i965: support AYUV/XYUV for external import only
[mesa.git] / src / mesa / drivers / dri / i965 / intel_screen.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include "drm-uapi/drm_fourcc.h"
27 #include <errno.h>
28 #include <time.h>
29 #include <unistd.h>
30 #include "main/context.h"
31 #include "main/framebuffer.h"
32 #include "main/renderbuffer.h"
33 #include "main/texobj.h"
34 #include "main/hash.h"
35 #include "main/fbobject.h"
36 #include "main/version.h"
37 #include "main/glthread.h"
38 #include "swrast/s_renderbuffer.h"
39 #include "util/ralloc.h"
40 #include "util/disk_cache.h"
41 #include "brw_defines.h"
42 #include "brw_state.h"
43 #include "compiler/nir/nir.h"
44
45 #include "utils.h"
46 #include "util/disk_cache.h"
47 #include "util/xmlpool.h"
48
49 #include "common/gen_defines.h"
50
51 static const __DRIconfigOptionsExtension brw_config_options = {
52 .base = { __DRI_CONFIG_OPTIONS, 1 },
53 .xml =
54 DRI_CONF_BEGIN
55 DRI_CONF_SECTION_PERFORMANCE
56 /* Options correspond to DRI_CONF_BO_REUSE_DISABLED,
57 * DRI_CONF_BO_REUSE_ALL
58 */
59 DRI_CONF_OPT_BEGIN_V(bo_reuse, enum, 1, "0:1")
60 DRI_CONF_DESC_BEGIN(en, "Buffer object reuse")
61 DRI_CONF_ENUM(0, "Disable buffer object reuse")
62 DRI_CONF_ENUM(1, "Enable reuse of all sizes of buffer objects")
63 DRI_CONF_DESC_END
64 DRI_CONF_OPT_END
65 DRI_CONF_MESA_NO_ERROR("false")
66 DRI_CONF_MESA_GLTHREAD("false")
67 DRI_CONF_SECTION_END
68
69 DRI_CONF_SECTION_QUALITY
70 DRI_CONF_PRECISE_TRIG("false")
71
72 DRI_CONF_OPT_BEGIN(clamp_max_samples, int, -1)
73 DRI_CONF_DESC(en, "Clamp the value of GL_MAX_SAMPLES to the "
74 "given integer. If negative, then do not clamp.")
75 DRI_CONF_OPT_END
76 DRI_CONF_SECTION_END
77
78 DRI_CONF_SECTION_DEBUG
79 DRI_CONF_ALWAYS_FLUSH_BATCH("false")
80 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
81 DRI_CONF_DISABLE_THROTTLING("false")
82 DRI_CONF_FORCE_GLSL_EXTENSIONS_WARN("false")
83 DRI_CONF_FORCE_GLSL_VERSION(0)
84 DRI_CONF_DISABLE_GLSL_LINE_CONTINUATIONS("false")
85 DRI_CONF_DISABLE_BLEND_FUNC_EXTENDED("false")
86 DRI_CONF_DUAL_COLOR_BLEND_BY_LOCATION("false")
87 DRI_CONF_ALLOW_GLSL_EXTENSION_DIRECTIVE_MIDSHADER("false")
88 DRI_CONF_ALLOW_GLSL_BUILTIN_VARIABLE_REDECLARATION("false")
89 DRI_CONF_ALLOW_GLSL_CROSS_STAGE_INTERPOLATION_MISMATCH("false")
90 DRI_CONF_ALLOW_HIGHER_COMPAT_VERSION("false")
91 DRI_CONF_FORCE_COMPAT_PROFILE("false")
92 DRI_CONF_FORCE_GLSL_ABS_SQRT("false")
93
94 DRI_CONF_OPT_BEGIN_B(shader_precompile, "true")
95 DRI_CONF_DESC(en, "Perform code generation at shader link time.")
96 DRI_CONF_OPT_END
97 DRI_CONF_SECTION_END
98
99 DRI_CONF_SECTION_MISCELLANEOUS
100 DRI_CONF_GLSL_ZERO_INIT("false")
101 DRI_CONF_ALLOW_RGB10_CONFIGS("false")
102 DRI_CONF_ALLOW_RGB565_CONFIGS("true")
103 DRI_CONF_ALLOW_FP16_CONFIGS("false")
104 DRI_CONF_SECTION_END
105 DRI_CONF_END
106 };
107
108 #include "intel_batchbuffer.h"
109 #include "intel_buffers.h"
110 #include "brw_bufmgr.h"
111 #include "intel_fbo.h"
112 #include "intel_mipmap_tree.h"
113 #include "intel_screen.h"
114 #include "intel_tex.h"
115 #include "intel_image.h"
116
117 #include "brw_context.h"
118
119 #include "drm-uapi/i915_drm.h"
120
121 /**
122 * For debugging purposes, this returns a time in seconds.
123 */
124 double
125 get_time(void)
126 {
127 struct timespec tp;
128
129 clock_gettime(CLOCK_MONOTONIC, &tp);
130
131 return tp.tv_sec + tp.tv_nsec / 1000000000.0;
132 }
133
134 static const __DRItexBufferExtension intelTexBufferExtension = {
135 .base = { __DRI_TEX_BUFFER, 3 },
136
137 .setTexBuffer = intelSetTexBuffer,
138 .setTexBuffer2 = intelSetTexBuffer2,
139 .releaseTexBuffer = intelReleaseTexBuffer,
140 };
141
142 static void
143 intel_dri2_flush_with_flags(__DRIcontext *cPriv,
144 __DRIdrawable *dPriv,
145 unsigned flags,
146 enum __DRI2throttleReason reason)
147 {
148 struct brw_context *brw = cPriv->driverPrivate;
149
150 if (!brw)
151 return;
152
153 struct gl_context *ctx = &brw->ctx;
154
155 _mesa_glthread_finish(ctx);
156
157 FLUSH_VERTICES(ctx, 0);
158
159 if (flags & __DRI2_FLUSH_DRAWABLE)
160 intel_resolve_for_dri2_flush(brw, dPriv);
161
162 if (reason == __DRI2_THROTTLE_SWAPBUFFER)
163 brw->need_swap_throttle = true;
164 if (reason == __DRI2_THROTTLE_FLUSHFRONT)
165 brw->need_flush_throttle = true;
166
167 intel_batchbuffer_flush(brw);
168 }
169
170 /**
171 * Provides compatibility with loaders that only support the older (version
172 * 1-3) flush interface.
173 *
174 * That includes libGL up to Mesa 9.0, and the X Server at least up to 1.13.
175 */
176 static void
177 intel_dri2_flush(__DRIdrawable *drawable)
178 {
179 intel_dri2_flush_with_flags(drawable->driContextPriv, drawable,
180 __DRI2_FLUSH_DRAWABLE,
181 __DRI2_THROTTLE_SWAPBUFFER);
182 }
183
184 static const struct __DRI2flushExtensionRec intelFlushExtension = {
185 .base = { __DRI2_FLUSH, 4 },
186
187 .flush = intel_dri2_flush,
188 .invalidate = dri2InvalidateDrawable,
189 .flush_with_flags = intel_dri2_flush_with_flags,
190 };
191
192 static const struct intel_image_format intel_image_formats[] = {
193 { DRM_FORMAT_ABGR16161616F, __DRI_IMAGE_COMPONENTS_RGBA, 1,
194 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR16161616F, 8 } } },
195
196 { DRM_FORMAT_XBGR16161616F, __DRI_IMAGE_COMPONENTS_RGB, 1,
197 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR16161616F, 8 } } },
198
199 { DRM_FORMAT_ARGB2101010, __DRI_IMAGE_COMPONENTS_RGBA, 1,
200 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB2101010, 4 } } },
201
202 { DRM_FORMAT_XRGB2101010, __DRI_IMAGE_COMPONENTS_RGB, 1,
203 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB2101010, 4 } } },
204
205 { DRM_FORMAT_ABGR2101010, __DRI_IMAGE_COMPONENTS_RGBA, 1,
206 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR2101010, 4 } } },
207
208 { DRM_FORMAT_XBGR2101010, __DRI_IMAGE_COMPONENTS_RGB, 1,
209 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR2101010, 4 } } },
210
211 { DRM_FORMAT_ARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
212 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
213
214 { DRM_FORMAT_ABGR8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
215 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
216
217 { __DRI_IMAGE_FOURCC_SARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
218 { { 0, 0, 0, __DRI_IMAGE_FORMAT_SARGB8, 4 } } },
219
220 { DRM_FORMAT_XRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
221 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB8888, 4 }, } },
222
223 { DRM_FORMAT_XBGR8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
224 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 }, } },
225
226 { DRM_FORMAT_ARGB1555, __DRI_IMAGE_COMPONENTS_RGBA, 1,
227 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB1555, 2 } } },
228
229 { DRM_FORMAT_RGB565, __DRI_IMAGE_COMPONENTS_RGB, 1,
230 { { 0, 0, 0, __DRI_IMAGE_FORMAT_RGB565, 2 } } },
231
232 { DRM_FORMAT_R8, __DRI_IMAGE_COMPONENTS_R, 1,
233 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 }, } },
234
235 { DRM_FORMAT_R16, __DRI_IMAGE_COMPONENTS_R, 1,
236 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 1 }, } },
237
238 { DRM_FORMAT_GR88, __DRI_IMAGE_COMPONENTS_RG, 1,
239 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 }, } },
240
241 { DRM_FORMAT_GR1616, __DRI_IMAGE_COMPONENTS_RG, 1,
242 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR1616, 2 }, } },
243
244 { DRM_FORMAT_YUV410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
245 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
246 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
247 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
248
249 { DRM_FORMAT_YUV411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
250 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
251 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
252 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
253
254 { DRM_FORMAT_YUV420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
255 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
256 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
257 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
258
259 { DRM_FORMAT_YUV422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
260 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
261 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
262 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
263
264 { DRM_FORMAT_YUV444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
265 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
266 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
267 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
268
269 { DRM_FORMAT_YVU410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
270 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
271 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
272 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
273
274 { DRM_FORMAT_YVU411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
275 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
276 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
277 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
278
279 { DRM_FORMAT_YVU420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
280 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
281 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
282 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
283
284 { DRM_FORMAT_YVU422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
285 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
286 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
287 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
288
289 { DRM_FORMAT_YVU444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
290 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
291 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
292 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
293
294 { DRM_FORMAT_NV12, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
295 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
296 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR88, 2 } } },
297
298 { DRM_FORMAT_P010, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
299 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 2 },
300 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR1616, 4 } } },
301
302 { DRM_FORMAT_P012, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
303 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 2 },
304 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR1616, 4 } } },
305
306 { DRM_FORMAT_P016, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
307 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 2 },
308 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR1616, 4 } } },
309
310 { DRM_FORMAT_NV16, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
311 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
312 { 1, 1, 0, __DRI_IMAGE_FORMAT_GR88, 2 } } },
313
314 { DRM_FORMAT_AYUV, __DRI_IMAGE_COMPONENTS_AYUV, 1,
315 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
316
317 { DRM_FORMAT_XYUV8888, __DRI_IMAGE_COMPONENTS_XYUV, 1,
318 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 } } },
319
320 /* For YUYV and UYVY buffers, we set up two overlapping DRI images
321 * and treat them as planar buffers in the compositors.
322 * Plane 0 is GR88 and samples YU or YV pairs and places Y into
323 * the R component, while plane 1 is ARGB/ABGR and samples YUYV/UYVY
324 * clusters and places pairs and places U into the G component and
325 * V into A. This lets the texture sampler interpolate the Y
326 * components correctly when sampling from plane 0, and interpolate
327 * U and V correctly when sampling from plane 1. */
328 { DRM_FORMAT_YUYV, __DRI_IMAGE_COMPONENTS_Y_XUXV, 2,
329 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
330 { 0, 1, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
331 { DRM_FORMAT_UYVY, __DRI_IMAGE_COMPONENTS_Y_UXVX, 2,
332 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
333 { 0, 1, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } }
334 };
335
336 static const struct {
337 uint64_t modifier;
338 unsigned since_gen;
339 } supported_modifiers[] = {
340 { .modifier = DRM_FORMAT_MOD_LINEAR , .since_gen = 1 },
341 { .modifier = I915_FORMAT_MOD_X_TILED , .since_gen = 1 },
342 { .modifier = I915_FORMAT_MOD_Y_TILED , .since_gen = 6 },
343 { .modifier = I915_FORMAT_MOD_Y_TILED_CCS , .since_gen = 9 },
344 };
345
346 static bool
347 modifier_is_supported(const struct gen_device_info *devinfo,
348 const struct intel_image_format *fmt, int dri_format,
349 uint64_t modifier)
350 {
351 const struct isl_drm_modifier_info *modinfo =
352 isl_drm_modifier_get_info(modifier);
353 int i;
354
355 /* ISL had better know about the modifier */
356 if (!modinfo)
357 return false;
358
359 if (modinfo->aux_usage == ISL_AUX_USAGE_CCS_E) {
360 /* If INTEL_DEBUG=norbc is set, don't support any CCS_E modifiers */
361 if (unlikely(INTEL_DEBUG & DEBUG_NO_RBC))
362 return false;
363
364 /* CCS_E is not supported for planar images */
365 if (fmt && fmt->nplanes > 1)
366 return false;
367
368 if (fmt) {
369 assert(dri_format == 0);
370 dri_format = fmt->planes[0].dri_format;
371 }
372
373 mesa_format format = driImageFormatToGLFormat(dri_format);
374 /* Whether or not we support compression is based on the RGBA non-sRGB
375 * version of the format.
