i965/dri: Enable modifier queries
[mesa.git] / src / mesa / drivers / dri / i965 / intel_screen.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <errno.h>
27 #include <time.h>
28 #include <unistd.h>
29 #include "main/context.h"
30 #include "main/framebuffer.h"
31 #include "main/renderbuffer.h"
32 #include "main/texobj.h"
33 #include "main/hash.h"
34 #include "main/fbobject.h"
35 #include "main/version.h"
36 #include "swrast/s_renderbuffer.h"
37 #include "util/ralloc.h"
38 #include "brw_defines.h"
39 #include "compiler/nir/nir.h"
40
41 #include "utils.h"
42 #include "xmlpool.h"
43
44 #ifndef DRM_FORMAT_MOD_INVALID
45 #define DRM_FORMAT_MOD_INVALID ((1ULL<<56) - 1)
46 #endif
47
48 static const __DRIconfigOptionsExtension brw_config_options = {
49 .base = { __DRI_CONFIG_OPTIONS, 1 },
50 .xml =
51 DRI_CONF_BEGIN
52 DRI_CONF_SECTION_PERFORMANCE
53 DRI_CONF_VBLANK_MODE(DRI_CONF_VBLANK_ALWAYS_SYNC)
54 /* Options correspond to DRI_CONF_BO_REUSE_DISABLED,
55 * DRI_CONF_BO_REUSE_ALL
56 */
57 DRI_CONF_OPT_BEGIN_V(bo_reuse, enum, 1, "0:1")
58 DRI_CONF_DESC_BEGIN(en, "Buffer object reuse")
59 DRI_CONF_ENUM(0, "Disable buffer object reuse")
60 DRI_CONF_ENUM(1, "Enable reuse of all sizes of buffer objects")
61 DRI_CONF_DESC_END
62 DRI_CONF_OPT_END
63 DRI_CONF_SECTION_END
64
65 DRI_CONF_SECTION_QUALITY
66 DRI_CONF_FORCE_S3TC_ENABLE("false")
67
68 DRI_CONF_PRECISE_TRIG("false")
69
70 DRI_CONF_OPT_BEGIN(clamp_max_samples, int, -1)
71 DRI_CONF_DESC(en, "Clamp the value of GL_MAX_SAMPLES to the "
72 "given integer. If negative, then do not clamp.")
73 DRI_CONF_OPT_END
74 DRI_CONF_SECTION_END
75
76 DRI_CONF_SECTION_DEBUG
77 DRI_CONF_NO_RAST("false")
78 DRI_CONF_ALWAYS_FLUSH_BATCH("false")
79 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
80 DRI_CONF_DISABLE_THROTTLING("false")
81 DRI_CONF_FORCE_GLSL_EXTENSIONS_WARN("false")
82 DRI_CONF_FORCE_GLSL_VERSION(0)
83 DRI_CONF_DISABLE_GLSL_LINE_CONTINUATIONS("false")
84 DRI_CONF_DISABLE_BLEND_FUNC_EXTENDED("false")
85 DRI_CONF_DUAL_COLOR_BLEND_BY_LOCATION("false")
86 DRI_CONF_ALLOW_GLSL_EXTENSION_DIRECTIVE_MIDSHADER("false")
87 DRI_CONF_ALLOW_HIGHER_COMPAT_VERSION("false")
88
89 DRI_CONF_OPT_BEGIN_B(shader_precompile, "true")
90 DRI_CONF_DESC(en, "Perform code generation at shader link time.")
91 DRI_CONF_OPT_END
92 DRI_CONF_SECTION_END
93
94 DRI_CONF_SECTION_MISCELLANEOUS
95 DRI_CONF_GLSL_ZERO_INIT("false")
96 DRI_CONF_SECTION_END
97 DRI_CONF_END
98 };
99
100 #include "intel_batchbuffer.h"
101 #include "intel_buffers.h"
102 #include "intel_bufmgr.h"
103 #include "intel_fbo.h"
104 #include "intel_mipmap_tree.h"
105 #include "intel_screen.h"
106 #include "intel_tex.h"
107 #include "intel_image.h"
108
109 #include "brw_context.h"
110
111 #include "i915_drm.h"
112
113 /**
114 * For debugging purposes, this returns a time in seconds.
115 */
116 double
117 get_time(void)
118 {
119 struct timespec tp;
120
121 clock_gettime(CLOCK_MONOTONIC, &tp);
122
123 return tp.tv_sec + tp.tv_nsec / 1000000000.0;
124 }
125
126 static const __DRItexBufferExtension intelTexBufferExtension = {
127 .base = { __DRI_TEX_BUFFER, 3 },
128
129 .setTexBuffer = intelSetTexBuffer,
130 .setTexBuffer2 = intelSetTexBuffer2,
131 .releaseTexBuffer = NULL,
132 };
133
134 static void
135 intel_dri2_flush_with_flags(__DRIcontext *cPriv,
136 __DRIdrawable *dPriv,
137 unsigned flags,
138 enum __DRI2throttleReason reason)
139 {
140 struct brw_context *brw = cPriv->driverPrivate;
141
142 if (!brw)
143 return;
144
145 struct gl_context *ctx = &brw->ctx;
146
147 FLUSH_VERTICES(ctx, 0);
148
149 if (flags & __DRI2_FLUSH_DRAWABLE)
150 intel_resolve_for_dri2_flush(brw, dPriv);
151
152 if (reason == __DRI2_THROTTLE_SWAPBUFFER)
153 brw->need_swap_throttle = true;
154 if (reason == __DRI2_THROTTLE_FLUSHFRONT)
155 brw->need_flush_throttle = true;
156
157 intel_batchbuffer_flush(brw);
158 }
159
160 /**
161 * Provides compatibility with loaders that only support the older (version
162 * 1-3) flush interface.
163 *
164 * That includes libGL up to Mesa 9.0, and the X Server at least up to 1.13.
165 */
166 static void
167 intel_dri2_flush(__DRIdrawable *drawable)
168 {
169 intel_dri2_flush_with_flags(drawable->driContextPriv, drawable,
170 __DRI2_FLUSH_DRAWABLE,
171 __DRI2_THROTTLE_SWAPBUFFER);
172 }
173
174 static const struct __DRI2flushExtensionRec intelFlushExtension = {
175 .base = { __DRI2_FLUSH, 4 },
176
177 .flush = intel_dri2_flush,
178 .invalidate = dri2InvalidateDrawable,
179 .flush_with_flags = intel_dri2_flush_with_flags,
180 };
181
182 static struct intel_image_format intel_image_formats[] = {
183 { __DRI_IMAGE_FOURCC_ARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
184 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
185
186 { __DRI_IMAGE_FOURCC_ABGR8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
187 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
188
189 { __DRI_IMAGE_FOURCC_SARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
190 { { 0, 0, 0, __DRI_IMAGE_FORMAT_SARGB8, 4 } } },
191
192 { __DRI_IMAGE_FOURCC_XRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
193 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB8888, 4 }, } },
194
195 { __DRI_IMAGE_FOURCC_XBGR8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
196 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 }, } },
197
198 { __DRI_IMAGE_FOURCC_ARGB1555, __DRI_IMAGE_COMPONENTS_RGBA, 1,
199 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB1555, 2 } } },
200
201 { __DRI_IMAGE_FOURCC_RGB565, __DRI_IMAGE_COMPONENTS_RGB, 1,
202 { { 0, 0, 0, __DRI_IMAGE_FORMAT_RGB565, 2 } } },
203
204 { __DRI_IMAGE_FOURCC_R8, __DRI_IMAGE_COMPONENTS_R, 1,
205 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 }, } },
206
207 { __DRI_IMAGE_FOURCC_R16, __DRI_IMAGE_COMPONENTS_R, 1,
208 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 1 }, } },
209
210 { __DRI_IMAGE_FOURCC_GR88, __DRI_IMAGE_COMPONENTS_RG, 1,
211 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 }, } },
212
213 { __DRI_IMAGE_FOURCC_GR1616, __DRI_IMAGE_COMPONENTS_RG, 1,
214 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR1616, 2 }, } },
215
216 { __DRI_IMAGE_FOURCC_YUV410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
217 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
218 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
219 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
220
221 { __DRI_IMAGE_FOURCC_YUV411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
222 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
223 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
224 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
225
226 { __DRI_IMAGE_FOURCC_YUV420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
227 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
228 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
229 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
230
231 { __DRI_IMAGE_FOURCC_YUV422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
232 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
233 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
234 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
235
236 { __DRI_IMAGE_FOURCC_YUV444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
237 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
238 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
239 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
240
241 { __DRI_IMAGE_FOURCC_YVU410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
242 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
243 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
244 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
245
246 { __DRI_IMAGE_FOURCC_YVU411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
247 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
248 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
249 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
250
251 { __DRI_IMAGE_FOURCC_YVU420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
252 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
253 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
254 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
255
256 { __DRI_IMAGE_FOURCC_YVU422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
257 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
258 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
259 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
260
261 { __DRI_IMAGE_FOURCC_YVU444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
262 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
263 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
264 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
265
266 { __DRI_IMAGE_FOURCC_NV12, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
267 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
268 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR88, 2 } } },
269
270 { __DRI_IMAGE_FOURCC_NV16, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
271 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
272 { 1, 1, 0, __DRI_IMAGE_FORMAT_GR88, 2 } } },
273
274 /* For YUYV buffers, we set up two overlapping DRI images and treat
275 * them as planar buffers in the compositors. Plane 0 is GR88 and
276 * samples YU or YV pairs and places Y into the R component, while
277 * plane 1 is ARGB and samples YUYV clusters and places pairs and
278 * places U into the G component and V into A. This lets the
279 * texture sampler interpolate the Y components correctly when
280 * sampling from plane 0, and interpolate U and V correctly when
281 * sampling from plane 1. */
282 { __DRI_IMAGE_FOURCC_YUYV, __DRI_IMAGE_COMPONENTS_Y_XUXV, 2,
283 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
284 { 0, 1, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } }
285 };
286
287 static void
288 intel_image_warn_if_unaligned(__DRIimage *image, const char *func)
289 {
290 uint32_t tiling, swizzle;
291 drm_intel_bo_get_tiling(image->bo, &tiling, &swizzle);
292
293 if (tiling != I915_TILING_NONE && (image->offset & 0xfff)) {
294 _mesa_warning(NULL, "%s: offset 0x%08x not on tile boundary",
295 func, image->offset);
296 }
297 }
298
299 static struct intel_image_format *
300 intel_image_format_lookup(int fourcc)
301 {
302 struct intel_image_format *f = NULL;
303
304 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
305 if (intel_image_formats[i].fourcc == fourcc) {
306 f = &intel_image_formats[i];
307 break;
308 }
309 }
310
311 return f;
312 }
313
314 static boolean intel_lookup_fourcc(int dri_format, int *fourcc)
315 {
316 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
317 if (intel_image_formats[i].planes[0].dri_format == dri_format) {
318 *fourcc = intel_image_formats[i].fourcc;
319 return true;
320 }
321 }
322 return false;
323 }
324
325 static __DRIimage *
326 intel_allocate_image(struct intel_screen *screen, int dri_format,
327 void *loaderPrivate)
328 {
329 __DRIimage *image;
330
331 image = calloc(1, sizeof *image);
332 if (image == NULL)
333 return NULL;
334
335 image->screen = screen;
336 image->dri_format = dri_format;
337 image->offset = 0;
338
339 image->format = driImageFormatToGLFormat(dri_format);
340 if (dri_format != __DRI_IMAGE_FORMAT_NONE &&
341 image->format == MESA_FORMAT_NONE) {
342 free(image);
343 return NULL;
344 }
345
346 image->internal_format = _mesa_get_format_base_format(image->format);
347 image->data = loaderPrivate;
348
349 return image;
350 }
351
352 /**
353 * Sets up a DRIImage structure to point to a slice out of a miptree.
