i965/dri: Disallow image with INVALID modifier
[mesa.git] / src / mesa / drivers / dri / i965 / intel_screen.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <errno.h>
27 #include <time.h>
28 #include <unistd.h>
29 #include "main/context.h"
30 #include "main/framebuffer.h"
31 #include "main/renderbuffer.h"
32 #include "main/texobj.h"
33 #include "main/hash.h"
34 #include "main/fbobject.h"
35 #include "main/version.h"
36 #include "swrast/s_renderbuffer.h"
37 #include "util/ralloc.h"
38 #include "brw_defines.h"
39 #include "compiler/nir/nir.h"
40
41 #include "utils.h"
42 #include "xmlpool.h"
43
44 #ifndef DRM_FORMAT_MOD_INVALID
45 #define DRM_FORMAT_MOD_INVALID ((1ULL<<56) - 1)
46 #endif
47
48 static const __DRIconfigOptionsExtension brw_config_options = {
49 .base = { __DRI_CONFIG_OPTIONS, 1 },
50 .xml =
51 DRI_CONF_BEGIN
52 DRI_CONF_SECTION_PERFORMANCE
53 DRI_CONF_VBLANK_MODE(DRI_CONF_VBLANK_ALWAYS_SYNC)
54 /* Options correspond to DRI_CONF_BO_REUSE_DISABLED,
55 * DRI_CONF_BO_REUSE_ALL
56 */
57 DRI_CONF_OPT_BEGIN_V(bo_reuse, enum, 1, "0:1")
58 DRI_CONF_DESC_BEGIN(en, "Buffer object reuse")
59 DRI_CONF_ENUM(0, "Disable buffer object reuse")
60 DRI_CONF_ENUM(1, "Enable reuse of all sizes of buffer objects")
61 DRI_CONF_DESC_END
62 DRI_CONF_OPT_END
63 DRI_CONF_SECTION_END
64
65 DRI_CONF_SECTION_QUALITY
66 DRI_CONF_FORCE_S3TC_ENABLE("false")
67
68 DRI_CONF_PRECISE_TRIG("false")
69
70 DRI_CONF_OPT_BEGIN(clamp_max_samples, int, -1)
71 DRI_CONF_DESC(en, "Clamp the value of GL_MAX_SAMPLES to the "
72 "given integer. If negative, then do not clamp.")
73 DRI_CONF_OPT_END
74 DRI_CONF_SECTION_END
75
76 DRI_CONF_SECTION_DEBUG
77 DRI_CONF_NO_RAST("false")
78 DRI_CONF_ALWAYS_FLUSH_BATCH("false")
79 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
80 DRI_CONF_DISABLE_THROTTLING("false")
81 DRI_CONF_FORCE_GLSL_EXTENSIONS_WARN("false")
82 DRI_CONF_FORCE_GLSL_VERSION(0)
83 DRI_CONF_DISABLE_GLSL_LINE_CONTINUATIONS("false")
84 DRI_CONF_DISABLE_BLEND_FUNC_EXTENDED("false")
85 DRI_CONF_DUAL_COLOR_BLEND_BY_LOCATION("false")
86 DRI_CONF_ALLOW_GLSL_EXTENSION_DIRECTIVE_MIDSHADER("false")
87 DRI_CONF_ALLOW_HIGHER_COMPAT_VERSION("false")
88
89 DRI_CONF_OPT_BEGIN_B(shader_precompile, "true")
90 DRI_CONF_DESC(en, "Perform code generation at shader link time.")
91 DRI_CONF_OPT_END
92 DRI_CONF_SECTION_END
93
94 DRI_CONF_SECTION_MISCELLANEOUS
95 DRI_CONF_GLSL_ZERO_INIT("false")
96 DRI_CONF_SECTION_END
97 DRI_CONF_END
98 };
99
100 #include "intel_batchbuffer.h"
101 #include "intel_buffers.h"
102 #include "intel_bufmgr.h"
103 #include "intel_fbo.h"
104 #include "intel_mipmap_tree.h"
105 #include "intel_screen.h"
106 #include "intel_tex.h"
107 #include "intel_image.h"
108
109 #include "brw_context.h"
110
111 #include "i915_drm.h"
112
113 /**
114 * For debugging purposes, this returns a time in seconds.
115 */
116 double
117 get_time(void)
118 {
119 struct timespec tp;
120
121 clock_gettime(CLOCK_MONOTONIC, &tp);
122
123 return tp.tv_sec + tp.tv_nsec / 1000000000.0;
124 }
125
126 static const __DRItexBufferExtension intelTexBufferExtension = {
127 .base = { __DRI_TEX_BUFFER, 3 },
128
129 .setTexBuffer = intelSetTexBuffer,
130 .setTexBuffer2 = intelSetTexBuffer2,
131 .releaseTexBuffer = NULL,
132 };
133
134 static void
135 intel_dri2_flush_with_flags(__DRIcontext *cPriv,
136 __DRIdrawable *dPriv,
137 unsigned flags,
138 enum __DRI2throttleReason reason)
139 {
140 struct brw_context *brw = cPriv->driverPrivate;
141
142 if (!brw)
143 return;
144
145 struct gl_context *ctx = &brw->ctx;
146
147 FLUSH_VERTICES(ctx, 0);
148
149 if (flags & __DRI2_FLUSH_DRAWABLE)
150 intel_resolve_for_dri2_flush(brw, dPriv);
151
152 if (reason == __DRI2_THROTTLE_SWAPBUFFER)
153 brw->need_swap_throttle = true;
154 if (reason == __DRI2_THROTTLE_FLUSHFRONT)
155 brw->need_flush_throttle = true;
156
157 intel_batchbuffer_flush(brw);
158 }
159
160 /**
161 * Provides compatibility with loaders that only support the older (version
162 * 1-3) flush interface.
163 *
164 * That includes libGL up to Mesa 9.0, and the X Server at least up to 1.13.
165 */
166 static void
167 intel_dri2_flush(__DRIdrawable *drawable)
168 {
169 intel_dri2_flush_with_flags(drawable->driContextPriv, drawable,
170 __DRI2_FLUSH_DRAWABLE,
171 __DRI2_THROTTLE_SWAPBUFFER);
172 }
173
174 static const struct __DRI2flushExtensionRec intelFlushExtension = {
175 .base = { __DRI2_FLUSH, 4 },
176
177 .flush = intel_dri2_flush,
178 .invalidate = dri2InvalidateDrawable,
179 .flush_with_flags = intel_dri2_flush_with_flags,
180 };
181
182 static struct intel_image_format intel_image_formats[] = {
183 { __DRI_IMAGE_FOURCC_ARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
184 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
185
186 { __DRI_IMAGE_FOURCC_ABGR8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
187 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
188
189 { __DRI_IMAGE_FOURCC_SARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
190 { { 0, 0, 0, __DRI_IMAGE_FORMAT_SARGB8, 4 } } },
191
192 { __DRI_IMAGE_FOURCC_XRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
193 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB8888, 4 }, } },
194
195 { __DRI_IMAGE_FOURCC_XBGR8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
196 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 }, } },
197
198 { __DRI_IMAGE_FOURCC_ARGB1555, __DRI_IMAGE_COMPONENTS_RGBA, 1,
199 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB1555, 2 } } },
200
201 { __DRI_IMAGE_FOURCC_RGB565, __DRI_IMAGE_COMPONENTS_RGB, 1,
202 { { 0, 0, 0, __DRI_IMAGE_FORMAT_RGB565, 2 } } },
203
204 { __DRI_IMAGE_FOURCC_R8, __DRI_IMAGE_COMPONENTS_R, 1,
205 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 }, } },
206
207 { __DRI_IMAGE_FOURCC_R16, __DRI_IMAGE_COMPONENTS_R, 1,
208 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 1 }, } },
209
210 { __DRI_IMAGE_FOURCC_GR88, __DRI_IMAGE_COMPONENTS_RG, 1,
211 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 }, } },
212
213 { __DRI_IMAGE_FOURCC_GR1616, __DRI_IMAGE_COMPONENTS_RG, 1,
214 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR1616, 2 }, } },
215
216 { __DRI_IMAGE_FOURCC_YUV410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
217 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
218 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
219 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
220
221 { __DRI_IMAGE_FOURCC_YUV411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
222 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
223 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
224 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
225
226 { __DRI_IMAGE_FOURCC_YUV420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
227 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
228 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
229 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
230
231 { __DRI_IMAGE_FOURCC_YUV422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
232 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
233 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
234 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
235
236 { __DRI_IMAGE_FOURCC_YUV444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
237 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
238 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
239 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
240
241 { __DRI_IMAGE_FOURCC_YVU410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
242 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
243 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
244 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
245
246 { __DRI_IMAGE_FOURCC_YVU411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
247 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
248 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
249 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
250
251 { __DRI_IMAGE_FOURCC_YVU420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
252 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
253 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
254 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
255
256 { __DRI_IMAGE_FOURCC_YVU422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
257 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
258 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
259 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
260
261 { __DRI_IMAGE_FOURCC_YVU444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
262 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
263 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
264 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
265
266 { __DRI_IMAGE_FOURCC_NV12, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
267 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
268 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR88, 2 } } },
269
270 { __DRI_IMAGE_FOURCC_NV16, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
271 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
272 { 1, 1, 0, __DRI_IMAGE_FORMAT_GR88, 2 } } },
273
274 /* For YUYV buffers, we set up two overlapping DRI images and treat
275 * them as planar buffers in the compositors. Plane 0 is GR88 and
276 * samples YU or YV pairs and places Y into the R component, while
277 * plane 1 is ARGB and samples YUYV clusters and places pairs and
278 * places U into the G component and V into A. This lets the
279 * texture sampler interpolate the Y components correctly when
280 * sampling from plane 0, and interpolate U and V correctly when
281 * sampling from plane 1. */
282 { __DRI_IMAGE_FOURCC_YUYV, __DRI_IMAGE_COMPONENTS_Y_XUXV, 2,
283 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
284 { 0, 1, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } }
285 };
286
287 static void
288 intel_image_warn_if_unaligned(__DRIimage *image, const char *func)
289 {
290 uint32_t tiling, swizzle;
291 drm_intel_bo_get_tiling(image->bo, &tiling, &swizzle);
292
293 if (tiling != I915_TILING_NONE && (image->offset & 0xfff)) {
294 _mesa_warning(NULL, "%s: offset 0x%08x not on tile boundary",
295 func, image->offset);
296 }
297 }
298
299 static struct intel_image_format *
300 intel_image_format_lookup(int fourcc)
301 {
302 struct intel_image_format *f = NULL;
303
304 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
305 if (intel_image_formats[i].fourcc == fourcc) {
306 f = &intel_image_formats[i];
307 break;
308 }
309 }
310
311 return f;
312 }
313
314 static boolean intel_lookup_fourcc(int dri_format, int *fourcc)
315 {
316 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
317 if (intel_image_formats[i].planes[0].dri_format == dri_format) {
318 *fourcc = intel_image_formats[i].fourcc;
319 return true;
320 }
321 }
322 return false;
323 }
324
325 static __DRIimage *
326 intel_allocate_image(int dri_format, void *loaderPrivate)
327 {
328 __DRIimage *image;
329
330 image = calloc(1, sizeof *image);
331 if (image == NULL)
332 return NULL;
333
334 image->dri_format = dri_format;
335 image->offset = 0;
336
337 image->format = driImageFormatToGLFormat(dri_format);
338 if (dri_format != __DRI_IMAGE_FORMAT_NONE &&
339 image->format == MESA_FORMAT_NONE) {
340 free(image);
341 return NULL;
342 }
343
344 image->internal_format = _mesa_get_format_base_format(image->format);
345 image->data = loaderPrivate;
346
347 return image;
348 }
349
350 /**
351 * Sets up a DRIImage structure to point to a slice out of a miptree.