376 */
377 format = _mesa_format_fallback_rgbx_to_rgba(format);
378 format = _mesa_get_srgb_format_linear(format);
379 if (!isl_format_supports_ccs_e(devinfo,
380 brw_isl_format_for_mesa_format(format)))
381 return false;
382 }
383
384 for (i = 0; i < ARRAY_SIZE(supported_modifiers); i++) {
385 if (supported_modifiers[i].modifier != modifier)
386 continue;
387
388 return supported_modifiers[i].since_gen <= devinfo->gen;
389 }
390
391 return false;
392 }
393
394 static uint64_t
395 tiling_to_modifier(uint32_t tiling)
396 {
397 static const uint64_t map[] = {
398 [I915_TILING_NONE] = DRM_FORMAT_MOD_LINEAR,
399 [I915_TILING_X] = I915_FORMAT_MOD_X_TILED,
400 [I915_TILING_Y] = I915_FORMAT_MOD_Y_TILED,
401 };
402
403 assert(tiling < ARRAY_SIZE(map));
404
405 return map[tiling];
406 }
407
408 static void
409 intel_image_warn_if_unaligned(__DRIimage *image, const char *func)
410 {
411 uint32_t tiling, swizzle;
412 brw_bo_get_tiling(image->bo, &tiling, &swizzle);
413
414 if (tiling != I915_TILING_NONE && (image->offset & 0xfff)) {
415 _mesa_warning(NULL, "%s: offset 0x%08x not on tile boundary",
416 func, image->offset);
417 }
418 }
419
420 static const struct intel_image_format *
421 intel_image_format_lookup(int fourcc)
422 {
423 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
424 if (intel_image_formats[i].fourcc == fourcc)
425 return &intel_image_formats[i];
426 }
427
428 return NULL;
429 }
430
431 static bool
432 intel_image_get_fourcc(__DRIimage *image, int *fourcc)
433 {
434 if (image->planar_format) {
435 *fourcc = image->planar_format->fourcc;
436 return true;
437 }
438
439 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
440 if (intel_image_formats[i].planes[0].dri_format == image->dri_format) {
441 *fourcc = intel_image_formats[i].fourcc;
442 return true;
443 }
444 }
445 return false;
446 }
447
448 static __DRIimage *
449 intel_allocate_image(struct intel_screen *screen, int dri_format,
450 void *loaderPrivate)
451 {
452 __DRIimage *image;
453
454 image = calloc(1, sizeof *image);
455 if (image == NULL)
456 return NULL;
457
458 image->screen = screen;
459 image->dri_format = dri_format;
460 image->offset = 0;
461
462 image->format = driImageFormatToGLFormat(dri_format);
463 if (dri_format != __DRI_IMAGE_FORMAT_NONE &&
464 image->format == MESA_FORMAT_NONE) {
465 free(image);
466 return NULL;
467 }
468
469 image->internal_format = _mesa_get_format_base_format(image->format);
470 image->data = loaderPrivate;
471
472 return image;
473 }
474
475 /**
476 * Sets up a DRIImage structure to point to a slice out of a miptree.
477 */
478 static void
479 intel_setup_image_from_mipmap_tree(struct brw_context *brw, __DRIimage *image,
480 struct intel_mipmap_tree *mt, GLuint level,
481 GLuint zoffset)
482 {
483 intel_miptree_make_shareable(brw, mt);
484
485 intel_miptree_check_level_layer(mt, level, zoffset);
486
487 image->width = minify(mt->surf.phys_level0_sa.width,
488 level - mt->first_level);
489 image->height = minify(mt->surf.phys_level0_sa.height,
490 level - mt->first_level);
491 image->pitch = mt->surf.row_pitch_B;
492
493 image->offset = intel_miptree_get_tile_offsets(mt, level, zoffset,
494 &image->tile_x,
495 &image->tile_y);
496
497 brw_bo_unreference(image->bo);
498 image->bo = mt->bo;
499 brw_bo_reference(mt->bo);
500 }
501
502 static __DRIimage *
503 intel_create_image_from_name(__DRIscreen *dri_screen,
504 int width, int height, int format,
505 int name, int pitch, void *loaderPrivate)
506 {
507 struct intel_screen *screen = dri_screen->driverPrivate;
508 __DRIimage *image;
509 int cpp;
510
511 image = intel_allocate_image(screen, format, loaderPrivate);
512 if (image == NULL)
513 return NULL;
514
515 if (image->format == MESA_FORMAT_NONE)
516 cpp = 1;
517 else
518 cpp = _mesa_get_format_bytes(image->format);
519
520 image->width = width;
521 image->height = height;
522 image->pitch = pitch * cpp;
523 image->bo = brw_bo_gem_create_from_name(screen->bufmgr, "image",
524 name);
525 if (!image->bo) {
526 free(image);
527 return NULL;
528 }
529 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
530
531 return image;
532 }
533
534 static __DRIimage *
535 intel_create_image_from_renderbuffer(__DRIcontext *context,
536 int renderbuffer, void *loaderPrivate)
537 {
538 __DRIimage *image;
539 struct brw_context *brw = context->driverPrivate;
540 struct gl_context *ctx = &brw->ctx;
541 struct gl_renderbuffer *rb;
542 struct intel_renderbuffer *irb;
543
544 rb = _mesa_lookup_renderbuffer(ctx, renderbuffer);
545 if (!rb) {
546 _mesa_error(ctx, GL_INVALID_OPERATION, "glRenderbufferExternalMESA");
547 return NULL;
548 }
549
550 irb = intel_renderbuffer(rb);
551 intel_miptree_make_shareable(brw, irb->mt);
552 image = calloc(1, sizeof *image);
553 if (image == NULL)
554 return NULL;
555
556 image->internal_format = rb->InternalFormat;
557 image->format = rb->Format;
558 image->modifier = tiling_to_modifier(
559 isl_tiling_to_i915_tiling(irb->mt->surf.tiling));
560 image->offset = 0;
561 image->data = loaderPrivate;
562 brw_bo_unreference(image->bo);
563 image->bo = irb->mt->bo;
564 brw_bo_reference(irb->mt->bo);
565 image->width = rb->Width;
566 image->height = rb->Height;
567 image->pitch = irb->mt->surf.row_pitch_B;
568 image->dri_format = driGLFormatToImageFormat(image->format);
569 image->has_depthstencil = irb->mt->stencil_mt? true : false;
570
571 rb->NeedsFinishRenderTexture = true;
572 return image;
573 }
574
575 static __DRIimage *
576 intel_create_image_from_texture(__DRIcontext *context, int target,
577 unsigned texture, int zoffset,
578 int level,
579 unsigned *error,
580 void *loaderPrivate)
581 {
582 __DRIimage *image;
583 struct brw_context *brw = context->driverPrivate;
584 struct gl_texture_object *obj;
585 struct intel_texture_object *iobj;
586 GLuint face = 0;
587
588 obj = _mesa_lookup_texture(&brw->ctx, texture);
589 if (!obj || obj->Target != target) {
590 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
591 return NULL;
592 }
593
594 if (target == GL_TEXTURE_CUBE_MAP)
595 face = zoffset;
596
597 _mesa_test_texobj_completeness(&brw->ctx, obj);
598 iobj = intel_texture_object(obj);
599 if (!obj->_BaseComplete || (level > 0 && !obj->_MipmapComplete)) {
600 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
601 return NULL;
602 }
603
604 if (level < obj->BaseLevel || level > obj->_MaxLevel) {
605 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
606 return NULL;
607 }
608
609 if (target == GL_TEXTURE_3D && obj->Image[face][level]->Depth < zoffset) {
610 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
611 return NULL;
612 }
613 image = calloc(1, sizeof *image);
614 if (image == NULL) {
615 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
616 return NULL;
617 }
618
619 image->internal_format = obj->Image[face][level]->InternalFormat;
620 image->format = obj->Image[face][level]->TexFormat;
621 image->modifier = tiling_to_modifier(
622 isl_tiling_to_i915_tiling(iobj->mt->surf.tiling));
623 image->data = loaderPrivate;
624 intel_setup_image_from_mipmap_tree(brw, image, iobj->mt, level, zoffset);
625 image->dri_format = driGLFormatToImageFormat(image->format);
626 image->has_depthstencil = iobj->mt->stencil_mt? true : false;
627 image->planar_format = iobj->planar_format;
628 if (image->dri_format == __DRI_IMAGE_FORMAT_NONE) {
629 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
630 free(image);
631 return NULL;
632 }
633
634 *error = __DRI_IMAGE_ERROR_SUCCESS;
635 return image;
636 }
637
638 static void
639 intel_destroy_image(__DRIimage *image)
640 {
641 brw_bo_unreference(image->bo);
642 free(image);
643 }
644
645 enum modifier_priority {
646 MODIFIER_PRIORITY_INVALID = 0,
647 MODIFIER_PRIORITY_LINEAR,
648 MODIFIER_PRIORITY_X,
649 MODIFIER_PRIORITY_Y,
650 MODIFIER_PRIORITY_Y_CCS,
651 };
652
653 const uint64_t priority_to_modifier[] = {
654 [MODIFIER_PRIORITY_INVALID] = DRM_FORMAT_MOD_INVALID,
655 [MODIFIER_PRIORITY_LINEAR] = DRM_FORMAT_MOD_LINEAR,
656 [MODIFIER_PRIORITY_X] = I915_FORMAT_MOD_X_TILED,
657 [MODIFIER_PRIORITY_Y] = I915_FORMAT_MOD_Y_TILED,
658 [MODIFIER_PRIORITY_Y_CCS] = I915_FORMAT_MOD_Y_TILED_CCS,
659 };
660
661 static uint64_t
662 select_best_modifier(struct gen_device_info *devinfo,
663 int dri_format,
664 const uint64_t *modifiers,
665 const unsigned count)
666 {
667 enum modifier_priority prio = MODIFIER_PRIORITY_INVALID;
668
669 for (int i = 0; i < count; i++) {
670 if (!modifier_is_supported(devinfo, NULL, dri_format, modifiers[i]))
671 continue;
672
673 switch (modifiers[i]) {
674 case I915_FORMAT_MOD_Y_TILED_CCS:
675 prio = MAX2(prio, MODIFIER_PRIORITY_Y_CCS);
676 break;
677 case I915_FORMAT_MOD_Y_TILED:
678 prio = MAX2(prio, MODIFIER_PRIORITY_Y);
679 break;
680 case I915_FORMAT_MOD_X_TILED:
681 prio = MAX2(prio, MODIFIER_PRIORITY_X);
682 break;
683 case DRM_FORMAT_MOD_LINEAR:
684 prio = MAX2(prio, MODIFIER_PRIORITY_LINEAR);
685 break;
686 case DRM_FORMAT_MOD_INVALID:
687 default:
688 break;
689 }
690 }
691
692 return priority_to_modifier[prio];
693 }
694
695 static __DRIimage *
696 intel_create_image_common(__DRIscreen *dri_screen,
697 int width, int height, int format,
698 unsigned int use,
699 const uint64_t *modifiers,
700 unsigned count,
701 void *loaderPrivate)
702 {
703 __DRIimage *image;
704 struct intel_screen *screen = dri_screen->driverPrivate;
705 uint64_t modifier = DRM_FORMAT_MOD_INVALID;
706 bool ok;
707
708 /* Callers of this may specify a modifier, or a dri usage, but not both. The
709 * newer modifier interface deprecates the older usage flags newer modifier
710 * interface deprecates the older usage flags.
711 */
712 assert(!(use && count));
713
714 if (use & __DRI_IMAGE_USE_CURSOR) {
715 if (width != 64 || height != 64)
716 return NULL;
717 modifier = DRM_FORMAT_MOD_LINEAR;
718 }
719
720 if (use & __DRI_IMAGE_USE_LINEAR)
721 modifier = DRM_FORMAT_MOD_LINEAR;
722
723 if (modifier == DRM_FORMAT_MOD_INVALID) {
724 if (modifiers) {
725 /* User requested specific modifiers */
726 modifier = select_best_modifier(&screen->devinfo, format,
727 modifiers, count);
728 if (modifier == DRM_FORMAT_MOD_INVALID)
729 return NULL;
730 } else {
731 /* Historically, X-tiled was the default, and so lack of modifier means
732 * X-tiled.
733 */
734 modifier = I915_FORMAT_MOD_X_TILED;
735 }
736 }
737
738 image = intel_allocate_image(screen, format, loaderPrivate);
739 if (image == NULL)
740 return NULL;
741
742 const struct isl_drm_modifier_info *mod_info =
743 isl_drm_modifier_get_info(modifier);
744
745 struct isl_surf surf;
746 ok = isl_surf_init(&screen->isl_dev, &surf,
747 .dim = ISL_SURF_DIM_2D,
748 .format = brw_isl_format_for_mesa_format(image->format),
749 .width = width,
750 .height = height,
751 .depth = 1,
752 .levels = 1,
753 .array_len = 1,
754 .samples = 1,
755 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
756 ISL_SURF_USAGE_TEXTURE_BIT |
757 ISL_SURF_USAGE_STORAGE_BIT |
758 ((use & __DRI_IMAGE_USE_SCANOUT) ?
759 ISL_SURF_USAGE_DISPLAY_BIT : 0),
760 .tiling_flags = (1 << mod_info->tiling));
761 assert(ok);
762 if (!ok) {
763 free(image);
764 return NULL;
765 }
766
767 struct isl_surf aux_surf;
768 if (mod_info->aux_usage == ISL_AUX_USAGE_CCS_E) {
769 ok = isl_surf_get_ccs_surf(&screen->isl_dev, &surf, &aux_surf, 0);
770 if (!ok) {
771 free(image);
772 return NULL;
773 }
774 } else {
775 assert(mod_info->aux_usage == ISL_AUX_USAGE_NONE);
776 aux_surf.size_B = 0;
777 }
778
779 /* We request that the bufmgr zero the buffer for us for two reasons:
780 *
781 * 1) If a buffer gets re-used from the pool, we don't want to leak random
782 * garbage from our process to some other.
783 *
784 * 2) For images with CCS_E, we want to ensure that the CCS starts off in
785 * a valid state. A CCS value of 0 indicates that the given block is
786 * in the pass-through state which is what we want.