354 */
355 static void
356 intel_setup_image_from_mipmap_tree(struct brw_context *brw, __DRIimage *image,
357 struct intel_mipmap_tree *mt, GLuint level,
358 GLuint zoffset)
359 {
360 intel_miptree_make_shareable(brw, mt);
361
362 intel_miptree_check_level_layer(mt, level, zoffset);
363
364 image->width = minify(mt->physical_width0, level - mt->first_level);
365 image->height = minify(mt->physical_height0, level - mt->first_level);
366 image->pitch = mt->pitch;
367
368 image->offset = intel_miptree_get_tile_offsets(mt, level, zoffset,
369 &image->tile_x,
370 &image->tile_y);
371
372 drm_intel_bo_unreference(image->bo);
373 image->bo = mt->bo;
374 drm_intel_bo_reference(mt->bo);
375 }
376
377 static __DRIimage *
378 intel_create_image_from_name(__DRIscreen *dri_screen,
379 int width, int height, int format,
380 int name, int pitch, void *loaderPrivate)
381 {
382 struct intel_screen *screen = dri_screen->driverPrivate;
383 __DRIimage *image;
384 int cpp;
385
386 image = intel_allocate_image(screen, format, loaderPrivate);
387 if (image == NULL)
388 return NULL;
389
390 if (image->format == MESA_FORMAT_NONE)
391 cpp = 1;
392 else
393 cpp = _mesa_get_format_bytes(image->format);
394
395 image->width = width;
396 image->height = height;
397 image->pitch = pitch * cpp;
398 image->bo = drm_intel_bo_gem_create_from_name(screen->bufmgr, "image",
399 name);
400 if (!image->bo) {
401 free(image);
402 return NULL;
403 }
404
405 return image;
406 }
407
408 static __DRIimage *
409 intel_create_image_from_renderbuffer(__DRIcontext *context,
410 int renderbuffer, void *loaderPrivate)
411 {
412 __DRIimage *image;
413 struct brw_context *brw = context->driverPrivate;
414 struct gl_context *ctx = &brw->ctx;
415 struct gl_renderbuffer *rb;
416 struct intel_renderbuffer *irb;
417
418 rb = _mesa_lookup_renderbuffer(ctx, renderbuffer);
419 if (!rb) {
420 _mesa_error(ctx, GL_INVALID_OPERATION, "glRenderbufferExternalMESA");
421 return NULL;
422 }
423
424 irb = intel_renderbuffer(rb);
425 intel_miptree_make_shareable(brw, irb->mt);
426 image = calloc(1, sizeof *image);
427 if (image == NULL)
428 return NULL;
429
430 image->internal_format = rb->InternalFormat;
431 image->format = rb->Format;
432 image->offset = 0;
433 image->data = loaderPrivate;
434 drm_intel_bo_unreference(image->bo);
435 image->bo = irb->mt->bo;
436 drm_intel_bo_reference(irb->mt->bo);
437 image->width = rb->Width;
438 image->height = rb->Height;
439 image->pitch = irb->mt->pitch;
440 image->dri_format = driGLFormatToImageFormat(image->format);
441 image->has_depthstencil = irb->mt->stencil_mt? true : false;
442
443 rb->NeedsFinishRenderTexture = true;
444 return image;
445 }
446
447 static __DRIimage *
448 intel_create_image_from_texture(__DRIcontext *context, int target,
449 unsigned texture, int zoffset,
450 int level,
451 unsigned *error,
452 void *loaderPrivate)
453 {
454 __DRIimage *image;
455 struct brw_context *brw = context->driverPrivate;
456 struct gl_texture_object *obj;
457 struct intel_texture_object *iobj;
458 GLuint face = 0;
459
460 obj = _mesa_lookup_texture(&brw->ctx, texture);
461 if (!obj || obj->Target != target) {
462 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
463 return NULL;
464 }
465
466 if (target == GL_TEXTURE_CUBE_MAP)
467 face = zoffset;
468
469 _mesa_test_texobj_completeness(&brw->ctx, obj);
470 iobj = intel_texture_object(obj);
471 if (!obj->_BaseComplete || (level > 0 && !obj->_MipmapComplete)) {
472 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
473 return NULL;
474 }
475
476 if (level < obj->BaseLevel || level > obj->_MaxLevel) {
477 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
478 return NULL;
479 }
480
481 if (target == GL_TEXTURE_3D && obj->Image[face][level]->Depth < zoffset) {
482 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
483 return NULL;
484 }
485 image = calloc(1, sizeof *image);
486 if (image == NULL) {
487 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
488 return NULL;
489 }
490
491 image->internal_format = obj->Image[face][level]->InternalFormat;
492 image->format = obj->Image[face][level]->TexFormat;
493 image->data = loaderPrivate;
494 intel_setup_image_from_mipmap_tree(brw, image, iobj->mt, level, zoffset);
495 image->dri_format = driGLFormatToImageFormat(image->format);
496 image->has_depthstencil = iobj->mt->stencil_mt? true : false;
497 if (image->dri_format == MESA_FORMAT_NONE) {
498 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
499 free(image);
500 return NULL;
501 }
502
503 *error = __DRI_IMAGE_ERROR_SUCCESS;
504 return image;
505 }
506
507 static void
508 intel_destroy_image(__DRIimage *image)
509 {
510 drm_intel_bo_unreference(image->bo);
511 free(image);
512 }
513
514 static uint64_t
515 select_best_modifier(struct gen_device_info *devinfo,
516 const uint64_t *modifiers,
517 const unsigned count)
518 {
519 /* Modifiers are not supported by this DRI driver */
520 return DRM_FORMAT_MOD_INVALID;
521 }
522
523 static __DRIimage *
524 intel_create_image_common(__DRIscreen *dri_screen,
525 int width, int height, int format,
526 unsigned int use,
527 const uint64_t *modifiers,
528 unsigned count,
529 void *loaderPrivate)
530 {
531 __DRIimage *image;
532 struct intel_screen *screen = dri_screen->driverPrivate;
533 uint32_t tiling;
534 int cpp;
535 unsigned long pitch;
536
537 /* Callers of this may specify a modifier, or a dri usage, but not both. The
538 * newer modifier interface deprecates the older usage flags newer modifier
539 * interface deprecates the older usage flags.
540 */
541 assert(!(use && count));
542
543 uint64_t modifier = select_best_modifier(&screen->devinfo, modifiers, count);
544 assert(modifier == DRM_FORMAT_MOD_INVALID);
545
546 if (modifier == DRM_FORMAT_MOD_INVALID && modifiers)
547 return NULL;
548
549 /* Historically, X-tiled was the default, and so lack of modifier means
550 * X-tiled.