352 */
353 static void
354 intel_setup_image_from_mipmap_tree(struct brw_context *brw, __DRIimage *image,
355 struct intel_mipmap_tree *mt, GLuint level,
356 GLuint zoffset)
357 {
358 intel_miptree_make_shareable(brw, mt);
359
360 intel_miptree_check_level_layer(mt, level, zoffset);
361
362 image->width = minify(mt->physical_width0, level - mt->first_level);
363 image->height = minify(mt->physical_height0, level - mt->first_level);
364 image->pitch = mt->pitch;
365
366 image->offset = intel_miptree_get_tile_offsets(mt, level, zoffset,
367 &image->tile_x,
368 &image->tile_y);
369
370 drm_intel_bo_unreference(image->bo);
371 image->bo = mt->bo;
372 drm_intel_bo_reference(mt->bo);
373 }
374
375 static __DRIimage *
376 intel_create_image_from_name(__DRIscreen *dri_screen,
377 int width, int height, int format,
378 int name, int pitch, void *loaderPrivate)
379 {
380 struct intel_screen *screen = dri_screen->driverPrivate;
381 __DRIimage *image;
382 int cpp;
383
384 image = intel_allocate_image(format, loaderPrivate);
385 if (image == NULL)
386 return NULL;
387
388 if (image->format == MESA_FORMAT_NONE)
389 cpp = 1;
390 else
391 cpp = _mesa_get_format_bytes(image->format);
392
393 image->width = width;
394 image->height = height;
395 image->pitch = pitch * cpp;
396 image->bo = drm_intel_bo_gem_create_from_name(screen->bufmgr, "image",
397 name);
398 if (!image->bo) {
399 free(image);
400 return NULL;
401 }
402
403 return image;
404 }
405
406 static __DRIimage *
407 intel_create_image_from_renderbuffer(__DRIcontext *context,
408 int renderbuffer, void *loaderPrivate)
409 {
410 __DRIimage *image;
411 struct brw_context *brw = context->driverPrivate;
412 struct gl_context *ctx = &brw->ctx;
413 struct gl_renderbuffer *rb;
414 struct intel_renderbuffer *irb;
415
416 rb = _mesa_lookup_renderbuffer(ctx, renderbuffer);
417 if (!rb) {
418 _mesa_error(ctx, GL_INVALID_OPERATION, "glRenderbufferExternalMESA");
419 return NULL;
420 }
421
422 irb = intel_renderbuffer(rb);
423 intel_miptree_make_shareable(brw, irb->mt);
424 image = calloc(1, sizeof *image);
425 if (image == NULL)
426 return NULL;
427
428 image->internal_format = rb->InternalFormat;
429 image->format = rb->Format;
430 image->offset = 0;
431 image->data = loaderPrivate;
432 drm_intel_bo_unreference(image->bo);
433 image->bo = irb->mt->bo;
434 drm_intel_bo_reference(irb->mt->bo);
435 image->width = rb->Width;
436 image->height = rb->Height;
437 image->pitch = irb->mt->pitch;
438 image->dri_format = driGLFormatToImageFormat(image->format);
439 image->has_depthstencil = irb->mt->stencil_mt? true : false;
440
441 rb->NeedsFinishRenderTexture = true;
442 return image;
443 }
444
445 static __DRIimage *
446 intel_create_image_from_texture(__DRIcontext *context, int target,
447 unsigned texture, int zoffset,
448 int level,
449 unsigned *error,
450 void *loaderPrivate)
451 {
452 __DRIimage *image;
453 struct brw_context *brw = context->driverPrivate;
454 struct gl_texture_object *obj;
455 struct intel_texture_object *iobj;
456 GLuint face = 0;
457
458 obj = _mesa_lookup_texture(&brw->ctx, texture);
459 if (!obj || obj->Target != target) {
460 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
461 return NULL;
462 }
463
464 if (target == GL_TEXTURE_CUBE_MAP)
465 face = zoffset;
466
467 _mesa_test_texobj_completeness(&brw->ctx, obj);
468 iobj = intel_texture_object(obj);
469 if (!obj->_BaseComplete || (level > 0 && !obj->_MipmapComplete)) {
470 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
471 return NULL;
472 }
473
474 if (level < obj->BaseLevel || level > obj->_MaxLevel) {
475 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
476 return NULL;
477 }
478
479 if (target == GL_TEXTURE_3D && obj->Image[face][level]->Depth < zoffset) {
480 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
481 return NULL;
482 }
483 image = calloc(1, sizeof *image);
484 if (image == NULL) {
485 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
486 return NULL;
487 }
488
489 image->internal_format = obj->Image[face][level]->InternalFormat;
490 image->format = obj->Image[face][level]->TexFormat;
491 image->data = loaderPrivate;
492 intel_setup_image_from_mipmap_tree(brw, image, iobj->mt, level, zoffset);
493 image->dri_format = driGLFormatToImageFormat(image->format);
494 image->has_depthstencil = iobj->mt->stencil_mt? true : false;
495 if (image->dri_format == MESA_FORMAT_NONE) {
496 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
497 free(image);
498 return NULL;
499 }
500
501 *error = __DRI_IMAGE_ERROR_SUCCESS;
502 return image;
503 }
504
505 static void
506 intel_destroy_image(__DRIimage *image)
507 {
508 drm_intel_bo_unreference(image->bo);
509 free(image);
510 }
511
512 static uint64_t
513 select_best_modifier(struct gen_device_info *devinfo,
514 const uint64_t *modifiers,
515 const unsigned count)
516 {
517 /* Modifiers are not supported by this DRI driver */
518 return DRM_FORMAT_MOD_INVALID;
519 }
520
521 static __DRIimage *
522 intel_create_image_common(__DRIscreen *dri_screen,
523 int width, int height, int format,
524 unsigned int use,
525 const uint64_t *modifiers,
526 unsigned count,
527 void *loaderPrivate)
528 {
529 __DRIimage *image;
530 struct intel_screen *screen = dri_screen->driverPrivate;
531 uint32_t tiling;
532 int cpp;
533 unsigned long pitch;
534
535 /* Callers of this may specify a modifier, or a dri usage, but not both. The
536 * newer modifier interface deprecates the older usage flags newer modifier
537 * interface deprecates the older usage flags.
538 */
539 assert(!(use && count));
540
541 uint64_t modifier = select_best_modifier(&screen->devinfo, modifiers, count);
542 assert(modifier == DRM_FORMAT_MOD_INVALID);
543
544 if (modifier == DRM_FORMAT_MOD_INVALID && modifiers)
545 return NULL;
546
547 /* Historically, X-tiled was the default, and so lack of modifier means
548 * X-tiled.
