i965/screen: Add basic support for rendering 10 bpc/depth 30 framebuffers. (v3)
[mesa.git] / src / mesa / drivers / dri / i965 / intel_screen.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <drm_fourcc.h>
27 #include <errno.h>
28 #include <time.h>
29 #include <unistd.h>
30 #include "main/context.h"
31 #include "main/framebuffer.h"
32 #include "main/renderbuffer.h"
33 #include "main/texobj.h"
34 #include "main/hash.h"
35 #include "main/fbobject.h"
36 #include "main/version.h"
37 #include "swrast/s_renderbuffer.h"
38 #include "util/ralloc.h"
39 #include "brw_defines.h"
40 #include "brw_state.h"
41 #include "compiler/nir/nir.h"
42
43 #include "utils.h"
44 #include "util/xmlpool.h"
45
46 static const __DRIconfigOptionsExtension brw_config_options = {
47 .base = { __DRI_CONFIG_OPTIONS, 1 },
48 .xml =
49 DRI_CONF_BEGIN
50 DRI_CONF_SECTION_PERFORMANCE
51 /* Options correspond to DRI_CONF_BO_REUSE_DISABLED,
52 * DRI_CONF_BO_REUSE_ALL
53 */
54 DRI_CONF_OPT_BEGIN_V(bo_reuse, enum, 1, "0:1")
55 DRI_CONF_DESC_BEGIN(en, "Buffer object reuse")
56 DRI_CONF_ENUM(0, "Disable buffer object reuse")
57 DRI_CONF_ENUM(1, "Enable reuse of all sizes of buffer objects")
58 DRI_CONF_DESC_END
59 DRI_CONF_OPT_END
60 DRI_CONF_MESA_NO_ERROR("false")
61 DRI_CONF_SECTION_END
62
63 DRI_CONF_SECTION_QUALITY
64 DRI_CONF_PRECISE_TRIG("false")
65
66 DRI_CONF_OPT_BEGIN(clamp_max_samples, int, -1)
67 DRI_CONF_DESC(en, "Clamp the value of GL_MAX_SAMPLES to the "
68 "given integer. If negative, then do not clamp.")
69 DRI_CONF_OPT_END
70 DRI_CONF_SECTION_END
71
72 DRI_CONF_SECTION_DEBUG
73 DRI_CONF_NO_RAST("false")
74 DRI_CONF_ALWAYS_FLUSH_BATCH("false")
75 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
76 DRI_CONF_DISABLE_THROTTLING("false")
77 DRI_CONF_FORCE_GLSL_EXTENSIONS_WARN("false")
78 DRI_CONF_FORCE_GLSL_VERSION(0)
79 DRI_CONF_DISABLE_GLSL_LINE_CONTINUATIONS("false")
80 DRI_CONF_DISABLE_BLEND_FUNC_EXTENDED("false")
81 DRI_CONF_DUAL_COLOR_BLEND_BY_LOCATION("false")
82 DRI_CONF_ALLOW_GLSL_EXTENSION_DIRECTIVE_MIDSHADER("false")
83 DRI_CONF_ALLOW_GLSL_BUILTIN_VARIABLE_REDECLARATION("false")
84 DRI_CONF_ALLOW_GLSL_CROSS_STAGE_INTERPOLATION_MISMATCH("false")
85 DRI_CONF_ALLOW_HIGHER_COMPAT_VERSION("false")
86 DRI_CONF_FORCE_GLSL_ABS_SQRT("false")
87
88 DRI_CONF_OPT_BEGIN_B(shader_precompile, "true")
89 DRI_CONF_DESC(en, "Perform code generation at shader link time.")
90 DRI_CONF_OPT_END
91 DRI_CONF_SECTION_END
92
93 DRI_CONF_SECTION_MISCELLANEOUS
94 DRI_CONF_GLSL_ZERO_INIT("false")
95 DRI_CONF_SECTION_END
96 DRI_CONF_END
97 };
98
99 #include "intel_batchbuffer.h"
100 #include "intel_buffers.h"
101 #include "brw_bufmgr.h"
102 #include "intel_fbo.h"
103 #include "intel_mipmap_tree.h"
104 #include "intel_screen.h"
105 #include "intel_tex.h"
106 #include "intel_image.h"
107
108 #include "brw_context.h"
109
110 #include "i915_drm.h"
111
112 /**
113 * For debugging purposes, this returns a time in seconds.
114 */
115 double
116 get_time(void)
117 {
118 struct timespec tp;
119
120 clock_gettime(CLOCK_MONOTONIC, &tp);
121
122 return tp.tv_sec + tp.tv_nsec / 1000000000.0;
123 }
124
125 static const __DRItexBufferExtension intelTexBufferExtension = {
126 .base = { __DRI_TEX_BUFFER, 3 },
127
128 .setTexBuffer = intelSetTexBuffer,
129 .setTexBuffer2 = intelSetTexBuffer2,
130 .releaseTexBuffer = NULL,
131 };
132
133 static void
134 intel_dri2_flush_with_flags(__DRIcontext *cPriv,
135 __DRIdrawable *dPriv,
136 unsigned flags,
137 enum __DRI2throttleReason reason)
138 {
139 struct brw_context *brw = cPriv->driverPrivate;
140
141 if (!brw)
142 return;
143
144 struct gl_context *ctx = &brw->ctx;
145
146 FLUSH_VERTICES(ctx, 0);
147
148 if (flags & __DRI2_FLUSH_DRAWABLE)
149 intel_resolve_for_dri2_flush(brw, dPriv);
150
151 if (reason == __DRI2_THROTTLE_SWAPBUFFER)
152 brw->need_swap_throttle = true;
153 if (reason == __DRI2_THROTTLE_FLUSHFRONT)
154 brw->need_flush_throttle = true;
155
156 intel_batchbuffer_flush(brw);
157 }
158
159 /**
160 * Provides compatibility with loaders that only support the older (version
161 * 1-3) flush interface.
162 *
163 * That includes libGL up to Mesa 9.0, and the X Server at least up to 1.13.