551 */
552 tiling = I915_TILING_X;
553 if (use & __DRI_IMAGE_USE_CURSOR) {
554 if (width != 64 || height != 64)
555 return NULL;
556 tiling = I915_TILING_NONE;
557 }
558
559 if (use & __DRI_IMAGE_USE_LINEAR)
560 tiling = I915_TILING_NONE;
561
562 image = intel_allocate_image(screen, format, loaderPrivate);
563 if (image == NULL)
564 return NULL;
565
566 cpp = _mesa_get_format_bytes(image->format);
567 image->bo = drm_intel_bo_alloc_tiled(screen->bufmgr, "image",
568 width, height, cpp, &tiling,
569 &pitch, 0);
570 if (image->bo == NULL) {
571 free(image);
572 return NULL;
573 }
574 image->width = width;
575 image->height = height;
576 image->pitch = pitch;
577
578 return image;
579 }
580
581 static __DRIimage *
582 intel_create_image(__DRIscreen *dri_screen,
583 int width, int height, int format,
584 unsigned int use,
585 void *loaderPrivate)
586 {
587 return intel_create_image_common(dri_screen, width, height, format, use, NULL, 0,
588 loaderPrivate);
589 }
590
591 static __DRIimage *
592 intel_create_image_with_modifiers(__DRIscreen *dri_screen,
593 int width, int height, int format,
594 const uint64_t *modifiers,
595 const unsigned count,
596 void *loaderPrivate)
597 {
598 return intel_create_image_common(dri_screen, width, height, format, 0, NULL,
599 0, loaderPrivate);
600 }
601
602 static GLboolean
603 intel_query_image(__DRIimage *image, int attrib, int *value)
604 {
605 switch (attrib) {
606 case __DRI_IMAGE_ATTRIB_STRIDE:
607 *value = image->pitch;
608 return true;
609 case __DRI_IMAGE_ATTRIB_HANDLE:
610 *value = image->bo->handle;
611 return true;
612 case __DRI_IMAGE_ATTRIB_NAME:
613 return !drm_intel_bo_flink(image->bo, (uint32_t *) value);
614 case __DRI_IMAGE_ATTRIB_FORMAT:
615 *value = image->dri_format;
616 return true;
617 case __DRI_IMAGE_ATTRIB_WIDTH:
618 *value = image->width;
619 return true;
620 case __DRI_IMAGE_ATTRIB_HEIGHT:
621 *value = image->height;
622 return true;
623 case __DRI_IMAGE_ATTRIB_COMPONENTS:
624 if (image->planar_format == NULL)
625 return false;
626 *value = image->planar_format->components;
627 return true;
628 case __DRI_IMAGE_ATTRIB_FD:
629 return !drm_intel_bo_gem_export_to_prime(image->bo, value);
630 case __DRI_IMAGE_ATTRIB_FOURCC:
631 return intel_lookup_fourcc(image->dri_format, value);
632 case __DRI_IMAGE_ATTRIB_NUM_PLANES:
633 *value = 1;
634 return true;
635 case __DRI_IMAGE_ATTRIB_OFFSET:
636 *value = image->offset;
637 return true;
638 case __DRI_IMAGE_ATTRIB_MODIFIER_LOWER:
639 *value = (image->modifier & 0xffffffff);
640 return true;
641 case __DRI_IMAGE_ATTRIB_MODIFIER_UPPER:
642 *value = ((image->modifier >> 32) & 0xffffffff);
643 return true;
644
645 default:
646 return false;
647 }
648 }
649
650 static __DRIimage *
651 intel_dup_image(__DRIimage *orig_image, void *loaderPrivate)
652 {
653 __DRIimage *image;
654
655 image = calloc(1, sizeof *image);
656 if (image == NULL)
657 return NULL;
658
659 drm_intel_bo_reference(orig_image->bo);
660 image->bo = orig_image->bo;
661 image->internal_format = orig_image->internal_format;
662 image->planar_format = orig_image->planar_format;
663 image->dri_format = orig_image->dri_format;
664 image->format = orig_image->format;
665 image->offset = orig_image->offset;
666 image->width = orig_image->width;
667 image->height = orig_image->height;
668 image->pitch = orig_image->pitch;
669 image->tile_x = orig_image->tile_x;
670 image->tile_y = orig_image->tile_y;
671 image->has_depthstencil = orig_image->has_depthstencil;
672 image->data = loaderPrivate;
673
674 memcpy(image->strides, orig_image->strides, sizeof(image->strides));
675 memcpy(image->offsets, orig_image->offsets, sizeof(image->offsets));
676
677 return image;
678 }
679
680 static GLboolean
681 intel_validate_usage(__DRIimage *image, unsigned int use)
682 {
683 if (use & __DRI_IMAGE_USE_CURSOR) {
684 if (image->width != 64 || image->height != 64)
685 return GL_FALSE;
686 }
687
688 return GL_TRUE;
689 }
690
691 static __DRIimage *
692 intel_create_image_from_names(__DRIscreen *dri_screen,
693 int width, int height, int fourcc,
694 int *names, int num_names,
695 int *strides, int *offsets,
696 void *loaderPrivate)
697 {
698 struct intel_image_format *f = NULL;
699 __DRIimage *image;
700 int i, index;
701
702 if (dri_screen == NULL || names == NULL || num_names != 1)
703 return NULL;
704
705 f = intel_image_format_lookup(fourcc);
706 if (f == NULL)
707 return NULL;
708
709 image = intel_create_image_from_name(dri_screen, width, height,
710 __DRI_IMAGE_FORMAT_NONE,
711 names[0], strides[0],
712 loaderPrivate);
713
714 if (image == NULL)
715 return NULL;
716
717 image->planar_format = f;
718 for (i = 0; i < f->nplanes; i++) {
719 index = f->planes[i].buffer_index;
720 image->offsets[index] = offsets[index];
721 image->strides[index] = strides[index];
722 }
723
724 return image;
725 }
726
727 static __DRIimage *
728 intel_create_image_from_fds(__DRIscreen *dri_screen,
729 int width, int height, int fourcc,
730 int *fds, int num_fds, int *strides, int *offsets,
731 void *loaderPrivate)
732 {
733 struct intel_screen *screen = dri_screen->driverPrivate;
734 struct intel_image_format *f;
735 __DRIimage *image;
736 int i, index;
737
738 if (fds == NULL || num_fds < 1)
739 return NULL;
740
741 /* We only support all planes from the same bo */
742 for (i = 0; i < num_fds; i++)
743 if (fds[0] != fds[i])
744 return NULL;
745
746 f = intel_image_format_lookup(fourcc);
747 if (f == NULL)
748 return NULL;
749
750 if (f->nplanes == 1)
751 image = intel_allocate_image(screen, f->planes[0].dri_format,
752 loaderPrivate);
753 else
754 image = intel_allocate_image(screen, __DRI_IMAGE_FORMAT_NONE,
755 loaderPrivate);
756
757 if (image == NULL)
758 return NULL;
759
760 image->width = width;
761 image->height = height;
762 image->pitch = strides[0];
763
764 image->planar_format = f;
765 int size = 0;
766 for (i = 0; i < f->nplanes; i++) {
767 index = f->planes[i].buffer_index;
768 image->offsets[index] = offsets[index];
769 image->strides[index] = strides[index];
770
771 const int plane_height = height >> f->planes[i].height_shift;
772 const int end = offsets[index] + plane_height * strides[index];
773 if (size < end)
774 size = end;
775 }
776
777 image->bo = drm_intel_bo_gem_create_from_prime(screen->bufmgr,
778 fds[0], size);
779 if (image->bo == NULL) {
780 free(image);
781 return NULL;
782 }
783
784 if (f->nplanes == 1) {
785 image->offset = image->offsets[0];
786 intel_image_warn_if_unaligned(image, __func__);
787 }
788
789 return image;
790 }
791
792 static __DRIimage *
793 intel_create_image_from_dma_bufs(__DRIscreen *dri_screen,
794 int width, int height, int fourcc,
795 int *fds, int num_fds,
796 int *strides, int *offsets,
797 enum __DRIYUVColorSpace yuv_color_space,
798 enum __DRISampleRange sample_range,
799 enum __DRIChromaSiting horizontal_siting,
800 enum __DRIChromaSiting vertical_siting,
801 unsigned *error,
802 void *loaderPrivate)
803 {
804 __DRIimage *image;
805 struct intel_image_format *f = intel_image_format_lookup(fourcc);
806
807 if (!f) {
808 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
809 return NULL;
810 }
811
812 image = intel_create_image_from_fds(dri_screen, width, height, fourcc, fds,
813 num_fds, strides, offsets,
814 loaderPrivate);
815
816 /*
817 * Invalid parameters and any inconsistencies between are assumed to be
818 * checked by the caller. Therefore besides unsupported formats one can fail
819 * only in allocation.
