i965: Fix aux-surface size check
[mesa.git] / src / mesa / drivers / dri / i965 / intel_screen.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <drm_fourcc.h>
27 #include <errno.h>
28 #include <time.h>
29 #include <unistd.h>
30 #include "main/context.h"
31 #include "main/framebuffer.h"
32 #include "main/renderbuffer.h"
33 #include "main/texobj.h"
34 #include "main/hash.h"
35 #include "main/fbobject.h"
36 #include "main/version.h"
37 #include "swrast/s_renderbuffer.h"
38 #include "util/ralloc.h"
39 #include "util/disk_cache.h"
40 #include "brw_defines.h"
41 #include "brw_state.h"
42 #include "compiler/nir/nir.h"
43
44 #include "utils.h"
45 #include "util/disk_cache.h"
46 #include "util/xmlpool.h"
47
48 static const __DRIconfigOptionsExtension brw_config_options = {
49 .base = { __DRI_CONFIG_OPTIONS, 1 },
50 .xml =
51 DRI_CONF_BEGIN
52 DRI_CONF_SECTION_PERFORMANCE
53 /* Options correspond to DRI_CONF_BO_REUSE_DISABLED,
54 * DRI_CONF_BO_REUSE_ALL
55 */
56 DRI_CONF_OPT_BEGIN_V(bo_reuse, enum, 1, "0:1")
57 DRI_CONF_DESC_BEGIN(en, "Buffer object reuse")
58 DRI_CONF_ENUM(0, "Disable buffer object reuse")
59 DRI_CONF_ENUM(1, "Enable reuse of all sizes of buffer objects")
60 DRI_CONF_DESC_END
61 DRI_CONF_OPT_END
62 DRI_CONF_MESA_NO_ERROR("false")
63 DRI_CONF_SECTION_END
64
65 DRI_CONF_SECTION_QUALITY
66 DRI_CONF_PRECISE_TRIG("false")
67
68 DRI_CONF_OPT_BEGIN(clamp_max_samples, int, -1)
69 DRI_CONF_DESC(en, "Clamp the value of GL_MAX_SAMPLES to the "
70 "given integer. If negative, then do not clamp.")
71 DRI_CONF_OPT_END
72 DRI_CONF_SECTION_END
73
74 DRI_CONF_SECTION_DEBUG
75 DRI_CONF_NO_RAST("false")
76 DRI_CONF_ALWAYS_FLUSH_BATCH("false")
77 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
78 DRI_CONF_DISABLE_THROTTLING("false")
79 DRI_CONF_FORCE_GLSL_EXTENSIONS_WARN("false")
80 DRI_CONF_FORCE_GLSL_VERSION(0)
81 DRI_CONF_DISABLE_GLSL_LINE_CONTINUATIONS("false")
82 DRI_CONF_DISABLE_BLEND_FUNC_EXTENDED("false")
83 DRI_CONF_DUAL_COLOR_BLEND_BY_LOCATION("false")
84 DRI_CONF_ALLOW_GLSL_EXTENSION_DIRECTIVE_MIDSHADER("false")
85 DRI_CONF_ALLOW_GLSL_BUILTIN_VARIABLE_REDECLARATION("false")
86 DRI_CONF_ALLOW_GLSL_CROSS_STAGE_INTERPOLATION_MISMATCH("false")
87 DRI_CONF_ALLOW_HIGHER_COMPAT_VERSION("false")
88 DRI_CONF_FORCE_GLSL_ABS_SQRT("false")
89
90 DRI_CONF_OPT_BEGIN_B(shader_precompile, "true")
91 DRI_CONF_DESC(en, "Perform code generation at shader link time.")
92 DRI_CONF_OPT_END
93 DRI_CONF_SECTION_END
94
95 DRI_CONF_SECTION_MISCELLANEOUS
96 DRI_CONF_GLSL_ZERO_INIT("false")
97 DRI_CONF_ALLOW_RGB10_CONFIGS("false")
98 DRI_CONF_SECTION_END
99 DRI_CONF_END
100 };
101
102 #include "intel_batchbuffer.h"
103 #include "intel_buffers.h"
104 #include "brw_bufmgr.h"
105 #include "intel_fbo.h"
106 #include "intel_mipmap_tree.h"
107 #include "intel_screen.h"
108 #include "intel_tex.h"
109 #include "intel_image.h"
110
111 #include "brw_context.h"
112
113 #include "i915_drm.h"
114
115 /**
116 * For debugging purposes, this returns a time in seconds.
117 */
118 double
119 get_time(void)
120 {
121 struct timespec tp;
122
123 clock_gettime(CLOCK_MONOTONIC, &tp);
124
125 return tp.tv_sec + tp.tv_nsec / 1000000000.0;
126 }
127
128 static const __DRItexBufferExtension intelTexBufferExtension = {
129 .base = { __DRI_TEX_BUFFER, 3 },
130
131 .setTexBuffer = intelSetTexBuffer,
132 .setTexBuffer2 = intelSetTexBuffer2,
133 .releaseTexBuffer = NULL,
134 };
135
136 static void
137 intel_dri2_flush_with_flags(__DRIcontext *cPriv,
138 __DRIdrawable *dPriv,
139 unsigned flags,
140 enum __DRI2throttleReason reason)
141 {
142 struct brw_context *brw = cPriv->driverPrivate;
143
144 if (!brw)
145 return;
146
147 struct gl_context *ctx = &brw->ctx;
148
149 FLUSH_VERTICES(ctx, 0);
150
151 if (flags & __DRI2_FLUSH_DRAWABLE)
152 intel_resolve_for_dri2_flush(brw, dPriv);
153
154 if (reason == __DRI2_THROTTLE_SWAPBUFFER)
155 brw->need_swap_throttle = true;
156 if (reason == __DRI2_THROTTLE_FLUSHFRONT)
157 brw->need_flush_throttle = true;
158
159 intel_batchbuffer_flush(brw);
160 }
161
162 /**
163 * Provides compatibility with loaders that only support the older (version
164 * 1-3) flush interface.
165 *
166 * That includes libGL up to Mesa 9.0, and the X Server at least up to 1.13.
167 */
168 static void
169 intel_dri2_flush(__DRIdrawable *drawable)
170 {
171 intel_dri2_flush_with_flags(drawable->driContextPriv, drawable,
172 __DRI2_FLUSH_DRAWABLE,
173 __DRI2_THROTTLE_SWAPBUFFER);
174 }
175
176 static const struct __DRI2flushExtensionRec intelFlushExtension = {
177 .base = { __DRI2_FLUSH, 4 },
178
179 .flush = intel_dri2_flush,
180 .invalidate = dri2InvalidateDrawable,
181 .flush_with_flags = intel_dri2_flush_with_flags,
182 };
183
184 static const struct intel_image_format intel_image_formats[] = {
185 { __DRI_IMAGE_FOURCC_ARGB2101010, __DRI_IMAGE_COMPONENTS_RGBA, 1,
186 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB2101010, 4 } } },
187
188 { __DRI_IMAGE_FOURCC_XRGB2101010, __DRI_IMAGE_COMPONENTS_RGB, 1,
189 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB2101010, 4 } } },
190
191 { __DRI_IMAGE_FOURCC_ARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
192 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
193
194 { __DRI_IMAGE_FOURCC_ABGR8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
195 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
196
197 { __DRI_IMAGE_FOURCC_SARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
198 { { 0, 0, 0, __DRI_IMAGE_FORMAT_SARGB8, 4 } } },
199
200 { __DRI_IMAGE_FOURCC_XRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
201 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB8888, 4 }, } },
202
203 { __DRI_IMAGE_FOURCC_XBGR8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
204 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 }, } },
205
206 { __DRI_IMAGE_FOURCC_ARGB1555, __DRI_IMAGE_COMPONENTS_RGBA, 1,
207 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB1555, 2 } } },
208
209 { __DRI_IMAGE_FOURCC_RGB565, __DRI_IMAGE_COMPONENTS_RGB, 1,
210 { { 0, 0, 0, __DRI_IMAGE_FORMAT_RGB565, 2 } } },
211
212 { __DRI_IMAGE_FOURCC_R8, __DRI_IMAGE_COMPONENTS_R, 1,
213 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 }, } },
214
215 { __DRI_IMAGE_FOURCC_R16, __DRI_IMAGE_COMPONENTS_R, 1,
216 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 1 }, } },
217
218 { __DRI_IMAGE_FOURCC_GR88, __DRI_IMAGE_COMPONENTS_RG, 1,
219 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 }, } },
220
221 { __DRI_IMAGE_FOURCC_GR1616, __DRI_IMAGE_COMPONENTS_RG, 1,
222 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR1616, 2 }, } },
223
224 { __DRI_IMAGE_FOURCC_YUV410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
225 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
226 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
227 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
228
229 { __DRI_IMAGE_FOURCC_YUV411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
230 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
231 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
232 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
233
234 { __DRI_IMAGE_FOURCC_YUV420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
235 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
236 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
237 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
238
239 { __DRI_IMAGE_FOURCC_YUV422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
240 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
241 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
242 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
243
244 { __DRI_IMAGE_FOURCC_YUV444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
245 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
246 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
247 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
248
249 { __DRI_IMAGE_FOURCC_YVU410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
250 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
251 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
252 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
253
254 { __DRI_IMAGE_FOURCC_YVU411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
255 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
256 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
257 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
258
259 { __DRI_IMAGE_FOURCC_YVU420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
260 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
261 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
262 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
263
264 { __DRI_IMAGE_FOURCC_YVU422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
265 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
266 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
267 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
268
269 { __DRI_IMAGE_FOURCC_YVU444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
270 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
271 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
272 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
273
274 { __DRI_IMAGE_FOURCC_NV12, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
275 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
276 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR88, 2 } } },
277
278 { __DRI_IMAGE_FOURCC_NV16, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
279 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
280 { 1, 1, 0, __DRI_IMAGE_FORMAT_GR88, 2 } } },
281
282 /* For YUYV and UYVY buffers, we set up two overlapping DRI images
283 * and treat them as planar buffers in the compositors.
284 * Plane 0 is GR88 and samples YU or YV pairs and places Y into
285 * the R component, while plane 1 is ARGB/ABGR and samples YUYV/UYVY
286 * clusters and places pairs and places U into the G component and
287 * V into A. This lets the texture sampler interpolate the Y
288 * components correctly when sampling from plane 0, and interpolate
289 * U and V correctly when sampling from plane 1. */
290 { __DRI_IMAGE_FOURCC_YUYV, __DRI_IMAGE_COMPONENTS_Y_XUXV, 2,
291 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
292 { 0, 1, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
293 { __DRI_IMAGE_FOURCC_UYVY, __DRI_IMAGE_COMPONENTS_Y_UXVX, 2,
294 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
295 { 0, 1, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } }
296 };
297
298 static const struct {
299 uint64_t modifier;
300 unsigned since_gen;
301 } supported_modifiers[] = {
302 { .modifier = DRM_FORMAT_MOD_LINEAR , .since_gen = 1 },
303 { .modifier = I915_FORMAT_MOD_X_TILED , .since_gen = 1 },
304 { .modifier = I915_FORMAT_MOD_Y_TILED , .since_gen = 6 },
305 { .modifier = I915_FORMAT_MOD_Y_TILED_CCS , .since_gen = 9 },
306 };
307
308 static bool
309 modifier_is_supported(const struct gen_device_info *devinfo,
310 const struct intel_image_format *fmt, int dri_format,
311 uint64_t modifier)
312 {
313 const struct isl_drm_modifier_info *modinfo =
314 isl_drm_modifier_get_info(modifier);
315 int i;
316
317 /* ISL had better know about the modifier */
318 if (!modinfo)
319 return false;
320
321 if (modinfo->aux_usage == ISL_AUX_USAGE_CCS_E) {
322 /* If INTEL_DEBUG=norbc is set, don't support any CCS_E modifiers */
323 if (unlikely(INTEL_DEBUG & DEBUG_NO_RBC))
324 return false;
325
326 /* CCS_E is not supported for planar images */
327 if (fmt && fmt->nplanes > 1)
328 return false;
329
330 if (fmt) {
331 assert(dri_format == 0);
332 dri_format = fmt->planes[0].dri_format;
333 }
334
335 mesa_format format = driImageFormatToGLFormat(dri_format);
336 format = _mesa_get_srgb_format_linear(format);
337 if (!isl_format_supports_ccs_e(devinfo,
338 brw_isl_format_for_mesa_format(format)))
339 return false;
340 }
341
342 for (i = 0; i < ARRAY_SIZE(supported_modifiers); i++) {
343 if (supported_modifiers[i].modifier != modifier)
344 continue;
345
346 return supported_modifiers[i].since_gen <= devinfo->gen;
347 }
348
349 return false;
350 }
351
352 static uint64_t
353 tiling_to_modifier(uint32_t tiling)
354 {
355 static const uint64_t map[] = {
356 [I915_TILING_NONE] = DRM_FORMAT_MOD_LINEAR,
357 [I915_TILING_X] = I915_FORMAT_MOD_X_TILED,
358 [I915_TILING_Y] = I915_FORMAT_MOD_Y_TILED,
359 };
360
361 assert(tiling < ARRAY_SIZE(map));
362
363 return map[tiling];
364 }
365
366 static void
367 intel_image_warn_if_unaligned(__DRIimage *image, const char *func)
368 {
369 uint32_t tiling, swizzle;
370 brw_bo_get_tiling(image->bo, &tiling, &swizzle);
371
372 if (tiling != I915_TILING_NONE && (image->offset & 0xfff)) {
373 _mesa_warning(NULL, "%s: offset 0x%08x not on tile boundary",
374 func, image->offset);
375 }
376 }
377
378 static const struct intel_image_format *
379 intel_image_format_lookup(int fourcc)
380 {
381 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
382 if (intel_image_formats[i].fourcc == fourcc)
383 return &intel_image_formats[i];
384 }
385
386 return NULL;
387 }
388
389 static boolean intel_lookup_fourcc(int dri_format, int *fourcc)
390 {
391 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
392 if (intel_image_formats[i].planes[0].dri_format == dri_format) {
393 *fourcc = intel_image_formats[i].fourcc;
394 return true;
395 }
396 }
397 return false;
398 }
399
400 static __DRIimage *
401 intel_allocate_image(struct intel_screen *screen, int dri_format,
402 void *loaderPrivate)
403 {
404 __DRIimage *image;
405
406 image = calloc(1, sizeof *image);
407 if (image == NULL)
408 return NULL;
409
410 image->screen = screen;
411 image->dri_format = dri_format;
412 image->offset = 0;
413
414 image->format = driImageFormatToGLFormat(dri_format);
415 if (dri_format != __DRI_IMAGE_FORMAT_NONE &&
416 image->format == MESA_FORMAT_NONE) {
417 free(image);
418 return NULL;
419 }
420
421 image->internal_format = _mesa_get_format_base_format(image->format);
422 image->data = loaderPrivate;
423
424 return image;
425 }
426
427 /**
428 * Sets up a DRIImage structure to point to a slice out of a miptree.