164 */
165 static void
166 intel_dri2_flush(__DRIdrawable *drawable)
167 {
168 intel_dri2_flush_with_flags(drawable->driContextPriv, drawable,
169 __DRI2_FLUSH_DRAWABLE,
170 __DRI2_THROTTLE_SWAPBUFFER);
171 }
172
173 static const struct __DRI2flushExtensionRec intelFlushExtension = {
174 .base = { __DRI2_FLUSH, 4 },
175
176 .flush = intel_dri2_flush,
177 .invalidate = dri2InvalidateDrawable,
178 .flush_with_flags = intel_dri2_flush_with_flags,
179 };
180
181 static const struct intel_image_format intel_image_formats[] = {
182 { __DRI_IMAGE_FOURCC_ARGB2101010, __DRI_IMAGE_COMPONENTS_RGBA, 1,
183 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB2101010, 4 } } },
184
185 { __DRI_IMAGE_FOURCC_XRGB2101010, __DRI_IMAGE_COMPONENTS_RGB, 1,
186 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB2101010, 4 } } },
187
188 { __DRI_IMAGE_FOURCC_ARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
189 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
190
191 { __DRI_IMAGE_FOURCC_ABGR8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
192 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
193
194 { __DRI_IMAGE_FOURCC_SARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
195 { { 0, 0, 0, __DRI_IMAGE_FORMAT_SARGB8, 4 } } },
196
197 { __DRI_IMAGE_FOURCC_XRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
198 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB8888, 4 }, } },
199
200 { __DRI_IMAGE_FOURCC_XBGR8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
201 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 }, } },
202
203 { __DRI_IMAGE_FOURCC_ARGB1555, __DRI_IMAGE_COMPONENTS_RGBA, 1,
204 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB1555, 2 } } },
205
206 { __DRI_IMAGE_FOURCC_RGB565, __DRI_IMAGE_COMPONENTS_RGB, 1,
207 { { 0, 0, 0, __DRI_IMAGE_FORMAT_RGB565, 2 } } },
208
209 { __DRI_IMAGE_FOURCC_R8, __DRI_IMAGE_COMPONENTS_R, 1,
210 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 }, } },
211
212 { __DRI_IMAGE_FOURCC_R16, __DRI_IMAGE_COMPONENTS_R, 1,
213 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 1 }, } },
214
215 { __DRI_IMAGE_FOURCC_GR88, __DRI_IMAGE_COMPONENTS_RG, 1,
216 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 }, } },
217
218 { __DRI_IMAGE_FOURCC_GR1616, __DRI_IMAGE_COMPONENTS_RG, 1,
219 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR1616, 2 }, } },
220
221 { __DRI_IMAGE_FOURCC_YUV410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
222 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
223 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
224 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
225
226 { __DRI_IMAGE_FOURCC_YUV411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
227 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
228 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
229 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
230
231 { __DRI_IMAGE_FOURCC_YUV420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
232 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
233 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
234 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
235
236 { __DRI_IMAGE_FOURCC_YUV422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
237 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
238 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
239 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
240
241 { __DRI_IMAGE_FOURCC_YUV444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
242 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
243 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
244 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
245
246 { __DRI_IMAGE_FOURCC_YVU410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
247 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
248 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
249 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
250
251 { __DRI_IMAGE_FOURCC_YVU411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
252 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
253 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
254 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
255
256 { __DRI_IMAGE_FOURCC_YVU420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
257 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
258 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
259 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
260
261 { __DRI_IMAGE_FOURCC_YVU422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
262 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
263 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
264 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
265
266 { __DRI_IMAGE_FOURCC_YVU444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
267 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
268 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
269 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
270
271 { __DRI_IMAGE_FOURCC_NV12, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
272 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
273 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR88, 2 } } },
274
275 { __DRI_IMAGE_FOURCC_NV16, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
276 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
277 { 1, 1, 0, __DRI_IMAGE_FORMAT_GR88, 2 } } },
278
279 /* For YUYV and UYVY buffers, we set up two overlapping DRI images
280 * and treat them as planar buffers in the compositors.
281 * Plane 0 is GR88 and samples YU or YV pairs and places Y into
282 * the R component, while plane 1 is ARGB/ABGR and samples YUYV/UYVY
283 * clusters and places pairs and places U into the G component and
284 * V into A. This lets the texture sampler interpolate the Y
285 * components correctly when sampling from plane 0, and interpolate
286 * U and V correctly when sampling from plane 1. */
287 { __DRI_IMAGE_FOURCC_YUYV, __DRI_IMAGE_COMPONENTS_Y_XUXV, 2,
288 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
289 { 0, 1, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
290 { __DRI_IMAGE_FOURCC_UYVY, __DRI_IMAGE_COMPONENTS_Y_UXVX, 2,
291 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
292 { 0, 1, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } }
293 };
294
295 static const struct {
296 uint64_t modifier;
297 unsigned since_gen;
298 } supported_modifiers[] = {
299 { .modifier = DRM_FORMAT_MOD_LINEAR , .since_gen = 1 },
300 { .modifier = I915_FORMAT_MOD_X_TILED , .since_gen = 1 },
301 { .modifier = I915_FORMAT_MOD_Y_TILED , .since_gen = 6 },
302 { .modifier = I915_FORMAT_MOD_Y_TILED_CCS , .since_gen = 9 },
303 };
304
305 static bool
306 modifier_is_supported(const struct gen_device_info *devinfo,
307 const struct intel_image_format *fmt, int dri_format,
308 uint64_t modifier)
309 {
310 const struct isl_drm_modifier_info *modinfo =
311 isl_drm_modifier_get_info(modifier);
312 int i;
313
314 /* ISL had better know about the modifier */
315 if (!modinfo)
316 return false;
317
318 if (modinfo->aux_usage == ISL_AUX_USAGE_CCS_E) {
319 /* If INTEL_DEBUG=norbc is set, don't support any CCS_E modifiers */
320 if (unlikely(INTEL_DEBUG & DEBUG_NO_RBC))
321 return false;
322
323 /* CCS_E is not supported for planar images */
324 if (fmt && fmt->nplanes > 1)
325 return false;
326
327 if (fmt) {
328 assert(dri_format == 0);
329 dri_format = fmt->planes[0].dri_format;
330 }
331
332 mesa_format format = driImageFormatToGLFormat(dri_format);
333 format = _mesa_get_srgb_format_linear(format);
334 if (!isl_format_supports_ccs_e(devinfo,
335 brw_isl_format_for_mesa_format(format)))
336 return false;
337 }
338
339 for (i = 0; i < ARRAY_SIZE(supported_modifiers); i++) {
340 if (supported_modifiers[i].modifier != modifier)
341 continue;
342
343 return supported_modifiers[i].since_gen <= devinfo->gen;
344 }
345
346 return false;
347 }
348
349 static uint64_t
350 tiling_to_modifier(uint32_t tiling)
351 {
352 static const uint64_t map[] = {
353 [I915_TILING_NONE] = DRM_FORMAT_MOD_LINEAR,
354 [I915_TILING_X] = I915_FORMAT_MOD_X_TILED,
355 [I915_TILING_Y] = I915_FORMAT_MOD_Y_TILED,
356 };
357
358 assert(tiling < ARRAY_SIZE(map));
359
360 return map[tiling];
361 }
362
363 static void
364 intel_image_warn_if_unaligned(__DRIimage *image, const char *func)
365 {
366 uint32_t tiling, swizzle;
367 brw_bo_get_tiling(image->bo, &tiling, &swizzle);
368
369 if (tiling != I915_TILING_NONE && (image->offset & 0xfff)) {
370 _mesa_warning(NULL, "%s: offset 0x%08x not on tile boundary",
371 func, image->offset);
372 }
373 }
374
375 static const struct intel_image_format *
376 intel_image_format_lookup(int fourcc)
377 {
378 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
379 if (intel_image_formats[i].fourcc == fourcc)
380 return &intel_image_formats[i];
381 }
382
383 return NULL;
384 }
385
386 static boolean intel_lookup_fourcc(int dri_format, int *fourcc)
387 {
388 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
389 if (intel_image_formats[i].planes[0].dri_format == dri_format) {
390 *fourcc = intel_image_formats[i].fourcc;
391 return true;
392 }
393 }
394 return false;
395 }
396
397 static __DRIimage *
398 intel_allocate_image(struct intel_screen *screen, int dri_format,
399 void *loaderPrivate)
400 {
401 __DRIimage *image;
402
403 image = calloc(1, sizeof *image);
404 if (image == NULL)
405 return NULL;
406
407 image->screen = screen;
408 image->dri_format = dri_format;
409 image->offset = 0;
410
411 image->format = driImageFormatToGLFormat(dri_format);
412 if (dri_format != __DRI_IMAGE_FORMAT_NONE &&
413 image->format == MESA_FORMAT_NONE) {
414 free(image);
415 return NULL;
416 }
417
418 image->internal_format = _mesa_get_format_base_format(image->format);
419 image->data = loaderPrivate;
420
421 return image;
422 }
423
424 /**
425 * Sets up a DRIImage structure to point to a slice out of a miptree.