820 */
821 if (!image) {
822 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
823 return NULL;
824 }
825
826 image->dma_buf_imported = true;
827 image->yuv_color_space = yuv_color_space;
828 image->sample_range = sample_range;
829 image->horizontal_siting = horizontal_siting;
830 image->vertical_siting = vertical_siting;
831
832 *error = __DRI_IMAGE_ERROR_SUCCESS;
833 return image;
834 }
835
836 static __DRIimage *
837 intel_from_planar(__DRIimage *parent, int plane, void *loaderPrivate)
838 {
839 int width, height, offset, stride, dri_format, index;
840 struct intel_image_format *f;
841 __DRIimage *image;
842
843 if (parent == NULL || parent->planar_format == NULL)
844 return NULL;
845
846 f = parent->planar_format;
847
848 if (plane >= f->nplanes)
849 return NULL;
850
851 width = parent->width >> f->planes[plane].width_shift;
852 height = parent->height >> f->planes[plane].height_shift;
853 dri_format = f->planes[plane].dri_format;
854 index = f->planes[plane].buffer_index;
855 offset = parent->offsets[index];
856 stride = parent->strides[index];
857
858 image = intel_allocate_image(parent->screen, dri_format, loaderPrivate);
859 if (image == NULL)
860 return NULL;
861
862 if (offset + height * stride > parent->bo->size) {
863 _mesa_warning(NULL, "intel_create_sub_image: subimage out of bounds");
864 free(image);
865 return NULL;
866 }
867
868 image->bo = parent->bo;
869 drm_intel_bo_reference(parent->bo);
870
871 image->width = width;
872 image->height = height;
873 image->pitch = stride;
874 image->offset = offset;
875
876 intel_image_warn_if_unaligned(image, __func__);
877
878 return image;
879 }
880
881 static const __DRIimageExtension intelImageExtension = {
882 .base = { __DRI_IMAGE, 13 },
883
884 .createImageFromName = intel_create_image_from_name,
885 .createImageFromRenderbuffer = intel_create_image_from_renderbuffer,
886 .destroyImage = intel_destroy_image,
887 .createImage = intel_create_image,
888 .queryImage = intel_query_image,
889 .dupImage = intel_dup_image,
890 .validateUsage = intel_validate_usage,
891 .createImageFromNames = intel_create_image_from_names,
892 .fromPlanar = intel_from_planar,
893 .createImageFromTexture = intel_create_image_from_texture,
894 .createImageFromFds = intel_create_image_from_fds,
895 .createImageFromDmaBufs = intel_create_image_from_dma_bufs,
896 .blitImage = NULL,
897 .getCapabilities = NULL,
898 .mapImage = NULL,
899 .unmapImage = NULL,
900 .createImageWithModifiers = intel_create_image_with_modifiers,
901 };
902
903 static int
904 brw_query_renderer_integer(__DRIscreen *dri_screen,
905 int param, unsigned int *value)
906 {
907 const struct intel_screen *const screen =
908 (struct intel_screen *) dri_screen->driverPrivate;
909
910 switch (param) {
911 case __DRI2_RENDERER_VENDOR_ID:
912 value[0] = 0x8086;
913 return 0;
914 case __DRI2_RENDERER_DEVICE_ID:
915 value[0] = screen->deviceID;
916 return 0;
917 case __DRI2_RENDERER_ACCELERATED:
918 value[0] = 1;
919 return 0;
920 case __DRI2_RENDERER_VIDEO_MEMORY: {
921 /* Once a batch uses more than 75% of the maximum mappable size, we
922 * assume that there's some fragmentation, and we start doing extra
923 * flushing, etc. That's the big cliff apps will care about.
924 */
925 size_t aper_size;
926 size_t mappable_size;
927
928 drm_intel_get_aperture_sizes(dri_screen->fd, &mappable_size, &aper_size);
929
930 const unsigned gpu_mappable_megabytes =
931 (aper_size / (1024 * 1024)) * 3 / 4;
932
933 const long system_memory_pages = sysconf(_SC_PHYS_PAGES);
934 const long system_page_size = sysconf(_SC_PAGE_SIZE);
935
936 if (system_memory_pages <= 0 || system_page_size <= 0)
937 return -1;
938
939 const uint64_t system_memory_bytes = (uint64_t) system_memory_pages
940 * (uint64_t) system_page_size;
941
942 const unsigned system_memory_megabytes =
943 (unsigned) (system_memory_bytes / (1024 * 1024));
944
945 value[0] = MIN2(system_memory_megabytes, gpu_mappable_megabytes);
946 return 0;
947 }
948 case __DRI2_RENDERER_UNIFIED_MEMORY_ARCHITECTURE:
949 value[0] = 1;
950 return 0;
951 case __DRI2_RENDERER_HAS_TEXTURE_3D:
952 value[0] = 1;
953 return 0;
954 default:
955 return driQueryRendererIntegerCommon(dri_screen, param, value);
956 }
957
958 return -1;
959 }
960
961 static int
962 brw_query_renderer_string(__DRIscreen *dri_screen,
963 int param, const char **value)
964 {
965 const struct intel_screen *screen =
966 (struct intel_screen *) dri_screen->driverPrivate;
967
968 switch (param) {
969 case __DRI2_RENDERER_VENDOR_ID:
970 value[0] = brw_vendor_string;
971 return 0;
972 case __DRI2_RENDERER_DEVICE_ID:
973 value[0] = brw_get_renderer_string(screen);
974 return 0;
975 default:
976 break;
977 }
978
979 return -1;
980 }
981
982 static const __DRI2rendererQueryExtension intelRendererQueryExtension = {
983 .base = { __DRI2_RENDERER_QUERY, 1 },
984
985 .queryInteger = brw_query_renderer_integer,
986 .queryString = brw_query_renderer_string
987 };
988
989 static const __DRIrobustnessExtension dri2Robustness = {
990 .base = { __DRI2_ROBUSTNESS, 1 }
991 };
992
993 static const __DRIextension *screenExtensions[] = {
994 &intelTexBufferExtension.base,
995 &intelFenceExtension.base,
996 &intelFlushExtension.base,
997 &intelImageExtension.base,
998 &intelRendererQueryExtension.base,
999 &dri2ConfigQueryExtension.base,
1000 NULL
1001 };
1002
1003 static const __DRIextension *intelRobustScreenExtensions[] = {
1004 &intelTexBufferExtension.base,
1005 &intelFenceExtension.base,
1006 &intelFlushExtension.base,
1007 &intelImageExtension.base,
1008 &intelRendererQueryExtension.base,
1009 &dri2ConfigQueryExtension.base,
1010 &dri2Robustness.base,
1011 NULL
1012 };
1013
1014 static int
1015 intel_get_param(struct intel_screen *screen, int param, int *value)
1016 {
1017 int ret = 0;
1018 struct drm_i915_getparam gp;
1019
1020 memset(&gp, 0, sizeof(gp));
1021 gp.param = param;
1022 gp.value = value;
1023
1024 if (drmIoctl(screen->driScrnPriv->fd, DRM_IOCTL_I915_GETPARAM, &gp) == -1) {
1025 ret = -errno;
1026 if (ret != -EINVAL)
1027 _mesa_warning(NULL, "drm_i915_getparam: %d", ret);
1028 }
1029
1030 return ret;
1031 }
1032
1033 static bool
1034 intel_get_boolean(struct intel_screen *screen, int param)
1035 {
1036 int value = 0;
1037 return (intel_get_param(screen, param, &value) == 0) && value;
1038 }
1039
1040 static int
1041 intel_get_integer(struct intel_screen *screen, int param)
1042 {
1043 int value = -1;
1044
1045 if (intel_get_param(screen, param, &value) == 0)
1046 return value;
1047
1048 return -1;
1049 }
1050
1051 static void
1052 intelDestroyScreen(__DRIscreen * sPriv)
1053 {
1054 struct intel_screen *screen = sPriv->driverPrivate;
1055
1056 dri_bufmgr_destroy(screen->bufmgr);
1057 driDestroyOptionInfo(&screen->optionCache);
1058
1059 ralloc_free(screen);
1060 sPriv->driverPrivate = NULL;
1061 }
1062
1063
1064 /**
1065 * This is called when we need to set up GL rendering to a new X window.
1066 */
1067 static GLboolean
1068 intelCreateBuffer(__DRIscreen *dri_screen,
1069 __DRIdrawable * driDrawPriv,
1070 const struct gl_config * mesaVis, GLboolean isPixmap)
1071 {
1072 struct intel_renderbuffer *rb;
1073 struct intel_screen *screen = (struct intel_screen *)
1074 dri_screen->driverPrivate;
1075 mesa_format rgbFormat;
1076 unsigned num_samples =
1077 intel_quantize_num_samples(screen, mesaVis->samples);
1078 struct gl_framebuffer *fb;
1079
1080 if (isPixmap)
1081 return false;
1082
1083 fb = CALLOC_STRUCT(gl_framebuffer);
1084 if (!fb)
1085 return false;
1086
1087 _mesa_initialize_window_framebuffer(fb, mesaVis);
1088
1089 if (screen->winsys_msaa_samples_override != -1) {
1090 num_samples = screen->winsys_msaa_samples_override;
1091 fb->Visual.samples = num_samples;
1092 }
1093
1094 if (mesaVis->redBits == 5) {
1095 rgbFormat = mesaVis->redMask == 0x1f ? MESA_FORMAT_R5G6B5_UNORM
1096 : MESA_FORMAT_B5G6R5_UNORM;
1097 } else if (mesaVis->sRGBCapable) {
1098 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1099 : MESA_FORMAT_B8G8R8A8_SRGB;
1100 } else if (mesaVis->alphaBits == 0) {
1101 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8X8_UNORM
1102 : MESA_FORMAT_B8G8R8X8_UNORM;
1103 } else {
1104 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1105 : MESA_FORMAT_B8G8R8A8_SRGB;
1106 fb->Visual.sRGBCapable = true;
1107 }
1108
1109 /* setup the hardware-based renderbuffers */
1110 rb = intel_create_renderbuffer(rgbFormat, num_samples);
1111 _mesa_add_renderbuffer(fb, BUFFER_FRONT_LEFT, &rb->Base.Base);
1112
1113 if (mesaVis->doubleBufferMode) {
1114 rb = intel_create_renderbuffer(rgbFormat, num_samples);
1115 _mesa_add_renderbuffer(fb, BUFFER_BACK_LEFT, &rb->Base.Base);
1116 }
1117
1118 /*
1119 * Assert here that the gl_config has an expected depth/stencil bit
1120 * combination: one of d24/s8, d16/s0, d0/s0. (See intelInitScreen2(),
1121 * which constructs the advertised configs.)