787 */
788 image->bo = brw_bo_alloc_tiled(screen->bufmgr, "image",
789 surf.size_B + aux_surf.size_B,
790 BRW_MEMZONE_OTHER,
791 isl_tiling_to_i915_tiling(mod_info->tiling),
792 surf.row_pitch_B, BO_ALLOC_ZEROED);
793 if (image->bo == NULL) {
794 free(image);
795 return NULL;
796 }
797 image->width = width;
798 image->height = height;
799 image->pitch = surf.row_pitch_B;
800 image->modifier = modifier;
801
802 if (aux_surf.size_B) {
803 image->aux_offset = surf.size_B;
804 image->aux_pitch = aux_surf.row_pitch_B;
805 image->aux_size = aux_surf.size_B;
806 }
807
808 return image;
809 }
810
811 static __DRIimage *
812 intel_create_image(__DRIscreen *dri_screen,
813 int width, int height, int format,
814 unsigned int use,
815 void *loaderPrivate)
816 {
817 return intel_create_image_common(dri_screen, width, height, format, use, NULL, 0,
818 loaderPrivate);
819 }
820
821 static void *
822 intel_map_image(__DRIcontext *context, __DRIimage *image,
823 int x0, int y0, int width, int height,
824 unsigned int flags, int *stride, void **map_info)
825 {
826 struct brw_context *brw = NULL;
827 struct brw_bo *bo = NULL;
828 void *raw_data = NULL;
829 GLuint pix_w = 1;
830 GLuint pix_h = 1;
831 GLint pix_bytes = 1;
832
833 if (!context || !image || !stride || !map_info || *map_info)
834 return NULL;
835
836 if (x0 < 0 || x0 >= image->width || width > image->width - x0)
837 return NULL;
838
839 if (y0 < 0 || y0 >= image->height || height > image->height - y0)
840 return NULL;
841
842 if (flags & MAP_INTERNAL_MASK)
843 return NULL;
844
845 brw = context->driverPrivate;
846 bo = image->bo;
847
848 assert(brw);
849 assert(bo);
850
851 /* DRI flags and GL_MAP.*_BIT flags are the same, so just pass them on. */
852 raw_data = brw_bo_map(brw, bo, flags);
853 if (!raw_data)
854 return NULL;
855
856 _mesa_get_format_block_size(image->format, &pix_w, &pix_h);
857 pix_bytes = _mesa_get_format_bytes(image->format);
858
859 assert(pix_w);
860 assert(pix_h);
861 assert(pix_bytes > 0);
862
863 raw_data += (x0 / pix_w) * pix_bytes + (y0 / pix_h) * image->pitch;
864
865 brw_bo_reference(bo);
866
867 *stride = image->pitch;
868 *map_info = bo;
869
870 return raw_data;
871 }
872
873 static void
874 intel_unmap_image(__DRIcontext *context, __DRIimage *image, void *map_info)
875 {
876 struct brw_bo *bo = map_info;
877
878 brw_bo_unmap(bo);
879 brw_bo_unreference(bo);
880 }
881
882 static __DRIimage *
883 intel_create_image_with_modifiers(__DRIscreen *dri_screen,
884 int width, int height, int format,
885 const uint64_t *modifiers,
886 const unsigned count,
887 void *loaderPrivate)
888 {
889 return intel_create_image_common(dri_screen, width, height, format, 0,
890 modifiers, count, loaderPrivate);
891 }
892
893 static GLboolean
894 intel_query_image(__DRIimage *image, int attrib, int *value)
895 {
896 switch (attrib) {
897 case __DRI_IMAGE_ATTRIB_STRIDE:
898 *value = image->pitch;
899 return true;
900 case __DRI_IMAGE_ATTRIB_HANDLE:
901 *value = brw_bo_export_gem_handle(image->bo);
902 return true;
903 case __DRI_IMAGE_ATTRIB_NAME:
904 return !brw_bo_flink(image->bo, (uint32_t *) value);
905 case __DRI_IMAGE_ATTRIB_FORMAT:
906 *value = image->dri_format;
907 return true;
908 case __DRI_IMAGE_ATTRIB_WIDTH:
909 *value = image->width;
910 return true;
911 case __DRI_IMAGE_ATTRIB_HEIGHT:
912 *value = image->height;
913 return true;
914 case __DRI_IMAGE_ATTRIB_COMPONENTS:
915 if (image->planar_format == NULL)
916 return false;
917 *value = image->planar_format->components;
918 return true;
919 case __DRI_IMAGE_ATTRIB_FD:
920 return !brw_bo_gem_export_to_prime(image->bo, value);
921 case __DRI_IMAGE_ATTRIB_FOURCC:
922 return intel_image_get_fourcc(image, value);
923 case __DRI_IMAGE_ATTRIB_NUM_PLANES:
924 if (isl_drm_modifier_has_aux(image->modifier)) {
925 assert(!image->planar_format || image->planar_format->nplanes == 1);
926 *value = 2;
927 } else if (image->planar_format) {
928 *value = image->planar_format->nplanes;
929 } else {
930 *value = 1;
931 }
932 return true;
933 case __DRI_IMAGE_ATTRIB_OFFSET:
934 *value = image->offset;
935 return true;
936 case __DRI_IMAGE_ATTRIB_MODIFIER_LOWER:
937 *value = (image->modifier & 0xffffffff);
938 return true;
939 case __DRI_IMAGE_ATTRIB_MODIFIER_UPPER:
940 *value = ((image->modifier >> 32) & 0xffffffff);
941 return true;
942
943 default:
944 return false;
945 }
946 }
947
948 static GLboolean
949 intel_query_format_modifier_attribs(__DRIscreen *dri_screen,
950 uint32_t fourcc, uint64_t modifier,
951 int attrib, uint64_t *value)
952 {
953 struct intel_screen *screen = dri_screen->driverPrivate;
954 const struct intel_image_format *f = intel_image_format_lookup(fourcc);
955
956 if (!modifier_is_supported(&screen->devinfo, f, 0, modifier))
957 return false;
958
959 switch (attrib) {
960 case __DRI_IMAGE_FORMAT_MODIFIER_ATTRIB_PLANE_COUNT:
961 *value = isl_drm_modifier_has_aux(modifier) ? 2 : f->nplanes;
962 return true;
963
964 default:
965 return false;
966 }
967 }
968
969 static __DRIimage *
970 intel_dup_image(__DRIimage *orig_image, void *loaderPrivate)
971 {
972 __DRIimage *image;
973
974 image = calloc(1, sizeof *image);
975 if (image == NULL)
976 return NULL;
977
978 brw_bo_reference(orig_image->bo);
979 image->bo = orig_image->bo;
980 image->internal_format = orig_image->internal_format;
981 image->planar_format = orig_image->planar_format;
982 image->dri_format = orig_image->dri_format;
983 image->format = orig_image->format;
984 image->modifier = orig_image->modifier;
985 image->offset = orig_image->offset;
986 image->width = orig_image->width;
987 image->height = orig_image->height;
988 image->pitch = orig_image->pitch;
989 image->tile_x = orig_image->tile_x;
990 image->tile_y = orig_image->tile_y;
991 image->has_depthstencil = orig_image->has_depthstencil;
992 image->data = loaderPrivate;
993 image->aux_offset = orig_image->aux_offset;
994 image->aux_pitch = orig_image->aux_pitch;
995
996 memcpy(image->strides, orig_image->strides, sizeof(image->strides));
997 memcpy(image->offsets, orig_image->offsets, sizeof(image->offsets));
998
999 return image;
1000 }
1001
1002 static GLboolean
1003 intel_validate_usage(__DRIimage *image, unsigned int use)
1004 {
1005 if (use & __DRI_IMAGE_USE_CURSOR) {
1006 if (image->width != 64 || image->height != 64)
1007 return GL_FALSE;
1008 }
1009
1010 return GL_TRUE;
1011 }
1012
1013 static __DRIimage *
1014 intel_create_image_from_names(__DRIscreen *dri_screen,
1015 int width, int height, int fourcc,
1016 int *names, int num_names,
1017 int *strides, int *offsets,
1018 void *loaderPrivate)
1019 {
1020 const struct intel_image_format *f = NULL;
1021 __DRIimage *image;
1022 int i, index;
1023
1024 if (dri_screen == NULL || names == NULL || num_names != 1)
1025 return NULL;
1026
1027 f = intel_image_format_lookup(fourcc);
1028 if (f == NULL)
1029 return NULL;
1030
1031 image = intel_create_image_from_name(dri_screen, width, height,
1032 __DRI_IMAGE_FORMAT_NONE,
1033 names[0], strides[0],
1034 loaderPrivate);
1035
1036 if (image == NULL)
1037 return NULL;
1038
1039 image->planar_format = f;
1040 for (i = 0; i < f->nplanes; i++) {
1041 index = f->planes[i].buffer_index;
1042 image->offsets[index] = offsets[index];
1043 image->strides[index] = strides[index];
1044 }
1045
1046 return image;
1047 }
1048
1049 static __DRIimage *
1050 intel_create_image_from_fds_common(__DRIscreen *dri_screen,
1051 int width, int height, int fourcc,
1052 uint64_t modifier, int *fds, int num_fds,
1053 int *strides, int *offsets,
1054 void *loaderPrivate)
1055 {
1056 struct intel_screen *screen = dri_screen->driverPrivate;
1057 const struct intel_image_format *f;
1058 __DRIimage *image;
1059 int i, index;
1060 bool ok;
1061
1062 if (fds == NULL || num_fds < 1)
1063 return NULL;
1064
1065 f = intel_image_format_lookup(fourcc);
1066 if (f == NULL)
1067 return NULL;
1068
1069 if (modifier != DRM_FORMAT_MOD_INVALID &&
1070 !modifier_is_supported(&screen->devinfo, f, 0, modifier))
1071 return NULL;
1072
1073 if (f->nplanes == 1)
1074 image = intel_allocate_image(screen, f->planes[0].dri_format,
1075 loaderPrivate);
1076 else
1077 image = intel_allocate_image(screen, __DRI_IMAGE_FORMAT_NONE,
1078 loaderPrivate);
1079
1080 if (image == NULL)
1081 return NULL;
1082
1083 image->width = width;
1084 image->height = height;
1085 image->pitch = strides[0];
1086
1087 image->planar_format = f;
1088
1089 if (modifier != DRM_FORMAT_MOD_INVALID) {
1090 const struct isl_drm_modifier_info *mod_info =
1091 isl_drm_modifier_get_info(modifier);
1092 uint32_t tiling = isl_tiling_to_i915_tiling(mod_info->tiling);
1093 image->bo = brw_bo_gem_create_from_prime_tiled(screen->bufmgr, fds[0],
1094 tiling, strides[0]);
1095 } else {
1096 image->bo = brw_bo_gem_create_from_prime(screen->bufmgr, fds[0]);
1097 }
1098
1099 if (image->bo == NULL) {
1100 free(image);
1101 return NULL;
1102 }
1103
1104 /* We only support all planes from the same bo.
1105 * brw_bo_gem_create_from_prime() should return the same pointer for all
1106 * fds received here */
1107 for (i = 1; i < num_fds; i++) {
1108 struct brw_bo *aux = brw_bo_gem_create_from_prime(screen->bufmgr, fds[i]);
1109 brw_bo_unreference(aux);
1110 if (aux != image->bo) {
1111 brw_bo_unreference(image->bo);
1112 free(image);
1113 return NULL;
1114 }
1115 }
1116
1117 if (modifier != DRM_FORMAT_MOD_INVALID)
1118 image->modifier = modifier;
1119 else
1120 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
1121
1122 const struct isl_drm_modifier_info *mod_info =
1123 isl_drm_modifier_get_info(image->modifier);
1124
1125 int size = 0;
1126 struct isl_surf surf;
1127 for (i = 0; i < f->nplanes; i++) {
1128 index = f->planes[i].buffer_index;
1129 image->offsets[index] = offsets[index];
1130 image->strides[index] = strides[index];
1131
1132 mesa_format format = driImageFormatToGLFormat(f->planes[i].dri_format);
1133 /* The images we will create are actually based on the RGBA non-sRGB
1134 * version of the format.
1135 */
1136 format = _mesa_format_fallback_rgbx_to_rgba(format);
1137 format = _mesa_get_srgb_format_linear(format);
1138
1139 ok = isl_surf_init(&screen->isl_dev, &surf,
1140 .dim = ISL_SURF_DIM_2D,
1141 .format = brw_isl_format_for_mesa_format(format),
1142 .width = image->width >> f->planes[i].width_shift,
1143 .height = image->height >> f->planes[i].height_shift,
1144 .depth = 1,
1145 .levels = 1,
1146 .array_len = 1,
1147 .samples = 1,
1148 .row_pitch_B = strides[index],
1149 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
1150 ISL_SURF_USAGE_TEXTURE_BIT |
1151 ISL_SURF_USAGE_STORAGE_BIT,
1152 .tiling_flags = (1 << mod_info->tiling));
1153 if (!ok) {
1154 brw_bo_unreference(image->bo);
1155 free(image);
1156 return NULL;
1157 }
1158
1159 const int end = offsets[index] + surf.size_B;
1160 if (size < end)
1161 size = end;
1162 }
1163
1164 if (mod_info->aux_usage == ISL_AUX_USAGE_CCS_E) {
1165 /* Even though we initialize surf in the loop above, we know that
1166 * anything with CCS_E will have exactly one plane so surf is properly
1167 * initialized when we get here.
1168 */
1169 assert(f->nplanes == 1);
1170
1171 image->aux_offset = offsets[1];
1172 image->aux_pitch = strides[1];
1173
1174 /* Scanout hardware requires that the CCS be placed after the main
1175 * surface in memory. We consider any CCS that is placed any earlier in
1176 * memory to be invalid and reject it.