426 */
427 static void
428 intel_setup_image_from_mipmap_tree(struct brw_context *brw, __DRIimage *image,
429 struct intel_mipmap_tree *mt, GLuint level,
430 GLuint zoffset)
431 {
432 intel_miptree_make_shareable(brw, mt);
433
434 intel_miptree_check_level_layer(mt, level, zoffset);
435
436 image->width = minify(mt->surf.phys_level0_sa.width,
437 level - mt->first_level);
438 image->height = minify(mt->surf.phys_level0_sa.height,
439 level - mt->first_level);
440 image->pitch = mt->surf.row_pitch;
441
442 image->offset = intel_miptree_get_tile_offsets(mt, level, zoffset,
443 &image->tile_x,
444 &image->tile_y);
445
446 brw_bo_unreference(image->bo);
447 image->bo = mt->bo;
448 brw_bo_reference(mt->bo);
449 }
450
451 static __DRIimage *
452 intel_create_image_from_name(__DRIscreen *dri_screen,
453 int width, int height, int format,
454 int name, int pitch, void *loaderPrivate)
455 {
456 struct intel_screen *screen = dri_screen->driverPrivate;
457 __DRIimage *image;
458 int cpp;
459
460 image = intel_allocate_image(screen, format, loaderPrivate);
461 if (image == NULL)
462 return NULL;
463
464 if (image->format == MESA_FORMAT_NONE)
465 cpp = 1;
466 else
467 cpp = _mesa_get_format_bytes(image->format);
468
469 image->width = width;
470 image->height = height;
471 image->pitch = pitch * cpp;
472 image->bo = brw_bo_gem_create_from_name(screen->bufmgr, "image",
473 name);
474 if (!image->bo) {
475 free(image);
476 return NULL;
477 }
478 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
479
480 return image;
481 }
482
483 static __DRIimage *
484 intel_create_image_from_renderbuffer(__DRIcontext *context,
485 int renderbuffer, void *loaderPrivate)
486 {
487 __DRIimage *image;
488 struct brw_context *brw = context->driverPrivate;
489 struct gl_context *ctx = &brw->ctx;
490 struct gl_renderbuffer *rb;
491 struct intel_renderbuffer *irb;
492
493 rb = _mesa_lookup_renderbuffer(ctx, renderbuffer);
494 if (!rb) {
495 _mesa_error(ctx, GL_INVALID_OPERATION, "glRenderbufferExternalMESA");
496 return NULL;
497 }
498
499 irb = intel_renderbuffer(rb);
500 intel_miptree_make_shareable(brw, irb->mt);
501 image = calloc(1, sizeof *image);
502 if (image == NULL)
503 return NULL;
504
505 image->internal_format = rb->InternalFormat;
506 image->format = rb->Format;
507 image->modifier = tiling_to_modifier(
508 isl_tiling_to_i915_tiling(irb->mt->surf.tiling));
509 image->offset = 0;
510 image->data = loaderPrivate;
511 brw_bo_unreference(image->bo);
512 image->bo = irb->mt->bo;
513 brw_bo_reference(irb->mt->bo);
514 image->width = rb->Width;
515 image->height = rb->Height;
516 image->pitch = irb->mt->surf.row_pitch;
517 image->dri_format = driGLFormatToImageFormat(image->format);
518 image->has_depthstencil = irb->mt->stencil_mt? true : false;
519
520 rb->NeedsFinishRenderTexture = true;
521 return image;
522 }
523
524 static __DRIimage *
525 intel_create_image_from_texture(__DRIcontext *context, int target,
526 unsigned texture, int zoffset,
527 int level,
528 unsigned *error,
529 void *loaderPrivate)
530 {
531 __DRIimage *image;
532 struct brw_context *brw = context->driverPrivate;
533 struct gl_texture_object *obj;
534 struct intel_texture_object *iobj;
535 GLuint face = 0;
536
537 obj = _mesa_lookup_texture(&brw->ctx, texture);
538 if (!obj || obj->Target != target) {
539 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
540 return NULL;
541 }
542
543 if (target == GL_TEXTURE_CUBE_MAP)
544 face = zoffset;
545
546 _mesa_test_texobj_completeness(&brw->ctx, obj);
547 iobj = intel_texture_object(obj);
548 if (!obj->_BaseComplete || (level > 0 && !obj->_MipmapComplete)) {
549 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
550 return NULL;
551 }
552
553 if (level < obj->BaseLevel || level > obj->_MaxLevel) {
554 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
555 return NULL;
556 }
557
558 if (target == GL_TEXTURE_3D && obj->Image[face][level]->Depth < zoffset) {
559 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
560 return NULL;
561 }
562 image = calloc(1, sizeof *image);
563 if (image == NULL) {
564 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
565 return NULL;
566 }
567
568 image->internal_format = obj->Image[face][level]->InternalFormat;
569 image->format = obj->Image[face][level]->TexFormat;
570 image->modifier = tiling_to_modifier(
571 isl_tiling_to_i915_tiling(iobj->mt->surf.tiling));
572 image->data = loaderPrivate;
573 intel_setup_image_from_mipmap_tree(brw, image, iobj->mt, level, zoffset);
574 image->dri_format = driGLFormatToImageFormat(image->format);
575 image->has_depthstencil = iobj->mt->stencil_mt? true : false;
576 if (image->dri_format == MESA_FORMAT_NONE) {
577 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
578 free(image);
579 return NULL;
580 }
581
582 *error = __DRI_IMAGE_ERROR_SUCCESS;
583 return image;
584 }
585
586 static void
587 intel_destroy_image(__DRIimage *image)
588 {
589 brw_bo_unreference(image->bo);
590 free(image);
591 }
592
593 enum modifier_priority {
594 MODIFIER_PRIORITY_INVALID = 0,
595 MODIFIER_PRIORITY_LINEAR,
596 MODIFIER_PRIORITY_X,
597 MODIFIER_PRIORITY_Y,
598 MODIFIER_PRIORITY_Y_CCS,
599 };
600
601 const uint64_t priority_to_modifier[] = {
602 [MODIFIER_PRIORITY_INVALID] = DRM_FORMAT_MOD_INVALID,
603 [MODIFIER_PRIORITY_LINEAR] = DRM_FORMAT_MOD_LINEAR,
604 [MODIFIER_PRIORITY_X] = I915_FORMAT_MOD_X_TILED,
605 [MODIFIER_PRIORITY_Y] = I915_FORMAT_MOD_Y_TILED,
606 [MODIFIER_PRIORITY_Y_CCS] = I915_FORMAT_MOD_Y_TILED_CCS,
607 };
608
609 static uint64_t
610 select_best_modifier(struct gen_device_info *devinfo,
611 int dri_format,
612 const uint64_t *modifiers,
613 const unsigned count)
614 {
615 enum modifier_priority prio = MODIFIER_PRIORITY_INVALID;
616
617 for (int i = 0; i < count; i++) {
618 if (!modifier_is_supported(devinfo, NULL, dri_format, modifiers[i]))
619 continue;
620
621 switch (modifiers[i]) {
622 case I915_FORMAT_MOD_Y_TILED_CCS:
623 prio = MAX2(prio, MODIFIER_PRIORITY_Y_CCS);
624 break;
625 case I915_FORMAT_MOD_Y_TILED:
626 prio = MAX2(prio, MODIFIER_PRIORITY_Y);
627 break;
628 case I915_FORMAT_MOD_X_TILED:
629 prio = MAX2(prio, MODIFIER_PRIORITY_X);
630 break;
631 case DRM_FORMAT_MOD_LINEAR:
632 prio = MAX2(prio, MODIFIER_PRIORITY_LINEAR);
633 break;
634 case DRM_FORMAT_MOD_INVALID:
635 default:
636 break;
637 }
638 }
639
640 return priority_to_modifier[prio];
641 }
642
643 static __DRIimage *
644 intel_create_image_common(__DRIscreen *dri_screen,
645 int width, int height, int format,
646 unsigned int use,
647 const uint64_t *modifiers,
648 unsigned count,
649 void *loaderPrivate)
650 {
651 __DRIimage *image;
652 struct intel_screen *screen = dri_screen->driverPrivate;
653 uint64_t modifier = DRM_FORMAT_MOD_INVALID;
654 bool ok;
655
656 /* Callers of this may specify a modifier, or a dri usage, but not both. The
657 * newer modifier interface deprecates the older usage flags newer modifier
658 * interface deprecates the older usage flags.
