelBuffer->bo == NULL) {
2723 free(intelBuffer);
2724 return NULL;
2725 }
2726
2727 brw_bo_flink(intelBuffer->bo, &intelBuffer->base.name);
2728
2729 intelBuffer->base.attachment = attachment;
2730 intelBuffer->base.cpp = cpp;
2731 intelBuffer->base.pitch = pitch;
2732
2733 return &intelBuffer->base;
2734 }
2735
2736 static void
2737 intelReleaseBuffer(__DRIscreen *dri_screen, __DRIbuffer *buffer)
2738 {
2739 struct intel_buffer *intelBuffer = (struct intel_buffer *) buffer;
2740
2741 brw_bo_unreference(intelBuffer->bo);
2742 free(intelBuffer);
2743 }
2744
2745 static const struct __DriverAPIRec brw_driver_api = {
2746 .InitScreen = intelInitScreen2,
2747 .DestroyScreen = intelDestroyScreen,
2748 .CreateContext = brwCreateContext,
2749 .DestroyContext = intelDestroyContext,
2750 .CreateBuffer = intelCreateBuffer,
2751 .DestroyBuffer = intelDestroyBuffer,
2752 .MakeCurrent = intelMakeCurrent,
2753 .UnbindContext = intelUnbindContext,
2754 .AllocateBuffer = intelAllocateBuffer,
2755 .ReleaseBuffer = intelReleaseBuffer
2756 };
2757
2758 static const struct __DRIDriverVtableExtensionRec brw_vtable = {
2759 .base = { __DRI_DRIVER_VTABLE, 1 },
2760 .vtable = &brw_driver_api,
2761 };
2762
2763 static const __DRIextension *brw_driver_extensions[] = {
2764 &driCoreExtension.base,
2765 &driImageDriverExtension.base,
2766 &driDRI2Extension.base,
2767 &brw_vtable.base,
2768 &brw_config_options.base,
2769 NULL
2770 };
2771
2772 PUBLIC const __DRIextension **__driDriverGetExtensions_i965(void)
2773 {
2774 globalDriverAPI = &brw_driver_api;
2775
2776 return brw_driver_extensions;
2777 }