429 */
430 static void
431 intel_setup_image_from_mipmap_tree(struct brw_context *brw, __DRIimage *image,
432 struct intel_mipmap_tree *mt, GLuint level,
433 GLuint zoffset)
434 {
435 intel_miptree_make_shareable(brw, mt);
436
437 intel_miptree_check_level_layer(mt, level, zoffset);
438
439 image->width = minify(mt->surf.phys_level0_sa.width,
440 level - mt->first_level);
441 image->height = minify(mt->surf.phys_level0_sa.height,
442 level - mt->first_level);
443 image->pitch = mt->surf.row_pitch;
444
445 image->offset = intel_miptree_get_tile_offsets(mt, level, zoffset,
446 &image->tile_x,
447 &image->tile_y);
448
449 brw_bo_unreference(image->bo);
450 image->bo = mt->bo;
451 brw_bo_reference(mt->bo);
452 }
453
454 static __DRIimage *
455 intel_create_image_from_name(__DRIscreen *dri_screen,
456 int width, int height, int format,
457 int name, int pitch, void *loaderPrivate)
458 {
459 struct intel_screen *screen = dri_screen->driverPrivate;
460 __DRIimage *image;
461 int cpp;
462
463 image = intel_allocate_image(screen, format, loaderPrivate);
464 if (image == NULL)
465 return NULL;
466
467 if (image->format == MESA_FORMAT_NONE)
468 cpp = 1;
469 else
470 cpp = _mesa_get_format_bytes(image->format);
471
472 image->width = width;
473 image->height = height;
474 image->pitch = pitch * cpp;
475 image->bo = brw_bo_gem_create_from_name(screen->bufmgr, "image",
476 name);
477 if (!image->bo) {
478 free(image);
479 return NULL;
480 }
481 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
482
483 return image;
484 }
485
486 static __DRIimage *
487 intel_create_image_from_renderbuffer(__DRIcontext *context,
488 int renderbuffer, void *loaderPrivate)
489 {
490 __DRIimage *image;
491 struct brw_context *brw = context->driverPrivate;
492 struct gl_context *ctx = &brw->ctx;
493 struct gl_renderbuffer *rb;
494 struct intel_renderbuffer *irb;
495
496 rb = _mesa_lookup_renderbuffer(ctx, renderbuffer);
497 if (!rb) {
498 _mesa_error(ctx, GL_INVALID_OPERATION, "glRenderbufferExternalMESA");
499 return NULL;
500 }
501
502 irb = intel_renderbuffer(rb);
503 intel_miptree_make_shareable(brw, irb->mt);
504 image = calloc(1, sizeof *image);
505 if (image == NULL)
506 return NULL;
507
508 image->internal_format = rb->InternalFormat;
509 image->format = rb->Format;
510 image->modifier = tiling_to_modifier(
511 isl_tiling_to_i915_tiling(irb->mt->surf.tiling));
512 image->offset = 0;
513 image->data = loaderPrivate;
514 brw_bo_unreference(image->bo);
515 image->bo = irb->mt->bo;
516 brw_bo_reference(irb->mt->bo);
517 image->width = rb->Width;
518 image->height = rb->Height;
519 image->pitch = irb->mt->surf.row_pitch;
520 image->dri_format = driGLFormatToImageFormat(image->format);
521 image->has_depthstencil = irb->mt->stencil_mt? true : false;
522
523 rb->NeedsFinishRenderTexture = true;
524 return image;
525 }
526
527 static __DRIimage *
528 intel_create_image_from_texture(__DRIcontext *context, int target,
529 unsigned texture, int zoffset,
530 int level,
531 unsigned *error,
532 void *loaderPrivate)
533 {
534 __DRIimage *image;
535 struct brw_context *brw = context->driverPrivate;
536 struct gl_texture_object *obj;
537 struct intel_texture_object *iobj;
538 GLuint face = 0;
539
540 obj = _mesa_lookup_texture(&brw->ctx, texture);
541 if (!obj || obj->Target != target) {
542 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
543 return NULL;
544 }
545
546 if (target == GL_TEXTURE_CUBE_MAP)
547 face = zoffset;
548
549 _mesa_test_texobj_completeness(&brw->ctx, obj);
550 iobj = intel_texture_object(obj);
551 if (!obj->_BaseComplete || (level > 0 && !obj->_MipmapComplete)) {
552 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
553 return NULL;
554 }
555
556 if (level < obj->BaseLevel || level > obj->_MaxLevel) {
557 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
558 return NULL;
559 }
560
561 if (target == GL_TEXTURE_3D && obj->Image[face][level]->Depth < zoffset) {
562 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
563 return NULL;
564 }
565 image = calloc(1, sizeof *image);
566 if (image == NULL) {
567 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
568 return NULL;
569 }
570
571 image->internal_format = obj->Image[face][level]->InternalFormat;
572 image->format = obj->Image[face][level]->TexFormat;
573 image->modifier = tiling_to_modifier(
574 isl_tiling_to_i915_tiling(iobj->mt->surf.tiling));
575 image->data = loaderPrivate;
576 intel_setup_image_from_mipmap_tree(brw, image, iobj->mt, level, zoffset);
577 image->dri_format = driGLFormatToImageFormat(image->format);
578 image->has_depthstencil = iobj->mt->stencil_mt? true : false;
579 if (image->dri_format == MESA_FORMAT_NONE) {
580 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
581 free(image);
582 return NULL;
583 }
584
585 *error = __DRI_IMAGE_ERROR_SUCCESS;
586 return image;
587 }
588
589 static void
590 intel_destroy_image(__DRIimage *image)
591 {
592 brw_bo_unreference(image->bo);
593 free(image);
594 }
595
596 enum modifier_priority {
597 MODIFIER_PRIORITY_INVALID = 0,
598 MODIFIER_PRIORITY_LINEAR,
599 MODIFIER_PRIORITY_X,
600 MODIFIER_PRIORITY_Y,
601 MODIFIER_PRIORITY_Y_CCS,
602 };
603
604 const uint64_t priority_to_modifier[] = {
605 [MODIFIER_PRIORITY_INVALID] = DRM_FORMAT_MOD_INVALID,
606 [MODIFIER_PRIORITY_LINEAR] = DRM_FORMAT_MOD_LINEAR,
607 [MODIFIER_PRIORITY_X] = I915_FORMAT_MOD_X_TILED,
608 [MODIFIER_PRIORITY_Y] = I915_FORMAT_MOD_Y_TILED,
609 [MODIFIER_PRIORITY_Y_CCS] = I915_FORMAT_MOD_Y_TILED_CCS,
610 };
611
612 static uint64_t
613 select_best_modifier(struct gen_device_info *devinfo,
614 int dri_format,
615 const uint64_t *modifiers,
616 const unsigned count)
617 {
618 enum modifier_priority prio = MODIFIER_PRIORITY_INVALID;
619
620 for (int i = 0; i < count; i++) {
621 if (!modifier_is_supported(devinfo, NULL, dri_format, modifiers[i]))
622 continue;
623
624 switch (modifiers[i]) {
625 case I915_FORMAT_MOD_Y_TILED_CCS:
626 prio = MAX2(prio, MODIFIER_PRIORITY_Y_CCS);
627 break;
628 case I915_FORMAT_MOD_Y_TILED:
629 prio = MAX2(prio, MODIFIER_PRIORITY_Y);
630 break;
631 case I915_FORMAT_MOD_X_TILED:
632 prio = MAX2(prio, MODIFIER_PRIORITY_X);
633 break;
634 case DRM_FORMAT_MOD_LINEAR:
635 prio = MAX2(prio, MODIFIER_PRIORITY_LINEAR);
636 break;
637 case DRM_FORMAT_MOD_INVALID:
638 default:
639 break;
640 }
641 }
642
643 return priority_to_modifier[prio];
644 }
645
646 static __DRIimage *
647 intel_create_image_common(__DRIscreen *dri_screen,
648 int width, int height, int format,
649 unsigned int use,
650 const uint64_t *modifiers,
651 unsigned count,
652 void *loaderPrivate)
653 {
654 __DRIimage *image;
655 struct intel_screen *screen = dri_screen->driverPrivate;
656 uint64_t modifier = DRM_FORMAT_MOD_INVALID;
657 bool ok;
658
659 /* Callers of this may specify a modifier, or a dri usage, but not both. The
660 * newer modifier interface deprecates the older usage flags newer modifier
661 * interface deprecates the older usage flags.
662 */
663 assert(!(use && count));
664
665 if (use & __DRI_IMAGE_USE_CURSOR) {
666 if (width != 64 || height != 64)
667 return NULL;
668 modifier = DRM_FORMAT_MOD_LINEAR;
669 }
670
671 if (use & __DRI_IMAGE_USE_LINEAR)
672 modifier = DRM_FORMAT_MOD_LINEAR;
673
674 if (modifier == DRM_FORMAT_MOD_INVALID) {
675 if (modifiers) {
676 /* User requested specific modifiers */
677 modifier = select_best_modifier(&screen->devinfo, format,
678 modifiers, count);
679 if (modifier == DRM_FORMAT_MOD_INVALID)
680 return NULL;
681 } else {
682 /* Historically, X-tiled was the default, and so lack of modifier means
683 * X-tiled.
684 */
685 modifier = I915_FORMAT_MOD_X_TILED;
686 }
687 }
688
689 image = intel_allocate_image(screen, format, loaderPrivate);
690 if (image == NULL)
691 return NULL;
692
693 const struct isl_drm_modifier_info *mod_info =
694 isl_drm_modifier_get_info(modifier);
695
696 struct isl_surf surf;
697 ok = isl_surf_init(&screen->isl_dev, &surf,
698 .dim = ISL_SURF_DIM_2D,
699 .format = brw_isl_format_for_mesa_format(image->format),
700 .width = width,
701 .height = height,
702 .depth = 1,
703 .levels = 1,
704 .array_len = 1,
705 .samples = 1,
706 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
707 ISL_SURF_USAGE_TEXTURE_BIT |
708 ISL_SURF_USAGE_STORAGE_BIT,
709 .tiling_flags = (1 << mod_info->tiling));
710 assert(ok);
711 if (!ok) {
712 free(image);
713 return NULL;
714 }
715
716 struct isl_surf aux_surf;
717 if (mod_info->aux_usage == ISL_AUX_USAGE_CCS_E) {
718 ok = isl_surf_get_ccs_surf(&screen->isl_dev, &surf, &aux_surf, 0);
719 if (!ok) {
720 free(image);
721 return NULL;
722 }
723 } else {
724 assert(mod_info->aux_usage == ISL_AUX_USAGE_NONE);
725 aux_surf.size = 0;
726 }
727
728 /* We request that the bufmgr zero the buffer for us for two reasons:
729 *
730 * 1) If a buffer gets re-used from the pool, we don't want to leak random
731 * garbage from our process to some other.
732 *
733 * 2) For images with CCS_E, we want to ensure that the CCS starts off in
734 * a valid state. A CCS value of 0 indicates that the given block is
735 * in the pass-through state which is what we want.