659 */
660 assert(!(use && count));
661
662 if (use & __DRI_IMAGE_USE_CURSOR) {
663 if (width != 64 || height != 64)
664 return NULL;
665 modifier = DRM_FORMAT_MOD_LINEAR;
666 }
667
668 if (use & __DRI_IMAGE_USE_LINEAR)
669 modifier = DRM_FORMAT_MOD_LINEAR;
670
671 if (modifier == DRM_FORMAT_MOD_INVALID) {
672 if (modifiers) {
673 /* User requested specific modifiers */
674 modifier = select_best_modifier(&screen->devinfo, format,
675 modifiers, count);
676 if (modifier == DRM_FORMAT_MOD_INVALID)
677 return NULL;
678 } else {
679 /* Historically, X-tiled was the default, and so lack of modifier means
680 * X-tiled.
681 */
682 modifier = I915_FORMAT_MOD_X_TILED;
683 }
684 }
685
686 image = intel_allocate_image(screen, format, loaderPrivate);
687 if (image == NULL)
688 return NULL;
689
690 const struct isl_drm_modifier_info *mod_info =
691 isl_drm_modifier_get_info(modifier);
692
693 struct isl_surf surf;
694 ok = isl_surf_init(&screen->isl_dev, &surf,
695 .dim = ISL_SURF_DIM_2D,
696 .format = brw_isl_format_for_mesa_format(image->format),
697 .width = width,
698 .height = height,
699 .depth = 1,
700 .levels = 1,
701 .array_len = 1,
702 .samples = 1,
703 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
704 ISL_SURF_USAGE_TEXTURE_BIT |
705 ISL_SURF_USAGE_STORAGE_BIT,
706 .tiling_flags = (1 << mod_info->tiling));
707 assert(ok);
708 if (!ok) {
709 free(image);
710 return NULL;
711 }
712
713 struct isl_surf aux_surf;
714 if (mod_info->aux_usage == ISL_AUX_USAGE_CCS_E) {
715 ok = isl_surf_get_ccs_surf(&screen->isl_dev, &surf, &aux_surf, 0);
716 if (!ok) {
717 free(image);
718 return NULL;
719 }
720 } else {
721 assert(mod_info->aux_usage == ISL_AUX_USAGE_NONE);
722 aux_surf.size = 0;
723 }
724
725 /* We request that the bufmgr zero the buffer for us for two reasons:
726 *
727 * 1) If a buffer gets re-used from the pool, we don't want to leak random
728 * garbage from our process to some other.
729 *
730 * 2) For images with CCS_E, we want to ensure that the CCS starts off in
731 * a valid state. A CCS value of 0 indicates that the given block is
732 * in the pass-through state which is what we want.
733 */
734 image->bo = brw_bo_alloc_tiled(screen->bufmgr, "image",
735 surf.size + aux_surf.size,
736 isl_tiling_to_i915_tiling(mod_info->tiling),
737 surf.row_pitch, BO_ALLOC_ZEROED);
738 if (image->bo == NULL) {
739 free(image);
740 return NULL;
741 }
742 image->width = width;
743 image->height = height;
744 image->pitch = surf.row_pitch;
745 image->modifier = modifier;
746
747 if (aux_surf.size) {
748 image->aux_offset = surf.size;
749 image->aux_pitch = aux_surf.row_pitch;
750 }
751
752 return image;
753 }
754
755 static __DRIimage *
756 intel_create_image(__DRIscreen *dri_screen,
757 int width, int height, int format,
758 unsigned int use,
759 void *loaderPrivate)
760 {
761 return intel_create_image_common(dri_screen, width, height, format, use, NULL, 0,
762 loaderPrivate);
763 }
764
765 static void *
766 intel_map_image(__DRIcontext *context, __DRIimage *image,
767 int x0, int y0, int width, int height,
768 unsigned int flags, int *stride, void **map_info)
769 {
770 struct brw_context *brw = NULL;
771 struct brw_bo *bo = NULL;
772 void *raw_data = NULL;
773 GLuint pix_w = 1;
774 GLuint pix_h = 1;
775 GLint pix_bytes = 1;
776
777 if (!context || !image || !stride || !map_info || *map_info)
778 return NULL;
779
780 if (x0 < 0 || x0 >= image->width || width > image->width - x0)
781 return NULL;
782
783 if (y0 < 0 || y0 >= image->height || height > image->height - y0)
784 return NULL;
785
786 if (flags & MAP_INTERNAL_MASK)
787 return NULL;
788
789 brw = context->driverPrivate;
790 bo = image->bo;
791
792 assert(brw);
793 assert(bo);
794
795 /* DRI flags and GL_MAP.*_BIT flags are the same, so just pass them on. */
796 raw_data = brw_bo_map(brw, bo, flags);
797 if (!raw_data)
798 return NULL;
799
800 _mesa_get_format_block_size(image->format, &pix_w, &pix_h);
801 pix_bytes = _mesa_get_format_bytes(image->format);
802
803 assert(pix_w);
804 assert(pix_h);
805 assert(pix_bytes > 0);
806
807 raw_data += (x0 / pix_w) * pix_bytes + (y0 / pix_h) * image->pitch;
808
809 brw_bo_reference(bo);
810
811 *stride = image->pitch;
812 *map_info = bo;
813
814 return raw_data;
815 }
816
817 static void
818 intel_unmap_image(__DRIcontext *context, __DRIimage *image, void *map_info)
819 {
820 struct brw_bo *bo = map_info;
821
822 brw_bo_unmap(bo);
823 brw_bo_unreference(bo);
824 }
825
826 static __DRIimage *
827 intel_create_image_with_modifiers(__DRIscreen *dri_screen,
828 int width, int height, int format,
829 const uint64_t *modifiers,
830 const unsigned count,
831 void *loaderPrivate)
832 {
833 return intel_create_image_common(dri_screen, width, height, format, 0,
834 modifiers, count, loaderPrivate);
835 }
836
837 static GLboolean
838 intel_query_image(__DRIimage *image, int attrib, int *value)
839 {
840 switch (attrib) {
841 case __DRI_IMAGE_ATTRIB_STRIDE:
842 *value = image->pitch;
843 return true;
844 case __DRI_IMAGE_ATTRIB_HANDLE:
845 *value = brw_bo_export_gem_handle(image->bo);
846 return true;
847 case __DRI_IMAGE_ATTRIB_NAME:
848 return !brw_bo_flink(image->bo, (uint32_t *) value);
849 case __DRI_IMAGE_ATTRIB_FORMAT:
850 *value = image->dri_format;
851 return true;
852 case __DRI_IMAGE_ATTRIB_WIDTH:
853 *value = image->width;