549 */
550 tiling = I915_TILING_X;
551 if (use & __DRI_IMAGE_USE_CURSOR) {
552 if (width != 64 || height != 64)
553 return NULL;
554 tiling = I915_TILING_NONE;
555 }
556
557 if (use & __DRI_IMAGE_USE_LINEAR)
558 tiling = I915_TILING_NONE;
559
560 image = intel_allocate_image(format, loaderPrivate);
561 if (image == NULL)
562 return NULL;
563
564 cpp = _mesa_get_format_bytes(image->format);
565 image->bo = drm_intel_bo_alloc_tiled(screen->bufmgr, "image",
566 width, height, cpp, &tiling,
567 &pitch, 0);
568 if (image->bo == NULL) {
569 free(image);
570 return NULL;
571 }
572 image->width = width;
573 image->height = height;
574 image->pitch = pitch;
575
576 return image;
577 }
578
579 static __DRIimage *
580 intel_create_image(__DRIscreen *dri_screen,
581 int width, int height, int format,
582 unsigned int use,
583 void *loaderPrivate)
584 {
585 return intel_create_image_common(dri_screen, width, height, format, use, NULL, 0,
586 loaderPrivate);
587 }
588
589 static __DRIimage *
590 intel_create_image_with_modifiers(__DRIscreen *dri_screen,
591 int width, int height, int format,
592 const uint64_t *modifiers,
593 const unsigned count,
594 void *loaderPrivate)
595 {
596 return intel_create_image_common(dri_screen, width, height, format, 0, NULL,
597 0, loaderPrivate);
598 }
599
600 static GLboolean
601 intel_query_image(__DRIimage *image, int attrib, int *value)
602 {
603 switch (attrib) {
604 case __DRI_IMAGE_ATTRIB_STRIDE:
605 *value = image->pitch;
606 return true;
607 case __DRI_IMAGE_ATTRIB_HANDLE:
608 *value = image->bo->handle;
609 return true;
610 case __DRI_IMAGE_ATTRIB_NAME:
611 return !drm_intel_bo_flink(image->bo, (uint32_t *) value);
612 case __DRI_IMAGE_ATTRIB_FORMAT:
613 *value = image->dri_format;
614 return true;
615 case __DRI_IMAGE_ATTRIB_WIDTH:
616 *value = image->width;
617 return true;
618 case __DRI_IMAGE_ATTRIB_HEIGHT:
619 *value = image->height;
620 return true;
621 case __DRI_IMAGE_ATTRIB_COMPONENTS:
622 if (image->planar_format == NULL)
623 return false;
624 *value = image->planar_format->components;
625 return true;
626 case __DRI_IMAGE_ATTRIB_FD:
627 return !drm_intel_bo_gem_export_to_prime(image->bo, value);
628 case __DRI_IMAGE_ATTRIB_FOURCC:
629 return intel_lookup_fourcc(image->dri_format, value);
630 case __DRI_IMAGE_ATTRIB_NUM_PLANES:
631 *value = 1;
632 return true;
633 case __DRI_IMAGE_ATTRIB_OFFSET:
634 *value = image->offset;
635 return true;
636
637 default:
638 return false;
639 }
640 }
641
642 static __DRIimage *
643 intel_dup_image(__DRIimage *orig_image, void *loaderPrivate)
644 {
645 __DRIimage *image;
646
647 image = calloc(1, sizeof *image);
648 if (image == NULL)
649 return NULL;
650
651 drm_intel_bo_reference(orig_image->bo);
652 image->bo = orig_image->bo;
653 image->internal_format = orig_image->internal_format;
654 image->planar_format = orig_image->planar_format;
655 image->dri_format = orig_image->dri_format;
656 image->format = orig_image->format;
657 image->offset = orig_image->offset;
658 image->width = orig_image->width;
659 image->height = orig_image->height;
660 image->pitch = orig_image->pitch;
661 image->tile_x = orig_image->tile_x;
662 image->tile_y = orig_image->tile_y;
663 image->has_depthstencil = orig_image->has_depthstencil;
664 image->data = loaderPrivate;
665
666 memcpy(image->strides, orig_image->strides, sizeof(image->strides));
667 memcpy(image->offsets, orig_image->offsets, sizeof(image->offsets));
668
669 return image;
670 }
671
672 static GLboolean
673 intel_validate_usage(__DRIimage *image, unsigned int use)
674 {
675 if (use & __DRI_IMAGE_USE_CURSOR) {
676 if (image->width != 64 || image->height != 64)
677 return GL_FALSE;
678 }
679
680 return GL_TRUE;
681 }
682
683 static __DRIimage *
684 intel_create_image_from_names(__DRIscreen *dri_screen,
685 int width, int height, int fourcc,
686 int *names, int num_names,
687 int *strides, int *offsets,
688 void *loaderPrivate)
689 {
690 struct intel_image_format *f = NULL;
691 __DRIimage *image;
692 int i, index;
693
694 if (dri_screen == NULL || names == NULL || num_names != 1)
695 return NULL;
696
697 f = intel_image_format_lookup(fourcc);
698 if (f == NULL)
699 return NULL;
700
701 image = intel_create_image_from_name(dri_screen, width, height,
702 __DRI_IMAGE_FORMAT_NONE,
703 names[0], strides[0],
704 loaderPrivate);
705
706 if (image == NULL)
707 return NULL;
708
709 image->planar_format = f;
710 for (i = 0; i < f->nplanes; i++) {
711 index = f->planes[i].buffer_index;
712 image->offsets[index] = offsets[index];
713 image->strides[index] = strides[index];
714 }
715
716 return image;
717 }
718
719 static __DRIimage *
720 intel_create_image_from_fds(__DRIscreen *dri_screen,
721 int width, int height, int fourcc,
722 int *fds, int num_fds, int *strides, int *offsets,
723 void *loaderPrivate)
724 {
725 struct intel_screen *screen = dri_screen->driverPrivate;
726 struct intel_image_format *f;
727 __DRIimage *image;
728 int i, index;
729
730 if (fds == NULL || num_fds < 1)
731 return NULL;
732
733 /* We only support all planes from the same bo */
734 for (i = 0; i < num_fds; i++)
735 if (fds[0] != fds[i])
736 return NULL;
737
738 f = intel_image_format_lookup(fourcc);
739 if (f == NULL)
740 return NULL;
741
742 if (f->nplanes == 1)
743 image = intel_allocate_image(f->planes[0].dri_format, loaderPrivate);
744 else
745 image = intel_allocate_image(__DRI_IMAGE_FORMAT_NONE, loaderPrivate);
746
747 if (image == NULL)
748 return NULL;
749
750 image->width = width;
751 image->height = height;
752 image->pitch = strides[0];
753
754 image->planar_format = f;
755 int size = 0;
756 for (i = 0; i < f->nplanes; i++) {
757 index = f->planes[i].buffer_index;
758 image->offsets[index] = offsets[index];
759 image->strides[index] = strides[index];
760
761 const int plane_height = height >> f->planes[i].height_shift;
762 const int end = offsets[index] + plane_height * strides[index];
763 if (size < end)
764 size = end;
765 }
766
767 image->bo = drm_intel_bo_gem_create_from_prime(screen->bufmgr,
768 fds[0], size);
769 if (image->bo == NULL) {
770 free(image);
771 return NULL;
772 }
773
774 if (f->nplanes == 1) {
775 image->offset = image->offsets[0];
776 intel_image_warn_if_unaligned(image, __func__);
777 }
778
779 return image;
780 }
781
782 static __DRIimage *
783 intel_create_image_from_dma_bufs(__DRIscreen *dri_screen,
784 int width, int height, int fourcc,
785 int *fds, int num_fds,
786 int *strides, int *offsets,
787 enum __DRIYUVColorSpace yuv_color_space,
788 enum __DRISampleRange sample_range,
789 enum __DRIChromaSiting horizontal_siting,
790 enum __DRIChromaSiting vertical_siting,
791 unsigned *error,
792 void *loaderPrivate)
793 {
794 __DRIimage *image;
795 struct intel_image_format *f = intel_image_format_lookup(fourcc);
796
797 if (!f) {
798 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
799 return NULL;
800 }
801
802 image = intel_create_image_from_fds(dri_screen, width, height, fourcc, fds,
803 num_fds, strides, offsets,
804 loaderPrivate);
805
806 /*
807 * Invalid parameters and any inconsistencies between are assumed to be
808 * checked by the caller. Therefore besides unsupported formats one can fail
809 * only in allocation.