1122 */
1123 if (mesaVis->depthBits == 24) {
1124 assert(mesaVis->stencilBits == 8);
1125
1126 if (screen->devinfo.has_hiz_and_separate_stencil) {
1127 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z24_UNORM_X8_UINT,
1128 num_samples);
1129 _mesa_add_renderbuffer(fb, BUFFER_DEPTH, &rb->Base.Base);
1130 rb = intel_create_private_renderbuffer(MESA_FORMAT_S_UINT8,
1131 num_samples);
1132 _mesa_add_renderbuffer(fb, BUFFER_STENCIL, &rb->Base.Base);
1133 } else {
1134 /*
1135 * Use combined depth/stencil. Note that the renderbuffer is
1136 * attached to two attachment points.
1137 */
1138 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z24_UNORM_S8_UINT,
1139 num_samples);
1140 _mesa_add_renderbuffer(fb, BUFFER_DEPTH, &rb->Base.Base);
1141 _mesa_add_renderbuffer(fb, BUFFER_STENCIL, &rb->Base.Base);
1142 }
1143 }
1144 else if (mesaVis->depthBits == 16) {
1145 assert(mesaVis->stencilBits == 0);
1146 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z_UNORM16,
1147 num_samples);
1148 _mesa_add_renderbuffer(fb, BUFFER_DEPTH, &rb->Base.Base);
1149 }
1150 else {
1151 assert(mesaVis->depthBits == 0);
1152 assert(mesaVis->stencilBits == 0);
1153 }
1154
1155 /* now add any/all software-based renderbuffers we may need */
1156 _swrast_add_soft_renderbuffers(fb,
1157 false, /* never sw color */
1158 false, /* never sw depth */
1159 false, /* never sw stencil */
1160 mesaVis->accumRedBits > 0,
1161 false, /* never sw alpha */
1162 false /* never sw aux */ );
1163 driDrawPriv->driverPrivate = fb;
1164
1165 return true;
1166 }
1167
1168 static void
1169 intelDestroyBuffer(__DRIdrawable * driDrawPriv)
1170 {
1171 struct gl_framebuffer *fb = driDrawPriv->driverPrivate;
1172
1173 _mesa_reference_framebuffer(&fb, NULL);
1174 }
1175
1176 static void
1177 intel_detect_sseu(struct intel_screen *screen)
1178 {
1179 assert(screen->devinfo.gen >= 8);
1180 int ret;
1181
1182 screen->subslice_total = -1;
1183 screen->eu_total = -1;
1184
1185 ret = intel_get_param(screen, I915_PARAM_SUBSLICE_TOTAL,
1186 &screen->subslice_total);
1187 if (ret < 0 && ret != -EINVAL)
1188 goto err_out;
1189
1190 ret = intel_get_param(screen,
1191 I915_PARAM_EU_TOTAL, &screen->eu_total);
1192 if (ret < 0 && ret != -EINVAL)
1193 goto err_out;
1194
1195 /* Without this information, we cannot get the right Braswell brandstrings,
1196 * and we have to use conservative numbers for GPGPU on many platforms, but
1197 * otherwise, things will just work.
1198 */
1199 if (screen->subslice_total < 1 || screen->eu_total < 1)
1200 _mesa_warning(NULL,
1201 "Kernel 4.1 required to properly query GPU properties.\n");
1202
1203 return;
1204
1205 err_out:
1206 screen->subslice_total = -1;
1207 screen->eu_total = -1;
1208 _mesa_warning(NULL, "Failed to query GPU properties (%s).\n", strerror(-ret));
1209 }
1210
1211 static bool
1212 intel_init_bufmgr(struct intel_screen *screen)
1213 {
1214 __DRIscreen *dri_screen = screen->driScrnPriv;
1215
1216 screen->no_hw = getenv("INTEL_NO_HW") != NULL;
1217
1218 screen->bufmgr = intel_bufmgr_gem_init(dri_screen->fd, BATCH_SZ);
1219 if (screen->bufmgr == NULL) {
1220 fprintf(stderr, "[%s:%u] Error initializing buffer manager.\n",
1221 __func__, __LINE__);
1222 return false;
1223 }
1224
1225 drm_intel_bufmgr_gem_enable_fenced_relocs(screen->bufmgr);
1226
1227 if (!intel_get_boolean(screen, I915_PARAM_HAS_RELAXED_DELTA)) {
1228 fprintf(stderr, "[%s: %u] Kernel 2.6.39 required.\n", __func__, __LINE__);
1229 return false;
1230 }
1231
1232 return true;
1233 }
1234
1235 static bool
1236 intel_detect_swizzling(struct intel_screen *screen)
1237 {
1238 drm_intel_bo *buffer;
1239 unsigned long flags = 0;
1240 unsigned long aligned_pitch;
1241 uint32_t tiling = I915_TILING_X;
1242 uint32_t swizzle_mode = 0;
1243
1244 buffer = drm_intel_bo_alloc_tiled(screen->bufmgr, "swizzle test",
1245 64, 64, 4,
1246 &tiling, &aligned_pitch, flags);
1247 if (buffer == NULL)
1248 return false;
1249
1250 drm_intel_bo_get_tiling(buffer, &tiling, &swizzle_mode);
1251 drm_intel_bo_unreference(buffer);
1252
1253 if (swizzle_mode == I915_BIT_6_SWIZZLE_NONE)
1254 return false;
1255 else
1256 return true;
1257 }
1258
1259 static int
1260 intel_detect_timestamp(struct intel_screen *screen)
1261 {
1262 uint64_t dummy = 0, last = 0;
1263 int upper, lower, loops;
1264
1265 /* On 64bit systems, some old kernels trigger a hw bug resulting in the
1266 * TIMESTAMP register being shifted and the low 32bits always zero.
1267 *
1268 * More recent kernels offer an interface to read the full 36bits
1269 * everywhere.
1270 */
1271 if (drm_intel_reg_read(screen->bufmgr, TIMESTAMP | 1, &dummy) == 0)
1272 return 3;
1273
1274 /* Determine if we have a 32bit or 64bit kernel by inspecting the
1275 * upper 32bits for a rapidly changing timestamp.
1276 */
1277 if (drm_intel_reg_read(screen->bufmgr, TIMESTAMP, &last))
1278 return 0;
1279
1280 upper = lower = 0;
1281 for (loops = 0; loops < 10; loops++) {
1282 /* The TIMESTAMP should change every 80ns, so several round trips
1283 * through the kernel should be enough to advance it.
1284 */
1285 if (drm_intel_reg_read(screen->bufmgr, TIMESTAMP, &dummy))
1286 return 0;
1287
1288 upper += (dummy >> 32) != (last >> 32);
1289 if (upper > 1) /* beware 32bit counter overflow */
1290 return 2; /* upper dword holds the low 32bits of the timestamp */
1291
1292 lower += (dummy & 0xffffffff) != (last & 0xffffffff);
1293 if (lower > 1)
1294 return 1; /* timestamp is unshifted */
1295
1296 last = dummy;
1297 }
1298
1299 /* No advancement? No timestamp! */
1300 return 0;
1301 }
1302
1303 /**
1304 * Test if we can use MI_LOAD_REGISTER_MEM from an untrusted batchbuffer.
1305 *
1306 * Some combinations of hardware and kernel versions allow this feature,
1307 * while others don't. Instead of trying to enumerate every case, just
1308 * try and write a register and see if works.