854 return true;
855 case __DRI_IMAGE_ATTRIB_HEIGHT:
856 *value = image->height;
857 return true;
858 case __DRI_IMAGE_ATTRIB_COMPONENTS:
859 if (image->planar_format == NULL)
860 return false;
861 *value = image->planar_format->components;
862 return true;
863 case __DRI_IMAGE_ATTRIB_FD:
864 return !brw_bo_gem_export_to_prime(image->bo, value);
865 case __DRI_IMAGE_ATTRIB_FOURCC:
866 return intel_lookup_fourcc(image->dri_format, value);
867 case __DRI_IMAGE_ATTRIB_NUM_PLANES:
868 if (isl_drm_modifier_has_aux(image->modifier)) {
869 assert(!image->planar_format || image->planar_format->nplanes == 1);
870 *value = 2;
871 } else if (image->planar_format) {
872 *value = image->planar_format->nplanes;
873 } else {
874 *value = 1;
875 }
876 return true;
877 case __DRI_IMAGE_ATTRIB_OFFSET:
878 *value = image->offset;
879 return true;
880 case __DRI_IMAGE_ATTRIB_MODIFIER_LOWER:
881 *value = (image->modifier & 0xffffffff);
882 return true;
883 case __DRI_IMAGE_ATTRIB_MODIFIER_UPPER:
884 *value = ((image->modifier >> 32) & 0xffffffff);
885 return true;
886
887 default:
888 return false;
889 }
890 }
891
892 static GLboolean
893 intel_query_format_modifier_attribs(__DRIscreen *dri_screen,
894 uint32_t fourcc, uint64_t modifier,
895 int attrib, uint64_t *value)
896 {
897 struct intel_screen *screen = dri_screen->driverPrivate;
898 const struct intel_image_format *f = intel_image_format_lookup(fourcc);
899
900 if (!modifier_is_supported(&screen->devinfo, f, 0, modifier))
901 return false;
902
903 switch (attrib) {
904 case __DRI_IMAGE_FORMAT_MODIFIER_ATTRIB_PLANE_COUNT:
905 *value = isl_drm_modifier_has_aux(modifier) ? 2 : f->nplanes;
906 return true;
907
908 default:
909 return false;
910 }
911 }
912
913 static __DRIimage *
914 intel_dup_image(__DRIimage *orig_image, void *loaderPrivate)
915 {
916 __DRIimage *image;
917
918 image = calloc(1, sizeof *image);
919 if (image == NULL)
920 return NULL;
921
922 brw_bo_reference(orig_image->bo);
923 image->bo = orig_image->bo;
924 image->internal_format = orig_image->internal_format;
925 image->planar_format = orig_image->planar_format;
926 image->dri_format = orig_image->dri_format;
927 image->format = orig_image->format;
928 image->modifier = orig_image->modifier;
929 image->offset = orig_image->offset;
930 image->width = orig_image->width;
931 image->height = orig_image->height;
932 image->pitch = orig_image->pitch;
933 image->tile_x = orig_image->tile_x;
934 image->tile_y = orig_image->tile_y;
935 image->has_depthstencil = orig_image->has_depthstencil;
936 image->data = loaderPrivate;
937 image->dma_buf_imported = orig_image->dma_buf_imported;
938 image->aux_offset = orig_image->aux_offset;
939 image->aux_pitch = orig_image->aux_pitch;
940
941 memcpy(image->strides, orig_image->strides, sizeof(image->strides));
942 memcpy(image->offsets, orig_image->offsets, sizeof(image->offsets));
943
944 return image;
945 }
946
947 static GLboolean
948 intel_validate_usage(__DRIimage *image, unsigned int use)
949 {
950 if (use & __DRI_IMAGE_USE_CURSOR) {
951 if (image->width != 64 || image->height != 64)
952 return GL_FALSE;
953 }
954
955 return GL_TRUE;
956 }
957
958 static __DRIimage *
959 intel_create_image_from_names(__DRIscreen *dri_screen,
960 int width, int height, int fourcc,
961 int *names, int num_names,
962 int *strides, int *offsets,
963 void *loaderPrivate)
964 {
965 const struct intel_image_format *f = NULL;
966 __DRIimage *image;
967 int i, index;
968
969 if (dri_screen == NULL || names == NULL || num_names != 1)
970 return NULL;
971
972 f = intel_image_format_lookup(fourcc);
973 if (f == NULL)
974 return NULL;
975
976 image = intel_create_image_from_name(dri_screen, width, height,
977 __DRI_IMAGE_FORMAT_NONE,
978 names[0], strides[0],
979 loaderPrivate);
980
981 if (image == NULL)
982 return NULL;
983
984 image->planar_format = f;
985 for (i = 0; i < f->nplanes; i++) {
986 index = f->planes[i].buffer_index;
987 image->offsets[index] = offsets[index];
988 image->strides[index] = strides[index];
989 }
990
991 return image;
992 }
993
994 static __DRIimage *
995 intel_create_image_from_fds_common(__DRIscreen *dri_screen,
996 int width, int height, int fourcc,
997 uint64_t modifier, int *fds, int num_fds,
998 int *strides, int *offsets,
999 void *loaderPrivate)
1000 {
1001 struct intel_screen *screen = dri_screen->driverPrivate;
1002 const struct intel_image_format *f;
1003 __DRIimage *image;
1004 int i, index;
1005 bool ok;
1006
1007 if (fds == NULL || num_fds < 1)
1008 return NULL;
1009
1010 f = intel_image_format_lookup(fourcc);
1011 if (f == NULL)
1012 return NULL;
1013
1014 if (modifier != DRM_FORMAT_MOD_INVALID &&
1015 !modifier_is_supported(&screen->devinfo, f, 0, modifier))
1016 return NULL;
1017
1018 if (f->nplanes == 1)
1019 image = intel_allocate_image(screen, f->planes[0].dri_format,
1020 loaderPrivate);
1021 else
1022 image = intel_allocate_image(screen, __DRI_IMAGE_FORMAT_NONE,
1023 loaderPrivate);
1024
1025 if (image == NULL)
1026 return NULL;
1027
1028 image->width = width;
1029 image->height = height;
1030 image->pitch = strides[0];
1031
1032 image->planar_format = f;
1033
1034 image->bo = brw_bo_gem_create_from_prime(screen->bufmgr, fds[0]);
1035 if (image->bo == NULL) {
1036 free(image);
1037 return NULL;
1038 }
1039
1040 /* We only support all planes from the same bo.