810 */
811 if (!image) {
812 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
813 return NULL;
814 }
815
816 image->dma_buf_imported = true;
817 image->yuv_color_space = yuv_color_space;
818 image->sample_range = sample_range;
819 image->horizontal_siting = horizontal_siting;
820 image->vertical_siting = vertical_siting;
821
822 *error = __DRI_IMAGE_ERROR_SUCCESS;
823 return image;
824 }
825
826 static __DRIimage *
827 intel_from_planar(__DRIimage *parent, int plane, void *loaderPrivate)
828 {
829 int width, height, offset, stride, dri_format, index;
830 struct intel_image_format *f;
831 __DRIimage *image;
832
833 if (parent == NULL || parent->planar_format == NULL)
834 return NULL;
835
836 f = parent->planar_format;
837
838 if (plane >= f->nplanes)
839 return NULL;
840
841 width = parent->width >> f->planes[plane].width_shift;
842 height = parent->height >> f->planes[plane].height_shift;
843 dri_format = f->planes[plane].dri_format;
844 index = f->planes[plane].buffer_index;
845 offset = parent->offsets[index];
846 stride = parent->strides[index];
847
848 image = intel_allocate_image(dri_format, loaderPrivate);
849 if (image == NULL)
850 return NULL;
851
852 if (offset + height * stride > parent->bo->size) {
853 _mesa_warning(NULL, "intel_create_sub_image: subimage out of bounds");
854 free(image);
855 return NULL;
856 }
857
858 image->bo = parent->bo;
859 drm_intel_bo_reference(parent->bo);
860
861 image->width = width;
862 image->height = height;
863 image->pitch = stride;
864 image->offset = offset;
865
866 intel_image_warn_if_unaligned(image, __func__);
867
868 return image;
869 }
870
871 static const __DRIimageExtension intelImageExtension = {
872 .base = { __DRI_IMAGE, 13 },
873
874 .createImageFromName = intel_create_image_from_name,
875 .createImageFromRenderbuffer = intel_create_image_from_renderbuffer,
876 .destroyImage = intel_destroy_image,
877 .createImage = intel_create_image,
878 .queryImage = intel_query_image,
879 .dupImage = intel_dup_image,
880 .validateUsage = intel_validate_usage,
881 .createImageFromNames = intel_create_image_from_names,
882 .fromPlanar = intel_from_planar,
883 .createImageFromTexture = intel_create_image_from_texture,
884 .createImageFromFds = intel_create_image_from_fds,
885 .createImageFromDmaBufs = intel_create_image_from_dma_bufs,
886 .blitImage = NULL,
887 .getCapabilities = NULL,
888 .mapImage = NULL,
889 .unmapImage = NULL,
890 .createImageWithModifiers = intel_create_image_with_modifiers,
891 };
892
893 static int
894 brw_query_renderer_integer(__DRIscreen *dri_screen,
895 int param, unsigned int *value)
896 {
897 const struct intel_screen *const screen =
898 (struct intel_screen *) dri_screen->driverPrivate;
899
900 switch (param) {
901 case __DRI2_RENDERER_VENDOR_ID:
902 value[0] = 0x8086;
903 return 0;
904 case __DRI2_RENDERER_DEVICE_ID:
905 value[0] = screen->deviceID;
906 return 0;
907 case __DRI2_RENDERER_ACCELERATED:
908 value[0] = 1;
909 return 0;
910 case __DRI2_RENDERER_VIDEO_MEMORY: {
911 /* Once a batch uses more than 75% of the maximum mappable size, we
912 * assume that there's some fragmentation, and we start doing extra
913 * flushing, etc. That's the big cliff apps will care about.
914 */
915 size_t aper_size;
916 size_t mappable_size;
917
918 drm_intel_get_aperture_sizes(dri_screen->fd, &mappable_size, &aper_size);
919
920 const unsigned gpu_mappable_megabytes =
921 (aper_size / (1024 * 1024)) * 3 / 4;
922
923 const long system_memory_pages = sysconf(_SC_PHYS_PAGES);
924 const long system_page_size = sysconf(_SC_PAGE_SIZE);
925
926 if (system_memory_pages <= 0 || system_page_size <= 0)
927 return -1;
928
929 const uint64_t system_memory_bytes = (uint64_t) system_memory_pages
930 * (uint64_t) system_page_size;
931
932 const unsigned system_memory_megabytes =
933 (unsigned) (system_memory_bytes / (1024 * 1024));
934
935 value[0] = MIN2(system_memory_megabytes, gpu_mappable_megabytes);
936 return 0;
937 }
938 case __DRI2_RENDERER_UNIFIED_MEMORY_ARCHITECTURE:
939 value[0] = 1;
940 return 0;
941 case __DRI2_RENDERER_HAS_TEXTURE_3D:
942 value[0] = 1;
943 return 0;
944 default:
945 return driQueryRendererIntegerCommon(dri_screen, param, value);
946 }
947
948 return -1;
949 }
950
951 static int
952 brw_query_renderer_string(__DRIscreen *dri_screen,
953 int param, const char **value)
954 {
955 const struct intel_screen *screen =
956 (struct intel_screen *) dri_screen->driverPrivate;
957
958 switch (param) {
959 case __DRI2_RENDERER_VENDOR_ID:
960 value[0] = brw_vendor_string;
961 return 0;
962 case __DRI2_RENDERER_DEVICE_ID:
963 value[0] = brw_get_renderer_string(screen);
964 return 0;
965 default:
966 break;
967 }
968
969 return -1;
970 }
971
972 static const __DRI2rendererQueryExtension intelRendererQueryExtension = {
973 .base = { __DRI2_RENDERER_QUERY, 1 },
974
975 .queryInteger = brw_query_renderer_integer,
976 .queryString = brw_query_renderer_string
977 };
978
979 static const __DRIrobustnessExtension dri2Robustness = {
980 .base = { __DRI2_ROBUSTNESS, 1 }
981 };
982
983 static const __DRIextension *screenExtensions[] = {
984 &intelTexBufferExtension.base,
985 &intelFenceExtension.base,
986 &intelFlushExtension.base,
987 &intelImageExtension.base,
988 &intelRendererQueryExtension.base,
989 &dri2ConfigQueryExtension.base,
990 NULL
991 };
992
993 static const __DRIextension *intelRobustScreenExtensions[] = {
994 &intelTexBufferExtension.base,
995 &intelFenceExtension.base,
996 &intelFlushExtension.base,
997 &intelImageExtension.base,
998 &intelRendererQueryExtension.base,
999 &dri2ConfigQueryExtension.base,
1000 &dri2Robustness.base,
1001 NULL
1002 };
1003
1004 static int
1005 intel_get_param(struct intel_screen *screen, int param, int *value)
1006 {
1007 int ret = 0;
1008 struct drm_i915_getparam gp;
1009
1010 memset(&gp, 0, sizeof(gp));
1011 gp.param = param;
1012 gp.value = value;
1013
1014 if (drmIoctl(screen->driScrnPriv->fd, DRM_IOCTL_I915_GETPARAM, &gp) == -1) {
1015 ret = -errno;
1016 if (ret != -EINVAL)
1017 _mesa_warning(NULL, "drm_i915_getparam: %d", ret);
1018 }
1019
1020 return ret;
1021 }
1022
1023 static bool
1024 intel_get_boolean(struct intel_screen *screen, int param)
1025 {
1026 int value = 0;
1027 return (intel_get_param(screen, param, &value) == 0) && value;
1028 }
1029
1030 static int
1031 intel_get_integer(struct intel_screen *screen, int param)
1032 {
1033 int value = -1;
1034
1035 if (intel_get_param(screen, param, &value) == 0)
1036 return value;
1037
1038 return -1;
1039 }
1040
1041 static void
1042 intelDestroyScreen(__DRIscreen * sPriv)
1043 {
1044 struct intel_screen *screen = sPriv->driverPrivate;
1045
1046 dri_bufmgr_destroy(screen->bufmgr);
1047 driDestroyOptionInfo(&screen->optionCache);
1048
1049 ralloc_free(screen);
1050 sPriv->driverPrivate = NULL;
1051 }
1052
1053
1054 /**
1055 * This is called when we need to set up GL rendering to a new X window.
1056 */
1057 static GLboolean
1058 intelCreateBuffer(__DRIscreen *dri_screen,
1059 __DRIdrawable * driDrawPriv,
1060 const struct gl_config * mesaVis, GLboolean isPixmap)
1061 {
1062 struct intel_renderbuffer *rb;
1063 struct intel_screen *screen = (struct intel_screen *)
1064 dri_screen->driverPrivate;
1065 mesa_format rgbFormat;
1066 unsigned num_samples =
1067 intel_quantize_num_samples(screen, mesaVis->samples);
1068 struct gl_framebuffer *fb;
1069
1070 if (isPixmap)
1071 return false;
1072
1073 fb = CALLOC_STRUCT(gl_framebuffer);
1074 if (!fb)
1075 return false;
1076
1077 _mesa_initialize_window_framebuffer(fb, mesaVis);
1078
1079 if (screen->winsys_msaa_samples_override != -1) {
1080 num_samples = screen->winsys_msaa_samples_override;
1081 fb->Visual.samples = num_samples;
1082 }
1083
1084 if (mesaVis->redBits == 5) {
1085 rgbFormat = mesaVis->redMask == 0x1f ? MESA_FORMAT_R5G6B5_UNORM
1086 : MESA_FORMAT_B5G6R5_UNORM;
1087 } else if (mesaVis->sRGBCapable) {
1088 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1089 : MESA_FORMAT_B8G8R8A8_SRGB;
1090 } else if (mesaVis->alphaBits == 0) {
1091 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8X8_UNORM
1092 : MESA_FORMAT_B8G8R8X8_UNORM;
1093 } else {
1094 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1095 : MESA_FORMAT_B8G8R8A8_SRGB;
1096 fb->Visual.sRGBCapable = true;
1097 }
1098
1099 /* setup the hardware-based renderbuffers */
1100 rb = intel_create_renderbuffer(rgbFormat, num_samples);
1101 _mesa_add_renderbuffer(fb, BUFFER_FRONT_LEFT, &rb->Base.Base);
1102
1103 if (mesaVis->doubleBufferMode) {
1104 rb = intel_create_renderbuffer(rgbFormat, num_samples);
1105 _mesa_add_renderbuffer(fb, BUFFER_BACK_LEFT, &rb->Base.Base);
1106 }
1107
1108 /*
1109 * Assert here that the gl_config has an expected depth/stencil bit
1110 * combination: one of d24/s8, d16/s0, d0/s0. (See intelInitScreen2(),
1111 * which constructs the advertised configs.)