1309 */
1310 static bool
1311 intel_detect_pipelined_register(struct intel_screen *screen,
1312 int reg, uint32_t expected_value, bool reset)
1313 {
1314 drm_intel_bo *results, *bo;
1315 uint32_t *batch;
1316 uint32_t offset = 0;
1317 bool success = false;
1318
1319 /* Create a zero'ed temporary buffer for reading our results */
1320 results = drm_intel_bo_alloc(screen->bufmgr, "registers", 4096, 0);
1321 if (results == NULL)
1322 goto err;
1323
1324 bo = drm_intel_bo_alloc(screen->bufmgr, "batchbuffer", 4096, 0);
1325 if (bo == NULL)
1326 goto err_results;
1327
1328 if (drm_intel_bo_map(bo, 1))
1329 goto err_batch;
1330
1331 batch = bo->virtual;
1332
1333 /* Write the register. */
1334 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1335 *batch++ = reg;
1336 *batch++ = expected_value;
1337
1338 /* Save the register's value back to the buffer. */
1339 *batch++ = MI_STORE_REGISTER_MEM | (3 - 2);
1340 *batch++ = reg;
1341 drm_intel_bo_emit_reloc(bo, (char *)batch -(char *)bo->virtual,
1342 results, offset*sizeof(uint32_t),
1343 I915_GEM_DOMAIN_INSTRUCTION,
1344 I915_GEM_DOMAIN_INSTRUCTION);
1345 *batch++ = results->offset + offset*sizeof(uint32_t);
1346
1347 /* And afterwards clear the register */
1348 if (reset) {
1349 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1350 *batch++ = reg;
1351 *batch++ = 0;
1352 }
1353
1354 *batch++ = MI_BATCH_BUFFER_END;
1355
1356 drm_intel_bo_mrb_exec(bo, ALIGN((char *)batch - (char *)bo->virtual, 8),
1357 NULL, 0, 0,
1358 I915_EXEC_RENDER);
1359
1360 /* Check whether the value got written. */
1361 if (drm_intel_bo_map(results, false) == 0) {
1362 success = *((uint32_t *)results->virtual + offset) == expected_value;
1363 drm_intel_bo_unmap(results);
1364 }
1365
1366 err_batch:
1367 drm_intel_bo_unreference(bo);
1368 err_results:
1369 drm_intel_bo_unreference(results);
1370 err:
1371 return success;
1372 }
1373
1374 static bool
1375 intel_detect_pipelined_so(struct intel_screen *screen)
1376 {
1377 const struct gen_device_info *devinfo = &screen->devinfo;
1378
1379 /* Supposedly, Broadwell just works. */
1380 if (devinfo->gen >= 8)
1381 return true;
1382
1383 if (devinfo->gen <= 6)
1384 return false;
1385
1386 /* See the big explanation about command parser versions below */
1387 if (screen->cmd_parser_version >= (devinfo->is_haswell ? 7 : 2))
1388 return true;
1389
1390 /* We use SO_WRITE_OFFSET0 since you're supposed to write it (unlike the
1391 * statistics registers), and we already reset it to zero before using it.
1392 */
1393 return intel_detect_pipelined_register(screen,
1394 GEN7_SO_WRITE_OFFSET(0),
1395 0x1337d0d0,
1396 false);
1397 }
1398
1399 /**
1400 * Return array of MSAA modes supported by the hardware. The array is
1401 * zero-terminated and sorted in decreasing order.
1402 */
1403 const int*
1404 intel_supported_msaa_modes(const struct intel_screen *screen)
1405 {
1406 static const int gen9_modes[] = {16, 8, 4, 2, 0, -1};
1407 static const int gen8_modes[] = {8, 4, 2, 0, -1};
1408 static const int gen7_modes[] = {8, 4, 0, -1};
1409 static const int gen6_modes[] = {4, 0, -1};
1410 static const int gen4_modes[] = {0, -1};
1411
1412 if (screen->devinfo.gen >= 9) {
1413 return gen9_modes;
1414 } else if (screen->devinfo.gen >= 8) {
1415 return gen8_modes;
1416 } else if (screen->devinfo.gen >= 7) {
1417 return gen7_modes;
1418 } else if (screen->devinfo.gen == 6) {
1419 return gen6_modes;
1420 } else {
1421 return gen4_modes;
1422 }
1423 }
1424
1425 static __DRIconfig**
1426 intel_screen_make_configs(__DRIscreen *dri_screen)
1427 {
1428 static const mesa_format formats[] = {
1429 MESA_FORMAT_B5G6R5_UNORM,
1430 MESA_FORMAT_B8G8R8A8_UNORM,
1431 MESA_FORMAT_B8G8R8X8_UNORM
1432 };
1433
1434 /* GLX_SWAP_COPY_OML is not supported due to page flipping. */
1435 static const GLenum back_buffer_modes[] = {
1436 GLX_SWAP_UNDEFINED_OML, GLX_NONE,
1437 };
1438
1439 static const uint8_t singlesample_samples[1] = {0};
1440 static const uint8_t multisample_samples[2] = {4, 8};
1441
1442 struct intel_screen *screen = dri_screen->driverPrivate;
1443 const struct gen_device_info *devinfo = &screen->devinfo;
1444 uint8_t depth_bits[4], stencil_bits[4];
1445 __DRIconfig **configs = NULL;
1446
1447 /* Generate singlesample configs without accumulation buffer. */
1448 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1449 __DRIconfig **new_configs;
1450 int num_depth_stencil_bits = 2;
1451
1452 /* Starting with DRI2 protocol version 1.1 we can request a depth/stencil
1453 * buffer that has a different number of bits per pixel than the color
1454 * buffer, gen >= 6 supports this.
1455 */
1456 depth_bits[0] = 0;
1457 stencil_bits[0] = 0;
1458
1459 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1460 depth_bits[1] = 16;
1461 stencil_bits[1] = 0;
1462 if (devinfo->gen >= 6) {
1463 depth_bits[2] = 24;
1464 stencil_bits[2] = 8;
1465 num_depth_stencil_bits = 3;
1466 }
1467 } else {
1468 depth_bits[1] = 24;
1469 stencil_bits[1] = 8;
1470 }
1471
1472 new_configs = driCreateConfigs(formats[i],
1473 depth_bits,
1474 stencil_bits,
1475 num_depth_stencil_bits,
1476 back_buffer_modes, 2,
1477 singlesample_samples, 1,
1478 false, false);
1479 configs = driConcatConfigs(configs, new_configs);
1480 }
1481
1482 /* Generate the minimum possible set of configs that include an
1483 * accumulation buffer.
1484 */
1485 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1486 __DRIconfig **new_configs;
1487
1488 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1489 depth_bits[0] = 16;
1490 stencil_bits[0] = 0;
1491 } else {
1492 depth_bits[0] = 24;
1493 stencil_bits[0] = 8;
1494 }
1495
1496 new_configs = driCreateConfigs(formats[i],
1497 depth_bits, stencil_bits, 1,
1498 back_buffer_modes, 1,
1499 singlesample_samples, 1,
1500 true, false);
1501 configs = driConcatConfigs(configs, new_configs);
1502 }
1503
1504 /* Generate multisample configs.
1505 *
1506 * This loop breaks early, and hence is a no-op, on gen < 6.
1507 *
1508 * Multisample configs must follow the singlesample configs in order to
1509 * work around an X server bug present in 1.12. The X server chooses to
1510 * associate the first listed RGBA888-Z24S8 config, regardless of its
1511 * sample count, with the 32-bit depth visual used for compositing.
1512 *
1513 * Only doublebuffer configs with GLX_SWAP_UNDEFINED_OML behavior are
1514 * supported. Singlebuffer configs are not supported because no one wants
1515 * them.
1516 */
1517 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1518 if (devinfo->gen < 6)
1519 break;
1520
1521 __DRIconfig **new_configs;
1522 const int num_depth_stencil_bits = 2;
1523 int num_msaa_modes = 0;
1524
1525 depth_bits[0] = 0;
1526 stencil_bits[0] = 0;
1527
1528 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1529 depth_bits[1] = 16;
1530 stencil_bits[1] = 0;
1531 } else {
1532 depth_bits[1] = 24;
1533 stencil_bits[1] = 8;
1534 }
1535
1536 if (devinfo->gen >= 7)
1537 num_msaa_modes = 2;
1538 else if (devinfo->gen == 6)
1539 num_msaa_modes = 1;
1540
1541 new_configs = driCreateConfigs(formats[i],
1542 depth_bits,
1543 stencil_bits,
1544 num_depth_stencil_bits,
1545 back_buffer_modes, 1,
1546 multisample_samples,
1547 num_msaa_modes,
1548 false, false);
1549 configs = driConcatConfigs(configs, new_configs);
1550 }
1551
1552 if (configs == NULL) {
1553 fprintf(stderr, "[%s:%u] Error creating FBConfig!\n", __func__,
1554 __LINE__);
1555 return NULL;
1556 }
1557
1558 return configs;
1559 }
1560
1561 static void
1562 set_max_gl_versions(struct intel_screen *screen)
1563 {
1564 __DRIscreen *dri_screen = screen->driScrnPriv;
1565 const bool has_astc = screen->devinfo.gen >= 9;
1566
1567 switch (screen->devinfo.gen) {
1568 case 9:
1569 case 8:
1570 dri_screen->max_gl_core_version = 45;
1571 dri_screen->max_gl_compat_version = 30;
1572 dri_screen->max_gl_es1_version = 11;
1573 dri_screen->max_gl_es2_version = has_astc ? 32 : 31;
1574 break;
1575 case 7:
1576 dri_screen->max_gl_core_version = 33;
1577 if (screen->devinfo.is_haswell &&
1578 can_do_pipelined_register_writes(screen)) {
1579 dri_screen->max_gl_core_version = 42;
1580 if (can_do_compute_dispatch(screen))
1581 dri_screen->max_gl_core_version = 43;
1582 if (can_do_mi_math_and_lrr(screen))
1583 dri_screen->max_gl_core_version = 45;
1584 }
1585 dri_screen->max_gl_compat_version = 30;
1586 dri_screen->max_gl_es1_version = 11;
1587 dri_screen->max_gl_es2_version = screen->devinfo.is_haswell ? 31 : 30;
1588 break;
1589 case 6:
1590 dri_screen->max_gl_core_version = 33;
1591 dri_screen->max_gl_compat_version = 30;
1592 dri_screen->max_gl_es1_version = 11;
1593 dri_screen->max_gl_es2_version = 30;
1594 break;
1595 case 5:
1596 case 4:
1597 dri_screen->max_gl_core_version = 0;
1598 dri_screen->max_gl_compat_version = 21;
1599 dri_screen->max_gl_es1_version = 11;
1600 dri_screen->max_gl_es2_version = 20;
1601 break;
1602 default:
1603 unreachable("unrecognized intel_screen::gen");
1604 }
1605 }
1606
1607 /**
1608 * Return the revision (generally the revid field of the PCI header) of the
1609 * graphics device.