736 */
737 image->bo = brw_bo_alloc_tiled(screen->bufmgr, "image",
738 surf.size + aux_surf.size,
739 isl_tiling_to_i915_tiling(mod_info->tiling),
740 surf.row_pitch, BO_ALLOC_ZEROED);
741 if (image->bo == NULL) {
742 free(image);
743 return NULL;
744 }
745 image->width = width;
746 image->height = height;
747 image->pitch = surf.row_pitch;
748 image->modifier = modifier;
749
750 if (aux_surf.size) {
751 image->aux_offset = surf.size;
752 image->aux_pitch = aux_surf.row_pitch;
753 image->aux_size = aux_surf.size;
754 }
755
756 return image;
757 }
758
759 static __DRIimage *
760 intel_create_image(__DRIscreen *dri_screen,
761 int width, int height, int format,
762 unsigned int use,
763 void *loaderPrivate)
764 {
765 return intel_create_image_common(dri_screen, width, height, format, use, NULL, 0,
766 loaderPrivate);
767 }
768
769 static void *
770 intel_map_image(__DRIcontext *context, __DRIimage *image,
771 int x0, int y0, int width, int height,
772 unsigned int flags, int *stride, void **map_info)
773 {
774 struct brw_context *brw = NULL;
775 struct brw_bo *bo = NULL;
776 void *raw_data = NULL;
777 GLuint pix_w = 1;
778 GLuint pix_h = 1;
779 GLint pix_bytes = 1;
780
781 if (!context || !image || !stride || !map_info || *map_info)
782 return NULL;
783
784 if (x0 < 0 || x0 >= image->width || width > image->width - x0)
785 return NULL;
786
787 if (y0 < 0 || y0 >= image->height || height > image->height - y0)
788 return NULL;
789
790 if (flags & MAP_INTERNAL_MASK)
791 return NULL;
792
793 brw = context->driverPrivate;
794 bo = image->bo;
795
796 assert(brw);
797 assert(bo);
798
799 /* DRI flags and GL_MAP.*_BIT flags are the same, so just pass them on. */
800 raw_data = brw_bo_map(brw, bo, flags);
801 if (!raw_data)
802 return NULL;
803
804 _mesa_get_format_block_size(image->format, &pix_w, &pix_h);
805 pix_bytes = _mesa_get_format_bytes(image->format);
806
807 assert(pix_w);
808 assert(pix_h);
809 assert(pix_bytes > 0);
810
811 raw_data += (x0 / pix_w) * pix_bytes + (y0 / pix_h) * image->pitch;
812
813 brw_bo_reference(bo);
814
815 *stride = image->pitch;
816 *map_info = bo;
817
818 return raw_data;
819 }
820
821 static void
822 intel_unmap_image(__DRIcontext *context, __DRIimage *image, void *map_info)
823 {
824 struct brw_bo *bo = map_info;
825
826 brw_bo_unmap(bo);
827 brw_bo_unreference(bo);
828 }
829
830 static __DRIimage *
831 intel_create_image_with_modifiers(__DRIscreen *dri_screen,
832 int width, int height, int format,
833 const uint64_t *modifiers,
834 const unsigned count,
835 void *loaderPrivate)
836 {
837 return intel_create_image_common(dri_screen, width, height, format, 0,
838 modifiers, count, loaderPrivate);
839 }
840
841 static GLboolean
842 intel_query_image(__DRIimage *image, int attrib, int *value)
843 {
844 switch (attrib) {
845 case __DRI_IMAGE_ATTRIB_STRIDE:
846 *value = image->pitch;
847 return true;
848 case __DRI_IMAGE_ATTRIB_HANDLE:
849 *value = brw_bo_export_gem_handle(image->bo);
850 return true;
851 case __DRI_IMAGE_ATTRIB_NAME:
852 return !brw_bo_flink(image->bo, (uint32_t *) value);
853 case __DRI_IMAGE_ATTRIB_FORMAT:
854 *value = image->dri_format;
855 return true;
856 case __DRI_IMAGE_ATTRIB_WIDTH:
857 *value = image->width;
858 return true;
859 case __DRI_IMAGE_ATTRIB_HEIGHT:
860 *value = image->height;
861 return true;
862 case __DRI_IMAGE_ATTRIB_COMPONENTS:
863 if (image->planar_format == NULL)
864 return false;
865 *value = image->planar_format->components;
866 return true;
867 case __DRI_IMAGE_ATTRIB_FD:
868 return !brw_bo_gem_export_to_prime(image->bo, value);
869 case __DRI_IMAGE_ATTRIB_FOURCC:
870 return intel_lookup_fourcc(image->dri_format, value);
871 case __DRI_IMAGE_ATTRIB_NUM_PLANES:
872 if (isl_drm_modifier_has_aux(image->modifier)) {
873 assert(!image->planar_format || image->planar_format->nplanes == 1);
874 *value = 2;
875 } else if (image->planar_format) {
876 *value = image->planar_format->nplanes;
877 } else {
878 *value = 1;
879 }
880 return true;
881 case __DRI_IMAGE_ATTRIB_OFFSET:
882 *value = image->offset;
883 return true;
884 case __DRI_IMAGE_ATTRIB_MODIFIER_LOWER:
885 *value = (image->modifier & 0xffffffff);
886 return true;
887 case __DRI_IMAGE_ATTRIB_MODIFIER_UPPER:
888 *value = ((image->modifier >> 32) & 0xffffffff);
889 return true;
890
891 default:
892 return false;
893 }
894 }
895
896 static GLboolean
897 intel_query_format_modifier_attribs(__DRIscreen *dri_screen,
898 uint32_t fourcc, uint64_t modifier,
899 int attrib, uint64_t *value)
900 {
901 struct intel_screen *screen = dri_screen->driverPrivate;
902 const struct intel_image_format *f = intel_image_format_lookup(fourcc);
903
904 if (!modifier_is_supported(&screen->devinfo, f, 0, modifier))
905 return false;
906
907 switch (attrib) {
908 case __DRI_IMAGE_FORMAT_MODIFIER_ATTRIB_PLANE_COUNT:
909 *value = isl_drm_modifier_has_aux(modifier) ? 2 : f->nplanes;
910 return true;
911
912 default:
913 return false;
914 }
915 }
916
917 static __DRIimage *
918 intel_dup_image(__DRIimage *orig_image, void *loaderPrivate)
919 {
920 __DRIimage *image;
921
922 image = calloc(1, sizeof *image);
923 if (image == NULL)
924 return NULL;
925
926 brw_bo_reference(orig_image->bo);
927 image->bo = orig_image->bo;
928 image->internal_format = orig_image->internal_format;
929 image->planar_format = orig_image->planar_format;
930 image->dri_format = orig_image->dri_format;
931 image->format = orig_image->format;
932 image->modifier = orig_image->modifier;
933 image->offset = orig_image->offset;
934 image->width = orig_image->width;
935 image->height = orig_image->height;
936 image->pitch = orig_image->pitch;
937 image->tile_x = orig_image->tile_x;
938 image->tile_y = orig_image->tile_y;
939 image->has_depthstencil = orig_image->has_depthstencil;
940 image->data = loaderPrivate;
941 image->dma_buf_imported = orig_image->dma_buf_imported;
942 image->aux_offset = orig_image->aux_offset;
943 image->aux_pitch = orig_image->aux_pitch;
944
945 memcpy(image->strides, orig_image->strides, sizeof(image->strides));
946 memcpy(image->offsets, orig_image->offsets, sizeof(image->offsets));
947
948 return image;
949 }
950
951 static GLboolean
952 intel_validate_usage(__DRIimage *image, unsigned int use)
953 {
954 if (use & __DRI_IMAGE_USE_CURSOR) {
955 if (image->width != 64 || image->height != 64)
956 return GL_FALSE;
957 }
958
959 return GL_TRUE;
960 }
961
962 static __DRIimage *
963 intel_create_image_from_names(__DRIscreen *dri_screen,
964 int width, int height, int fourcc,
965 int *names, int num_names,
966 int *strides, int *offsets,
967 void *loaderPrivate)
968 {
969 const struct intel_image_format *f = NULL;
970 __DRIimage *image;
971 int i, index;
972
973 if (dri_screen == NULL || names == NULL || num_names != 1)
974 return NULL;
975
976 f = intel_image_format_lookup(fourcc);
977 if (f == NULL)
978 return NULL;
979
980 image = intel_create_image_from_name(dri_screen, width, height,
981 __DRI_IMAGE_FORMAT_NONE,
982 names[0], strides[0],
983 loaderPrivate);
984
985 if (image == NULL)
986 return NULL;
987
988 image->planar_format = f;
989 for (i = 0; i < f->nplanes; i++) {
990 index = f->planes[i].buffer_index;
991 image->offsets[index] = offsets[index];
992 image->strides[index] = strides[index];
993 }
994
995 return image;
996 }
997
998 static __DRIimage *
999 intel_create_image_from_fds_common(__DRIscreen *dri_screen,
1000 int width, int height, int fourcc,
1001 uint64_t modifier, int *fds, int num_fds,
1002 int *strides, int *offsets,
1003 void *loaderPrivate)
1004 {
1005 struct intel_screen *screen = dri_screen->driverPrivate;
1006 const struct intel_image_format *f;
1007 __DRIimage *image;
1008 int i, index;
1009 bool ok;
1010
1011 if (fds == NULL || num_fds < 1)
1012 return NULL;
1013
1014 f = intel_image_format_lookup(fourcc);
1015 if (f == NULL)
1016 return NULL;
1017
1018 if (modifier != DRM_FORMAT_MOD_INVALID &&
1019 !modifier_is_supported(&screen->devinfo, f, 0, modifier))
1020 return NULL;
1021
1022 if (f->nplanes == 1)
1023 image = intel_allocate_image(screen, f->planes[0].dri_format,
1024 loaderPrivate);
1025 else
1026 image = intel_allocate_image(screen, __DRI_IMAGE_FORMAT_NONE,
1027 loaderPrivate);
1028
1029 if (image == NULL)
1030 return NULL;
1031
1032 image->width = width;
1033 image->height = height;
1034 image->pitch = strides[0];
1035
1036 image->planar_format = f;
1037
1038 if (modifier != DRM_FORMAT_MOD_INVALID) {
1039 const struct isl_drm_modifier_info *mod_info =
1040 isl_drm_modifier_get_info(modifier);
1041 uint32_t tiling = isl_tiling_to_i915_tiling(mod_info->tiling);
1042 image->bo = brw_bo_gem_create_from_prime_tiled(screen->bufmgr, fds[0],
1043 tiling, strides[0]);
1044 } else {
1045 image->bo = brw_bo_gem_create_from_prime(screen->bufmgr, fds[0]);
1046 }
1047
1048 if (image->bo == NULL) {
1049 free(image);
1050 return NULL;
1051 }
1052
1053 /* We only support all planes from the same bo.
1054 * brw_bo_gem_create_from_prime() should return the same pointer for all
1055 * fds received here */
1056 for (i = 1; i < num_fds; i++) {
1057 struct brw_bo *aux = brw_bo_gem_create_from_prime(screen->bufmgr, fds[i]);
1058 brw_bo_unreference(aux);
1059 if (aux != image->bo) {
1060 brw_bo_unreference(image->bo);
1061 free(image);
1062 return NULL;
1063 }
1064 }
1065
1066 if (modifier != DRM_FORMAT_MOD_INVALID)
1067 image->modifier = modifier;
1068 else
1069 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
1070
1071 const struct isl_drm_modifier_info *mod_info =
1072 isl_drm_modifier_get_info(image->modifier);
1073
1074 int size = 0;
1075 struct isl_surf surf;
1076 for (i = 0; i < f->nplanes; i++) {
1077 index = f->planes[i].buffer_index;
1078 image->offsets[index] = offsets[index];
1079 image->strides[index] = strides[index];
1080
1081 mesa_format format = driImageFormatToGLFormat(f->planes[i].dri_format);
1082
1083 ok = isl_surf_init(&screen->isl_dev, &surf,
1084 .dim = ISL_SURF_DIM_2D,
1085 .format = brw_isl_format_for_mesa_format(format),
1086 .width = image->width >> f->planes[i].width_shift,
1087 .height = image->height >> f->planes[i].height_shift,
1088 .depth = 1,
1089 .levels = 1,
1090 .array_len = 1,
1091 .samples = 1,
1092 .row_pitch = strides[index],
1093 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
1094 ISL_SURF_USAGE_TEXTURE_BIT |
1095 ISL_SURF_USAGE_STORAGE_BIT,
1096 .tiling_flags = (1 << mod_info->tiling));
1097 if (!ok) {
1098 brw_bo_unreference(image->bo);
1099 free(image);
1100 return NULL;
1101 }
1102
1103 const int end = offsets[index] + surf.size;
1104 if (size < end)
1105 size = end;
1106 }
1107
1108 if (mod_info->aux_usage == ISL_AUX_USAGE_CCS_E) {
1109 /* Even though we initialize surf in the loop above, we know that
1110 * anything with CCS_E will have exactly one plane so surf is properly
1111 * initialized when we get here.
1112 */
1113 assert(f->nplanes == 1);
1114
1115 image->aux_offset = offsets[1];
1116 image->aux_pitch = strides[1];
1117
1118 /* Scanout hardware requires that the CCS be placed after the main
1119 * surface in memory. We consider any CCS that is placed any earlier in
1120 * memory to be invalid and reject it.
1121 *
1122 * At some point in the future, this restriction may be relaxed if the
1123 * hardware becomes less strict but we may need a new modifier for that.