1041 * brw_bo_gem_create_from_prime() should return the same pointer for all
1042 * fds received here */
1043 for (i = 1; i < num_fds; i++) {
1044 struct brw_bo *aux = brw_bo_gem_create_from_prime(screen->bufmgr, fds[i]);
1045 brw_bo_unreference(aux);
1046 if (aux != image->bo) {
1047 brw_bo_unreference(image->bo);
1048 free(image);
1049 return NULL;
1050 }
1051 }
1052
1053 if (modifier != DRM_FORMAT_MOD_INVALID)
1054 image->modifier = modifier;
1055 else
1056 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
1057
1058 const struct isl_drm_modifier_info *mod_info =
1059 isl_drm_modifier_get_info(image->modifier);
1060
1061 int size = 0;
1062 struct isl_surf surf;
1063 for (i = 0; i < f->nplanes; i++) {
1064 index = f->planes[i].buffer_index;
1065 image->offsets[index] = offsets[index];
1066 image->strides[index] = strides[index];
1067
1068 mesa_format format = driImageFormatToGLFormat(f->planes[i].dri_format);
1069
1070 ok = isl_surf_init(&screen->isl_dev, &surf,
1071 .dim = ISL_SURF_DIM_2D,
1072 .format = brw_isl_format_for_mesa_format(format),
1073 .width = image->width >> f->planes[i].width_shift,
1074 .height = image->height >> f->planes[i].height_shift,
1075 .depth = 1,
1076 .levels = 1,
1077 .array_len = 1,
1078 .samples = 1,
1079 .row_pitch = strides[index],
1080 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
1081 ISL_SURF_USAGE_TEXTURE_BIT |
1082 ISL_SURF_USAGE_STORAGE_BIT,
1083 .tiling_flags = (1 << mod_info->tiling));
1084 if (!ok) {
1085 brw_bo_unreference(image->bo);
1086 free(image);
1087 return NULL;
1088 }
1089
1090 const int end = offsets[index] + surf.size;
1091 if (size < end)
1092 size = end;
1093 }
1094
1095 if (mod_info->aux_usage == ISL_AUX_USAGE_CCS_E) {
1096 /* Even though we initialize surf in the loop above, we know that
1097 * anything with CCS_E will have exactly one plane so surf is properly
1098 * initialized when we get here.
1099 */
1100 assert(f->nplanes == 1);
1101
1102 image->aux_offset = offsets[1];
1103 image->aux_pitch = strides[1];
1104
1105 /* Scanout hardware requires that the CCS be placed after the main
1106 * surface in memory. We consider any CCS that is placed any earlier in
1107 * memory to be invalid and reject it.
1108 *
1109 * At some point in the future, this restriction may be relaxed if the
1110 * hardware becomes less strict but we may need a new modifier for that.
1111 */
1112 assert(size > 0);
1113 if (image->aux_offset < size) {
1114 brw_bo_unreference(image->bo);
1115 free(image);
1116 return NULL;
1117 }
1118
1119 struct isl_surf aux_surf;
1120 ok = isl_surf_get_ccs_surf(&screen->isl_dev, &surf, &aux_surf,
1121 image->aux_pitch);
1122 if (!ok) {
1123 brw_bo_unreference(image->bo);
1124 free(image);
1125 return NULL;
1126 }
1127
1128 const int end = image->aux_offset + aux_surf.size;
1129 if (size < end)
1130 size = end;
1131 } else {
1132 assert(mod_info->aux_usage == ISL_AUX_USAGE_NONE);
1133 }
1134
1135 /* Check that the requested image actually fits within the BO. 'size'
1136 * is already relative to the offsets, so we don't need to add that. */
1137 if (image->bo->size == 0) {
1138 image->bo->size = size;
1139 } else if (size > image->bo->size) {
1140 brw_bo_unreference(image->bo);
1141 free(image);
1142 return NULL;
1143 }
1144
1145 if (f->nplanes == 1) {
1146 image->offset = image->offsets[0];
1147 intel_image_warn_if_unaligned(image, __func__);
1148 }
1149
1150 return image;
1151 }
1152
1153 static __DRIimage *
1154 intel_create_image_from_fds(__DRIscreen *dri_screen,
1155 int width, int height, int fourcc,
1156 int *fds, int num_fds, int *strides, int *offsets,
1157 void *loaderPrivate)
1158 {
1159 return intel_create_image_from_fds_common(dri_screen, width, height, fourcc,
1160 DRM_FORMAT_MOD_INVALID,
1161 fds, num_fds, strides, offsets,
1162 loaderPrivate);
1163 }
1164
1165 static __DRIimage *
1166 intel_create_image_from_dma_bufs2(__DRIscreen *dri_screen,
1167 int width, int height,
1168 int fourcc, uint64_t modifier,
1169 int *fds, int num_fds,
1170 int *strides, int *offsets,
1171 enum __DRIYUVColorSpace yuv_color_space,
1172 enum __DRISampleRange sample_range,
1173 enum __DRIChromaSiting horizontal_siting,
1174 enum __DRIChromaSiting vertical_siting,
1175 unsigned *error,
1176 void *loaderPrivate)
1177 {
1178 __DRIimage *image;
1179 const struct intel_image_format *f = intel_image_format_lookup(fourcc);
1180
1181 if (!f) {
1182 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
1183 return NULL;
1184 }
1185
1186 image = intel_create_image_from_fds_common(dri_screen, width, height,
1187 fourcc, modifier,
1188 fds, num_fds, strides, offsets,
1189 loaderPrivate);
1190
1191 /*
1192 * Invalid parameters and any inconsistencies between are assumed to be
1193 * checked by the caller. Therefore besides unsupported formats one can fail
1194 * only in allocation.
1195 */
1196 if (!image) {
1197 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
1198 return NULL;
1199 }
1200
1201 image->dma_buf_imported = true;
1202 image->yuv_color_space = yuv_color_space;
1203 image->sample_range = sample_range;
1204 image->horizontal_siting = horizontal_siting;
1205 image->vertical_siting = vertical_siting;
1206
1207 *error = __DRI_IMAGE_ERROR_SUCCESS;
1208 return image;
1209 }
1210
1211 static __DRIimage *
1212 intel_create_image_from_dma_bufs(__DRIscreen *dri_screen,
1213 int width, int height, int fourcc,
1214 int *fds, int num_fds,
1215 int *strides, int *offsets,
1216 enum __DRIYUVColorSpace yuv_color_space,
1217 enum __DRISampleRange sample_range,
1218 enum __DRIChromaSiting horizontal_siting,
1219 enum __DRIChromaSiting vertical_siting,
1220 unsigned *error,
1221 void *loaderPrivate)
1222 {
1223 return intel_create_image_from_dma_bufs2(dri_screen, width, height,
1224 fourcc, DRM_FORMAT_MOD_INVALID,