1112 */
1113 if (mesaVis->depthBits == 24) {
1114 assert(mesaVis->stencilBits == 8);
1115
1116 if (screen->devinfo.has_hiz_and_separate_stencil) {
1117 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z24_UNORM_X8_UINT,
1118 num_samples);
1119 _mesa_add_renderbuffer(fb, BUFFER_DEPTH, &rb->Base.Base);
1120 rb = intel_create_private_renderbuffer(MESA_FORMAT_S_UINT8,
1121 num_samples);
1122 _mesa_add_renderbuffer(fb, BUFFER_STENCIL, &rb->Base.Base);
1123 } else {
1124 /*
1125 * Use combined depth/stencil. Note that the renderbuffer is
1126 * attached to two attachment points.
1127 */
1128 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z24_UNORM_S8_UINT,
1129 num_samples);
1130 _mesa_add_renderbuffer(fb, BUFFER_DEPTH, &rb->Base.Base);
1131 _mesa_add_renderbuffer(fb, BUFFER_STENCIL, &rb->Base.Base);
1132 }
1133 }
1134 else if (mesaVis->depthBits == 16) {
1135 assert(mesaVis->stencilBits == 0);
1136 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z_UNORM16,
1137 num_samples);
1138 _mesa_add_renderbuffer(fb, BUFFER_DEPTH, &rb->Base.Base);
1139 }
1140 else {
1141 assert(mesaVis->depthBits == 0);
1142 assert(mesaVis->stencilBits == 0);
1143 }
1144
1145 /* now add any/all software-based renderbuffers we may need */
1146 _swrast_add_soft_renderbuffers(fb,
1147 false, /* never sw color */
1148 false, /* never sw depth */
1149 false, /* never sw stencil */
1150 mesaVis->accumRedBits > 0,
1151 false, /* never sw alpha */
1152 false /* never sw aux */ );
1153 driDrawPriv->driverPrivate = fb;
1154
1155 return true;
1156 }
1157
1158 static void
1159 intelDestroyBuffer(__DRIdrawable * driDrawPriv)
1160 {
1161 struct gl_framebuffer *fb = driDrawPriv->driverPrivate;
1162
1163 _mesa_reference_framebuffer(&fb, NULL);
1164 }
1165
1166 static void
1167 intel_detect_sseu(struct intel_screen *screen)
1168 {
1169 assert(screen->devinfo.gen >= 8);
1170 int ret;
1171
1172 screen->subslice_total = -1;
1173 screen->eu_total = -1;
1174
1175 ret = intel_get_param(screen, I915_PARAM_SUBSLICE_TOTAL,
1176 &screen->subslice_total);
1177 if (ret < 0 && ret != -EINVAL)
1178 goto err_out;
1179
1180 ret = intel_get_param(screen,
1181 I915_PARAM_EU_TOTAL, &screen->eu_total);
1182 if (ret < 0 && ret != -EINVAL)
1183 goto err_out;
1184
1185 /* Without this information, we cannot get the right Braswell brandstrings,
1186 * and we have to use conservative numbers for GPGPU on many platforms, but
1187 * otherwise, things will just work.
1188 */
1189 if (screen->subslice_total < 1 || screen->eu_total < 1)
1190 _mesa_warning(NULL,
1191 "Kernel 4.1 required to properly query GPU properties.\n");
1192
1193 return;
1194
1195 err_out:
1196 screen->subslice_total = -1;
1197 screen->eu_total = -1;
1198 _mesa_warning(NULL, "Failed to query GPU properties (%s).\n", strerror(-ret));
1199 }
1200
1201 static bool
1202 intel_init_bufmgr(struct intel_screen *screen)
1203 {
1204 __DRIscreen *dri_screen = screen->driScrnPriv;
1205
1206 screen->no_hw = getenv("INTEL_NO_HW") != NULL;
1207
1208 screen->bufmgr = intel_bufmgr_gem_init(dri_screen->fd, BATCH_SZ);
1209 if (screen->bufmgr == NULL) {
1210 fprintf(stderr, "[%s:%u] Error initializing buffer manager.\n",
1211 __func__, __LINE__);
1212 return false;
1213 }
1214
1215 drm_intel_bufmgr_gem_enable_fenced_relocs(screen->bufmgr);
1216
1217 if (!intel_get_boolean(screen, I915_PARAM_HAS_RELAXED_DELTA)) {
1218 fprintf(stderr, "[%s: %u] Kernel 2.6.39 required.\n", __func__, __LINE__);
1219 return false;
1220 }
1221
1222 return true;
1223 }
1224
1225 static bool
1226 intel_detect_swizzling(struct intel_screen *screen)
1227 {
1228 drm_intel_bo *buffer;
1229 unsigned long flags = 0;
1230 unsigned long aligned_pitch;
1231 uint32_t tiling = I915_TILING_X;
1232 uint32_t swizzle_mode = 0;
1233
1234 buffer = drm_intel_bo_alloc_tiled(screen->bufmgr, "swizzle test",
1235 64, 64, 4,
1236 &tiling, &aligned_pitch, flags);
1237 if (buffer == NULL)
1238 return false;
1239
1240 drm_intel_bo_get_tiling(buffer, &tiling, &swizzle_mode);
1241 drm_intel_bo_unreference(buffer);
1242
1243 if (swizzle_mode == I915_BIT_6_SWIZZLE_NONE)
1244 return false;
1245 else
1246 return true;
1247 }
1248
1249 static int
1250 intel_detect_timestamp(struct intel_screen *screen)
1251 {
1252 uint64_t dummy = 0, last = 0;
1253 int upper, lower, loops;
1254
1255 /* On 64bit systems, some old kernels trigger a hw bug resulting in the
1256 * TIMESTAMP register being shifted and the low 32bits always zero.
1257 *
1258 * More recent kernels offer an interface to read the full 36bits
1259 * everywhere.
1260 */
1261 if (drm_intel_reg_read(screen->bufmgr, TIMESTAMP | 1, &dummy) == 0)
1262 return 3;
1263
1264 /* Determine if we have a 32bit or 64bit kernel by inspecting the
1265 * upper 32bits for a rapidly changing timestamp.
1266 */
1267 if (drm_intel_reg_read(screen->bufmgr, TIMESTAMP, &last))
1268 return 0;
1269
1270 upper = lower = 0;
1271 for (loops = 0; loops < 10; loops++) {
1272 /* The TIMESTAMP should change every 80ns, so several round trips
1273 * through the kernel should be enough to advance it.
1274 */
1275 if (drm_intel_reg_read(screen->bufmgr, TIMESTAMP, &dummy))
1276 return 0;
1277
1278 upper += (dummy >> 32) != (last >> 32);
1279 if (upper > 1) /* beware 32bit counter overflow */
1280 return 2; /* upper dword holds the low 32bits of the timestamp */
1281
1282 lower += (dummy & 0xffffffff) != (last & 0xffffffff);
1283 if (lower > 1)
1284 return 1; /* timestamp is unshifted */
1285
1286 last = dummy;
1287 }
1288
1289 /* No advancement? No timestamp! */
1290 return 0;
1291 }
1292
1293 /**
1294 * Test if we can use MI_LOAD_REGISTER_MEM from an untrusted batchbuffer.
1295 *
1296 * Some combinations of hardware and kernel versions allow this feature,
1297 * while others don't. Instead of trying to enumerate every case, just
1298 * try and write a register and see if works.