1124 */
1125 assert(size > 0);
1126 if (image->aux_offset < size) {
1127 brw_bo_unreference(image->bo);
1128 free(image);
1129 return NULL;
1130 }
1131
1132 struct isl_surf aux_surf;
1133 ok = isl_surf_get_ccs_surf(&screen->isl_dev, &surf, &aux_surf,
1134 image->aux_pitch);
1135 if (!ok) {
1136 brw_bo_unreference(image->bo);
1137 free(image);
1138 return NULL;
1139 }
1140
1141 image->aux_size = aux_surf.size;
1142
1143 const int end = image->aux_offset + aux_surf.size;
1144 if (size < end)
1145 size = end;
1146 } else {
1147 assert(mod_info->aux_usage == ISL_AUX_USAGE_NONE);
1148 }
1149
1150 /* Check that the requested image actually fits within the BO. 'size'
1151 * is already relative to the offsets, so we don't need to add that. */
1152 if (image->bo->size == 0) {
1153 image->bo->size = size;
1154 } else if (size > image->bo->size) {
1155 brw_bo_unreference(image->bo);
1156 free(image);
1157 return NULL;
1158 }
1159
1160 if (f->nplanes == 1) {
1161 image->offset = image->offsets[0];
1162 intel_image_warn_if_unaligned(image, __func__);
1163 }
1164
1165 return image;
1166 }
1167
1168 static __DRIimage *
1169 intel_create_image_from_fds(__DRIscreen *dri_screen,
1170 int width, int height, int fourcc,
1171 int *fds, int num_fds, int *strides, int *offsets,
1172 void *loaderPrivate)
1173 {
1174 return intel_create_image_from_fds_common(dri_screen, width, height, fourcc,
1175 DRM_FORMAT_MOD_INVALID,
1176 fds, num_fds, strides, offsets,
1177 loaderPrivate);
1178 }
1179
1180 static __DRIimage *
1181 intel_create_image_from_dma_bufs2(__DRIscreen *dri_screen,
1182 int width, int height,
1183 int fourcc, uint64_t modifier,
1184 int *fds, int num_fds,
1185 int *strides, int *offsets,
1186 enum __DRIYUVColorSpace yuv_color_space,
1187 enum __DRISampleRange sample_range,
1188 enum __DRIChromaSiting horizontal_siting,
1189 enum __DRIChromaSiting vertical_siting,
1190 unsigned *error,
1191 void *loaderPrivate)
1192 {
1193 __DRIimage *image;
1194 const struct intel_image_format *f = intel_image_format_lookup(fourcc);
1195
1196 if (!f) {
1197 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
1198 return NULL;
1199 }
1200
1201 image = intel_create_image_from_fds_common(dri_screen, width, height,
1202 fourcc, modifier,
1203 fds, num_fds, strides, offsets,
1204 loaderPrivate);
1205
1206 /*
1207 * Invalid parameters and any inconsistencies between are assumed to be
1208 * checked by the caller. Therefore besides unsupported formats one can fail
1209 * only in allocation.
1210 */
1211 if (!image) {
1212 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
1213 return NULL;
1214 }
1215
1216 image->dma_buf_imported = true;
1217 image->yuv_color_space = yuv_color_space;
1218 image->sample_range = sample_range;
1219 image->horizontal_siting = horizontal_siting;
1220 image->vertical_siting = vertical_siting;
1221
1222 *error = __DRI_IMAGE_ERROR_SUCCESS;
1223 return image;
1224 }
1225
1226 static __DRIimage *
1227 intel_create_image_from_dma_bufs(__DRIscreen *dri_screen,
1228 int width, int height, int fourcc,
1229 int *fds, int num_fds,
1230 int *strides, int *offsets,
1231 enum __DRIYUVColorSpace yuv_color_space,
1232 enum __DRISampleRange sample_range,
1233 enum __DRIChromaSiting horizontal_siting,
1234 enum __DRIChromaSiting vertical_siting,
1235 unsigned *error,
1236 void *loaderPrivate)
1237 {
1238 return intel_create_image_from_dma_bufs2(dri_screen, width, height,
1239 fourcc, DRM_FORMAT_MOD_INVALID,
1240 fds, num_fds, strides, offsets,
1241 yuv_color_space,
1242 sample_range,
1243 horizontal_siting,
1244 vertical_siting,
1245 error,
1246 loaderPrivate);
1247 }
1248
1249 static GLboolean
1250 intel_query_dma_buf_formats(__DRIscreen *screen, int max,
1251 int *formats, int *count)
1252 {
1253 int i, j = 0;
1254
1255 if (max == 0) {
1256 *count = ARRAY_SIZE(intel_image_formats) - 1; /* not SARGB */
1257 return true;
1258 }
1259
1260 for (i = 0; i < (ARRAY_SIZE(intel_image_formats)) && j < max; i++) {
1261 if (intel_image_formats[i].fourcc == __DRI_IMAGE_FOURCC_SARGB8888)
1262 continue;
1263 formats[j++] = intel_image_formats[i].fourcc;
1264 }
1265
1266 *count = j;
1267 return true;
1268 }
1269
1270 static GLboolean
1271 intel_query_dma_buf_modifiers(__DRIscreen *_screen, int fourcc, int max,
1272 uint64_t *modifiers,
1273 unsigned int *external_only,
1274 int *count)
1275 {
1276 struct intel_screen *screen = _screen->driverPrivate;
1277 const struct intel_image_format *f;
1278 int num_mods = 0, i;
1279
1280 f = intel_image_format_lookup(fourcc);
1281 if (f == NULL)
1282 return false;
1283
1284 for (i = 0; i < ARRAY_SIZE(supported_modifiers); i++) {
1285 uint64_t modifier = supported_modifiers[i].modifier;
1286 if (!modifier_is_supported(&screen->devinfo, f, 0, modifier))
1287 continue;
1288
1289 num_mods++;
1290 if (max == 0)
1291 continue;
1292
1293 modifiers[num_mods - 1] = modifier;
1294 if (num_mods >= max)
1295 break;
1296 }
1297
1298 if (external_only != NULL) {
1299 for (i = 0; i < num_mods && i < max; i++) {
1300 if (f->components == __DRI_IMAGE_COMPONENTS_Y_U_V ||
1301 f->components == __DRI_IMAGE_COMPONENTS_Y_UV ||
1302 f->components == __DRI_IMAGE_COMPONENTS_Y_XUXV) {
1303 external_only[i] = GL_TRUE;
1304 }
1305 else {
1306 external_only[i] = GL_FALSE;
1307 }
1308 }
1309 }
1310
1311 *count = num_mods;
1312 return true;
1313 }
1314
1315 static __DRIimage *
1316 intel_from_planar(__DRIimage *parent, int plane, void *loaderPrivate)
1317 {
1318 int width, height, offset, stride, size, dri_format;
1319 __DRIimage *image;
1320
1321 if (parent == NULL)
1322 return NULL;
1323
1324 width = parent->width;
1325 height = parent->height;
1326
1327 const struct intel_image_format *f = parent->planar_format;
1328
1329 if (f && plane < f->nplanes) {
1330 /* Use the planar format definition. */
1331 width >>= f->planes[plane].width_shift;
1332 height >>= f->planes[plane].height_shift;
1333 dri_format = f->planes[plane].dri_format;
1334 int index = f->planes[plane].buffer_index;
1335 offset = parent->offsets[index];
1336 stride = parent->strides[index];
1337 size = height * stride;
1338 } else if (plane == 0) {
1339 /* The only plane of a non-planar image: copy the parent definition
1340 * directly. */
1341 dri_format = parent->dri_format;
1342 offset = parent->offset;
1343 stride = parent->pitch;
1344 size = height * stride;
1345 } else if (plane == 1 && parent->modifier != DRM_FORMAT_MOD_INVALID &&
1346 isl_drm_modifier_has_aux(parent->modifier)) {
1347 /* Auxiliary plane */
1348 dri_format = parent->dri_format;
1349 offset = parent->aux_offset;
1350 stride = parent->aux_pitch;
1351 size = parent->aux_size;
1352 } else {
1353 return NULL;
1354 }
1355
1356 if (offset + size > parent->bo->size) {
1357 _mesa_warning(NULL, "intel_from_planar: subimage out of bounds");
1358 return NULL;
1359 }
1360
1361 image = intel_allocate_image(parent->screen, dri_format, loaderPrivate);
1362 if (image == NULL)
1363 return NULL;
1364
1365 image->bo = parent->bo;
1366 brw_bo_reference(parent->bo);
1367 image->modifier = parent->modifier;
1368
1369 image->width = width;
1370 image->height = height;
1371 image->pitch = stride;
1372 image->offset = offset;
1373
1374 intel_image_warn_if_unaligned(image, __func__);
1375
1376 return image;
1377 }
1378
1379 static const __DRIimageExtension intelImageExtension = {
1380 .base = { __DRI_IMAGE, 16 },
1381
1382 .createImageFromName = intel_create_image_from_name,
1383 .createImageFromRenderbuffer = intel_create_image_from_renderbuffer,
1384 .destroyImage = intel_destroy_image,
1385 .createImage = intel_create_image,
1386 .queryImage = intel_query_image,
1387 .dupImage = intel_dup_image,
1388 .validateUsage = intel_validate_usage,
1389 .createImageFromNames = intel_create_image_from_names,
1390 .fromPlanar = intel_from_planar,
1391 .createImageFromTexture = intel_create_image_from_texture,
1392 .createImageFromFds = intel_create_image_from_fds,
1393 .createImageFromDmaBufs = intel_create_image_from_dma_bufs,
1394 .blitImage = NULL,
1395 .getCapabilities = NULL,
1396 .mapImage = intel_map_image,
1397 .unmapImage = intel_unmap_image,
1398 .createImageWithModifiers = intel_create_image_with_modifiers,
1399 .createImageFromDmaBufs2 = intel_create_image_from_dma_bufs2,
1400 .queryDmaBufFormats = intel_query_dma_buf_formats,
1401 .queryDmaBufModifiers = intel_query_dma_buf_modifiers,
1402 .queryDmaBufFormatModifierAttribs = intel_query_format_modifier_attribs,
1403 };
1404
1405 static uint64_t
1406 get_aperture_size(int fd)
1407 {
1408 struct drm_i915_gem_get_aperture aperture;
1409
1410 if (drmIoctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture) != 0)
1411 return 0;
1412
1413 return aperture.aper_size;
1414 }
1415
1416 static int
1417 brw_query_renderer_integer(__DRIscreen *dri_screen,
1418 int param, unsigned int *value)
1419 {
1420 const struct intel_screen *const screen =
1421 (struct intel_screen *) dri_screen->driverPrivate;
1422
1423 switch (param) {
1424 case __DRI2_RENDERER_VENDOR_ID:
1425 value[0] = 0x8086;
1426 return 0;
1427 case __DRI2_RENDERER_DEVICE_ID:
1428 value[0] = screen->deviceID;
1429 return 0;
1430 case __DRI2_RENDERER_ACCELERATED:
1431 value[0] = 1;
1432 return 0;
1433 case __DRI2_RENDERER_VIDEO_MEMORY: {
1434 /* Once a batch uses more than 75% of the maximum mappable size, we
1435 * assume that there's some fragmentation, and we start doing extra
1436 * flushing, etc. That's the big cliff apps will care about.