1225 fds, num_fds, strides, offsets,
1226 yuv_color_space,
1227 sample_range,
1228 horizontal_siting,
1229 vertical_siting,
1230 error,
1231 loaderPrivate);
1232 }
1233
1234 static GLboolean
1235 intel_query_dma_buf_formats(__DRIscreen *screen, int max,
1236 int *formats, int *count)
1237 {
1238 int i, j = 0;
1239
1240 if (max == 0) {
1241 *count = ARRAY_SIZE(intel_image_formats) - 1; /* not SARGB */
1242 return true;
1243 }
1244
1245 for (i = 0; i < (ARRAY_SIZE(intel_image_formats)) && j < max; i++) {
1246 if (intel_image_formats[i].fourcc == __DRI_IMAGE_FOURCC_SARGB8888)
1247 continue;
1248 formats[j++] = intel_image_formats[i].fourcc;
1249 }
1250
1251 *count = j;
1252 return true;
1253 }
1254
1255 static GLboolean
1256 intel_query_dma_buf_modifiers(__DRIscreen *_screen, int fourcc, int max,
1257 uint64_t *modifiers,
1258 unsigned int *external_only,
1259 int *count)
1260 {
1261 struct intel_screen *screen = _screen->driverPrivate;
1262 const struct intel_image_format *f;
1263 int num_mods = 0, i;
1264
1265 f = intel_image_format_lookup(fourcc);
1266 if (f == NULL)
1267 return false;
1268
1269 for (i = 0; i < ARRAY_SIZE(supported_modifiers); i++) {
1270 uint64_t modifier = supported_modifiers[i].modifier;
1271 if (!modifier_is_supported(&screen->devinfo, f, 0, modifier))
1272 continue;
1273
1274 num_mods++;
1275 if (max == 0)
1276 continue;
1277
1278 modifiers[num_mods - 1] = modifier;
1279 if (num_mods >= max)
1280 break;
1281 }
1282
1283 if (external_only != NULL) {
1284 for (i = 0; i < num_mods && i < max; i++) {
1285 if (f->components == __DRI_IMAGE_COMPONENTS_Y_U_V ||
1286 f->components == __DRI_IMAGE_COMPONENTS_Y_UV ||
1287 f->components == __DRI_IMAGE_COMPONENTS_Y_XUXV) {
1288 external_only[i] = GL_TRUE;
1289 }
1290 else {
1291 external_only[i] = GL_FALSE;
1292 }
1293 }
1294 }
1295
1296 *count = num_mods;
1297 return true;
1298 }
1299
1300 static __DRIimage *
1301 intel_from_planar(__DRIimage *parent, int plane, void *loaderPrivate)
1302 {
1303 int width, height, offset, stride, dri_format, index;
1304 const struct intel_image_format *f;
1305 __DRIimage *image;
1306
1307 if (parent == NULL) {
1308 return NULL;
1309 } else if (parent->planar_format == NULL) {
1310 const bool is_aux =
1311 isl_drm_modifier_has_aux(parent->modifier) && plane == 1;
1312 if (!is_aux)
1313 return NULL;
1314
1315 width = parent->width;
1316 height = parent->height;
1317 dri_format = parent->dri_format;
1318 offset = parent->aux_offset;
1319 stride = parent->aux_pitch;
1320 } else {
1321 /* Planar formats don't support aux buffers/images */
1322 assert(!isl_drm_modifier_has_aux(parent->modifier));
1323 f = parent->planar_format;
1324
1325 if (plane >= f->nplanes)
1326 return NULL;
1327
1328 width = parent->width >> f->planes[plane].width_shift;
1329 height = parent->height >> f->planes[plane].height_shift;
1330 dri_format = f->planes[plane].dri_format;
1331 index = f->planes[plane].buffer_index;
1332 offset = parent->offsets[index];
1333 stride = parent->strides[index];
1334
1335 if (offset + height * stride > parent->bo->size) {
1336 _mesa_warning(NULL, "intel_create_sub_image: subimage out of bounds");
1337 return NULL;
1338 }
1339 }
1340
1341 image = intel_allocate_image(parent->screen, dri_format, loaderPrivate);
1342 if (image == NULL)
1343 return NULL;
1344
1345 image->bo = parent->bo;
1346 brw_bo_reference(parent->bo);
1347 image->modifier = parent->modifier;
1348
1349 image->width = width;
1350 image->height = height;
1351 image->pitch = stride;
1352 image->offset = offset;
1353
1354 intel_image_warn_if_unaligned(image, __func__);
1355
1356 return image;
1357 }
1358
1359 static const __DRIimageExtension intelImageExtension = {
1360 .base = { __DRI_IMAGE, 16 },
1361
1362 .createImageFromName = intel_create_image_from_name,
1363 .createImageFromRenderbuffer = intel_create_image_from_renderbuffer,
1364 .destroyImage = intel_destroy_image,
1365 .createImage = intel_create_image,
1366 .queryImage = intel_query_image,
1367 .dupImage = intel_dup_image,
1368 .validateUsage = intel_validate_usage,
1369 .createImageFromNames = intel_create_image_from_names,
1370 .fromPlanar = intel_from_planar,
1371 .createImageFromTexture = intel_create_image_from_texture,
1372 .createImageFromFds = intel_create_image_from_fds,
1373 .createImageFromDmaBufs = intel_create_image_from_dma_bufs,
1374 .blitImage = NULL,
1375 .getCapabilities = NULL,
1376 .mapImage = intel_map_image,
1377 .unmapImage = intel_unmap_image,
1378 .createImageWithModifiers = intel_create_image_with_modifiers,
1379 .createImageFromDmaBufs2 = intel_create_image_from_dma_bufs2,
1380 .queryDmaBufFormats = intel_query_dma_buf_formats,
1381 .queryDmaBufModifiers = intel_query_dma_buf_modifiers,
1382 .queryDmaBufFormatModifierAttribs = intel_query_format_modifier_attribs,
1383 };
1384
1385 static uint64_t
1386 get_aperture_size(int fd)
1387 {
1388 struct drm_i915_gem_get_aperture aperture;
1389
1390 if (drmIoctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture) != 0)
1391 return 0;
1392
1393 return aperture.aper_size;
1394 }
1395
1396 static int
1397 brw_query_renderer_integer(__DRIscreen *dri_screen,
1398 int param, unsigned int *value)
1399 {
1400 const struct intel_screen *const screen =
1401 (struct intel_screen *) dri_screen->driverPrivate;
1402
1403 switch (param) {
1404 case __DRI2_RENDERER_VENDOR_ID:
1405 value[0] = 0x8086;
1406 return 0;
1407 case __DRI2_RENDERER_DEVICE_ID:
1408 value[0] = screen->deviceID;
1409 return 0;
1410 case __DRI2_RENDERER_ACCELERATED:
1411 value[0] = 1;
1412 return 0;
1413 case __DRI2_RENDERER_VIDEO_MEMORY: {
1414 /* Once a batch uses more than 75% of the maximum mappable size, we
1415 * assume that there's some fragmentation, and we start doing extra
1416 * flushing, etc. That's the big cliff apps will care about.