1299 */
1300 static bool
1301 intel_detect_pipelined_register(struct intel_screen *screen,
1302 int reg, uint32_t expected_value, bool reset)
1303 {
1304 drm_intel_bo *results, *bo;
1305 uint32_t *batch;
1306 uint32_t offset = 0;
1307 bool success = false;
1308
1309 /* Create a zero'ed temporary buffer for reading our results */
1310 results = drm_intel_bo_alloc(screen->bufmgr, "registers", 4096, 0);
1311 if (results == NULL)
1312 goto err;
1313
1314 bo = drm_intel_bo_alloc(screen->bufmgr, "batchbuffer", 4096, 0);
1315 if (bo == NULL)
1316 goto err_results;
1317
1318 if (drm_intel_bo_map(bo, 1))
1319 goto err_batch;
1320
1321 batch = bo->virtual;
1322
1323 /* Write the register. */
1324 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1325 *batch++ = reg;
1326 *batch++ = expected_value;
1327
1328 /* Save the register's value back to the buffer. */
1329 *batch++ = MI_STORE_REGISTER_MEM | (3 - 2);
1330 *batch++ = reg;
1331 drm_intel_bo_emit_reloc(bo, (char *)batch -(char *)bo->virtual,
1332 results, offset*sizeof(uint32_t),
1333 I915_GEM_DOMAIN_INSTRUCTION,
1334 I915_GEM_DOMAIN_INSTRUCTION);
1335 *batch++ = results->offset + offset*sizeof(uint32_t);
1336
1337 /* And afterwards clear the register */
1338 if (reset) {
1339 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1340 *batch++ = reg;
1341 *batch++ = 0;
1342 }
1343
1344 *batch++ = MI_BATCH_BUFFER_END;
1345
1346 drm_intel_bo_mrb_exec(bo, ALIGN((char *)batch - (char *)bo->virtual, 8),
1347 NULL, 0, 0,
1348 I915_EXEC_RENDER);
1349
1350 /* Check whether the value got written. */
1351 if (drm_intel_bo_map(results, false) == 0) {
1352 success = *((uint32_t *)results->virtual + offset) == expected_value;
1353 drm_intel_bo_unmap(results);
1354 }
1355
1356 err_batch:
1357 drm_intel_bo_unreference(bo);
1358 err_results:
1359 drm_intel_bo_unreference(results);
1360 err:
1361 return success;
1362 }
1363
1364 static bool
1365 intel_detect_pipelined_so(struct intel_screen *screen)
1366 {
1367 const struct gen_device_info *devinfo = &screen->devinfo;
1368
1369 /* Supposedly, Broadwell just works. */
1370 if (devinfo->gen >= 8)
1371 return true;
1372
1373 if (devinfo->gen <= 6)
1374 return false;
1375
1376 /* See the big explanation about command parser versions below */
1377 if (screen->cmd_parser_version >= (devinfo->is_haswell ? 7 : 2))
1378 return true;
1379
1380 /* We use SO_WRITE_OFFSET0 since you're supposed to write it (unlike the
1381 * statistics registers), and we already reset it to zero before using it.
1382 */
1383 return intel_detect_pipelined_register(screen,
1384 GEN7_SO_WRITE_OFFSET(0),
1385 0x1337d0d0,
1386 false);
1387 }
1388
1389 /**
1390 * Return array of MSAA modes supported by the hardware. The array is
1391 * zero-terminated and sorted in decreasing order.
1392 */
1393 const int*
1394 intel_supported_msaa_modes(const struct intel_screen *screen)
1395 {
1396 static const int gen9_modes[] = {16, 8, 4, 2, 0, -1};
1397 static const int gen8_modes[] = {8, 4, 2, 0, -1};
1398 static const int gen7_modes[] = {8, 4, 0, -1};
1399 static const int gen6_modes[] = {4, 0, -1};
1400 static const int gen4_modes[] = {0, -1};
1401
1402 if (screen->devinfo.gen >= 9) {
1403 return gen9_modes;
1404 } else if (screen->devinfo.gen >= 8) {
1405 return gen8_modes;
1406 } else if (screen->devinfo.gen >= 7) {
1407 return gen7_modes;
1408 } else if (screen->devinfo.gen == 6) {
1409 return gen6_modes;
1410 } else {
1411 return gen4_modes;
1412 }
1413 }
1414
1415 static __DRIconfig**
1416 intel_screen_make_configs(__DRIscreen *dri_screen)
1417 {
1418 static const mesa_format formats[] = {
1419 MESA_FORMAT_B5G6R5_UNORM,
1420 MESA_FORMAT_B8G8R8A8_UNORM,
1421 MESA_FORMAT_B8G8R8X8_UNORM
1422 };
1423
1424 /* GLX_SWAP_COPY_OML is not supported due to page flipping. */
1425 static const GLenum back_buffer_modes[] = {
1426 GLX_SWAP_UNDEFINED_OML, GLX_NONE,
1427 };
1428
1429 static const uint8_t singlesample_samples[1] = {0};
1430 static const uint8_t multisample_samples[2] = {4, 8};
1431
1432 struct intel_screen *screen = dri_screen->driverPrivate;
1433 const struct gen_device_info *devinfo = &screen->devinfo;
1434 uint8_t depth_bits[4], stencil_bits[4];
1435 __DRIconfig **configs = NULL;
1436
1437 /* Generate singlesample configs without accumulation buffer. */
1438 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1439 __DRIconfig **new_configs;
1440 int num_depth_stencil_bits = 2;
1441
1442 /* Starting with DRI2 protocol version 1.1 we can request a depth/stencil
1443 * buffer that has a different number of bits per pixel than the color
1444 * buffer, gen >= 6 supports this.
1445 */
1446 depth_bits[0] = 0;
1447 stencil_bits[0] = 0;
1448
1449 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1450 depth_bits[1] = 16;
1451 stencil_bits[1] = 0;
1452 if (devinfo->gen >= 6) {
1453 depth_bits[2] = 24;
1454 stencil_bits[2] = 8;
1455 num_depth_stencil_bits = 3;
1456 }
1457 } else {
1458 depth_bits[1] = 24;
1459 stencil_bits[1] = 8;
1460 }
1461
1462 new_configs = driCreateConfigs(formats[i],
1463 depth_bits,
1464 stencil_bits,
1465 num_depth_stencil_bits,
1466 back_buffer_modes, 2,
1467 singlesample_samples, 1,
1468 false, false);
1469 configs = driConcatConfigs(configs, new_configs);
1470 }
1471
1472 /* Generate the minimum possible set of configs that include an
1473 * accumulation buffer.
1474 */
1475 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1476 __DRIconfig **new_configs;
1477
1478 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1479 depth_bits[0] = 16;
1480 stencil_bits[0] = 0;
1481 } else {
1482 depth_bits[0] = 24;
1483 stencil_bits[0] = 8;
1484 }
1485
1486 new_configs = driCreateConfigs(formats[i],
1487 depth_bits, stencil_bits, 1,
1488 back_buffer_modes, 1,
1489 singlesample_samples, 1,
1490 true, false);
1491 configs = driConcatConfigs(configs, new_configs);
1492 }
1493
1494 /* Generate multisample configs.
1495 *
1496 * This loop breaks early, and hence is a no-op, on gen < 6.
1497 *
1498 * Multisample configs must follow the singlesample configs in order to
1499 * work around an X server bug present in 1.12. The X server chooses to
1500 * associate the first listed RGBA888-Z24S8 config, regardless of its
1501 * sample count, with the 32-bit depth visual used for compositing.
1502 *
1503 * Only doublebuffer configs with GLX_SWAP_UNDEFINED_OML behavior are
1504 * supported. Singlebuffer configs are not supported because no one wants
1505 * them.
1506 */
1507 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1508 if (devinfo->gen < 6)
1509 break;
1510
1511 __DRIconfig **new_configs;
1512 const int num_depth_stencil_bits = 2;
1513 int num_msaa_modes = 0;
1514
1515 depth_bits[0] = 0;
1516 stencil_bits[0] = 0;
1517
1518 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1519 depth_bits[1] = 16;
1520 stencil_bits[1] = 0;
1521 } else {
1522 depth_bits[1] = 24;
1523 stencil_bits[1] = 8;
1524 }
1525
1526 if (devinfo->gen >= 7)
1527 num_msaa_modes = 2;
1528 else if (devinfo->gen == 6)
1529 num_msaa_modes = 1;
1530
1531 new_configs = driCreateConfigs(formats[i],
1532 depth_bits,
1533 stencil_bits,
1534 num_depth_stencil_bits,
1535 back_buffer_modes, 1,
1536 multisample_samples,
1537 num_msaa_modes,
1538 false, false);
1539 configs = driConcatConfigs(configs, new_configs);
1540 }
1541
1542 if (configs == NULL) {
1543 fprintf(stderr, "[%s:%u] Error creating FBConfig!\n", __func__,
1544 __LINE__);
1545 return NULL;
1546 }
1547
1548 return configs;
1549 }
1550
1551 static void
1552 set_max_gl_versions(struct intel_screen *screen)
1553 {
1554 __DRIscreen *dri_screen = screen->driScrnPriv;
1555 const bool has_astc = screen->devinfo.gen >= 9;
1556
1557 switch (screen->devinfo.gen) {
1558 case 9:
1559 case 8:
1560 dri_screen->max_gl_core_version = 45;
1561 dri_screen->max_gl_compat_version = 30;
1562 dri_screen->max_gl_es1_version = 11;
1563 dri_screen->max_gl_es2_version = has_astc ? 32 : 31;
1564 break;
1565 case 7:
1566 dri_screen->max_gl_core_version = 33;
1567 if (screen->devinfo.is_haswell &&
1568 can_do_pipelined_register_writes(screen)) {
1569 dri_screen->max_gl_core_version = 42;
1570 if (can_do_compute_dispatch(screen))
1571 dri_screen->max_gl_core_version = 43;
1572 if (can_do_mi_math_and_lrr(screen))
1573 dri_screen->max_gl_core_version = 45;
1574 }
1575 dri_screen->max_gl_compat_version = 30;
1576 dri_screen->max_gl_es1_version = 11;
1577 dri_screen->max_gl_es2_version = screen->devinfo.is_haswell ? 31 : 30;
1578 break;
1579 case 6:
1580 dri_screen->max_gl_core_version = 33;
1581 dri_screen->max_gl_compat_version = 30;
1582 dri_screen->max_gl_es1_version = 11;
1583 dri_screen->max_gl_es2_version = 30;
1584 break;
1585 case 5:
1586 case 4:
1587 dri_screen->max_gl_core_version = 0;
1588 dri_screen->max_gl_compat_version = 21;
1589 dri_screen->max_gl_es1_version = 11;
1590 dri_screen->max_gl_es2_version = 20;
1591 break;
1592 default:
1593 unreachable("unrecognized intel_screen::gen");
1594 }
1595 }
1596
1597 /**
1598 * Return the revision (generally the revid field of the PCI header) of the
1599 * graphics device.