1437 */
1438 const unsigned gpu_mappable_megabytes =
1439 screen->aperture_threshold / (1024 * 1024);
1440
1441 const long system_memory_pages = sysconf(_SC_PHYS_PAGES);
1442 const long system_page_size = sysconf(_SC_PAGE_SIZE);
1443
1444 if (system_memory_pages <= 0 || system_page_size <= 0)
1445 return -1;
1446
1447 const uint64_t system_memory_bytes = (uint64_t) system_memory_pages
1448 * (uint64_t) system_page_size;
1449
1450 const unsigned system_memory_megabytes =
1451 (unsigned) (system_memory_bytes / (1024 * 1024));
1452
1453 value[0] = MIN2(system_memory_megabytes, gpu_mappable_megabytes);
1454 return 0;
1455 }
1456 case __DRI2_RENDERER_UNIFIED_MEMORY_ARCHITECTURE:
1457 value[0] = 1;
1458 return 0;
1459 case __DRI2_RENDERER_HAS_TEXTURE_3D:
1460 value[0] = 1;
1461 return 0;
1462 case __DRI2_RENDERER_HAS_CONTEXT_PRIORITY:
1463 value[0] = 0;
1464 if (brw_hw_context_set_priority(screen->bufmgr,
1465 0, BRW_CONTEXT_HIGH_PRIORITY) == 0)
1466 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_HIGH;
1467 if (brw_hw_context_set_priority(screen->bufmgr,
1468 0, BRW_CONTEXT_LOW_PRIORITY) == 0)
1469 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_LOW;
1470 /* reset to default last, just in case */
1471 if (brw_hw_context_set_priority(screen->bufmgr,
1472 0, BRW_CONTEXT_MEDIUM_PRIORITY) == 0)
1473 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_MEDIUM;
1474 return 0;
1475 case __DRI2_RENDERER_HAS_FRAMEBUFFER_SRGB:
1476 value[0] = 1;
1477 return 0;
1478 default:
1479 return driQueryRendererIntegerCommon(dri_screen, param, value);
1480 }
1481
1482 return -1;
1483 }
1484
1485 static int
1486 brw_query_renderer_string(__DRIscreen *dri_screen,
1487 int param, const char **value)
1488 {
1489 const struct intel_screen *screen =
1490 (struct intel_screen *) dri_screen->driverPrivate;
1491
1492 switch (param) {
1493 case __DRI2_RENDERER_VENDOR_ID:
1494 value[0] = brw_vendor_string;
1495 return 0;
1496 case __DRI2_RENDERER_DEVICE_ID:
1497 value[0] = brw_get_renderer_string(screen);
1498 return 0;
1499 default:
1500 break;
1501 }
1502
1503 return -1;
1504 }
1505
1506 static void
1507 brw_set_cache_funcs(__DRIscreen *dri_screen,
1508 __DRIblobCacheSet set, __DRIblobCacheGet get)
1509 {
1510 const struct intel_screen *const screen =
1511 (struct intel_screen *) dri_screen->driverPrivate;
1512
1513 if (!screen->disk_cache)
1514 return;
1515
1516 disk_cache_set_callbacks(screen->disk_cache, set, get);
1517 }
1518
1519 static const __DRI2rendererQueryExtension intelRendererQueryExtension = {
1520 .base = { __DRI2_RENDERER_QUERY, 1 },
1521
1522 .queryInteger = brw_query_renderer_integer,
1523 .queryString = brw_query_renderer_string
1524 };
1525
1526 static const __DRIrobustnessExtension dri2Robustness = {
1527 .base = { __DRI2_ROBUSTNESS, 1 }
1528 };
1529
1530 static const __DRI2blobExtension intelBlobExtension = {
1531 .base = { __DRI2_BLOB, 1 },
1532 .set_cache_funcs = brw_set_cache_funcs
1533 };
1534
1535 static const __DRIextension *screenExtensions[] = {
1536 &intelTexBufferExtension.base,
1537 &intelFenceExtension.base,
1538 &intelFlushExtension.base,
1539 &intelImageExtension.base,
1540 &intelRendererQueryExtension.base,
1541 &dri2ConfigQueryExtension.base,
1542 &dri2NoErrorExtension.base,
1543 &intelBlobExtension.base,
1544 NULL
1545 };
1546
1547 static const __DRIextension *intelRobustScreenExtensions[] = {
1548 &intelTexBufferExtension.base,
1549 &intelFenceExtension.base,
1550 &intelFlushExtension.base,
1551 &intelImageExtension.base,
1552 &intelRendererQueryExtension.base,
1553 &dri2ConfigQueryExtension.base,
1554 &dri2Robustness.base,
1555 &dri2NoErrorExtension.base,
1556 &intelBlobExtension.base,
1557 NULL
1558 };
1559
1560 static int
1561 intel_get_param(struct intel_screen *screen, int param, int *value)
1562 {
1563 int ret = 0;
1564 struct drm_i915_getparam gp;
1565
1566 memset(&gp, 0, sizeof(gp));
1567 gp.param = param;
1568 gp.value = value;
1569
1570 if (drmIoctl(screen->driScrnPriv->fd, DRM_IOCTL_I915_GETPARAM, &gp) == -1) {
1571 ret = -errno;
1572 if (ret != -EINVAL)
1573 _mesa_warning(NULL, "drm_i915_getparam: %d", ret);
1574 }
1575
1576 return ret;
1577 }
1578
1579 static bool
1580 intel_get_boolean(struct intel_screen *screen, int param)
1581 {
1582 int value = 0;
1583 return (intel_get_param(screen, param, &value) == 0) && value;
1584 }
1585
1586 static int
1587 intel_get_integer(struct intel_screen *screen, int param)
1588 {
1589 int value = -1;
1590
1591 if (intel_get_param(screen, param, &value) == 0)
1592 return value;
1593
1594 return -1;
1595 }
1596
1597 static void
1598 intelDestroyScreen(__DRIscreen * sPriv)
1599 {
1600 struct intel_screen *screen = sPriv->driverPrivate;
1601
1602 brw_bufmgr_destroy(screen->bufmgr);
1603 driDestroyOptionInfo(&screen->optionCache);
1604
1605 disk_cache_destroy(screen->disk_cache);
1606
1607 ralloc_free(screen);
1608 sPriv->driverPrivate = NULL;
1609 }
1610
1611
1612 /**
1613 * Create a gl_framebuffer and attach it to __DRIdrawable::driverPrivate.
1614 *
1615 *_This implements driDriverAPI::createNewDrawable, which the DRI layer calls
1616 * when creating a EGLSurface, GLXDrawable, or GLXPixmap. Despite the name,
1617 * this does not allocate GPU memory.
1618 */
1619 static GLboolean
1620 intelCreateBuffer(__DRIscreen *dri_screen,
1621 __DRIdrawable * driDrawPriv,
1622 const struct gl_config * mesaVis, GLboolean isPixmap)
1623 {
1624 struct intel_renderbuffer *rb;
1625 struct intel_screen *screen = (struct intel_screen *)
1626 dri_screen->driverPrivate;
1627 mesa_format rgbFormat;
1628 unsigned num_samples =
1629 intel_quantize_num_samples(screen, mesaVis->samples);
1630
1631 if (isPixmap)
1632 return false;
1633
1634 struct gl_framebuffer *fb = CALLOC_STRUCT(gl_framebuffer);
1635 if (!fb)
1636 return false;
1637
1638 _mesa_initialize_window_framebuffer(fb, mesaVis);
1639
1640 if (screen->winsys_msaa_samples_override != -1) {
1641 num_samples = screen->winsys_msaa_samples_override;
1642 fb->Visual.samples = num_samples;
1643 }
1644
1645 if (mesaVis->redBits == 10 && mesaVis->alphaBits > 0) {
1646 rgbFormat = mesaVis->redMask == 0x3ff00000 ? MESA_FORMAT_B10G10R10A2_UNORM
1647 : MESA_FORMAT_R10G10B10A2_UNORM;
1648 } else if (mesaVis->redBits == 10) {
1649 rgbFormat = mesaVis->redMask == 0x3ff00000 ? MESA_FORMAT_B10G10R10X2_UNORM
1650 : MESA_FORMAT_R10G10B10X2_UNORM;
1651 } else if (mesaVis->redBits == 5) {
1652 rgbFormat = mesaVis->redMask == 0x1f ? MESA_FORMAT_R5G6B5_UNORM
1653 : MESA_FORMAT_B5G6R5_UNORM;
1654 } else if (mesaVis->sRGBCapable) {
1655 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1656 : MESA_FORMAT_B8G8R8A8_SRGB;
1657 } else if (mesaVis->alphaBits == 0) {
1658 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8X8_UNORM
1659 : MESA_FORMAT_B8G8R8X8_UNORM;
1660 } else {
1661 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1662 : MESA_FORMAT_B8G8R8A8_SRGB;
1663 fb->Visual.sRGBCapable = true;
1664 }
1665
1666 /* mesaVis->sRGBCapable was set, user is asking for sRGB */
1667 bool srgb_cap_set = mesaVis->redBits >= 8 && mesaVis->sRGBCapable;
1668
1669 /* setup the hardware-based renderbuffers */
1670 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1671 _mesa_attach_and_own_rb(fb, BUFFER_FRONT_LEFT, &rb->Base.Base);
1672 rb->need_srgb = srgb_cap_set;
1673
1674 if (mesaVis->doubleBufferMode) {
1675 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1676 _mesa_attach_and_own_rb(fb, BUFFER_BACK_LEFT, &rb->Base.Base);
1677 rb->need_srgb = srgb_cap_set;
1678 }
1679
1680 /*
1681 * Assert here that the gl_config has an expected depth/stencil bit
1682 * combination: one of d24/s8, d16/s0, d0/s0. (See intelInitScreen2(),
1683 * which constructs the advertised configs.)
1684 */
1685 if (mesaVis->depthBits == 24) {
1686 assert(mesaVis->stencilBits == 8);
1687
1688 if (screen->devinfo.has_hiz_and_separate_stencil) {
1689 rb = intel_create_private_renderbuffer(screen,
1690 MESA_FORMAT_Z24_UNORM_X8_UINT,
1691 num_samples);
1692 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1693 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_S_UINT8,
1694 num_samples);
1695 _mesa_attach_and_own_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1696 } else {
1697 /*
1698 * Use combined depth/stencil. Note that the renderbuffer is
1699 * attached to two attachment points.
1700 */
1701 rb = intel_create_private_renderbuffer(screen,
1702 MESA_FORMAT_Z24_UNORM_S8_UINT,
1703 num_samples);
1704 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1705 _mesa_attach_and_reference_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1706 }
1707 }
1708 else if (mesaVis->depthBits == 16) {
1709 assert(mesaVis->stencilBits == 0);
1710 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_Z_UNORM16,
1711 num_samples);
1712 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1713 }
1714 else {
1715 assert(mesaVis->depthBits == 0);
1716 assert(mesaVis->stencilBits == 0);
1717 }
1718
1719 /* now add any/all software-based renderbuffers we may need */
1720 _swrast_add_soft_renderbuffers(fb,
1721 false, /* never sw color */
1722 false, /* never sw depth */
1723 false, /* never sw stencil */
1724 mesaVis->accumRedBits > 0,
1725 false, /* never sw alpha */
1726 false /* never sw aux */ );
1727 driDrawPriv->driverPrivate = fb;
1728
1729 return true;
1730 }
1731
1732 static void
1733 intelDestroyBuffer(__DRIdrawable * driDrawPriv)
1734 {
1735 struct gl_framebuffer *fb = driDrawPriv->driverPrivate;
1736
1737 _mesa_reference_framebuffer(&fb, NULL);
1738 }
1739
1740 static void
1741 intel_cs_timestamp_frequency(struct intel_screen *screen)
1742 {
1743 /* We shouldn't need to update gen_device_info.timestamp_frequency prior to
1744 * gen10, PCI-id is enough to figure it out.
1745 */
1746 assert(screen->devinfo.gen >= 10);
1747
1748 int ret, freq;
1749
1750 ret = intel_get_param(screen, I915_PARAM_CS_TIMESTAMP_FREQUENCY,
1751 &freq);
1752 if (ret < 0) {
1753 _mesa_warning(NULL,
1754 "Kernel 4.15 required to read the CS timestamp frequency.\n");
1755 return;
1756 }
1757
1758 screen->devinfo.timestamp_frequency = freq;
1759 }
1760
1761 static void
1762 intel_detect_sseu(struct intel_screen *screen)
1763 {
1764 assert(screen->devinfo.gen >= 8);
1765 int ret;
1766
1767 screen->subslice_total = -1;
1768 screen->eu_total = -1;
1769
1770 ret = intel_get_param(screen, I915_PARAM_SUBSLICE_TOTAL,
1771 &screen->subslice_total);
1772 if (ret < 0 && ret != -EINVAL)
1773 goto err_out;
1774
1775 ret = intel_get_param(screen,
1776 I915_PARAM_EU_TOTAL, &screen->eu_total);
1777 if (ret < 0 && ret != -EINVAL)
1778 goto err_out;
1779
1780 /* Without this information, we cannot get the right Braswell brandstrings,
1781 * and we have to use conservative numbers for GPGPU on many platforms, but
1782 * otherwise, things will just work.
1783 */
1784 if (screen->subslice_total < 1 || screen->eu_total < 1)
1785 _mesa_warning(NULL,
1786 "Kernel 4.1 required to properly query GPU properties.\n");
1787
1788 return;
1789
1790 err_out:
1791 screen->subslice_total = -1;
1792 screen->eu_total = -1;
1793 _mesa_warning(NULL, "Failed to query GPU properties (%s).\n", strerror(-ret));
1794 }
1795
1796 static bool
1797 intel_init_bufmgr(struct intel_screen *screen)
1798 {
1799 __DRIscreen *dri_screen = screen->driScrnPriv;
1800
1801 if (getenv("INTEL_NO_HW") != NULL)
1802 screen->no_hw = true;
1803
1804 screen->bufmgr = brw_bufmgr_init(&screen->devinfo, dri_screen->fd);
1805 if (screen->bufmgr == NULL) {
1806 fprintf(stderr, "[%s:%u] Error initializing buffer manager.\n",
1807 __func__, __LINE__);
1808 return false;
1809 }
1810
1811 if (!intel_get_boolean(screen, I915_PARAM_HAS_EXEC_NO_RELOC)) {
1812 fprintf(stderr, "[%s: %u] Kernel 3.9 required.\n", __func__, __LINE__);
1813 return false;
1814 }
1815
1816 return true;
1817 }
1818
1819 static bool
1820 intel_detect_swizzling(struct intel_screen *screen)
1821 {
1822 struct brw_bo *buffer;
1823 unsigned flags = 0;
1824 uint32_t aligned_pitch;
1825 uint32_t tiling = I915_TILING_X;
1826 uint32_t swizzle_mode = 0;
1827
1828 buffer = brw_bo_alloc_tiled_2d(screen->bufmgr, "swizzle test",
1829 64, 64, 4, tiling, &aligned_pitch, flags);
1830 if (buffer == NULL)
1831 return false;
1832
1833 brw_bo_get_tiling(buffer, &tiling, &swizzle_mode);
1834 brw_bo_unreference(buffer);
1835
1836 if (swizzle_mode == I915_BIT_6_SWIZZLE_NONE)
1837 return false;
1838 else
1839 return true;
1840 }
1841
1842 static int
1843 intel_detect_timestamp(struct intel_screen *screen)
1844 {
1845 uint64_t dummy = 0, last = 0;
1846 int upper, lower, loops;
1847
1848 /* On 64bit systems, some old kernels trigger a hw bug resulting in the
1849 * TIMESTAMP register being shifted and the low 32bits always zero.