1177 *
1178 * At some point in the future, this restriction may be relaxed if the
1179 * hardware becomes less strict but we may need a new modifier for that.
1180 */
1181 assert(size > 0);
1182 if (image->aux_offset < size) {
1183 brw_bo_unreference(image->bo);
1184 free(image);
1185 return NULL;
1186 }
1187
1188 struct isl_surf aux_surf;
1189 ok = isl_surf_get_ccs_surf(&screen->isl_dev, &surf, &aux_surf,
1190 image->aux_pitch);
1191 if (!ok) {
1192 brw_bo_unreference(image->bo);
1193 free(image);
1194 return NULL;
1195 }
1196
1197 image->aux_size = aux_surf.size_B;
1198
1199 const int end = image->aux_offset + aux_surf.size_B;
1200 if (size < end)
1201 size = end;
1202 } else {
1203 assert(mod_info->aux_usage == ISL_AUX_USAGE_NONE);
1204 }
1205
1206 /* Check that the requested image actually fits within the BO. 'size'
1207 * is already relative to the offsets, so we don't need to add that. */
1208 if (image->bo->size == 0) {
1209 image->bo->size = size;
1210 } else if (size > image->bo->size) {
1211 brw_bo_unreference(image->bo);
1212 free(image);
1213 return NULL;
1214 }
1215
1216 if (f->nplanes == 1) {
1217 image->offset = image->offsets[0];
1218 intel_image_warn_if_unaligned(image, __func__);
1219 }
1220
1221 return image;
1222 }
1223
1224 static __DRIimage *
1225 intel_create_image_from_fds(__DRIscreen *dri_screen,
1226 int width, int height, int fourcc,
1227 int *fds, int num_fds, int *strides, int *offsets,
1228 void *loaderPrivate)
1229 {
1230 return intel_create_image_from_fds_common(dri_screen, width, height, fourcc,
1231 DRM_FORMAT_MOD_INVALID,
1232 fds, num_fds, strides, offsets,
1233 loaderPrivate);
1234 }
1235
1236 static __DRIimage *
1237 intel_create_image_from_dma_bufs2(__DRIscreen *dri_screen,
1238 int width, int height,
1239 int fourcc, uint64_t modifier,
1240 int *fds, int num_fds,
1241 int *strides, int *offsets,
1242 enum __DRIYUVColorSpace yuv_color_space,
1243 enum __DRISampleRange sample_range,
1244 enum __DRIChromaSiting horizontal_siting,
1245 enum __DRIChromaSiting vertical_siting,
1246 unsigned *error,
1247 void *loaderPrivate)
1248 {
1249 __DRIimage *image;
1250 const struct intel_image_format *f = intel_image_format_lookup(fourcc);
1251
1252 if (!f) {
1253 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
1254 return NULL;
1255 }
1256
1257 image = intel_create_image_from_fds_common(dri_screen, width, height,
1258 fourcc, modifier,
1259 fds, num_fds, strides, offsets,
1260 loaderPrivate);
1261
1262 /*
1263 * Invalid parameters and any inconsistencies between are assumed to be
1264 * checked by the caller. Therefore besides unsupported formats one can fail
1265 * only in allocation.
1266 */
1267 if (!image) {
1268 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
1269 return NULL;
1270 }
1271
1272 image->yuv_color_space = yuv_color_space;
1273 image->sample_range = sample_range;
1274 image->horizontal_siting = horizontal_siting;
1275 image->vertical_siting = vertical_siting;
1276
1277 *error = __DRI_IMAGE_ERROR_SUCCESS;
1278 return image;
1279 }
1280
1281 static __DRIimage *
1282 intel_create_image_from_dma_bufs(__DRIscreen *dri_screen,
1283 int width, int height, int fourcc,
1284 int *fds, int num_fds,
1285 int *strides, int *offsets,
1286 enum __DRIYUVColorSpace yuv_color_space,
1287 enum __DRISampleRange sample_range,
1288 enum __DRIChromaSiting horizontal_siting,
1289 enum __DRIChromaSiting vertical_siting,
1290 unsigned *error,
1291 void *loaderPrivate)
1292 {
1293 return intel_create_image_from_dma_bufs2(dri_screen, width, height,
1294 fourcc, DRM_FORMAT_MOD_INVALID,
1295 fds, num_fds, strides, offsets,
1296 yuv_color_space,
1297 sample_range,
1298 horizontal_siting,
1299 vertical_siting,
1300 error,
1301 loaderPrivate);
1302 }
1303
1304 static bool
1305 intel_image_format_is_supported(const struct gen_device_info *devinfo,
1306 const struct intel_image_format *fmt)
1307 {
1308 /* Currently, all formats with an intel_image_format are available on all
1309 * platforms so there's really nothing to check there.
1310 */
1311
1312 #ifndef NDEBUG
1313 if (fmt->nplanes == 1) {
1314 mesa_format format = driImageFormatToGLFormat(fmt->planes[0].dri_format);
1315 /* The images we will create are actually based on the RGBA non-sRGB
1316 * version of the format.
1317 */
1318 format = _mesa_format_fallback_rgbx_to_rgba(format);
1319 format = _mesa_get_srgb_format_linear(format);
1320 enum isl_format isl_format = brw_isl_format_for_mesa_format(format);
1321 assert(isl_format_supports_rendering(devinfo, isl_format));
1322 }
1323 #endif
1324
1325 return true;
1326 }
1327
1328 static GLboolean
1329 intel_query_dma_buf_formats(__DRIscreen *_screen, int max,
1330 int *formats, int *count)
1331 {
1332 struct intel_screen *screen = _screen->driverPrivate;
1333 int num_formats = 0, i;
1334
1335 for (i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
1336 /* These two formats are valid DRI formats but do not exist in
1337 * drm_fourcc.h in the Linux kernel. We don't want to accidentally
1338 * advertise them through the EGL layer.
1339 */
1340 if (intel_image_formats[i].fourcc == __DRI_IMAGE_FOURCC_SARGB8888 ||
1341 intel_image_formats[i].fourcc == __DRI_IMAGE_FOURCC_SABGR8888)
1342 continue;
1343
1344 if (!intel_image_format_is_supported(&screen->devinfo,
1345 &intel_image_formats[i]))
1346 continue;
1347
1348 num_formats++;
1349 if (max == 0)
1350 continue;
1351
1352 formats[num_formats - 1] = intel_image_formats[i].fourcc;
1353 if (num_formats >= max)
1354 break;
1355 }
1356
1357 *count = num_formats;
1358 return true;
1359 }
1360
1361 static GLboolean
1362 intel_query_dma_buf_modifiers(__DRIscreen *_screen, int fourcc, int max,
1363 uint64_t *modifiers,
1364 unsigned int *external_only,
1365 int *count)
1366 {
1367 struct intel_screen *screen = _screen->driverPrivate;
1368 const struct intel_image_format *f;
1369 int num_mods = 0, i;
1370
1371 f = intel_image_format_lookup(fourcc);
1372 if (f == NULL)
1373 return false;
1374
1375 if (!intel_image_format_is_supported(&screen->devinfo, f))
1376 return false;
1377
1378 for (i = 0; i < ARRAY_SIZE(supported_modifiers); i++) {
1379 uint64_t modifier = supported_modifiers[i].modifier;
1380 if (!modifier_is_supported(&screen->devinfo, f, 0, modifier))
1381 continue;
1382
1383 num_mods++;
1384 if (max == 0)
1385 continue;
1386
1387 modifiers[num_mods - 1] = modifier;
1388 if (num_mods >= max)
1389 break;
1390 }
1391
1392 if (external_only != NULL) {
1393 for (i = 0; i < num_mods && i < max; i++) {
1394 if (f->components == __DRI_IMAGE_COMPONENTS_Y_U_V ||
1395 f->components == __DRI_IMAGE_COMPONENTS_Y_UV ||
1396 f->components == __DRI_IMAGE_COMPONENTS_AYUV ||
1397 f->components == __DRI_IMAGE_COMPONENTS_XYUV ||
1398 f->components == __DRI_IMAGE_COMPONENTS_Y_XUXV ||
1399 f->components == __DRI_IMAGE_COMPONENTS_Y_UXVX) {
1400 external_only[i] = GL_TRUE;
1401 }
1402 else {
1403 external_only[i] = GL_FALSE;
1404 }
1405 }
1406 }
1407
1408 *count = num_mods;
1409 return true;
1410 }
1411
1412 static __DRIimage *
1413 intel_from_planar(__DRIimage *parent, int plane, void *loaderPrivate)
1414 {
1415 int width, height, offset, stride, size, dri_format;
1416 __DRIimage *image;
1417
1418 if (parent == NULL)
1419 return NULL;
1420
1421 width = parent->width;
1422 height = parent->height;
1423
1424 const struct intel_image_format *f = parent->planar_format;
1425
1426 if (f && plane < f->nplanes) {
1427 /* Use the planar format definition. */
1428 width >>= f->planes[plane].width_shift;
1429 height >>= f->planes[plane].height_shift;
1430 dri_format = f->planes[plane].dri_format;
1431 int index = f->planes[plane].buffer_index;
1432 offset = parent->offsets[index];
1433 stride = parent->strides[index];
1434 size = height * stride;
1435 } else if (plane == 0) {
1436 /* The only plane of a non-planar image: copy the parent definition
1437 * directly. */
1438 dri_format = parent->dri_format;
1439 offset = parent->offset;
1440 stride = parent->pitch;
1441 size = height * stride;
1442 } else if (plane == 1 && parent->modifier != DRM_FORMAT_MOD_INVALID &&
1443 isl_drm_modifier_has_aux(parent->modifier)) {
1444 /* Auxiliary plane */
1445 dri_format = parent->dri_format;
1446 offset = parent->aux_offset;
1447 stride = parent->aux_pitch;
1448 size = parent->aux_size;
1449 } else {
1450 return NULL;
1451 }
1452
1453 if (offset + size > parent->bo->size) {
1454 _mesa_warning(NULL, "intel_from_planar: subimage out of bounds");
1455 return NULL;
1456 }
1457
1458 image = intel_allocate_image(parent->screen, dri_format, loaderPrivate);
1459 if (image == NULL)
1460 return NULL;
1461
1462 image->bo = parent->bo;
1463 brw_bo_reference(parent->bo);
1464 image->modifier = parent->modifier;
1465
1466 image->width = width;
1467 image->height = height;
1468 image->pitch = stride;
1469 image->offset = offset;
1470
1471 intel_image_warn_if_unaligned(image, __func__);
1472
1473 return image;
1474 }
1475
1476 static const __DRIimageExtension intelImageExtension = {
1477 .base = { __DRI_IMAGE, 16 },
1478
1479 .createImageFromName = intel_create_image_from_name,
1480 .createImageFromRenderbuffer = intel_create_image_from_renderbuffer,
1481 .destroyImage = intel_destroy_image,
1482 .createImage = intel_create_image,
1483 .queryImage = intel_query_image,
1484 .dupImage = intel_dup_image,
1485 .validateUsage = intel_validate_usage,
1486 .createImageFromNames = intel_create_image_from_names,
1487 .fromPlanar = intel_from_planar,
1488 .createImageFromTexture = intel_create_image_from_texture,
1489 .createImageFromFds = intel_create_image_from_fds,
1490 .createImageFromDmaBufs = intel_create_image_from_dma_bufs,
1491 .blitImage = NULL,
1492 .getCapabilities = NULL,
1493 .mapImage = intel_map_image,
1494 .unmapImage = intel_unmap_image,
1495 .createImageWithModifiers = intel_create_image_with_modifiers,
1496 .createImageFromDmaBufs2 = intel_create_image_from_dma_bufs2,
1497 .queryDmaBufFormats = intel_query_dma_buf_formats,
1498 .queryDmaBufModifiers = intel_query_dma_buf_modifiers,
1499 .queryDmaBufFormatModifierAttribs = intel_query_format_modifier_attribs,
1500 };
1501
1502 static uint64_t
1503 get_aperture_size(int fd)
1504 {
1505 struct drm_i915_gem_get_aperture aperture;
1506
1507 if (drmIoctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture) != 0)
1508 return 0;
1509
1510 return aperture.aper_size;
1511 }
1512
1513 static int
1514 brw_query_renderer_integer(__DRIscreen *dri_screen,
1515 int param, unsigned int *value)
1516 {
1517 const struct intel_screen *const screen =
1518 (struct intel_screen *) dri_screen->driverPrivate;
1519
1520 switch (param) {
1521 case __DRI2_RENDERER_VENDOR_ID:
1522 value[0] = 0x8086;
1523 return 0;
1524 case __DRI2_RENDERER_DEVICE_ID:
1525 value[0] = screen->deviceID;
1526 return 0;
1527 case __DRI2_RENDERER_ACCELERATED:
1528 value[0] = 1;
1529 return 0;
1530 case __DRI2_RENDERER_VIDEO_MEMORY: {
1531 /* Once a batch uses more than 75% of the maximum mappable size, we
1532 * assume that there's some fragmentation, and we start doing extra
1533 * flushing, etc. That's the big cliff apps will care about.