1610 *
1611 * XXX: This function is useful to keep around even if it is not currently in
1612 * use. It is necessary for new platforms and revision specific workarounds or
1613 * features. Please don't remove it so that we know it at least continues to
1614 * build.
1615 */
1616 static __attribute__((__unused__)) int
1617 brw_get_revision(int fd)
1618 {
1619 struct drm_i915_getparam gp;
1620 int revision;
1621 int ret;
1622
1623 memset(&gp, 0, sizeof(gp));
1624 gp.param = I915_PARAM_REVISION;
1625 gp.value = &revision;
1626
1627 ret = drmCommandWriteRead(fd, DRM_I915_GETPARAM, &gp, sizeof(gp));
1628 if (ret)
1629 revision = -1;
1630
1631 return revision;
1632 }
1633
1634 static void
1635 shader_debug_log_mesa(void *data, const char *fmt, ...)
1636 {
1637 struct brw_context *brw = (struct brw_context *)data;
1638 va_list args;
1639
1640 va_start(args, fmt);
1641 GLuint msg_id = 0;
1642 _mesa_gl_vdebug(&brw->ctx, &msg_id,
1643 MESA_DEBUG_SOURCE_SHADER_COMPILER,
1644 MESA_DEBUG_TYPE_OTHER,
1645 MESA_DEBUG_SEVERITY_NOTIFICATION, fmt, args);
1646 va_end(args);
1647 }
1648
1649 static void
1650 shader_perf_log_mesa(void *data, const char *fmt, ...)
1651 {
1652 struct brw_context *brw = (struct brw_context *)data;
1653
1654 va_list args;
1655 va_start(args, fmt);
1656
1657 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
1658 va_list args_copy;
1659 va_copy(args_copy, args);
1660 vfprintf(stderr, fmt, args_copy);
1661 va_end(args_copy);
1662 }
1663
1664 if (brw->perf_debug) {
1665 GLuint msg_id = 0;
1666 _mesa_gl_vdebug(&brw->ctx, &msg_id,
1667 MESA_DEBUG_SOURCE_SHADER_COMPILER,
1668 MESA_DEBUG_TYPE_PERFORMANCE,
1669 MESA_DEBUG_SEVERITY_MEDIUM, fmt, args);
1670 }
1671 va_end(args);
1672 }
1673
1674 /**
1675 * This is the driver specific part of the createNewScreen entry point.
1676 * Called when using DRI2.
1677 *
1678 * \return the struct gl_config supported by this driver
1679 */
1680 static const
1681 __DRIconfig **intelInitScreen2(__DRIscreen *dri_screen)
1682 {
1683 struct intel_screen *screen;
1684
1685 if (dri_screen->image.loader) {
1686 } else if (dri_screen->dri2.loader->base.version <= 2 ||
1687 dri_screen->dri2.loader->getBuffersWithFormat == NULL) {
1688 fprintf(stderr,
1689 "\nERROR! DRI2 loader with getBuffersWithFormat() "
1690 "support required\n");
1691 return NULL;
1692 }
1693
1694 /* Allocate the private area */
1695 screen = rzalloc(NULL, struct intel_screen);
1696 if (!screen) {
1697 fprintf(stderr, "\nERROR! Allocating private area failed\n");
1698 return NULL;
1699 }
1700 /* parse information in __driConfigOptions */
1701 driParseOptionInfo(&screen->optionCache, brw_config_options.xml);
1702
1703 screen->driScrnPriv = dri_screen;
1704 dri_screen->driverPrivate = (void *) screen;
1705
1706 if (!intel_init_bufmgr(screen))
1707 return NULL;
1708
1709 screen->deviceID = drm_intel_bufmgr_gem_get_devid(screen->bufmgr);
1710 if (!gen_get_device_info(screen->deviceID, &screen->devinfo))
1711 return NULL;
1712
1713 const struct gen_device_info *devinfo = &screen->devinfo;
1714
1715 brw_process_intel_debug_variable();
1716
1717 if (INTEL_DEBUG & DEBUG_BUFMGR)
1718 dri_bufmgr_set_debug(screen->bufmgr, true);
1719
1720 if ((INTEL_DEBUG & DEBUG_SHADER_TIME) && devinfo->gen < 7) {
1721 fprintf(stderr,
1722 "shader_time debugging requires gen7 (Ivybridge) or better.\n");
1723 INTEL_DEBUG &= ~DEBUG_SHADER_TIME;
1724 }
1725
1726 if (intel_get_integer(screen, I915_PARAM_MMAP_GTT_VERSION) >= 1) {
1727 /* Theorectically unlimited! At least for individual objects...
1728 *
1729 * Currently the entire (global) address space for all GTT maps is
1730 * limited to 64bits. That is all objects on the system that are
1731 * setup for GTT mmapping must fit within 64bits. An attempt to use
1732 * one that exceeds the limit with fail in drm_intel_bo_map_gtt().
1733 *
1734 * Long before we hit that limit, we will be practically limited by
1735 * that any single object must fit in physical memory (RAM). The upper
1736 * limit on the CPU's address space is currently 48bits (Skylake), of
1737 * which only 39bits can be physical memory. (The GPU itself also has
1738 * a 48bit addressable virtual space.) We can fit over 32 million
1739 * objects of the current maximum allocable size before running out
1740 * of mmap space.
1741 */
1742 screen->max_gtt_map_object_size = UINT64_MAX;
1743 } else {
1744 /* Estimate the size of the mappable aperture into the GTT. There's an
1745 * ioctl to get the whole GTT size, but not one to get the mappable subset.
1746 * It turns out it's basically always 256MB, though some ancient hardware
1747 * was smaller.
1748 */
1749 uint32_t gtt_size = 256 * 1024 * 1024;
1750
1751 /* We don't want to map two objects such that a memcpy between them would
1752 * just fault one mapping in and then the other over and over forever. So
1753 * we would need to divide the GTT size by 2. Additionally, some GTT is
1754 * taken up by things like the framebuffer and the ringbuffer and such, so
1755 * be more conservative.
1756 */
1757 screen->max_gtt_map_object_size = gtt_size / 4;
1758 }
1759
1760 screen->hw_has_swizzling = intel_detect_swizzling(screen);
1761 screen->hw_has_timestamp = intel_detect_timestamp(screen);
1762
1763 /* GENs prior to 8 do not support EU/Subslice info */
1764 if (devinfo->gen >= 8) {
1765 intel_detect_sseu(screen);
1766 } else if (devinfo->gen == 7) {
1767 screen->subslice_total = 1 << (devinfo->gt - 1);
1768 }
1769
1770 /* Gen7-7.5 kernel requirements / command parser saga:
1771 *
1772 * - pre-v3.16:
1773 * Haswell and Baytrail cannot use any privileged batchbuffer features.
1774 *
1775 * Ivybridge has aliasing PPGTT on by default, which accidentally marks
1776 * all batches secure, allowing them to use any feature with no checking.
1777 * This is effectively equivalent to a command parser version of
1778 * \infinity - everything is possible.
1779 *
1780 * The command parser does not exist, and querying the version will
1781 * return -EINVAL.
1782 *
1783 * - v3.16:
1784 * The kernel enables the command parser by default, for systems with
1785 * aliasing PPGTT enabled (Ivybridge and Haswell). However, the
1786 * hardware checker is still enabled, so Haswell and Baytrail cannot
1787 * do anything.
1788 *
1789 * Ivybridge goes from "everything is possible" to "only what the
1790 * command parser allows" (if the user boots with i915.cmd_parser=0,
1791 * then everything is possible again). We can only safely use features
1792 * allowed by the supported command parser version.
1793 *
1794 * Annoyingly, I915_PARAM_CMD_PARSER_VERSION reports the static version
1795 * implemented by the kernel, even if it's turned off. So, checking
1796 * for version > 0 does not mean that you can write registers. We have
1797 * to try it and see. The version does, however, indicate the age of
1798 * the kernel.
1799 *
1800 * Instead of matching the hardware checker's behavior of converting
1801 * privileged commands to MI_NOOP, it makes execbuf2 start returning
1802 * -EINVAL, making it dangerous to try and use privileged features.
1803 *
1804 * Effective command parser versions:
1805 * - Haswell: 0 (reporting 1, writes don't work)
1806 * - Baytrail: 0 (reporting 1, writes don't work)
1807 * - Ivybridge: 1 (enabled) or infinite (disabled)
1808 *
1809 * - v3.17:
1810 * Baytrail aliasing PPGTT is enabled, making it like Ivybridge:
1811 * effectively version 1 (enabled) or infinite (disabled).
1812 *
1813 * - v3.19: f1f55cc0556031c8ee3fe99dae7251e78b9b653b
1814 * Command parser v2 supports predicate writes.
1815 *
1816 * - Haswell: 0 (reporting 1, writes don't work)
1817 * - Baytrail: 2 (enabled) or infinite (disabled)
1818 * - Ivybridge: 2 (enabled) or infinite (disabled)
1819 *
1820 * So version >= 2 is enough to know that Ivybridge and Baytrail
1821 * will work. Haswell still can't do anything.