1850 *
1851 * More recent kernels offer an interface to read the full 36bits
1852 * everywhere.
1853 */
1854 if (brw_reg_read(screen->bufmgr, TIMESTAMP | 1, &dummy) == 0)
1855 return 3;
1856
1857 /* Determine if we have a 32bit or 64bit kernel by inspecting the
1858 * upper 32bits for a rapidly changing timestamp.
1859 */
1860 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &last))
1861 return 0;
1862
1863 upper = lower = 0;
1864 for (loops = 0; loops < 10; loops++) {
1865 /* The TIMESTAMP should change every 80ns, so several round trips
1866 * through the kernel should be enough to advance it.
1867 */
1868 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &dummy))
1869 return 0;
1870
1871 upper += (dummy >> 32) != (last >> 32);
1872 if (upper > 1) /* beware 32bit counter overflow */
1873 return 2; /* upper dword holds the low 32bits of the timestamp */
1874
1875 lower += (dummy & 0xffffffff) != (last & 0xffffffff);
1876 if (lower > 1)
1877 return 1; /* timestamp is unshifted */
1878
1879 last = dummy;
1880 }
1881
1882 /* No advancement? No timestamp! */
1883 return 0;
1884 }
1885
1886 /**
1887 * Test if we can use MI_LOAD_REGISTER_MEM from an untrusted batchbuffer.
1888 *
1889 * Some combinations of hardware and kernel versions allow this feature,
1890 * while others don't. Instead of trying to enumerate every case, just
1891 * try and write a register and see if works.
1892 */
1893 static bool
1894 intel_detect_pipelined_register(struct intel_screen *screen,
1895 int reg, uint32_t expected_value, bool reset)
1896 {
1897 if (screen->no_hw)
1898 return false;
1899
1900 struct brw_bo *results, *bo;
1901 uint32_t *batch;
1902 uint32_t offset = 0;
1903 void *map;
1904 bool success = false;
1905
1906 /* Create a zero'ed temporary buffer for reading our results */
1907 results = brw_bo_alloc(screen->bufmgr, "registers", 4096, 0);
1908 if (results == NULL)
1909 goto err;
1910
1911 bo = brw_bo_alloc(screen->bufmgr, "batchbuffer", 4096, 0);
1912 if (bo == NULL)
1913 goto err_results;
1914
1915 map = brw_bo_map(NULL, bo, MAP_WRITE);
1916 if (!map)
1917 goto err_batch;
1918
1919 batch = map;
1920
1921 /* Write the register. */
1922 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1923 *batch++ = reg;
1924 *batch++ = expected_value;
1925
1926 /* Save the register's value back to the buffer. */
1927 *batch++ = MI_STORE_REGISTER_MEM | (3 - 2);
1928 *batch++ = reg;
1929 struct drm_i915_gem_relocation_entry reloc = {
1930 .offset = (char *) batch - (char *) map,
1931 .delta = offset * sizeof(uint32_t),
1932 .target_handle = results->gem_handle,
1933 .read_domains = I915_GEM_DOMAIN_INSTRUCTION,
1934 .write_domain = I915_GEM_DOMAIN_INSTRUCTION,
1935 };
1936 *batch++ = reloc.presumed_offset + reloc.delta;
1937
1938 /* And afterwards clear the register */
1939 if (reset) {
1940 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1941 *batch++ = reg;
1942 *batch++ = 0;
1943 }
1944
1945 *batch++ = MI_BATCH_BUFFER_END;
1946
1947 struct drm_i915_gem_exec_object2 exec_objects[2] = {
1948 {
1949 .handle = results->gem_handle,
1950 },
1951 {
1952 .handle = bo->gem_handle,
1953 .relocation_count = 1,
1954 .relocs_ptr = (uintptr_t) &reloc,
1955 }
1956 };
1957
1958 struct drm_i915_gem_execbuffer2 execbuf = {
1959 .buffers_ptr = (uintptr_t) exec_objects,
1960 .buffer_count = 2,
1961 .batch_len = ALIGN((char *) batch - (char *) map, 8),
1962 .flags = I915_EXEC_RENDER,
1963 };
1964
1965 /* Don't bother with error checking - if the execbuf fails, the
1966 * value won't be written and we'll just report that there's no access.
1967 */
1968 __DRIscreen *dri_screen = screen->driScrnPriv;
1969 drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf);
1970
1971 /* Check whether the value got written. */
1972 void *results_map = brw_bo_map(NULL, results, MAP_READ);
1973 if (results_map) {
1974 success = *((uint32_t *)results_map + offset) == expected_value;
1975 brw_bo_unmap(results);
1976 }
1977
1978 err_batch:
1979 brw_bo_unreference(bo);
1980 err_results:
1981 brw_bo_unreference(results);
1982 err:
1983 return success;
1984 }
1985
1986 static bool
1987 intel_detect_pipelined_so(struct intel_screen *screen)
1988 {
1989 const struct gen_device_info *devinfo = &screen->devinfo;
1990
1991 /* Supposedly, Broadwell just works. */
1992 if (devinfo->gen >= 8)
1993 return true;
1994
1995 if (devinfo->gen <= 6)
1996 return false;
1997
1998 /* See the big explanation about command parser versions below */
1999 if (screen->cmd_parser_version >= (devinfo->is_haswell ? 7 : 2))
2000 return true;
2001
2002 /* We use SO_WRITE_OFFSET0 since you're supposed to write it (unlike the
2003 * statistics registers), and we already reset it to zero before using it.
2004 */
2005 return intel_detect_pipelined_register(screen,
2006 GEN7_SO_WRITE_OFFSET(0),
2007 0x1337d0d0,
2008 false);
2009 }
2010
2011 /**
2012 * Return array of MSAA modes supported by the hardware. The array is
2013 * zero-terminated and sorted in decreasing order.
2014 */
2015 const int*
2016 intel_supported_msaa_modes(const struct intel_screen *screen)
2017 {
2018 static const int gen9_modes[] = {16, 8, 4, 2, 0, -1};
2019 static const int gen8_modes[] = {8, 4, 2, 0, -1};
2020 static const int gen7_modes[] = {8, 4, 0, -1};
2021 static const int gen6_modes[] = {4, 0, -1};
2022 static const int gen4_modes[] = {0, -1};
2023
2024 if (screen->devinfo.gen >= 9) {
2025 return gen9_modes;
2026 } else if (screen->devinfo.gen >= 8) {
2027 return gen8_modes;
2028 } else if (screen->devinfo.gen >= 7) {
2029 return gen7_modes;
2030 } else if (screen->devinfo.gen == 6) {
2031 return gen6_modes;
2032 } else {
2033 return gen4_modes;
2034 }
2035 }
2036
2037 static unsigned
2038 intel_loader_get_cap(const __DRIscreen *dri_screen, enum dri_loader_cap cap)
2039 {
2040 if (dri_screen->dri2.loader && dri_screen->dri2.loader->base.version >= 4 &&
2041 dri_screen->dri2.loader->getCapability)
2042 return dri_screen->dri2.loader->getCapability(dri_screen->loaderPrivate, cap);
2043
2044 if (dri_screen->image.loader && dri_screen->image.loader->base.version >= 2 &&
2045 dri_screen->image.loader->getCapability)
2046 return dri_screen->image.loader->getCapability(dri_screen->loaderPrivate, cap);
2047
2048 return 0;
2049 }
2050
2051 static __DRIconfig**
2052 intel_screen_make_configs(__DRIscreen *dri_screen)
2053 {
2054 static const mesa_format formats[] = {
2055 MESA_FORMAT_B5G6R5_UNORM,
2056 MESA_FORMAT_B8G8R8A8_UNORM,
2057 MESA_FORMAT_B8G8R8X8_UNORM,
2058
2059 MESA_FORMAT_B8G8R8A8_SRGB,
2060
2061 /* For 10 bpc, 30 bit depth framebuffers. */
2062 MESA_FORMAT_B10G10R10A2_UNORM,
2063 MESA_FORMAT_B10G10R10X2_UNORM,
2064
2065 /* The 32-bit RGBA format must not precede the 32-bit BGRA format.
2066 * Likewise for RGBX and BGRX. Otherwise, the GLX client and the GLX
2067 * server may disagree on which format the GLXFBConfig represents,
2068 * resulting in swapped color channels.
2069 *
2070 * The problem, as of 2017-05-30:
2071 * When matching a GLXFBConfig to a __DRIconfig, GLX ignores the channel
2072 * order and chooses the first __DRIconfig with the expected channel
2073 * sizes. Specifically, GLX compares the GLXFBConfig's and __DRIconfig's
2074 * __DRI_ATTRIB_{CHANNEL}_SIZE but ignores __DRI_ATTRIB_{CHANNEL}_MASK.
2075 *
2076 * EGL does not suffer from this problem. It correctly compares the
2077 * channel masks when matching EGLConfig to __DRIconfig.
2078 */
2079
2080 /* Required by Android, for HAL_PIXEL_FORMAT_RGBA_8888. */
2081 MESA_FORMAT_R8G8B8A8_UNORM,
2082
2083 /* Required by Android, for HAL_PIXEL_FORMAT_RGBX_8888. */
2084 MESA_FORMAT_R8G8B8X8_UNORM,
2085 };
2086
2087 /* GLX_SWAP_COPY_OML is not supported due to page flipping. */
2088 static const GLenum back_buffer_modes[] = {
2089 __DRI_ATTRIB_SWAP_UNDEFINED, __DRI_ATTRIB_SWAP_NONE
2090 };
2091
2092 static const uint8_t singlesample_samples[1] = {0};
2093
2094 struct intel_screen *screen = dri_screen->driverPrivate;
2095 const struct gen_device_info *devinfo = &screen->devinfo;
2096 uint8_t depth_bits[4], stencil_bits[4];
2097 __DRIconfig **configs = NULL;
2098
2099 /* Expose only BGRA ordering if the loader doesn't support RGBA ordering. */
2100 unsigned num_formats;
2101 if (intel_loader_get_cap(dri_screen, DRI_LOADER_CAP_RGBA_ORDERING))
2102 num_formats = ARRAY_SIZE(formats);
2103 else
2104 num_formats = ARRAY_SIZE(formats) - 2; /* all - RGBA_ORDERING formats */
2105
2106 /* Shall we expose 10 bpc formats? */
2107 bool allow_rgb10_configs = driQueryOptionb(&screen->optionCache,
2108 "allow_rgb10_configs");
2109
2110 /* Generate singlesample configs without accumulation buffer. */
2111 for (unsigned i = 0; i < num_formats; i++) {
2112 __DRIconfig **new_configs;
2113 int num_depth_stencil_bits = 2;
2114
2115 if (!allow_rgb10_configs &&
2116 (formats[i] == MESA_FORMAT_B10G10R10A2_UNORM ||
2117 formats[i] == MESA_FORMAT_B10G10R10X2_UNORM))
2118 continue;
2119
2120 /* Starting with DRI2 protocol version 1.1 we can request a depth/stencil
2121 * buffer that has a different number of bits per pixel than the color
2122 * buffer, gen >= 6 supports this.
2123 */
2124 depth_bits[0] = 0;
2125 stencil_bits[0] = 0;
2126
2127 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2128 depth_bits[1] = 16;
2129 stencil_bits[1] = 0;
2130 if (devinfo->gen >= 6) {
2131 depth_bits[2] = 24;
2132 stencil_bits[2] = 8;
2133 num_depth_stencil_bits = 3;
2134 }
2135 } else {
2136 depth_bits[1] = 24;
2137 stencil_bits[1] = 8;
2138 }
2139
2140 new_configs = driCreateConfigs(formats[i],
2141 depth_bits,
2142 stencil_bits,
2143 num_depth_stencil_bits,
2144 back_buffer_modes, 2,
2145 singlesample_samples, 1,
2146 false, false);
2147 configs = driConcatConfigs(configs, new_configs);
2148 }
2149
2150 /* Generate the minimum possible set of configs that include an
2151 * accumulation buffer.
2152 */
2153 for (unsigned i = 0; i < num_formats; i++) {
2154 __DRIconfig **new_configs;
2155
2156 if (!allow_rgb10_configs &&
2157 (formats[i] == MESA_FORMAT_B10G10R10A2_UNORM ||
2158 formats[i] == MESA_FORMAT_B10G10R10X2_UNORM))
2159 continue;
2160
2161 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2162 depth_bits[0] = 16;
2163 stencil_bits[0] = 0;
2164 } else {
2165 depth_bits[0] = 24;
2166 stencil_bits[0] = 8;
2167 }
2168
2169 new_configs = driCreateConfigs(formats[i],
2170 depth_bits, stencil_bits, 1,
2171 back_buffer_modes, 1,
2172 singlesample_samples, 1,
2173 true, false);
2174 configs = driConcatConfigs(configs, new_configs);
2175 }
2176
2177 /* Generate multisample configs.