1600 *
1601 * XXX: This function is useful to keep around even if it is not currently in
1602 * use. It is necessary for new platforms and revision specific workarounds or
1603 * features. Please don't remove it so that we know it at least continues to
1604 * build.
1605 */
1606 static __attribute__((__unused__)) int
1607 brw_get_revision(int fd)
1608 {
1609 struct drm_i915_getparam gp;
1610 int revision;
1611 int ret;
1612
1613 memset(&gp, 0, sizeof(gp));
1614 gp.param = I915_PARAM_REVISION;
1615 gp.value = &revision;
1616
1617 ret = drmCommandWriteRead(fd, DRM_I915_GETPARAM, &gp, sizeof(gp));
1618 if (ret)
1619 revision = -1;
1620
1621 return revision;
1622 }
1623
1624 static void
1625 shader_debug_log_mesa(void *data, const char *fmt, ...)
1626 {
1627 struct brw_context *brw = (struct brw_context *)data;
1628 va_list args;
1629
1630 va_start(args, fmt);
1631 GLuint msg_id = 0;
1632 _mesa_gl_vdebug(&brw->ctx, &msg_id,
1633 MESA_DEBUG_SOURCE_SHADER_COMPILER,
1634 MESA_DEBUG_TYPE_OTHER,
1635 MESA_DEBUG_SEVERITY_NOTIFICATION, fmt, args);
1636 va_end(args);
1637 }
1638
1639 static void
1640 shader_perf_log_mesa(void *data, const char *fmt, ...)
1641 {
1642 struct brw_context *brw = (struct brw_context *)data;
1643
1644 va_list args;
1645 va_start(args, fmt);
1646
1647 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
1648 va_list args_copy;
1649 va_copy(args_copy, args);
1650 vfprintf(stderr, fmt, args_copy);
1651 va_end(args_copy);
1652 }
1653
1654 if (brw->perf_debug) {
1655 GLuint msg_id = 0;
1656 _mesa_gl_vdebug(&brw->ctx, &msg_id,
1657 MESA_DEBUG_SOURCE_SHADER_COMPILER,
1658 MESA_DEBUG_TYPE_PERFORMANCE,
1659 MESA_DEBUG_SEVERITY_MEDIUM, fmt, args);
1660 }
1661 va_end(args);
1662 }
1663
1664 /**
1665 * This is the driver specific part of the createNewScreen entry point.
1666 * Called when using DRI2.
1667 *
1668 * \return the struct gl_config supported by this driver
1669 */
1670 static const
1671 __DRIconfig **intelInitScreen2(__DRIscreen *dri_screen)
1672 {
1673 struct intel_screen *screen;
1674
1675 if (dri_screen->image.loader) {
1676 } else if (dri_screen->dri2.loader->base.version <= 2 ||
1677 dri_screen->dri2.loader->getBuffersWithFormat == NULL) {
1678 fprintf(stderr,
1679 "\nERROR! DRI2 loader with getBuffersWithFormat() "
1680 "support required\n");
1681 return NULL;
1682 }
1683
1684 /* Allocate the private area */
1685 screen = rzalloc(NULL, struct intel_screen);
1686 if (!screen) {
1687 fprintf(stderr, "\nERROR! Allocating private area failed\n");
1688 return NULL;
1689 }
1690 /* parse information in __driConfigOptions */
1691 driParseOptionInfo(&screen->optionCache, brw_config_options.xml);
1692
1693 screen->driScrnPriv = dri_screen;
1694 dri_screen->driverPrivate = (void *) screen;
1695
1696 if (!intel_init_bufmgr(screen))
1697 return NULL;
1698
1699 screen->deviceID = drm_intel_bufmgr_gem_get_devid(screen->bufmgr);
1700 if (!gen_get_device_info(screen->deviceID, &screen->devinfo))
1701 return NULL;
1702
1703 const struct gen_device_info *devinfo = &screen->devinfo;
1704
1705 brw_process_intel_debug_variable();
1706
1707 if (INTEL_DEBUG & DEBUG_BUFMGR)
1708 dri_bufmgr_set_debug(screen->bufmgr, true);
1709
1710 if ((INTEL_DEBUG & DEBUG_SHADER_TIME) && devinfo->gen < 7) {
1711 fprintf(stderr,
1712 "shader_time debugging requires gen7 (Ivybridge) or better.\n");
1713 INTEL_DEBUG &= ~DEBUG_SHADER_TIME;
1714 }
1715
1716 if (intel_get_integer(screen, I915_PARAM_MMAP_GTT_VERSION) >= 1) {
1717 /* Theorectically unlimited! At least for individual objects...
1718 *
1719 * Currently the entire (global) address space for all GTT maps is
1720 * limited to 64bits. That is all objects on the system that are
1721 * setup for GTT mmapping must fit within 64bits. An attempt to use
1722 * one that exceeds the limit with fail in drm_intel_bo_map_gtt().
1723 *
1724 * Long before we hit that limit, we will be practically limited by
1725 * that any single object must fit in physical memory (RAM). The upper
1726 * limit on the CPU's address space is currently 48bits (Skylake), of
1727 * which only 39bits can be physical memory. (The GPU itself also has
1728 * a 48bit addressable virtual space.) We can fit over 32 million
1729 * objects of the current maximum allocable size before running out
1730 * of mmap space.
1731 */
1732 screen->max_gtt_map_object_size = UINT64_MAX;
1733 } else {
1734 /* Estimate the size of the mappable aperture into the GTT. There's an
1735 * ioctl to get the whole GTT size, but not one to get the mappable subset.
1736 * It turns out it's basically always 256MB, though some ancient hardware
1737 * was smaller.
1738 */
1739 uint32_t gtt_size = 256 * 1024 * 1024;
1740
1741 /* We don't want to map two objects such that a memcpy between them would
1742 * just fault one mapping in and then the other over and over forever. So
1743 * we would need to divide the GTT size by 2. Additionally, some GTT is
1744 * taken up by things like the framebuffer and the ringbuffer and such, so
1745 * be more conservative.
1746 */
1747 screen->max_gtt_map_object_size = gtt_size / 4;
1748 }
1749
1750 screen->hw_has_swizzling = intel_detect_swizzling(screen);
1751 screen->hw_has_timestamp = intel_detect_timestamp(screen);
1752
1753 /* GENs prior to 8 do not support EU/Subslice info */
1754 if (devinfo->gen >= 8) {
1755 intel_detect_sseu(screen);
1756 } else if (devinfo->gen == 7) {
1757 screen->subslice_total = 1 << (devinfo->gt - 1);
1758 }
1759
1760 /* Gen7-7.5 kernel requirements / command parser saga:
1761 *
1762 * - pre-v3.16:
1763 * Haswell and Baytrail cannot use any privileged batchbuffer features.
1764 *
1765 * Ivybridge has aliasing PPGTT on by default, which accidentally marks
1766 * all batches secure, allowing them to use any feature with no checking.
1767 * This is effectively equivalent to a command parser version of
1768 * \infinity - everything is possible.
1769 *
1770 * The command parser does not exist, and querying the version will
1771 * return -EINVAL.
1772 *
1773 * - v3.16:
1774 * The kernel enables the command parser by default, for systems with
1775 * aliasing PPGTT enabled (Ivybridge and Haswell). However, the
1776 * hardware checker is still enabled, so Haswell and Baytrail cannot
1777 * do anything.
1778 *
1779 * Ivybridge goes from "everything is possible" to "only what the
1780 * command parser allows" (if the user boots with i915.cmd_parser=0,
1781 * then everything is possible again). We can only safely use features
1782 * allowed by the supported command parser version.
1783 *
1784 * Annoyingly, I915_PARAM_CMD_PARSER_VERSION reports the static version
1785 * implemented by the kernel, even if it's turned off. So, checking
1786 * for version > 0 does not mean that you can write registers. We have
1787 * to try it and see. The version does, however, indicate the age of
1788 * the kernel.
1789 *
1790 * Instead of matching the hardware checker's behavior of converting
1791 * privileged commands to MI_NOOP, it makes execbuf2 start returning
1792 * -EINVAL, making it dangerous to try and use privileged features.
1793 *
1794 * Effective command parser versions:
1795 * - Haswell: 0 (reporting 1, writes don't work)
1796 * - Baytrail: 0 (reporting 1, writes don't work)
1797 * - Ivybridge: 1 (enabled) or infinite (disabled)
1798 *
1799 * - v3.17:
1800 * Baytrail aliasing PPGTT is enabled, making it like Ivybridge:
1801 * effectively version 1 (enabled) or infinite (disabled).
1802 *
1803 * - v3.19: f1f55cc0556031c8ee3fe99dae7251e78b9b653b
1804 * Command parser v2 supports predicate writes.
1805 *
1806 * - Haswell: 0 (reporting 1, writes don't work)
1807 * - Baytrail: 2 (enabled) or infinite (disabled)
1808 * - Ivybridge: 2 (enabled) or infinite (disabled)
1809 *
1810 * So version >= 2 is enough to know that Ivybridge and Baytrail
1811 * will work. Haswell still can't do anything.