1534 */
1535 const unsigned gpu_mappable_megabytes =
1536 screen->aperture_threshold / (1024 * 1024);
1537
1538 const long system_memory_pages = sysconf(_SC_PHYS_PAGES);
1539 const long system_page_size = sysconf(_SC_PAGE_SIZE);
1540
1541 if (system_memory_pages <= 0 || system_page_size <= 0)
1542 return -1;
1543
1544 const uint64_t system_memory_bytes = (uint64_t) system_memory_pages
1545 * (uint64_t) system_page_size;
1546
1547 const unsigned system_memory_megabytes =
1548 (unsigned) (system_memory_bytes / (1024 * 1024));
1549
1550 value[0] = MIN2(system_memory_megabytes, gpu_mappable_megabytes);
1551 return 0;
1552 }
1553 case __DRI2_RENDERER_UNIFIED_MEMORY_ARCHITECTURE:
1554 value[0] = 1;
1555 return 0;
1556 case __DRI2_RENDERER_HAS_TEXTURE_3D:
1557 value[0] = 1;
1558 return 0;
1559 case __DRI2_RENDERER_HAS_CONTEXT_PRIORITY:
1560 value[0] = 0;
1561 if (brw_hw_context_set_priority(screen->bufmgr,
1562 0, GEN_CONTEXT_HIGH_PRIORITY) == 0)
1563 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_HIGH;
1564 if (brw_hw_context_set_priority(screen->bufmgr,
1565 0, GEN_CONTEXT_LOW_PRIORITY) == 0)
1566 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_LOW;
1567 /* reset to default last, just in case */
1568 if (brw_hw_context_set_priority(screen->bufmgr,
1569 0, GEN_CONTEXT_MEDIUM_PRIORITY) == 0)
1570 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_MEDIUM;
1571 return 0;
1572 case __DRI2_RENDERER_HAS_FRAMEBUFFER_SRGB:
1573 value[0] = 1;
1574 return 0;
1575 default:
1576 return driQueryRendererIntegerCommon(dri_screen, param, value);
1577 }
1578
1579 return -1;
1580 }
1581
1582 static int
1583 brw_query_renderer_string(__DRIscreen *dri_screen,
1584 int param, const char **value)
1585 {
1586 const struct intel_screen *screen =
1587 (struct intel_screen *) dri_screen->driverPrivate;
1588
1589 switch (param) {
1590 case __DRI2_RENDERER_VENDOR_ID:
1591 value[0] = brw_vendor_string;
1592 return 0;
1593 case __DRI2_RENDERER_DEVICE_ID:
1594 value[0] = brw_get_renderer_string(screen);
1595 return 0;
1596 default:
1597 break;
1598 }
1599
1600 return -1;
1601 }
1602
1603 static void
1604 brw_set_cache_funcs(__DRIscreen *dri_screen,
1605 __DRIblobCacheSet set, __DRIblobCacheGet get)
1606 {
1607 const struct intel_screen *const screen =
1608 (struct intel_screen *) dri_screen->driverPrivate;
1609
1610 if (!screen->disk_cache)
1611 return;
1612
1613 disk_cache_set_callbacks(screen->disk_cache, set, get);
1614 }
1615
1616 static const __DRI2rendererQueryExtension intelRendererQueryExtension = {
1617 .base = { __DRI2_RENDERER_QUERY, 1 },
1618
1619 .queryInteger = brw_query_renderer_integer,
1620 .queryString = brw_query_renderer_string
1621 };
1622
1623 static const __DRIrobustnessExtension dri2Robustness = {
1624 .base = { __DRI2_ROBUSTNESS, 1 }
1625 };
1626
1627 static const __DRI2blobExtension intelBlobExtension = {
1628 .base = { __DRI2_BLOB, 1 },
1629 .set_cache_funcs = brw_set_cache_funcs
1630 };
1631
1632 static const __DRImutableRenderBufferDriverExtension intelMutableRenderBufferExtension = {
1633 .base = { __DRI_MUTABLE_RENDER_BUFFER_DRIVER, 1 },
1634 };
1635
1636 static const __DRIextension *screenExtensions[] = {
1637 &intelTexBufferExtension.base,
1638 &intelFenceExtension.base,
1639 &intelFlushExtension.base,
1640 &intelImageExtension.base,
1641 &intelRendererQueryExtension.base,
1642 &intelMutableRenderBufferExtension.base,
1643 &dri2ConfigQueryExtension.base,
1644 &dri2NoErrorExtension.base,
1645 &intelBlobExtension.base,
1646 NULL
1647 };
1648
1649 static const __DRIextension *intelRobustScreenExtensions[] = {
1650 &intelTexBufferExtension.base,
1651 &intelFenceExtension.base,
1652 &intelFlushExtension.base,
1653 &intelImageExtension.base,
1654 &intelRendererQueryExtension.base,
1655 &intelMutableRenderBufferExtension.base,
1656 &dri2ConfigQueryExtension.base,
1657 &dri2Robustness.base,
1658 &dri2NoErrorExtension.base,
1659 &intelBlobExtension.base,
1660 NULL
1661 };
1662
1663 static int
1664 intel_get_param(struct intel_screen *screen, int param, int *value)
1665 {
1666 int ret = 0;
1667 struct drm_i915_getparam gp;
1668
1669 memset(&gp, 0, sizeof(gp));
1670 gp.param = param;
1671 gp.value = value;
1672
1673 if (drmIoctl(screen->driScrnPriv->fd, DRM_IOCTL_I915_GETPARAM, &gp) == -1) {
1674 ret = -errno;
1675 if (ret != -EINVAL)
1676 _mesa_warning(NULL, "drm_i915_getparam: %d", ret);
1677 }
1678
1679 return ret;
1680 }
1681
1682 static bool
1683 intel_get_boolean(struct intel_screen *screen, int param)
1684 {
1685 int value = 0;
1686 return (intel_get_param(screen, param, &value) == 0) && value;
1687 }
1688
1689 static int
1690 intel_get_integer(struct intel_screen *screen, int param)
1691 {
1692 int value = -1;
1693
1694 if (intel_get_param(screen, param, &value) == 0)
1695 return value;
1696
1697 return -1;
1698 }
1699
1700 static void
1701 intelDestroyScreen(__DRIscreen * sPriv)
1702 {
1703 struct intel_screen *screen = sPriv->driverPrivate;
1704
1705 brw_bufmgr_destroy(screen->bufmgr);
1706 driDestroyOptionInfo(&screen->optionCache);
1707
1708 disk_cache_destroy(screen->disk_cache);
1709
1710 ralloc_free(screen);
1711 sPriv->driverPrivate = NULL;
1712 }
1713
1714
1715 /**
1716 * Create a gl_framebuffer and attach it to __DRIdrawable::driverPrivate.
1717 *
1718 *_This implements driDriverAPI::createNewDrawable, which the DRI layer calls
1719 * when creating a EGLSurface, GLXDrawable, or GLXPixmap. Despite the name,
1720 * this does not allocate GPU memory.
1721 */
1722 static GLboolean
1723 intelCreateBuffer(__DRIscreen *dri_screen,
1724 __DRIdrawable * driDrawPriv,
1725 const struct gl_config * mesaVis, GLboolean isPixmap)
1726 {
1727 struct intel_renderbuffer *rb;
1728 struct intel_screen *screen = (struct intel_screen *)
1729 dri_screen->driverPrivate;
1730 mesa_format rgbFormat;
1731 unsigned num_samples =
1732 intel_quantize_num_samples(screen, mesaVis->samples);
1733
1734 if (isPixmap)
1735 return false;
1736
1737 struct gl_framebuffer *fb = CALLOC_STRUCT(gl_framebuffer);
1738 if (!fb)
1739 return false;
1740
1741 _mesa_initialize_window_framebuffer(fb, mesaVis);
1742
1743 if (screen->winsys_msaa_samples_override != -1) {
1744 num_samples = screen->winsys_msaa_samples_override;
1745 fb->Visual.samples = num_samples;
1746 }
1747
1748 if (mesaVis->redBits == 16 && mesaVis->alphaBits > 0 && mesaVis->floatMode) {
1749 rgbFormat = MESA_FORMAT_RGBA_FLOAT16;
1750 } else if (mesaVis->redBits == 16 && mesaVis->floatMode) {
1751 rgbFormat = MESA_FORMAT_RGBX_FLOAT16;
1752 } else if (mesaVis->redBits == 10 && mesaVis->alphaBits > 0) {
1753 rgbFormat = mesaVis->redMask == 0x3ff00000 ? MESA_FORMAT_B10G10R10A2_UNORM
1754 : MESA_FORMAT_R10G10B10A2_UNORM;
1755 } else if (mesaVis->redBits == 10) {
1756 rgbFormat = mesaVis->redMask == 0x3ff00000 ? MESA_FORMAT_B10G10R10X2_UNORM
1757 : MESA_FORMAT_R10G10B10X2_UNORM;
1758 } else if (mesaVis->redBits == 5) {
1759 rgbFormat = mesaVis->redMask == 0x1f ? MESA_FORMAT_R5G6B5_UNORM
1760 : MESA_FORMAT_B5G6R5_UNORM;
1761 } else if (mesaVis->sRGBCapable) {
1762 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1763 : MESA_FORMAT_B8G8R8A8_SRGB;
1764 } else if (mesaVis->alphaBits == 0) {
1765 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8X8_UNORM
1766 : MESA_FORMAT_B8G8R8X8_UNORM;
1767 } else {
1768 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1769 : MESA_FORMAT_B8G8R8A8_SRGB;
1770 fb->Visual.sRGBCapable = true;
1771 }
1772
1773 /* mesaVis->sRGBCapable was set, user is asking for sRGB */
1774 bool srgb_cap_set = mesaVis->redBits >= 8 && mesaVis->sRGBCapable;
1775
1776 /* setup the hardware-based renderbuffers */
1777 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1778 _mesa_attach_and_own_rb(fb, BUFFER_FRONT_LEFT, &rb->Base.Base);
1779 rb->need_srgb = srgb_cap_set;
1780
1781 if (mesaVis->doubleBufferMode) {
1782 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1783 _mesa_attach_and_own_rb(fb, BUFFER_BACK_LEFT, &rb->Base.Base);
1784 rb->need_srgb = srgb_cap_set;
1785 }
1786
1787 /*
1788 * Assert here that the gl_config has an expected depth/stencil bit
1789 * combination: one of d24/s8, d16/s0, d0/s0. (See intelInitScreen2(),
1790 * which constructs the advertised configs.)
1791 */
1792 if (mesaVis->depthBits == 24) {
1793 assert(mesaVis->stencilBits == 8);
1794
1795 if (screen->devinfo.has_hiz_and_separate_stencil) {
1796 rb = intel_create_private_renderbuffer(screen,
1797 MESA_FORMAT_Z24_UNORM_X8_UINT,
1798 num_samples);
1799 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1800 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_S_UINT8,
1801 num_samples);
1802 _mesa_attach_and_own_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1803 } else {
1804 /*
1805 * Use combined depth/stencil. Note that the renderbuffer is
1806 * attached to two attachment points.
1807 */
1808 rb = intel_create_private_renderbuffer(screen,
1809 MESA_FORMAT_Z24_UNORM_S8_UINT,
1810 num_samples);
1811 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1812 _mesa_attach_and_reference_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1813 }
1814 }
1815 else if (mesaVis->depthBits == 16) {
1816 assert(mesaVis->stencilBits == 0);
1817 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_Z_UNORM16,
1818 num_samples);
1819 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1820 }
1821 else {
1822 assert(mesaVis->depthBits == 0);
1823 assert(mesaVis->stencilBits == 0);
1824 }
1825
1826 /* now add any/all software-based renderbuffers we may need */
1827 _swrast_add_soft_renderbuffers(fb,
1828 false, /* never sw color */
1829 false, /* never sw depth */
1830 false, /* never sw stencil */
1831 mesaVis->accumRedBits > 0,
1832 false, /* never sw alpha */
1833 false /* never sw aux */ );
1834 driDrawPriv->driverPrivate = fb;
1835
1836 return true;
1837 }
1838
1839 static void
1840 intelDestroyBuffer(__DRIdrawable * driDrawPriv)
1841 {
1842 struct gl_framebuffer *fb = driDrawPriv->driverPrivate;
1843
1844 _mesa_reference_framebuffer(&fb, NULL);
1845 }
1846
1847 static void
1848 intel_cs_timestamp_frequency(struct intel_screen *screen)
1849 {
1850 /* We shouldn't need to update gen_device_info.timestamp_frequency prior to
1851 * gen10, PCI-id is enough to figure it out.
1852 */
1853 assert(screen->devinfo.gen >= 10);
1854
1855 int ret, freq;
1856
1857 ret = intel_get_param(screen, I915_PARAM_CS_TIMESTAMP_FREQUENCY,
1858 &freq);
1859 if (ret < 0) {
1860 _mesa_warning(NULL,
1861 "Kernel 4.15 required to read the CS timestamp frequency.\n");
1862 return;
1863 }
1864
1865 screen->devinfo.timestamp_frequency = freq;
1866 }
1867
1868 static void
1869 intel_detect_sseu(struct intel_screen *screen)
1870 {
1871 assert(screen->devinfo.gen >= 8);
1872 int ret;
1873
1874 screen->subslice_total = -1;
1875 screen->eu_total = -1;
1876
1877 ret = intel_get_param(screen, I915_PARAM_SUBSLICE_TOTAL,
1878 &screen->subslice_total);
1879 if (ret < 0 && ret != -EINVAL)
1880 goto err_out;
1881
1882 ret = intel_get_param(screen,
1883 I915_PARAM_EU_TOTAL, &screen->eu_total);
1884 if (ret < 0 && ret != -EINVAL)
1885 goto err_out;
1886
1887 /* Without this information, we cannot get the right Braswell brandstrings,
1888 * and we have to use conservative numbers for GPGPU on many platforms, but
1889 * otherwise, things will just work.