2178 *
2179 * This loop breaks early, and hence is a no-op, on gen < 6.
2180 *
2181 * Multisample configs must follow the singlesample configs in order to
2182 * work around an X server bug present in 1.12. The X server chooses to
2183 * associate the first listed RGBA888-Z24S8 config, regardless of its
2184 * sample count, with the 32-bit depth visual used for compositing.
2185 *
2186 * Only doublebuffer configs with GLX_SWAP_UNDEFINED_OML behavior are
2187 * supported. Singlebuffer configs are not supported because no one wants
2188 * them.
2189 */
2190 for (unsigned i = 0; i < num_formats; i++) {
2191 if (devinfo->gen < 6)
2192 break;
2193
2194 if (!allow_rgb10_configs &&
2195 (formats[i] == MESA_FORMAT_B10G10R10A2_UNORM ||
2196 formats[i] == MESA_FORMAT_B10G10R10X2_UNORM))
2197 continue;
2198
2199 __DRIconfig **new_configs;
2200 const int num_depth_stencil_bits = 2;
2201 int num_msaa_modes = 0;
2202 const uint8_t *multisample_samples = NULL;
2203
2204 depth_bits[0] = 0;
2205 stencil_bits[0] = 0;
2206
2207 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2208 depth_bits[1] = 16;
2209 stencil_bits[1] = 0;
2210 } else {
2211 depth_bits[1] = 24;
2212 stencil_bits[1] = 8;
2213 }
2214
2215 if (devinfo->gen >= 9) {
2216 static const uint8_t multisample_samples_gen9[] = {2, 4, 8, 16};
2217 multisample_samples = multisample_samples_gen9;
2218 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen9);
2219 } else if (devinfo->gen == 8) {
2220 static const uint8_t multisample_samples_gen8[] = {2, 4, 8};
2221 multisample_samples = multisample_samples_gen8;
2222 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen8);
2223 } else if (devinfo->gen == 7) {
2224 static const uint8_t multisample_samples_gen7[] = {4, 8};
2225 multisample_samples = multisample_samples_gen7;
2226 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen7);
2227 } else if (devinfo->gen == 6) {
2228 static const uint8_t multisample_samples_gen6[] = {4};
2229 multisample_samples = multisample_samples_gen6;
2230 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen6);
2231 }
2232
2233 new_configs = driCreateConfigs(formats[i],
2234 depth_bits,
2235 stencil_bits,
2236 num_depth_stencil_bits,
2237 back_buffer_modes, 1,
2238 multisample_samples,
2239 num_msaa_modes,
2240 false, false);
2241 configs = driConcatConfigs(configs, new_configs);
2242 }
2243
2244 if (configs == NULL) {
2245 fprintf(stderr, "[%s:%u] Error creating FBConfig!\n", __func__,
2246 __LINE__);
2247 return NULL;
2248 }
2249
2250 return configs;
2251 }
2252
2253 static void
2254 set_max_gl_versions(struct intel_screen *screen)
2255 {
2256 __DRIscreen *dri_screen = screen->driScrnPriv;
2257 const bool has_astc = screen->devinfo.gen >= 9;
2258
2259 switch (screen->devinfo.gen) {
2260 case 11:
2261 case 10:
2262 case 9:
2263 case 8:
2264 dri_screen->max_gl_core_version = 45;
2265 dri_screen->max_gl_compat_version = 30;
2266 dri_screen->max_gl_es1_version = 11;
2267 dri_screen->max_gl_es2_version = has_astc ? 32 : 31;
2268 break;
2269 case 7:
2270 dri_screen->max_gl_core_version = 33;
2271 if (can_do_pipelined_register_writes(screen)) {
2272 dri_screen->max_gl_core_version = 42;
2273 if (screen->devinfo.is_haswell && can_do_compute_dispatch(screen))
2274 dri_screen->max_gl_core_version = 43;
2275 if (screen->devinfo.is_haswell && can_do_mi_math_and_lrr(screen))
2276 dri_screen->max_gl_core_version = 45;
2277 }
2278 dri_screen->max_gl_compat_version = 30;
2279 dri_screen->max_gl_es1_version = 11;
2280 dri_screen->max_gl_es2_version = screen->devinfo.is_haswell ? 31 : 30;
2281 break;
2282 case 6:
2283 dri_screen->max_gl_core_version = 33;
2284 dri_screen->max_gl_compat_version = 30;
2285 dri_screen->max_gl_es1_version = 11;
2286 dri_screen->max_gl_es2_version = 30;
2287 break;
2288 case 5:
2289 case 4:
2290 dri_screen->max_gl_core_version = 0;
2291 dri_screen->max_gl_compat_version = 21;
2292 dri_screen->max_gl_es1_version = 11;
2293 dri_screen->max_gl_es2_version = 20;
2294 break;
2295 default:
2296 unreachable("unrecognized intel_screen::gen");
2297 }
2298 }
2299
2300 /**
2301 * Return the revision (generally the revid field of the PCI header) of the
2302 * graphics device.
2303 */
2304 int
2305 intel_device_get_revision(int fd)
2306 {
2307 struct drm_i915_getparam gp;
2308 int revision;
2309 int ret;
2310
2311 memset(&gp, 0, sizeof(gp));
2312 gp.param = I915_PARAM_REVISION;
2313 gp.value = &revision;
2314
2315 ret = drmCommandWriteRead(fd, DRM_I915_GETPARAM, &gp, sizeof(gp));
2316 if (ret)
2317 revision = -1;
2318
2319 return revision;
2320 }
2321
2322 static void
2323 shader_debug_log_mesa(void *data, const char *fmt, ...)
2324 {
2325 struct brw_context *brw = (struct brw_context *)data;
2326 va_list args;
2327
2328 va_start(args, fmt);
2329 GLuint msg_id = 0;
2330 _mesa_gl_vdebug(&brw->ctx, &msg_id,
2331 MESA_DEBUG_SOURCE_SHADER_COMPILER,
2332 MESA_DEBUG_TYPE_OTHER,
2333 MESA_DEBUG_SEVERITY_NOTIFICATION, fmt, args);
2334 va_end(args);
2335 }
2336
2337 static void
2338 shader_perf_log_mesa(void *data, const char *fmt, ...)
2339 {
2340 struct brw_context *brw = (struct brw_context *)data;
2341
2342 va_list args;
2343 va_start(args, fmt);
2344
2345 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
2346 va_list args_copy;
2347 va_copy(args_copy, args);
2348 vfprintf(stderr, fmt, args_copy);
2349 va_end(args_copy);
2350 }
2351
2352 if (brw->perf_debug) {
2353 GLuint msg_id = 0;
2354 _mesa_gl_vdebug(&brw->ctx, &msg_id,
2355 MESA_DEBUG_SOURCE_SHADER_COMPILER,
2356 MESA_DEBUG_TYPE_PERFORMANCE,
2357 MESA_DEBUG_SEVERITY_MEDIUM, fmt, args);
2358 }
2359 va_end(args);
2360 }
2361
2362 static int
2363 parse_devid_override(const char *devid_override)
2364 {
2365 static const struct {
2366 const char *name;
2367 int pci_id;
2368 } name_map[] = {
2369 { "brw", 0x2a02 },
2370 { "g4x", 0x2a42 },
2371 { "ilk", 0x0042 },
2372 { "snb", 0x0126 },
2373 { "ivb", 0x016a },
2374 { "hsw", 0x0d2e },
2375 { "byt", 0x0f33 },
2376 { "bdw", 0x162e },
2377 { "chv", 0x22B3 },
2378 { "skl", 0x1912 },
2379 { "bxt", 0x5A85 },
2380 { "kbl", 0x5912 },
2381 { "glk", 0x3185 },
2382 { "cnl", 0x5a52 },
2383 };
2384
2385 for (unsigned i = 0; i < ARRAY_SIZE(name_map); i++) {
2386 if (!strcmp(name_map[i].name, devid_override))
2387 return name_map[i].pci_id;
2388 }
2389
2390 return strtol(devid_override, NULL, 0);
2391 }
2392
2393 /**
2394 * Get the PCI ID for the device. This can be overridden by setting the
2395 * INTEL_DEVID_OVERRIDE environment variable to the desired ID.
2396 *
2397 * Returns -1 on ioctl failure.
2398 */
2399 static int
2400 get_pci_device_id(struct intel_screen *screen)
2401 {
2402 if (geteuid() == getuid()) {
2403 char *devid_override = getenv("INTEL_DEVID_OVERRIDE");
2404 if (devid_override) {
2405 screen->no_hw = true;
2406 return parse_devid_override(devid_override);
2407 }
2408 }
2409
2410 return intel_get_integer(screen, I915_PARAM_CHIPSET_ID);
2411 }
2412
2413 /**
2414 * This is the driver specific part of the createNewScreen entry point.
2415 * Called when using DRI2.
2416 *
2417 * \return the struct gl_config supported by this driver
2418 */
2419 static const
2420 __DRIconfig **intelInitScreen2(__DRIscreen *dri_screen)
2421 {
2422 struct intel_screen *screen;
2423
2424 if (dri_screen->image.loader) {
2425 } else if (dri_screen->dri2.loader->base.version <= 2 ||
2426 dri_screen->dri2.loader->getBuffersWithFormat == NULL) {
2427 fprintf(stderr,
2428 "\nERROR! DRI2 loader with getBuffersWithFormat() "
2429 "support required\n");
2430 return NULL;
2431 }
2432
2433 /* Allocate the private area */
2434 screen = rzalloc(NULL, struct intel_screen);
2435 if (!screen) {
2436 fprintf(stderr, "\nERROR! Allocating private area failed\n");
2437 return NULL;
2438 }
2439 /* parse information in __driConfigOptions */
2440 driOptionCache options;
2441 memset(&options, 0, sizeof(options));
2442
2443 driParseOptionInfo(&options, brw_config_options.xml);
2444 driParseConfigFiles(&screen->optionCache, &options, dri_screen->myNum, "i965");
2445 driDestroyOptionCache(&options);
2446
2447 screen->driScrnPriv = dri_screen;
2448 dri_screen->driverPrivate = (void *) screen;
2449
2450 screen->deviceID = get_pci_device_id(screen);
2451
2452 if (!gen_get_device_info(screen->deviceID, &screen->devinfo))
2453 return NULL;
2454
2455 if (!intel_init_bufmgr(screen))
2456 return NULL;
2457
2458 const struct gen_device_info *devinfo = &screen->devinfo;
2459
2460 brw_process_intel_debug_variable();
2461
2462 if ((INTEL_DEBUG & DEBUG_SHADER_TIME) && devinfo->gen < 7) {
2463 fprintf(stderr,
2464 "shader_time debugging requires gen7 (Ivybridge) or better.\n");
2465 INTEL_DEBUG &= ~DEBUG_SHADER_TIME;
2466 }
2467
2468 if (intel_get_integer(screen, I915_PARAM_MMAP_GTT_VERSION) >= 1) {
2469 /* Theorectically unlimited! At least for individual objects...
2470 *
2471 * Currently the entire (global) address space for all GTT maps is
2472 * limited to 64bits. That is all objects on the system that are
2473 * setup for GTT mmapping must fit within 64bits. An attempt to use
2474 * one that exceeds the limit with fail in brw_bo_map_gtt().
2475 *
2476 * Long before we hit that limit, we will be practically limited by
2477 * that any single object must fit in physical memory (RAM). The upper
2478 * limit on the CPU's address space is currently 48bits (Skylake), of
2479 * which only 39bits can be physical memory. (The GPU itself also has
2480 * a 48bit addressable virtual space.) We can fit over 32 million
2481 * objects of the current maximum allocable size before running out
2482 * of mmap space.
2483 */
2484 screen->max_gtt_map_object_size = UINT64_MAX;
2485 } else {
2486 /* Estimate the size of the mappable aperture into the GTT. There's an
2487 * ioctl to get the whole GTT size, but not one to get the mappable subset.
2488 * It turns out it's basically always 256MB, though some ancient hardware
2489 * was smaller.
2490 */
2491 uint32_t gtt_size = 256 * 1024 * 1024;
2492
2493 /* We don't want to map two objects such that a memcpy between them would
2494 * just fault one mapping in and then the other over and over forever. So
2495 * we would need to divide the GTT size by 2. Additionally, some GTT is
2496 * taken up by things like the framebuffer and the ringbuffer and such, so
2497 * be more conservative.
2498 */
2499 screen->max_gtt_map_object_size = gtt_size / 4;
2500 }
2501
2502 screen->aperture_threshold = get_aperture_size(dri_screen->fd) * 3 / 4;
2503
2504 screen->hw_has_swizzling = intel_detect_swizzling(screen);
2505 screen->hw_has_timestamp = intel_detect_timestamp(screen);
2506
2507 isl_device_init(&screen->isl_dev, &screen->devinfo,
2508 screen->hw_has_swizzling);
2509
2510 if (devinfo->gen >= 10)
2511 intel_cs_timestamp_frequency(screen);
2512
2513 /* GENs prior to 8 do not support EU/Subslice info */
2514 if (devinfo->gen >= 8) {
2515 intel_detect_sseu(screen);
2516 } else if (devinfo->gen == 7) {
2517 screen->subslice_total = 1 << (devinfo->gt - 1);
2518 }
2519
2520 /* Gen7-7.5 kernel requirements / command parser saga:
2521 *
2522 * - pre-v3.16:
2523 * Haswell and Baytrail cannot use any privileged batchbuffer features.