1812 *
1813 * - v4.0: Version 3 happened. Largely not relevant.
1814 *
1815 * - v4.1: 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
1816 * L3 config registers are properly saved and restored as part
1817 * of the hardware context. We can approximately detect this point
1818 * in time by checking if I915_PARAM_REVISION is recognized - it
1819 * landed in a later commit, but in the same release cycle.
1820 *
1821 * - v4.2: 245054a1fe33c06ad233e0d58a27ec7b64db9284
1822 * Command parser finally gains secure batch promotion. On Haswell,
1823 * the hardware checker gets disabled, which finally allows it to do
1824 * privileged commands.
1825 *
1826 * I915_PARAM_CMD_PARSER_VERSION reports 3. Effective versions:
1827 * - Haswell: 3 (enabled) or 0 (disabled)
1828 * - Baytrail: 3 (enabled) or infinite (disabled)
1829 * - Ivybridge: 3 (enabled) or infinite (disabled)
1830 *
1831 * Unfortunately, detecting this point in time is tricky, because
1832 * no version bump happened when this important change occurred.
1833 * On Haswell, if we can write any register, then the kernel is at
1834 * least this new, and we can start trusting the version number.
1835 *
1836 * - v4.4: 2bbe6bbb0dc94fd4ce287bdac9e1bd184e23057b and
1837 * Command parser reaches version 4, allowing access to Haswell
1838 * atomic scratch and chicken3 registers. If version >= 4, we know
1839 * the kernel is new enough to support privileged features on all
1840 * hardware. However, the user might have disabled it...and the
1841 * kernel will still report version 4. So we still have to guess
1842 * and check.
1843 *
1844 * - v4.4: 7b9748cb513a6bef4af87b79f0da3ff7e8b56cd8
1845 * Command parser v5 whitelists indirect compute shader dispatch
1846 * registers, needed for OpenGL 4.3 and later.
1847 *
1848 * - v4.8:
1849 * Command parser v7 lets us use MI_MATH on Haswell.
1850 *
1851 * Additionally, the kernel begins reporting version 0 when
1852 * the command parser is disabled, allowing us to skip the
1853 * guess-and-check step on Haswell. Unfortunately, this also
1854 * means that we can no longer use it as an indicator of the
1855 * age of the kernel.
1856 */
1857 if (intel_get_param(screen, I915_PARAM_CMD_PARSER_VERSION,
1858 &screen->cmd_parser_version) < 0) {
1859 /* Command parser does not exist - getparam is unrecognized */
1860 screen->cmd_parser_version = 0;
1861 }
1862
1863 if (!intel_detect_pipelined_so(screen)) {
1864 /* We can't do anything, so the effective version is 0. */
1865 screen->cmd_parser_version = 0;
1866 } else {
1867 screen->kernel_features |= KERNEL_ALLOWS_SOL_OFFSET_WRITES;
1868 }
1869
1870 const char *force_msaa = getenv("INTEL_FORCE_MSAA");
1871 if (force_msaa) {
1872 screen->winsys_msaa_samples_override =
1873 intel_quantize_num_samples(screen, atoi(force_msaa));
1874 printf("Forcing winsys sample count to %d\n",
1875 screen->winsys_msaa_samples_override);
1876 } else {
1877 screen->winsys_msaa_samples_override = -1;
1878 }
1879
1880 set_max_gl_versions(screen);
1881
1882 /* Notification of GPU resets requires hardware contexts and a kernel new
1883 * enough to support DRM_IOCTL_I915_GET_RESET_STATS. If the ioctl is
1884 * supported, calling it with a context of 0 will either generate EPERM or
1885 * no error. If the ioctl is not supported, it always generate EINVAL.
1886 * Use this to determine whether to advertise the __DRI2_ROBUSTNESS
1887 * extension to the loader.
1888 *
1889 * Don't even try on pre-Gen6, since we don't attempt to use contexts there.
1890 */
1891 if (devinfo->gen >= 6) {
1892 struct drm_i915_reset_stats stats;
1893 memset(&stats, 0, sizeof(stats));
1894
1895 const int ret = drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats);
1896
1897 screen->has_context_reset_notification =
1898 (ret != -1 || errno != EINVAL);
1899 }
1900
1901 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 2)
1902 screen->kernel_features |= KERNEL_ALLOWS_PREDICATE_WRITES;
1903
1904 /* Haswell requires command parser version 4 in order to have L3
1905 * atomic scratch1 and chicken3 bits
1906 */
1907 if (devinfo->is_haswell && screen->cmd_parser_version >= 4) {
1908 screen->kernel_features |=
1909 KERNEL_ALLOWS_HSW_SCRATCH1_AND_ROW_CHICKEN3;
1910 }
1911
1912 /* Haswell requires command parser version 6 in order to write to the
1913 * MI_MATH GPR registers, and version 7 in order to use
1914 * MI_LOAD_REGISTER_REG (which all users of MI_MATH use).
1915 */
1916 if (devinfo->gen >= 8 ||
1917 (devinfo->is_haswell && screen->cmd_parser_version >= 7)) {
1918 screen->kernel_features |= KERNEL_ALLOWS_MI_MATH_AND_LRR;
1919 }
1920
1921 /* Gen7 needs at least command parser version 5 to support compute */
1922 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 5)
1923 screen->kernel_features |= KERNEL_ALLOWS_COMPUTE_DISPATCH;
1924
1925 dri_screen->extensions = !screen->has_context_reset_notification
1926 ? screenExtensions : intelRobustScreenExtensions;
1927
1928 screen->compiler = brw_compiler_create(screen, devinfo);
1929 screen->compiler->shader_debug_log = shader_debug_log_mesa;
1930 screen->compiler->shader_perf_log = shader_perf_log_mesa;
1931 screen->program_id = 1;
1932
1933 screen->has_exec_fence =
1934 intel_get_boolean(screen, I915_PARAM_HAS_EXEC_FENCE);
1935
1936 return (const __DRIconfig**) intel_screen_make_configs(dri_screen);
1937 }
1938
1939 struct intel_buffer {
1940 __DRIbuffer base;
1941 drm_intel_bo *bo;
1942 };
1943
1944 static __DRIbuffer *
1945 intelAllocateBuffer(__DRIscreen *dri_screen,
1946 unsigned attachment, unsigned format,
1947 int width, int height)
1948 {
1949 struct intel_buffer *intelBuffer;
1950 struct intel_screen *screen = dri_screen->driverPrivate;
1951
1952 assert(attachment == __DRI_BUFFER_FRONT_LEFT ||
1953 attachment == __DRI_BUFFER_BACK_LEFT);
1954
1955 intelBuffer = calloc(1, sizeof *intelBuffer);
1956 if (intelBuffer == NULL)
1957 return NULL;
1958
1959 /* The front and back buffers are color buffers, which are X tiled. */
1960 uint32_t tiling = I915_TILING_X;
1961 unsigned long pitch;
1962 int cpp = format / 8;
1963 intelBuffer->bo = drm_intel_bo_alloc_tiled(screen->bufmgr,
1964 "intelAllocateBuffer",
1965 width,
1966 height,
1967 cpp,
1968 &tiling, &pitch,
1969 BO_ALLOC_FOR_RENDER);
1970
1971 if (intelBuffer->bo == NULL) {
1972 free(intelBuffer);
1973 return NULL;
1974 }
1975
1976 drm_intel_bo_flink(intelBuffer->bo, &intelBuffer->base.name);
1977
1978 intelBuffer->base.attachment = attachment;
1979 intelBuffer->base.cpp = cpp;
1980 intelBuffer->base.pitch = pitch;
1981
1982 return &intelBuffer->base;
1983 }
1984
1985 static void
1986 intelReleaseBuffer(__DRIscreen *dri_screen, __DRIbuffer *buffer)
1987 {
1988 struct intel_buffer *intelBuffer = (struct intel_buffer *) buffer;
1989
1990 drm_intel_bo_unreference(intelBuffer->bo);
1991 free(intelBuffer);
1992 }
1993
1994 static const struct __DriverAPIRec brw_driver_api = {
1995 .InitScreen = intelInitScreen2,
1996 .DestroyScreen = intelDestroyScreen,
1997 .CreateContext = brwCreateContext,
1998 .DestroyContext = intelDestroyContext,
1999 .CreateBuffer = intelCreateBuffer,
2000 .DestroyBuffer = intelDestroyBuffer,
2001 .MakeCurrent = intelMakeCurrent,
2002 .UnbindContext = intelUnbindContext,
2003 .AllocateBuffer = intelAllocateBuffer,
2004 .ReleaseBuffer = intelReleaseBuffer
2005 };
2006
2007 static const struct __DRIDriverVtableExtensionRec brw_vtable = {
2008 .base = { __DRI_DRIVER_VTABLE, 1 },
2009 .vtable = &brw_driver_api,
2010 };
2011
2012 static const __DRIextension *brw_driver_extensions[] = {
2013 &driCoreExtension.base,
2014 &driImageDriverExtension.base,
2015 &driDRI2Extension.base,
2016 &brw_vtable.base,
2017 &brw_config_options.base,
2018 NULL
2019 };
2020
2021 PUBLIC const __DRIextension **__driDriverGetExtensions_i965(void)
2022 {
2023 globalDriverAPI = &brw_driver_api;
2024
2025 return brw_driver_extensions;
2026 }