1890 */
1891 if (screen->subslice_total < 1 || screen->eu_total < 1)
1892 _mesa_warning(NULL,
1893 "Kernel 4.1 required to properly query GPU properties.\n");
1894
1895 return;
1896
1897 err_out:
1898 screen->subslice_total = -1;
1899 screen->eu_total = -1;
1900 _mesa_warning(NULL, "Failed to query GPU properties (%s).\n", strerror(-ret));
1901 }
1902
1903 static bool
1904 intel_init_bufmgr(struct intel_screen *screen)
1905 {
1906 __DRIscreen *dri_screen = screen->driScrnPriv;
1907
1908 if (getenv("INTEL_NO_HW") != NULL)
1909 screen->no_hw = true;
1910
1911 bool bo_reuse = false;
1912 int bo_reuse_mode = driQueryOptioni(&screen->optionCache, "bo_reuse");
1913 switch (bo_reuse_mode) {
1914 case DRI_CONF_BO_REUSE_DISABLED:
1915 break;
1916 case DRI_CONF_BO_REUSE_ALL:
1917 bo_reuse = true;
1918 break;
1919 }
1920
1921 screen->bufmgr = brw_bufmgr_init(&screen->devinfo, dri_screen->fd, bo_reuse);
1922 if (screen->bufmgr == NULL) {
1923 fprintf(stderr, "[%s:%u] Error initializing buffer manager.\n",
1924 __func__, __LINE__);
1925 return false;
1926 }
1927
1928 if (!intel_get_boolean(screen, I915_PARAM_HAS_EXEC_NO_RELOC)) {
1929 fprintf(stderr, "[%s: %u] Kernel 3.9 required.\n", __func__, __LINE__);
1930 return false;
1931 }
1932
1933 return true;
1934 }
1935
1936 static bool
1937 intel_detect_swizzling(struct intel_screen *screen)
1938 {
1939 /* Broadwell PRM says:
1940 *
1941 * "Before Gen8, there was a historical configuration control field to
1942 * swizzle address bit[6] for in X/Y tiling modes. This was set in three
1943 * different places: TILECTL[1:0], ARB_MODE[5:4], and
1944 * DISP_ARB_CTL[14:13].
1945 *
1946 * For Gen8 and subsequent generations, the swizzle fields are all
1947 * reserved, and the CPU's memory controller performs all address
1948 * swizzling modifications."
1949 */
1950 if (screen->devinfo.gen >= 8)
1951 return false;
1952
1953 uint32_t tiling = I915_TILING_X;
1954 uint32_t swizzle_mode = 0;
1955 struct brw_bo *buffer =
1956 brw_bo_alloc_tiled(screen->bufmgr, "swizzle test", 32768,
1957 BRW_MEMZONE_OTHER, tiling, 512, 0);
1958 if (buffer == NULL)
1959 return false;
1960
1961 brw_bo_get_tiling(buffer, &tiling, &swizzle_mode);
1962 brw_bo_unreference(buffer);
1963
1964 return swizzle_mode != I915_BIT_6_SWIZZLE_NONE;
1965 }
1966
1967 static int
1968 intel_detect_timestamp(struct intel_screen *screen)
1969 {
1970 uint64_t dummy = 0, last = 0;
1971 int upper, lower, loops;
1972
1973 /* On 64bit systems, some old kernels trigger a hw bug resulting in the
1974 * TIMESTAMP register being shifted and the low 32bits always zero.
1975 *
1976 * More recent kernels offer an interface to read the full 36bits
1977 * everywhere.
1978 */
1979 if (brw_reg_read(screen->bufmgr, TIMESTAMP | 1, &dummy) == 0)
1980 return 3;
1981
1982 /* Determine if we have a 32bit or 64bit kernel by inspecting the
1983 * upper 32bits for a rapidly changing timestamp.
1984 */
1985 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &last))
1986 return 0;
1987
1988 upper = lower = 0;
1989 for (loops = 0; loops < 10; loops++) {
1990 /* The TIMESTAMP should change every 80ns, so several round trips
1991 * through the kernel should be enough to advance it.
1992 */
1993 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &dummy))
1994 return 0;
1995
1996 upper += (dummy >> 32) != (last >> 32);
1997 if (upper > 1) /* beware 32bit counter overflow */
1998 return 2; /* upper dword holds the low 32bits of the timestamp */
1999
2000 lower += (dummy & 0xffffffff) != (last & 0xffffffff);
2001 if (lower > 1)
2002 return 1; /* timestamp is unshifted */
2003
2004 last = dummy;
2005 }
2006
2007 /* No advancement? No timestamp! */
2008 return 0;
2009 }
2010
2011 /**
2012 * Test if we can use MI_LOAD_REGISTER_MEM from an untrusted batchbuffer.
2013 *
2014 * Some combinations of hardware and kernel versions allow this feature,
2015 * while others don't. Instead of trying to enumerate every case, just
2016 * try and write a register and see if works.
2017 */
2018 static bool
2019 intel_detect_pipelined_register(struct intel_screen *screen,
2020 int reg, uint32_t expected_value, bool reset)
2021 {
2022 if (screen->no_hw)
2023 return false;
2024
2025 struct brw_bo *results, *bo;
2026 uint32_t *batch;
2027 uint32_t offset = 0;
2028 void *map;
2029 bool success = false;
2030
2031 /* Create a zero'ed temporary buffer for reading our results */
2032 results = brw_bo_alloc(screen->bufmgr, "registers", 4096, BRW_MEMZONE_OTHER);
2033 if (results == NULL)
2034 goto err;
2035
2036 bo = brw_bo_alloc(screen->bufmgr, "batchbuffer", 4096, BRW_MEMZONE_OTHER);
2037 if (bo == NULL)
2038 goto err_results;
2039
2040 map = brw_bo_map(NULL, bo, MAP_WRITE);
2041 if (!map)
2042 goto err_batch;
2043
2044 batch = map;
2045
2046 /* Write the register. */
2047 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
2048 *batch++ = reg;
2049 *batch++ = expected_value;
2050
2051 /* Save the register's value back to the buffer. */
2052 *batch++ = MI_STORE_REGISTER_MEM | (3 - 2);
2053 *batch++ = reg;
2054 struct drm_i915_gem_relocation_entry reloc = {
2055 .offset = (char *) batch - (char *) map,
2056 .delta = offset * sizeof(uint32_t),
2057 .target_handle = results->gem_handle,
2058 .read_domains = I915_GEM_DOMAIN_INSTRUCTION,
2059 .write_domain = I915_GEM_DOMAIN_INSTRUCTION,
2060 };
2061 *batch++ = reloc.presumed_offset + reloc.delta;
2062
2063 /* And afterwards clear the register */
2064 if (reset) {
2065 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
2066 *batch++ = reg;
2067 *batch++ = 0;
2068 }
2069
2070 *batch++ = MI_BATCH_BUFFER_END;
2071
2072 struct drm_i915_gem_exec_object2 exec_objects[2] = {
2073 {
2074 .handle = results->gem_handle,
2075 },
2076 {
2077 .handle = bo->gem_handle,
2078 .relocation_count = 1,
2079 .relocs_ptr = (uintptr_t) &reloc,
2080 }
2081 };
2082
2083 struct drm_i915_gem_execbuffer2 execbuf = {
2084 .buffers_ptr = (uintptr_t) exec_objects,
2085 .buffer_count = 2,
2086 .batch_len = ALIGN((char *) batch - (char *) map, 8),
2087 .flags = I915_EXEC_RENDER,
2088 };
2089
2090 /* Don't bother with error checking - if the execbuf fails, the
2091 * value won't be written and we'll just report that there's no access.
2092 */
2093 __DRIscreen *dri_screen = screen->driScrnPriv;
2094 drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf);
2095
2096 /* Check whether the value got written. */
2097 void *results_map = brw_bo_map(NULL, results, MAP_READ);
2098 if (results_map) {
2099 success = *((uint32_t *)results_map + offset) == expected_value;
2100 brw_bo_unmap(results);
2101 }
2102
2103 err_batch:
2104 brw_bo_unreference(bo);
2105 err_results:
2106 brw_bo_unreference(results);
2107 err:
2108 return success;
2109 }
2110
2111 static bool
2112 intel_detect_pipelined_so(struct intel_screen *screen)
2113 {
2114 const struct gen_device_info *devinfo = &screen->devinfo;
2115
2116 /* Supposedly, Broadwell just works. */
2117 if (devinfo->gen >= 8)
2118 return true;
2119
2120 if (devinfo->gen <= 6)
2121 return false;
2122
2123 /* See the big explanation about command parser versions below */
2124 if (screen->cmd_parser_version >= (devinfo->is_haswell ? 7 : 2))
2125 return true;
2126
2127 /* We use SO_WRITE_OFFSET0 since you're supposed to write it (unlike the
2128 * statistics registers), and we already reset it to zero before using it.
2129 */
2130 return intel_detect_pipelined_register(screen,
2131 GEN7_SO_WRITE_OFFSET(0),
2132 0x1337d0d0,
2133 false);
2134 }
2135
2136 /**
2137 * Return array of MSAA modes supported by the hardware. The array is
2138 * zero-terminated and sorted in decreasing order.
2139 */
2140 const int*
2141 intel_supported_msaa_modes(const struct intel_screen *screen)
2142 {
2143 static const int gen9_modes[] = {16, 8, 4, 2, 0, -1};
2144 static const int gen8_modes[] = {8, 4, 2, 0, -1};
2145 static const int gen7_modes[] = {8, 4, 0, -1};
2146 static const int gen6_modes[] = {4, 0, -1};
2147 static const int gen4_modes[] = {0, -1};
2148
2149 if (screen->devinfo.gen >= 9) {
2150 return gen9_modes;
2151 } else if (screen->devinfo.gen >= 8) {
2152 return gen8_modes;
2153 } else if (screen->devinfo.gen >= 7) {
2154 return gen7_modes;
2155 } else if (screen->devinfo.gen == 6) {
2156 return gen6_modes;
2157 } else {
2158 return gen4_modes;
2159 }
2160 }
2161
2162 static unsigned
2163 intel_loader_get_cap(const __DRIscreen *dri_screen, enum dri_loader_cap cap)
2164 {
2165 if (dri_screen->dri2.loader && dri_screen->dri2.loader->base.version >= 4 &&
2166 dri_screen->dri2.loader->getCapability)
2167 return dri_screen->dri2.loader->getCapability(dri_screen->loaderPrivate, cap);
2168
2169 if (dri_screen->image.loader && dri_screen->image.loader->base.version >= 2 &&
2170 dri_screen->image.loader->getCapability)
2171 return dri_screen->image.loader->getCapability(dri_screen->loaderPrivate, cap);
2172
2173 return 0;
2174 }
2175
2176 static bool
2177 intel_allowed_format(__DRIscreen *dri_screen, mesa_format format)
2178 {
2179 struct intel_screen *screen = dri_screen->driverPrivate;
2180
2181 /* Expose only BGRA ordering if the loader doesn't support RGBA ordering. */
2182 bool allow_rgba_ordering = intel_loader_get_cap(dri_screen, DRI_LOADER_CAP_RGBA_ORDERING);
2183 if (!allow_rgba_ordering &&
2184 (format == MESA_FORMAT_R8G8B8A8_UNORM ||
2185 format == MESA_FORMAT_R8G8B8X8_UNORM ||
2186 format == MESA_FORMAT_R8G8B8A8_SRGB))
2187 return false;
2188
2189 /* Shall we expose 10 bpc formats? */
2190 bool allow_rgb10_configs = driQueryOptionb(&screen->optionCache,
2191 "allow_rgb10_configs");
2192 if (!allow_rgb10_configs &&
2193 (format == MESA_FORMAT_B10G10R10A2_UNORM ||
2194 format == MESA_FORMAT_B10G10R10X2_UNORM))
2195 return false;
2196
2197 /* Shall we expose 565 formats? */
2198 bool allow_rgb565_configs = driQueryOptionb(&screen->optionCache,
2199 "allow_rgb565_configs");
2200 if (!allow_rgb565_configs && format == MESA_FORMAT_B5G6R5_UNORM)
2201 return false;
2202
2203 /* Shall we expose fp16 formats? */
2204 bool allow_fp16_configs = driQueryOptionb(&screen->optionCache,
2205 "allow_fp16_configs");
2206 allow_fp16_configs &= intel_loader_get_cap(dri_screen, DRI_LOADER_CAP_FP16);
2207 if (!allow_fp16_configs &&
2208 (format == MESA_FORMAT_RGBA_FLOAT16 ||
2209 format == MESA_FORMAT_RGBX_FLOAT16))
2210 return false;
2211
2212 return true;
2213 }
2214
2215 static __DRIconfig**
2216 intel_screen_make_configs(__DRIscreen *dri_screen)
2217 {
2218 static const mesa_format formats[] = {
2219 MESA_FORMAT_B5G6R5_UNORM,
2220 MESA_FORMAT_B8G8R8A8_UNORM,
2221 MESA_FORMAT_B8G8R8X8_UNORM,
2222
2223 MESA_FORMAT_B8G8R8A8_SRGB,
2224
2225 /* For 10 bpc, 30 bit depth framebuffers. */
2226 MESA_FORMAT_B10G10R10A2_UNORM,
2227 MESA_FORMAT_B10G10R10X2_UNORM,
2228
2229 MESA_FORMAT_RGBA_FLOAT16,
2230 MESA_FORMAT_RGBX_FLOAT16,
2231
2232 /* The 32-bit RGBA format must not precede the 32-bit BGRA format.
2233 * Likewise for RGBX and BGRX. Otherwise, the GLX client and the GLX
2234 * server may disagree on which format the GLXFBConfig represents,
2235 * resulting in swapped color channels.
2236 *
2237 * The problem, as of 2017-05-30:
2238 * When matching a GLXFBConfig to a __DRIconfig, GLX ignores the channel
2239 * order and chooses the first __DRIconfig with the expected channel
2240 * sizes. Specifically, GLX compares the GLXFBConfig's and __DRIconfig's
2241 * __DRI_ATTRIB_{CHANNEL}_SIZE but ignores __DRI_ATTRIB_{CHANNEL}_MASK.
2242 *
2243 * EGL does not suffer from this problem. It correctly compares the
2244 * channel masks when matching EGLConfig to __DRIconfig.