2524 *
2525 * Ivybridge has aliasing PPGTT on by default, which accidentally marks
2526 * all batches secure, allowing them to use any feature with no checking.
2527 * This is effectively equivalent to a command parser version of
2528 * \infinity - everything is possible.
2529 *
2530 * The command parser does not exist, and querying the version will
2531 * return -EINVAL.
2532 *
2533 * - v3.16:
2534 * The kernel enables the command parser by default, for systems with
2535 * aliasing PPGTT enabled (Ivybridge and Haswell). However, the
2536 * hardware checker is still enabled, so Haswell and Baytrail cannot
2537 * do anything.
2538 *
2539 * Ivybridge goes from "everything is possible" to "only what the
2540 * command parser allows" (if the user boots with i915.cmd_parser=0,
2541 * then everything is possible again). We can only safely use features
2542 * allowed by the supported command parser version.
2543 *
2544 * Annoyingly, I915_PARAM_CMD_PARSER_VERSION reports the static version
2545 * implemented by the kernel, even if it's turned off. So, checking
2546 * for version > 0 does not mean that you can write registers. We have
2547 * to try it and see. The version does, however, indicate the age of
2548 * the kernel.
2549 *
2550 * Instead of matching the hardware checker's behavior of converting
2551 * privileged commands to MI_NOOP, it makes execbuf2 start returning
2552 * -EINVAL, making it dangerous to try and use privileged features.
2553 *
2554 * Effective command parser versions:
2555 * - Haswell: 0 (reporting 1, writes don't work)
2556 * - Baytrail: 0 (reporting 1, writes don't work)
2557 * - Ivybridge: 1 (enabled) or infinite (disabled)
2558 *
2559 * - v3.17:
2560 * Baytrail aliasing PPGTT is enabled, making it like Ivybridge:
2561 * effectively version 1 (enabled) or infinite (disabled).
2562 *
2563 * - v3.19: f1f55cc0556031c8ee3fe99dae7251e78b9b653b
2564 * Command parser v2 supports predicate writes.
2565 *
2566 * - Haswell: 0 (reporting 1, writes don't work)
2567 * - Baytrail: 2 (enabled) or infinite (disabled)
2568 * - Ivybridge: 2 (enabled) or infinite (disabled)
2569 *
2570 * So version >= 2 is enough to know that Ivybridge and Baytrail
2571 * will work. Haswell still can't do anything.
2572 *
2573 * - v4.0: Version 3 happened. Largely not relevant.
2574 *
2575 * - v4.1: 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
2576 * L3 config registers are properly saved and restored as part
2577 * of the hardware context. We can approximately detect this point
2578 * in time by checking if I915_PARAM_REVISION is recognized - it
2579 * landed in a later commit, but in the same release cycle.
2580 *
2581 * - v4.2: 245054a1fe33c06ad233e0d58a27ec7b64db9284
2582 * Command parser finally gains secure batch promotion. On Haswell,
2583 * the hardware checker gets disabled, which finally allows it to do
2584 * privileged commands.
2585 *
2586 * I915_PARAM_CMD_PARSER_VERSION reports 3. Effective versions:
2587 * - Haswell: 3 (enabled) or 0 (disabled)
2588 * - Baytrail: 3 (enabled) or infinite (disabled)
2589 * - Ivybridge: 3 (enabled) or infinite (disabled)
2590 *
2591 * Unfortunately, detecting this point in time is tricky, because
2592 * no version bump happened when this important change occurred.
2593 * On Haswell, if we can write any register, then the kernel is at
2594 * least this new, and we can start trusting the version number.
2595 *
2596 * - v4.4: 2bbe6bbb0dc94fd4ce287bdac9e1bd184e23057b and
2597 * Command parser reaches version 4, allowing access to Haswell
2598 * atomic scratch and chicken3 registers. If version >= 4, we know
2599 * the kernel is new enough to support privileged features on all
2600 * hardware. However, the user might have disabled it...and the
2601 * kernel will still report version 4. So we still have to guess
2602 * and check.
2603 *
2604 * - v4.4: 7b9748cb513a6bef4af87b79f0da3ff7e8b56cd8
2605 * Command parser v5 whitelists indirect compute shader dispatch
2606 * registers, needed for OpenGL 4.3 and later.
2607 *
2608 * - v4.8:
2609 * Command parser v7 lets us use MI_MATH on Haswell.
2610 *
2611 * Additionally, the kernel begins reporting version 0 when
2612 * the command parser is disabled, allowing us to skip the
2613 * guess-and-check step on Haswell. Unfortunately, this also
2614 * means that we can no longer use it as an indicator of the
2615 * age of the kernel.
2616 */
2617 if (intel_get_param(screen, I915_PARAM_CMD_PARSER_VERSION,
2618 &screen->cmd_parser_version) < 0) {
2619 /* Command parser does not exist - getparam is unrecognized */
2620 screen->cmd_parser_version = 0;
2621 }
2622
2623 /* Kernel 4.13 retuired for exec object capture */
2624 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_CAPTURE)) {
2625 screen->kernel_features |= KERNEL_ALLOWS_EXEC_CAPTURE;
2626 }
2627
2628 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_BATCH_FIRST)) {
2629 screen->kernel_features |= KERNEL_ALLOWS_EXEC_BATCH_FIRST;
2630 }
2631
2632 if (!intel_detect_pipelined_so(screen)) {
2633 /* We can't do anything, so the effective version is 0. */
2634 screen->cmd_parser_version = 0;
2635 } else {
2636 screen->kernel_features |= KERNEL_ALLOWS_SOL_OFFSET_WRITES;
2637 }
2638
2639 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 2)
2640 screen->kernel_features |= KERNEL_ALLOWS_PREDICATE_WRITES;
2641
2642 /* Haswell requires command parser version 4 in order to have L3
2643 * atomic scratch1 and chicken3 bits
2644 */
2645 if (devinfo->is_haswell && screen->cmd_parser_version >= 4) {
2646 screen->kernel_features |=
2647 KERNEL_ALLOWS_HSW_SCRATCH1_AND_ROW_CHICKEN3;
2648 }
2649
2650 /* Haswell requires command parser version 6 in order to write to the
2651 * MI_MATH GPR registers, and version 7 in order to use
2652 * MI_LOAD_REGISTER_REG (which all users of MI_MATH use).
2653 */
2654 if (devinfo->gen >= 8 ||
2655 (devinfo->is_haswell && screen->cmd_parser_version >= 7)) {
2656 screen->kernel_features |= KERNEL_ALLOWS_MI_MATH_AND_LRR;
2657 }
2658
2659 /* Gen7 needs at least command parser version 5 to support compute */
2660 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 5)
2661 screen->kernel_features |= KERNEL_ALLOWS_COMPUTE_DISPATCH;
2662
2663 const char *force_msaa = getenv("INTEL_FORCE_MSAA");
2664 if (force_msaa) {
2665 screen->winsys_msaa_samples_override =
2666 intel_quantize_num_samples(screen, atoi(force_msaa));
2667 printf("Forcing winsys sample count to %d\n",
2668 screen->winsys_msaa_samples_override);
2669 } else {
2670 screen->winsys_msaa_samples_override = -1;
2671 }
2672
2673 set_max_gl_versions(screen);
2674
2675 /* Notification of GPU resets requires hardware contexts and a kernel new
2676 * enough to support DRM_IOCTL_I915_GET_RESET_STATS. If the ioctl is
2677 * supported, calling it with a context of 0 will either generate EPERM or
2678 * no error. If the ioctl is not supported, it always generate EINVAL.
2679 * Use this to determine whether to advertise the __DRI2_ROBUSTNESS
2680 * extension to the loader.
2681 *
2682 * Don't even try on pre-Gen6, since we don't attempt to use contexts there.
2683 */
2684 if (devinfo->gen >= 6) {
2685 struct drm_i915_reset_stats stats;
2686 memset(&stats, 0, sizeof(stats));
2687
2688 const int ret = drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats);
2689
2690 screen->has_context_reset_notification =
2691 (ret != -1 || errno != EINVAL);
2692 }
2693
2694 dri_screen->extensions = !screen->has_context_reset_notification
2695 ? screenExtensions : intelRobustScreenExtensions;
2696
2697 screen->compiler = brw_compiler_create(screen, devinfo);
2698 screen->compiler->shader_debug_log = shader_debug_log_mesa;
2699 screen->compiler->shader_perf_log = shader_perf_log_mesa;
2700 screen->compiler->constant_buffer_0_is_relative = true;
2701 screen->compiler->supports_pull_constants = true;
2702
2703 screen->has_exec_fence =
2704 intel_get_boolean(screen, I915_PARAM_HAS_EXEC_FENCE);
2705
2706 intel_screen_init_surface_formats(screen);
2707
2708 if (INTEL_DEBUG & (DEBUG_BATCH | DEBUG_SUBMIT)) {
2709 unsigned int caps = intel_get_integer(screen, I915_PARAM_HAS_SCHEDULER);
2710 if (caps) {
2711 fprintf(stderr, "Kernel scheduler detected: %08x\n", caps);
2712 if (caps & I915_SCHEDULER_CAP_PRIORITY)
2713 fprintf(stderr, " - User priority sorting enabled\n");
2714 if (caps & I915_SCHEDULER_CAP_PREEMPTION)
2715 fprintf(stderr, " - Preemption enabled\n");
2716 }
2717 }
2718
2719 brw_disk_cache_init(screen);
2720
2721 return (const __DRIconfig**) intel_screen_make_configs(dri_screen);
2722 }
2723
2724 struct intel_buffer {
2725 __DRIbuffer base;
2726 struct brw_bo *bo;
2727 };
2728
2729 static __DRIbuffer *
2730 intelAllocateBuffer(__DRIscreen *dri_screen,
2731 unsigned attachment, unsigned format,
2732 int width, int height)
2733 {
2734 struct intel_buffer *intelBuffer;
2735 struct intel_screen *screen = dri_screen->driverPrivate;
2736
2737 assert(attachment == __DRI_BUFFER_FRONT_LEFT ||
2738 attachment == __DRI_BUFFER_BACK_LEFT);
2739
2740 intelBuffer = calloc(1, sizeof *intelBuffer);
2741 if (intelBuffer == NULL)
2742 return NULL;
2743
2744 /* The front and back buffers are color buffers, which are X tiled. GEN9+
2745 * supports Y tiled and compressed buffers, but there is no way to plumb that
2746 * through to here. */
2747 uint32_t pitch;
2748 int cpp = format / 8;
2749 intelBuffer->bo = brw_bo_alloc_tiled_2d(screen->bufmgr,
2750 "intelAllocateBuffer",
2751 width,
2752 height,
2753 cpp,
2754 I915_TILING_X, &pitch,
2755 BO_ALLOC_BUSY);
2756
2757 if (intelBuffer->bo == NULL) {
2758 free(intelBuffer);
2759 return NULL;
2760 }
2761
2762 brw_bo_flink(intelBuffer->bo, &intelBuffer->base.name);
2763
2764 intelBuffer->base.attachment = attachment;
2765 intelBuffer->base.cpp = cpp;
2766 intelBuffer->base.pitch = pitch;
2767
2768 return &intelBuffer->base;
2769 }
2770
2771 static void
2772 intelReleaseBuffer(__DRIscreen *dri_screen, __DRIbuffer *buffer)
2773 {
2774 struct intel_buffer *intelBuffer = (struct intel_buffer *) buffer;
2775
2776 brw_bo_unreference(intelBuffer->bo);
2777 free(intelBuffer);
2778 }
2779
2780 static const struct __DriverAPIRec brw_driver_api = {
2781 .InitScreen = intelInitScreen2,
2782 .DestroyScreen = intelDestroyScreen,
2783 .CreateContext = brwCreateContext,
2784 .DestroyContext = intelDestroyContext,
2785 .CreateBuffer = intelCreateBuffer,
2786 .DestroyBuffer = intelDestroyBuffer,
2787 .MakeCurrent = intelMakeCurrent,
2788 .UnbindContext = intelUnbindContext,
2789 .AllocateBuffer = intelAllocateBuffer,
2790 .ReleaseBuffer = intelReleaseBuffer
2791 };
2792
2793 static const struct __DRIDriverVtableExtensionRec brw_vtable = {
2794 .base = { __DRI_DRIVER_VTABLE, 1 },
2795 .vtable = &brw_driver_api,
2796 };
2797
2798 static const __DRIextension *brw_driver_extensions[] = {
2799 &driCoreExtension.base,
2800 &driImageDriverExtension.base,
2801 &driDRI2Extension.base,
2802 &brw_vtable.base,
2803 &brw_config_options.base,
2804 NULL
2805 };
2806
2807 PUBLIC const __DRIextension **__driDriverGetExtensions_i965(void)
2808 {
2809 globalDriverAPI = &brw_driver_api;
2810
2811 return brw_driver_extensions;
2812 }