1822 *
1823 * - v4.0: Version 3 happened. Largely not relevant.
1824 *
1825 * - v4.1: 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
1826 * L3 config registers are properly saved and restored as part
1827 * of the hardware context. We can approximately detect this point
1828 * in time by checking if I915_PARAM_REVISION is recognized - it
1829 * landed in a later commit, but in the same release cycle.
1830 *
1831 * - v4.2: 245054a1fe33c06ad233e0d58a27ec7b64db9284
1832 * Command parser finally gains secure batch promotion. On Haswell,
1833 * the hardware checker gets disabled, which finally allows it to do
1834 * privileged commands.
1835 *
1836 * I915_PARAM_CMD_PARSER_VERSION reports 3. Effective versions:
1837 * - Haswell: 3 (enabled) or 0 (disabled)
1838 * - Baytrail: 3 (enabled) or infinite (disabled)
1839 * - Ivybridge: 3 (enabled) or infinite (disabled)
1840 *
1841 * Unfortunately, detecting this point in time is tricky, because
1842 * no version bump happened when this important change occurred.
1843 * On Haswell, if we can write any register, then the kernel is at
1844 * least this new, and we can start trusting the version number.
1845 *
1846 * - v4.4: 2bbe6bbb0dc94fd4ce287bdac9e1bd184e23057b and
1847 * Command parser reaches version 4, allowing access to Haswell
1848 * atomic scratch and chicken3 registers. If version >= 4, we know
1849 * the kernel is new enough to support privileged features on all
1850 * hardware. However, the user might have disabled it...and the
1851 * kernel will still report version 4. So we still have to guess
1852 * and check.
1853 *
1854 * - v4.4: 7b9748cb513a6bef4af87b79f0da3ff7e8b56cd8
1855 * Command parser v5 whitelists indirect compute shader dispatch
1856 * registers, needed for OpenGL 4.3 and later.
1857 *
1858 * - v4.8:
1859 * Command parser v7 lets us use MI_MATH on Haswell.
1860 *
1861 * Additionally, the kernel begins reporting version 0 when
1862 * the command parser is disabled, allowing us to skip the
1863 * guess-and-check step on Haswell. Unfortunately, this also
1864 * means that we can no longer use it as an indicator of the
1865 * age of the kernel.
1866 */
1867 if (intel_get_param(screen, I915_PARAM_CMD_PARSER_VERSION,
1868 &screen->cmd_parser_version) < 0) {
1869 /* Command parser does not exist - getparam is unrecognized */
1870 screen->cmd_parser_version = 0;
1871 }
1872
1873 if (!intel_detect_pipelined_so(screen)) {
1874 /* We can't do anything, so the effective version is 0. */
1875 screen->cmd_parser_version = 0;
1876 } else {
1877 screen->kernel_features |= KERNEL_ALLOWS_SOL_OFFSET_WRITES;
1878 }
1879
1880 const char *force_msaa = getenv("INTEL_FORCE_MSAA");
1881 if (force_msaa) {
1882 screen->winsys_msaa_samples_override =
1883 intel_quantize_num_samples(screen, atoi(force_msaa));
1884 printf("Forcing winsys sample count to %d\n",
1885 screen->winsys_msaa_samples_override);
1886 } else {
1887 screen->winsys_msaa_samples_override = -1;
1888 }
1889
1890 set_max_gl_versions(screen);
1891
1892 /* Notification of GPU resets requires hardware contexts and a kernel new
1893 * enough to support DRM_IOCTL_I915_GET_RESET_STATS. If the ioctl is
1894 * supported, calling it with a context of 0 will either generate EPERM or
1895 * no error. If the ioctl is not supported, it always generate EINVAL.
1896 * Use this to determine whether to advertise the __DRI2_ROBUSTNESS
1897 * extension to the loader.
1898 *
1899 * Don't even try on pre-Gen6, since we don't attempt to use contexts there.
1900 */
1901 if (devinfo->gen >= 6) {
1902 struct drm_i915_reset_stats stats;
1903 memset(&stats, 0, sizeof(stats));
1904
1905 const int ret = drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats);
1906
1907 screen->has_context_reset_notification =
1908 (ret != -1 || errno != EINVAL);
1909 }
1910
1911 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 2)
1912 screen->kernel_features |= KERNEL_ALLOWS_PREDICATE_WRITES;
1913
1914 /* Haswell requires command parser version 4 in order to have L3
1915 * atomic scratch1 and chicken3 bits
1916 */
1917 if (devinfo->is_haswell && screen->cmd_parser_version >= 4) {
1918 screen->kernel_features |=
1919 KERNEL_ALLOWS_HSW_SCRATCH1_AND_ROW_CHICKEN3;
1920 }
1921
1922 /* Haswell requires command parser version 6 in order to write to the
1923 * MI_MATH GPR registers, and version 7 in order to use
1924 * MI_LOAD_REGISTER_REG (which all users of MI_MATH use).
1925 */
1926 if (devinfo->gen >= 8 ||
1927 (devinfo->is_haswell && screen->cmd_parser_version >= 7)) {
1928 screen->kernel_features |= KERNEL_ALLOWS_MI_MATH_AND_LRR;
1929 }
1930
1931 /* Gen7 needs at least command parser version 5 to support compute */
1932 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 5)
1933 screen->kernel_features |= KERNEL_ALLOWS_COMPUTE_DISPATCH;
1934
1935 dri_screen->extensions = !screen->has_context_reset_notification
1936 ? screenExtensions : intelRobustScreenExtensions;
1937
1938 screen->compiler = brw_compiler_create(screen, devinfo);
1939 screen->compiler->shader_debug_log = shader_debug_log_mesa;
1940 screen->compiler->shader_perf_log = shader_perf_log_mesa;
1941 screen->program_id = 1;
1942
1943 screen->has_exec_fence =
1944 intel_get_boolean(screen, I915_PARAM_HAS_EXEC_FENCE);
1945
1946 return (const __DRIconfig**) intel_screen_make_configs(dri_screen);
1947 }
1948
1949 struct intel_buffer {
1950 __DRIbuffer base;
1951 drm_intel_bo *bo;
1952 };
1953
1954 static __DRIbuffer *
1955 intelAllocateBuffer(__DRIscreen *dri_screen,
1956 unsigned attachment, unsigned format,
1957 int width, int height)
1958 {
1959 struct intel_buffer *intelBuffer;
1960 struct intel_screen *screen = dri_screen->driverPrivate;
1961
1962 assert(attachment == __DRI_BUFFER_FRONT_LEFT ||
1963 attachment == __DRI_BUFFER_BACK_LEFT);
1964
1965 intelBuffer = calloc(1, sizeof *intelBuffer);
1966 if (intelBuffer == NULL)
1967 return NULL;
1968
1969 /* The front and back buffers are color buffers, which are X tiled. */
1970 uint32_t tiling = I915_TILING_X;
1971 unsigned long pitch;
1972 int cpp = format / 8;
1973 intelBuffer->bo = drm_intel_bo_alloc_tiled(screen->bufmgr,
1974 "intelAllocateBuffer",
1975 width,
1976 height,
1977 cpp,
1978 &tiling, &pitch,
1979 BO_ALLOC_FOR_RENDER);
1980
1981 if (intelBuffer->bo == NULL) {
1982 free(intelBuffer);
1983 return NULL;
1984 }
1985
1986 drm_intel_bo_flink(intelBuffer->bo, &intelBuffer->base.name);
1987
1988 intelBuffer->base.attachment = attachment;
1989 intelBuffer->base.cpp = cpp;
1990 intelBuffer->base.pitch = pitch;
1991
1992 return &intelBuffer->base;
1993 }
1994
1995 static void
1996 intelReleaseBuffer(__DRIscreen *dri_screen, __DRIbuffer *buffer)
1997 {
1998 struct intel_buffer *intelBuffer = (struct intel_buffer *) buffer;
1999
2000 drm_intel_bo_unreference(intelBuffer->bo);
2001 free(intelBuffer);
2002 }
2003
2004 static const struct __DriverAPIRec brw_driver_api = {
2005 .InitScreen = intelInitScreen2,
2006 .DestroyScreen = intelDestroyScreen,
2007 .CreateContext = brwCreateContext,
2008 .DestroyContext = intelDestroyContext,
2009 .CreateBuffer = intelCreateBuffer,
2010 .DestroyBuffer = intelDestroyBuffer,
2011 .MakeCurrent = intelMakeCurrent,
2012 .UnbindContext = intelUnbindContext,
2013 .AllocateBuffer = intelAllocateBuffer,
2014 .ReleaseBuffer = intelReleaseBuffer
2015 };
2016
2017 static const struct __DRIDriverVtableExtensionRec brw_vtable = {
2018 .base = { __DRI_DRIVER_VTABLE, 1 },
2019 .vtable = &brw_driver_api,
2020 };
2021
2022 static const __DRIextension *brw_driver_extensions[] = {
2023 &driCoreExtension.base,
2024 &driImageDriverExtension.base,
2025 &driDRI2Extension.base,
2026 &brw_vtable.base,
2027 &brw_config_options.base,
2028 NULL
2029 };
2030
2031 PUBLIC const __DRIextension **__driDriverGetExtensions_i965(void)
2032 {
2033 globalDriverAPI = &brw_driver_api;
2034
2035 return brw_driver_extensions;
2036 }