2245 */
2246
2247 /* Required by Android, for HAL_PIXEL_FORMAT_RGBA_8888. */
2248 MESA_FORMAT_R8G8B8A8_UNORM,
2249
2250 /* Required by Android, for HAL_PIXEL_FORMAT_RGBX_8888. */
2251 MESA_FORMAT_R8G8B8X8_UNORM,
2252
2253 MESA_FORMAT_R8G8B8A8_SRGB,
2254 };
2255
2256 /* __DRI_ATTRIB_SWAP_COPY is not supported due to page flipping. */
2257 static const GLenum back_buffer_modes[] = {
2258 __DRI_ATTRIB_SWAP_UNDEFINED, __DRI_ATTRIB_SWAP_NONE
2259 };
2260
2261 static const uint8_t singlesample_samples[1] = {0};
2262
2263 struct intel_screen *screen = dri_screen->driverPrivate;
2264 const struct gen_device_info *devinfo = &screen->devinfo;
2265 uint8_t depth_bits[4], stencil_bits[4];
2266 __DRIconfig **configs = NULL;
2267
2268 unsigned num_formats = ARRAY_SIZE(formats);
2269
2270 /* Generate singlesample configs, each without accumulation buffer
2271 * and with EGL_MUTABLE_RENDER_BUFFER_BIT_KHR.
2272 */
2273 for (unsigned i = 0; i < num_formats; i++) {
2274 __DRIconfig **new_configs;
2275 int num_depth_stencil_bits = 2;
2276
2277 if (!intel_allowed_format(dri_screen, formats[i]))
2278 continue;
2279
2280 /* Starting with DRI2 protocol version 1.1 we can request a depth/stencil
2281 * buffer that has a different number of bits per pixel than the color
2282 * buffer, gen >= 6 supports this.
2283 */
2284 depth_bits[0] = 0;
2285 stencil_bits[0] = 0;
2286
2287 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2288 depth_bits[1] = 16;
2289 stencil_bits[1] = 0;
2290 if (devinfo->gen >= 6) {
2291 depth_bits[2] = 24;
2292 stencil_bits[2] = 8;
2293 num_depth_stencil_bits = 3;
2294 }
2295 } else {
2296 depth_bits[1] = 24;
2297 stencil_bits[1] = 8;
2298 }
2299
2300 new_configs = driCreateConfigs(formats[i],
2301 depth_bits,
2302 stencil_bits,
2303 num_depth_stencil_bits,
2304 back_buffer_modes, 2,
2305 singlesample_samples, 1,
2306 false, false,
2307 /*mutable_render_buffer*/ true);
2308 configs = driConcatConfigs(configs, new_configs);
2309 }
2310
2311 /* Generate the minimum possible set of configs that include an
2312 * accumulation buffer.
2313 */
2314 for (unsigned i = 0; i < num_formats; i++) {
2315 __DRIconfig **new_configs;
2316
2317 if (!intel_allowed_format(dri_screen, formats[i]))
2318 continue;
2319
2320 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2321 depth_bits[0] = 16;
2322 stencil_bits[0] = 0;
2323 } else {
2324 depth_bits[0] = 24;
2325 stencil_bits[0] = 8;
2326 }
2327
2328 new_configs = driCreateConfigs(formats[i],
2329 depth_bits, stencil_bits, 1,
2330 back_buffer_modes, 1,
2331 singlesample_samples, 1,
2332 true, false, false);
2333 configs = driConcatConfigs(configs, new_configs);
2334 }
2335
2336 /* Generate multisample configs.
2337 *
2338 * This loop breaks early, and hence is a no-op, on gen < 6.
2339 *
2340 * Multisample configs must follow the singlesample configs in order to
2341 * work around an X server bug present in 1.12. The X server chooses to
2342 * associate the first listed RGBA888-Z24S8 config, regardless of its
2343 * sample count, with the 32-bit depth visual used for compositing.
2344 *
2345 * Only doublebuffer configs with GLX_SWAP_UNDEFINED_OML behavior are
2346 * supported. Singlebuffer configs are not supported because no one wants
2347 * them.
2348 */
2349 for (unsigned i = 0; i < num_formats; i++) {
2350 if (devinfo->gen < 6)
2351 break;
2352
2353 if (!intel_allowed_format(dri_screen, formats[i]))
2354 continue;
2355
2356 __DRIconfig **new_configs;
2357 const int num_depth_stencil_bits = 2;
2358 int num_msaa_modes = 0;
2359 const uint8_t *multisample_samples = NULL;
2360
2361 depth_bits[0] = 0;
2362 stencil_bits[0] = 0;
2363
2364 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2365 depth_bits[1] = 16;
2366 stencil_bits[1] = 0;
2367 } else {
2368 depth_bits[1] = 24;
2369 stencil_bits[1] = 8;
2370 }
2371
2372 if (devinfo->gen >= 9) {
2373 static const uint8_t multisample_samples_gen9[] = {2, 4, 8, 16};
2374 multisample_samples = multisample_samples_gen9;
2375 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen9);
2376 } else if (devinfo->gen == 8) {
2377 static const uint8_t multisample_samples_gen8[] = {2, 4, 8};
2378 multisample_samples = multisample_samples_gen8;
2379 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen8);
2380 } else if (devinfo->gen == 7) {
2381 static const uint8_t multisample_samples_gen7[] = {4, 8};
2382 multisample_samples = multisample_samples_gen7;
2383 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen7);
2384 } else if (devinfo->gen == 6) {
2385 static const uint8_t multisample_samples_gen6[] = {4};
2386 multisample_samples = multisample_samples_gen6;
2387 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen6);
2388 }
2389
2390 new_configs = driCreateConfigs(formats[i],
2391 depth_bits,
2392 stencil_bits,
2393 num_depth_stencil_bits,
2394 back_buffer_modes, 1,
2395 multisample_samples,
2396 num_msaa_modes,
2397 false, false, false);
2398 configs = driConcatConfigs(configs, new_configs);
2399 }
2400
2401 if (configs == NULL) {
2402 fprintf(stderr, "[%s:%u] Error creating FBConfig!\n", __func__,
2403 __LINE__);
2404 return NULL;
2405 }
2406
2407 return configs;
2408 }
2409
2410 static void
2411 set_max_gl_versions(struct intel_screen *screen)
2412 {
2413 __DRIscreen *dri_screen = screen->driScrnPriv;
2414 const bool has_astc = screen->devinfo.gen >= 9;
2415
2416 switch (screen->devinfo.gen) {
2417 case 11:
2418 case 10:
2419 case 9:
2420 case 8:
2421 dri_screen->max_gl_core_version = 46;
2422 dri_screen->max_gl_compat_version = 30;
2423 dri_screen->max_gl_es1_version = 11;
2424 dri_screen->max_gl_es2_version = has_astc ? 32 : 31;
2425 break;
2426 case 7:
2427 dri_screen->max_gl_core_version = 33;
2428 if (can_do_pipelined_register_writes(screen)) {
2429 dri_screen->max_gl_core_version = 42;
2430 if (screen->devinfo.is_haswell && can_do_compute_dispatch(screen))
2431 dri_screen->max_gl_core_version = 43;
2432 if (screen->devinfo.is_haswell && can_do_mi_math_and_lrr(screen))
2433 dri_screen->max_gl_core_version = 45;
2434 }
2435 dri_screen->max_gl_compat_version = 30;
2436 dri_screen->max_gl_es1_version = 11;
2437 dri_screen->max_gl_es2_version = screen->devinfo.is_haswell ? 31 : 30;
2438 break;
2439 case 6:
2440 dri_screen->max_gl_core_version = 33;
2441 dri_screen->max_gl_compat_version = 30;
2442 dri_screen->max_gl_es1_version = 11;
2443 dri_screen->max_gl_es2_version = 30;
2444 break;
2445 case 5:
2446 case 4:
2447 dri_screen->max_gl_core_version = 0;
2448 dri_screen->max_gl_compat_version = 21;
2449 dri_screen->max_gl_es1_version = 11;
2450 dri_screen->max_gl_es2_version = 20;
2451 break;
2452 default:
2453 unreachable("unrecognized intel_screen::gen");
2454 }
2455 }
2456
2457 static void
2458 shader_debug_log_mesa(void *data, const char *fmt, ...)
2459 {
2460 struct brw_context *brw = (struct brw_context *)data;
2461 va_list args;
2462
2463 va_start(args, fmt);
2464 GLuint msg_id = 0;
2465 _mesa_gl_vdebugf(&brw->ctx, &msg_id,
2466 MESA_DEBUG_SOURCE_SHADER_COMPILER,
2467 MESA_DEBUG_TYPE_OTHER,
2468 MESA_DEBUG_SEVERITY_NOTIFICATION, fmt, args);
2469 va_end(args);
2470 }
2471
2472 static void
2473 shader_perf_log_mesa(void *data, const char *fmt, ...)
2474 {
2475 struct brw_context *brw = (struct brw_context *)data;
2476
2477 va_list args;
2478 va_start(args, fmt);
2479
2480 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
2481 va_list args_copy;
2482 va_copy(args_copy, args);
2483 vfprintf(stderr, fmt, args_copy);
2484 va_end(args_copy);
2485 }
2486
2487 if (brw->perf_debug) {
2488 GLuint msg_id = 0;
2489 _mesa_gl_vdebugf(&brw->ctx, &msg_id,
2490 MESA_DEBUG_SOURCE_SHADER_COMPILER,
2491 MESA_DEBUG_TYPE_PERFORMANCE,
2492 MESA_DEBUG_SEVERITY_MEDIUM, fmt, args);
2493 }
2494 va_end(args);
2495 }
2496
2497 /**
2498 * This is the driver specific part of the createNewScreen entry point.
2499 * Called when using DRI2.
2500 *
2501 * \return the struct gl_config supported by this driver
2502 */
2503 static const
2504 __DRIconfig **intelInitScreen2(__DRIscreen *dri_screen)
2505 {
2506 struct intel_screen *screen;
2507
2508 if (dri_screen->image.loader) {
2509 } else if (dri_screen->dri2.loader->base.version <= 2 ||
2510 dri_screen->dri2.loader->getBuffersWithFormat == NULL) {
2511 fprintf(stderr,
2512 "\nERROR! DRI2 loader with getBuffersWithFormat() "
2513 "support required\n");
2514 return NULL;
2515 }
2516
2517 /* Allocate the private area */
2518 screen = rzalloc(NULL, struct intel_screen);
2519 if (!screen) {
2520 fprintf(stderr, "\nERROR! Allocating private area failed\n");
2521 return NULL;
2522 }
2523 /* parse information in __driConfigOptions */
2524 driOptionCache options;
2525 memset(&options, 0, sizeof(options));
2526
2527 driParseOptionInfo(&options, brw_config_options.xml);
2528 driParseConfigFiles(&screen->optionCache, &options, dri_screen->myNum,
2529 "i965", NULL, NULL, 0);
2530 driDestroyOptionCache(&options);
2531
2532 screen->driScrnPriv = dri_screen;
2533 dri_screen->driverPrivate = (void *) screen;
2534
2535 if (!gen_get_device_info_from_fd(dri_screen->fd, &screen->devinfo))
2536 return NULL;
2537
2538 const struct gen_device_info *devinfo = &screen->devinfo;
2539 screen->deviceID = devinfo->chipset_id;
2540 screen->no_hw = devinfo->no_hw;
2541
2542 if (devinfo->gen >= 12) {
2543 fprintf(stderr, "gen12 and newer are not supported on i965\n");
2544 return NULL;
2545 }
2546
2547 if (!intel_init_bufmgr(screen))
2548 return NULL;
2549
2550 brw_process_intel_debug_variable();
2551
2552 if ((INTEL_DEBUG & DEBUG_SHADER_TIME) && devinfo->gen < 7) {
2553 fprintf(stderr,
2554 "shader_time debugging requires gen7 (Ivybridge) or better.\n");
2555 INTEL_DEBUG &= ~DEBUG_SHADER_TIME;
2556 }
2557
2558 if (intel_get_integer(screen, I915_PARAM_MMAP_GTT_VERSION) >= 1) {
2559 /* Theorectically unlimited! At least for individual objects...
2560 *
2561 * Currently the entire (global) address space for all GTT maps is
2562 * limited to 64bits. That is all objects on the system that are
2563 * setup for GTT mmapping must fit within 64bits. An attempt to use
2564 * one that exceeds the limit with fail in brw_bo_map_gtt().
2565 *
2566 * Long before we hit that limit, we will be practically limited by
2567 * that any single object must fit in physical memory (RAM). The upper
2568 * limit on the CPU's address space is currently 48bits (Skylake), of
2569 * which only 39bits can be physical memory. (The GPU itself also has
2570 * a 48bit addressable virtual space.) We can fit over 32 million
2571 * objects of the current maximum allocable size before running out
2572 * of mmap space.
2573 */
2574 screen->max_gtt_map_object_size = UINT64_MAX;
2575 } else {
2576 /* Estimate the size of the mappable aperture into the GTT. There's an
2577 * ioctl to get the whole GTT size, but not one to get the mappable subset.
2578 * It turns out it's basically always 256MB, though some ancient hardware
2579 * was smaller.
2580 */
2581 uint32_t gtt_size = 256 * 1024 * 1024;
2582
2583 /* We don't want to map two objects such that a memcpy between them would
2584 * just fault one mapping in and then the other over and over forever. So
2585 * we would need to divide the GTT size by 2. Additionally, some GTT is
2586 * taken up by things like the framebuffer and the ringbuffer and such, so
2587 * be more conservative.
2588 */
2589 screen->max_gtt_map_object_size = gtt_size / 4;
2590 }
2591
2592 screen->aperture_threshold = get_aperture_size(dri_screen->fd) * 3 / 4;
2593
2594 screen->hw_has_swizzling = intel_detect_swizzling(screen);
2595 screen->hw_has_timestamp = intel_detect_timestamp(screen);
2596
2597 isl_device_init(&screen->isl_dev, &screen->devinfo,
2598 screen->hw_has_swizzling);
2599
2600 if (devinfo->gen >= 10)
2601 intel_cs_timestamp_frequency(screen);
2602
2603 /* GENs prior to 8 do not support EU/Subslice info */
2604 if (devinfo->gen >= 8) {
2605 intel_detect_sseu(screen);
2606 } else if (devinfo->gen == 7) {
2607 screen->subslice_total = 1 << (devinfo->gt - 1);
2608 }
2609
2610 /* Gen7-7.5 kernel requirements / command parser saga:
2611 *
2612 * - pre-v3.16:
2613 * Haswell and Baytrail cannot use any privileged batchbuffer features.
2614 *
2615 * Ivybridge has aliasing PPGTT on by default, which accidentally marks
2616 * all batches secure, allowing them to use any feature with no checking.
2617 * This is effectively equivalent to a command parser version of
2618 * \infinity - everything is possible.
2619 *
2620 * The command parser does not exist, and querying the version will
2621 * return -EINVAL.
2622 *
2623 * - v3.16:
2624 * The kernel enables the command parser by default, for systems with
2625 * aliasing PPGTT enabled (Ivybridge and Haswell). However, the
2626 * hardware checker is still enabled, so Haswell and Baytrail cannot
2627 * do anything.
2628 *
2629 * Ivybridge goes from "everything is possible" to "only what the
2630 * command parser allows" (if the user boots with i915.cmd_parser=0,
2631 * then everything is possible again). We can only safely use features
2632 * allowed by the supported command parser version.
2633 *
2634 * Annoyingly, I915_PARAM_CMD_PARSER_VERSION reports the static version
2635 * implemented by the kernel, even if it's turned off. So, checking
2636 * for version > 0 does not mean that you can write registers. We have
2637 * to try it and see. The version does, however, indicate the age of
2638 * the kernel.
2639 *
2640 * Instead of matching the hardware checker's behavior of converting
2641 * privileged commands to MI_NOOP, it makes execbuf2 start returning
2642 * -EINVAL, making it dangerous to try and use privileged features.
2643 *
2644 * Effective command parser versions:
2645 * - Haswell: 0 (reporting 1, writes don't work)
2646 * - Baytrail: 0 (reporting 1, writes don't work)
2647 * - Ivybridge: 1 (enabled) or infinite (disabled)
2648 *
2649 * - v3.17:
2650 * Baytrail aliasing PPGTT is enabled, making it like Ivybridge:
2651 * effectively version 1 (enabled) or infinite (disabled).
2652 *
2653 * - v3.19: f1f55cc0556031c8ee3fe99dae7251e78b9b653b
2654 * Command parser v2 supports predicate writes.
2655 *
2656 * - Haswell: 0 (reporting 1, writes don't work)
2657 * - Baytrail: 2 (enabled) or infinite (disabled)
2658 * - Ivybridge: 2 (enabled) or infinite (disabled)
2659 *
2660 * So version >= 2 is enough to know that Ivybridge and Baytrail
2661 * will work. Haswell still can't do anything.
2662 *
2663 * - v4.0: Version 3 happened. Largely not relevant.
2664 *
2665 * - v4.1: 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
2666 * L3 config registers are properly saved and restored as part
2667 * of the hardware context. We can approximately detect this point
2668 * in time by checking if I915_PARAM_REVISION is recognized - it
2669 * landed in a later commit, but in the same release cycle.
2670 *
2671 * - v4.2: 245054a1fe33c06ad233e0d58a27ec7b64db9284
2672 * Command parser finally gains secure batch promotion. On Haswell,
2673 * the hardware checker gets disabled, which finally allows it to do
2674 * privileged commands.
2675 *
2676 * I915_PARAM_CMD_PARSER_VERSION reports 3. Effective versions:
2677 * - Haswell: 3 (enabled) or 0 (disabled)
2678 * - Baytrail: 3 (enabled) or infinite (disabled)
2679 * - Ivybridge: 3 (enabled) or infinite (disabled)
2680 *
2681 * Unfortunately, detecting this point in time is tricky, because
2682 * no version bump happened when this important change occurred.
2683 * On Haswell, if we can write any register, then the kernel is at
2684 * least this new, and we can start trusting the version number.
2685 *
2686 * - v4.4: 2bbe6bbb0dc94fd4ce287bdac9e1bd184e23057b and
2687 * Command parser reaches version 4, allowing access to Haswell
2688 * atomic scratch and chicken3 registers. If version >= 4, we know
2689 * the kernel is new enough to support privileged features on all
2690 * hardware. However, the user might have disabled it...and the
2691 * kernel will still report version 4. So we still have to guess
2692 * and check.
2693 *
2694 * - v4.4: 7b9748cb513a6bef4af87b79f0da3ff7e8b56cd8
2695 * Command parser v5 whitelists indirect compute shader dispatch
2696 * registers, needed for OpenGL 4.3 and later.
2697 *
2698 * - v4.8:
2699 * Command parser v7 lets us use MI_MATH on Haswell.
2700 *
2701 * Additionally, the kernel begins reporting version 0 when
2702 * the command parser is disabled, allowing us to skip the
2703 * guess-and-check step on Haswell. Unfortunately, this also
2704 * means that we can no longer use it as an indicator of the
2705 * age of the kernel.
2706 */
2707 if (intel_get_param(screen, I915_PARAM_CMD_PARSER_VERSION,
2708 &screen->cmd_parser_version) < 0) {
2709 /* Command parser does not exist - getparam is unrecognized */
2710 screen->cmd_parser_version = 0;
2711 }
2712
2713 /* Kernel 4.13 retuired for exec object capture */
2714 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_CAPTURE)) {
2715 screen->kernel_features |= KERNEL_ALLOWS_EXEC_CAPTURE;
2716 }
2717
2718 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_BATCH_FIRST)) {
2719 screen->kernel_features |= KERNEL_ALLOWS_EXEC_BATCH_FIRST;
2720 }
2721
2722 if (!intel_detect_pipelined_so(screen)) {
2723 /* We can't do anything, so the effective version is 0. */
2724 screen->cmd_parser_version = 0;
2725 } else {
2726 screen->kernel_features |= KERNEL_ALLOWS_SOL_OFFSET_WRITES;
2727 }
2728
2729 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 2)
2730 screen->kernel_features |= KERNEL_ALLOWS_PREDICATE_WRITES;
2731
2732 /* Haswell requires command parser version 4 in order to have L3
2733 * atomic scratch1 and chicken3 bits
2734 */
2735 if (devinfo->is_haswell && screen->cmd_parser_version >= 4) {
2736 screen->kernel_features |=
2737 KERNEL_ALLOWS_HSW_SCRATCH1_AND_ROW_CHICKEN3;
2738 }
2739
2740 /* Haswell requires command parser version 6 in order to write to the
2741 * MI_MATH GPR registers, and version 7 in order to use
2742 * MI_LOAD_REGISTER_REG (which all users of MI_MATH use).
2743 */
2744 if (devinfo->gen >= 8 ||
2745 (devinfo->is_haswell && screen->cmd_parser_version >= 7)) {
2746 screen->kernel_features |= KERNEL_ALLOWS_MI_MATH_AND_LRR;
2747 }
2748
2749 /* Gen7 needs at least command parser version 5 to support compute */
2750 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 5)
2751 screen->kernel_features |= KERNEL_ALLOWS_COMPUTE_DISPATCH;
2752
2753 if (intel_get_boolean(screen, I915_PARAM_HAS_CONTEXT_ISOLATION))
2754 screen->kernel_features |= KERNEL_ALLOWS_CONTEXT_ISOLATION;
2755
2756 const char *force_msaa = getenv("INTEL_FORCE_MSAA");
2757 if (force_msaa) {
2758 screen->winsys_msaa_samples_override =
2759 intel_quantize_num_samples(screen, atoi(force_msaa));
2760 printf("Forcing winsys sample count to %d\n",
2761 screen->winsys_msaa_samples_override);
2762 } else {
2763 screen->winsys_msaa_samples_override = -1;
2764 }
2765
2766 set_max_gl_versions(screen);
2767
2768 /* Notification of GPU resets requires hardware contexts and a kernel new
2769 * enough to support DRM_IOCTL_I915_GET_RESET_STATS. If the ioctl is
2770 * supported, calling it with a context of 0 will either generate EPERM or
2771 * no error. If the ioctl is not supported, it always generate EINVAL.
2772 * Use this to determine whether to advertise the __DRI2_ROBUSTNESS
2773 * extension to the loader.
2774 *
2775 * Don't even try on pre-Gen6, since we don't attempt to use contexts there.
2776 */
2777 if (devinfo->gen >= 6) {
2778 struct drm_i915_reset_stats stats;
2779 memset(&stats, 0, sizeof(stats));
2780
2781 const int ret = drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats);
2782
2783 screen->has_context_reset_notification =
2784 (ret != -1 || errno != EINVAL);
2785 }
2786
2787 dri_screen->extensions = !screen->has_context_reset_notification
2788 ? screenExtensions : intelRobustScreenExtensions;
2789
2790 screen->compiler = brw_compiler_create(screen, devinfo);
2791 screen->compiler->shader_debug_log = shader_debug_log_mesa;
2792 screen->compiler->shader_perf_log = shader_perf_log_mesa;
2793
2794 /* Changing the meaning of constant buffer pointers from a dynamic state
2795 * offset to an absolute address is only safe if the kernel isolates other
2796 * contexts from our changes.
2797 */
2798 screen->compiler->constant_buffer_0_is_relative = devinfo->gen < 8 ||
2799 !(screen->kernel_features & KERNEL_ALLOWS_CONTEXT_ISOLATION);
2800
2801 screen->compiler->supports_pull_constants = true;
2802
2803 screen->has_exec_fence =
2804 intel_get_boolean(screen, I915_PARAM_HAS_EXEC_FENCE);
2805
2806 intel_screen_init_surface_formats(screen);
2807
2808 if (INTEL_DEBUG & (DEBUG_BATCH | DEBUG_SUBMIT)) {
2809 unsigned int caps = intel_get_integer(screen, I915_PARAM_HAS_SCHEDULER);
2810 if (caps) {
2811 fprintf(stderr, "Kernel scheduler detected: %08x\n", caps);
2812 if (caps & I915_SCHEDULER_CAP_PRIORITY)
2813 fprintf(stderr, " - User priority sorting enabled\n");
2814 if (caps & I915_SCHEDULER_CAP_PREEMPTION)
2815 fprintf(stderr, " - Preemption enabled\n");
2816 }
2817 }
2818
2819 brw_disk_cache_init(screen);
2820
2821 return (const __DRIconfig**) intel_screen_make_configs(dri_screen);
2822 }
2823
2824 struct intel_buffer {
2825 __DRIbuffer base;
2826 struct brw_bo *bo;
2827 };
2828
2829 static __DRIbuffer *
2830 intelAllocateBuffer(__DRIscreen *dri_screen,
2831 unsigned attachment, unsigned format,
2832 int width, int height)
2833 {
2834 struct intel_buffer *intelBuffer;
2835 struct intel_screen *screen = dri_screen->driverPrivate;
2836
2837 assert(attachment == __DRI_BUFFER_FRONT_LEFT ||
2838 attachment == __DRI_BUFFER_BACK_LEFT);
2839
2840 intelBuffer = calloc(1, sizeof *intelBuffer);
2841 if (intelBuffer == NULL)
2842 return NULL;
2843
2844 /* The front and back buffers are color buffers, which are X tiled. GEN9+
2845 * supports Y tiled and compressed buffers, but there is no way to plumb that
2846 * through to here. */
2847 uint32_t pitch;
2848 int cpp = format / 8;
2849 intelBuffer->bo = brw_bo_alloc_tiled_2d(screen->bufmgr,
2850 "intelAllocateBuffer",
2851 width,
2852 height,
2853 cpp,
2854 BRW_MEMZONE_OTHER,
2855 I915_TILING_X, &pitch,
2856 BO_ALLOC_BUSY);
2857
2858 if (intelBuffer->bo == NULL) {
2859 free(intelBuffer);
2860 return NULL;
2861 }
2862
2863 brw_bo_flink(intelBuffer->bo, &intelBuffer->base.name);
2864
2865 intelBuffer->base.attachment = attachment;
2866 intelBuffer->base.cpp = cpp;
2867 intelBuffer->base.pitch = pitch;
2868
2869 return &intelBuffer->base;
2870 }
2871
2872 static void
2873 intelReleaseBuffer(__DRIscreen *dri_screen, __DRIbuffer *buffer)
2874 {
2875 struct intel_buffer *intelBuffer = (struct intel_buffer *) buffer;
2876
2877 brw_bo_unreference(intelBuffer->bo);
2878 free(intelBuffer);
2879 }
2880
2881 static const struct __DriverAPIRec brw_driver_api = {
2882 .InitScreen = intelInitScreen2,
2883 .DestroyScreen = intelDestroyScreen,
2884 .CreateContext = brwCreateContext,
2885 .DestroyContext = intelDestroyContext,
2886 .CreateBuffer = intelCreateBuffer,
2887 .DestroyBuffer = intelDestroyBuffer,
2888 .MakeCurrent = intelMakeCurrent,
2889 .UnbindContext = intelUnbindContext,
2890 .AllocateBuffer = intelAllocateBuffer,
2891 .ReleaseBuffer = intelReleaseBuffer
2892 };
2893
2894 static const struct __DRIDriverVtableExtensionRec brw_vtable = {
2895 .base = { __DRI_DRIVER_VTABLE, 1 },
2896 .vtable = &brw_driver_api,
2897 };
2898
2899 static const __DRIextension *brw_driver_extensions[] = {
2900 &driCoreExtension.base,
2901 &driImageDriverExtension.base,
2902 &driDRI2Extension.base,
2903 &brw_vtable.base,
2904 &brw_config_options.base,
2905 NULL
2906 };
2907
2908 PUBLIC const __DRIextension **__driDriverGetExtensions_i965(void)
2909 {
2910 globalDriverAPI = &brw_driver_api;
2911
2912 return brw_driver_extensions;
2913 }