1417 */
1418 const unsigned gpu_mappable_megabytes =
1419 screen->aperture_threshold / (1024 * 1024);
1420
1421 const long system_memory_pages = sysconf(_SC_PHYS_PAGES);
1422 const long system_page_size = sysconf(_SC_PAGE_SIZE);
1423
1424 if (system_memory_pages <= 0 || system_page_size <= 0)
1425 return -1;
1426
1427 const uint64_t system_memory_bytes = (uint64_t) system_memory_pages
1428 * (uint64_t) system_page_size;
1429
1430 const unsigned system_memory_megabytes =
1431 (unsigned) (system_memory_bytes / (1024 * 1024));
1432
1433 value[0] = MIN2(system_memory_megabytes, gpu_mappable_megabytes);
1434 return 0;
1435 }
1436 case __DRI2_RENDERER_UNIFIED_MEMORY_ARCHITECTURE:
1437 value[0] = 1;
1438 return 0;
1439 case __DRI2_RENDERER_HAS_TEXTURE_3D:
1440 value[0] = 1;
1441 return 0;
1442 case __DRI2_RENDERER_HAS_CONTEXT_PRIORITY:
1443 value[0] = 0;
1444 if (brw_hw_context_set_priority(screen->bufmgr,
1445 0, BRW_CONTEXT_HIGH_PRIORITY) == 0)
1446 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_HIGH;
1447 if (brw_hw_context_set_priority(screen->bufmgr,
1448 0, BRW_CONTEXT_LOW_PRIORITY) == 0)
1449 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_LOW;
1450 /* reset to default last, just in case */
1451 if (brw_hw_context_set_priority(screen->bufmgr,
1452 0, BRW_CONTEXT_MEDIUM_PRIORITY) == 0)
1453 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_MEDIUM;
1454 return 0;
1455 case __DRI2_RENDERER_HAS_FRAMEBUFFER_SRGB:
1456 value[0] = 1;
1457 return 0;
1458 default:
1459 return driQueryRendererIntegerCommon(dri_screen, param, value);
1460 }
1461
1462 return -1;
1463 }
1464
1465 static int
1466 brw_query_renderer_string(__DRIscreen *dri_screen,
1467 int param, const char **value)
1468 {
1469 const struct intel_screen *screen =
1470 (struct intel_screen *) dri_screen->driverPrivate;
1471
1472 switch (param) {
1473 case __DRI2_RENDERER_VENDOR_ID:
1474 value[0] = brw_vendor_string;
1475 return 0;
1476 case __DRI2_RENDERER_DEVICE_ID:
1477 value[0] = brw_get_renderer_string(screen);
1478 return 0;
1479 default:
1480 break;
1481 }
1482
1483 return -1;
1484 }
1485
1486 static const __DRI2rendererQueryExtension intelRendererQueryExtension = {
1487 .base = { __DRI2_RENDERER_QUERY, 1 },
1488
1489 .queryInteger = brw_query_renderer_integer,
1490 .queryString = brw_query_renderer_string
1491 };
1492
1493 static const __DRIrobustnessExtension dri2Robustness = {
1494 .base = { __DRI2_ROBUSTNESS, 1 }
1495 };
1496
1497 static const __DRIextension *screenExtensions[] = {
1498 &intelTexBufferExtension.base,
1499 &intelFenceExtension.base,
1500 &intelFlushExtension.base,
1501 &intelImageExtension.base,
1502 &intelRendererQueryExtension.base,
1503 &dri2ConfigQueryExtension.base,
1504 &dri2NoErrorExtension.base,
1505 &dri2FlushControlExtension.base,
1506 NULL
1507 };
1508
1509 static const __DRIextension *intelRobustScreenExtensions[] = {
1510 &intelTexBufferExtension.base,
1511 &intelFenceExtension.base,
1512 &intelFlushExtension.base,
1513 &intelImageExtension.base,
1514 &intelRendererQueryExtension.base,
1515 &dri2ConfigQueryExtension.base,
1516 &dri2FlushControlExtension.base,
1517 &dri2Robustness.base,
1518 &dri2NoErrorExtension.base,
1519 NULL
1520 };
1521
1522 static int
1523 intel_get_param(struct intel_screen *screen, int param, int *value)
1524 {
1525 int ret = 0;
1526 struct drm_i915_getparam gp;
1527
1528 memset(&gp, 0, sizeof(gp));
1529 gp.param = param;
1530 gp.value = value;
1531
1532 if (drmIoctl(screen->driScrnPriv->fd, DRM_IOCTL_I915_GETPARAM, &gp) == -1) {
1533 ret = -errno;
1534 if (ret != -EINVAL)
1535 _mesa_warning(NULL, "drm_i915_getparam: %d", ret);
1536 }
1537
1538 return ret;
1539 }
1540
1541 static bool
1542 intel_get_boolean(struct intel_screen *screen, int param)
1543 {
1544 int value = 0;
1545 return (intel_get_param(screen, param, &value) == 0) && value;
1546 }
1547
1548 static int
1549 intel_get_integer(struct intel_screen *screen, int param)
1550 {
1551 int value = -1;
1552
1553 if (intel_get_param(screen, param, &value) == 0)
1554 return value;
1555
1556 return -1;
1557 }
1558
1559 static void
1560 intelDestroyScreen(__DRIscreen * sPriv)
1561 {
1562 struct intel_screen *screen = sPriv->driverPrivate;
1563
1564 brw_bufmgr_destroy(screen->bufmgr);
1565 driDestroyOptionInfo(&screen->optionCache);
1566
1567 ralloc_free(screen);
1568 sPriv->driverPrivate = NULL;
1569 }
1570
1571
1572 /**
1573 * Create a gl_framebuffer and attach it to __DRIdrawable::driverPrivate.
1574 *
1575 *_This implements driDriverAPI::createNewDrawable, which the DRI layer calls
1576 * when creating a EGLSurface, GLXDrawable, or GLXPixmap. Despite the name,
1577 * this does not allocate GPU memory.
1578 */
1579 static GLboolean
1580 intelCreateBuffer(__DRIscreen *dri_screen,
1581 __DRIdrawable * driDrawPriv,
1582 const struct gl_config * mesaVis, GLboolean isPixmap)
1583 {
1584 struct intel_renderbuffer *rb;
1585 struct intel_screen *screen = (struct intel_screen *)
1586 dri_screen->driverPrivate;
1587 mesa_format rgbFormat;
1588 unsigned num_samples =
1589 intel_quantize_num_samples(screen, mesaVis->samples);
1590
1591 if (isPixmap)
1592 return false;
1593
1594 struct gl_framebuffer *fb = CALLOC_STRUCT(gl_framebuffer);
1595 if (!fb)
1596 return false;
1597
1598 _mesa_initialize_window_framebuffer(fb, mesaVis);
1599
1600 if (screen->winsys_msaa_samples_override != -1) {
1601 num_samples = screen->winsys_msaa_samples_override;
1602 fb->Visual.samples = num_samples;
1603 }
1604
1605 if (mesaVis->redBits == 10 && mesaVis->alphaBits > 0) {
1606 rgbFormat = mesaVis->redMask == 0x3ff00000 ? MESA_FORMAT_B10G10R10A2_UNORM
1607 : MESA_FORMAT_R10G10B10A2_UNORM;
1608 } else if (mesaVis->redBits == 10) {
1609 rgbFormat = mesaVis->redMask == 0x3ff00000 ? MESA_FORMAT_B10G10R10X2_UNORM
1610 : MESA_FORMAT_R10G10B10X2_UNORM;
1611 } else if (mesaVis->redBits == 5) {
1612 rgbFormat = mesaVis->redMask == 0x1f ? MESA_FORMAT_R5G6B5_UNORM
1613 : MESA_FORMAT_B5G6R5_UNORM;
1614 } else if (mesaVis->sRGBCapable) {
1615 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1616 : MESA_FORMAT_B8G8R8A8_SRGB;
1617 } else if (mesaVis->alphaBits == 0) {
1618 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8X8_UNORM
1619 : MESA_FORMAT_B8G8R8X8_UNORM;
1620 } else {
1621 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1622 : MESA_FORMAT_B8G8R8A8_SRGB;
1623 fb->Visual.sRGBCapable = true;
1624 }
1625
1626 /* mesaVis->sRGBCapable was set, user is asking for sRGB */
1627 bool srgb_cap_set = mesaVis->redBits >= 8 && mesaVis->sRGBCapable;
1628
1629 /* setup the hardware-based renderbuffers */
1630 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1631 _mesa_attach_and_own_rb(fb, BUFFER_FRONT_LEFT, &rb->Base.Base);
1632 rb->need_srgb = srgb_cap_set;
1633
1634 if (mesaVis->doubleBufferMode) {
1635 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1636 _mesa_attach_and_own_rb(fb, BUFFER_BACK_LEFT, &rb->Base.Base);
1637 rb->need_srgb = srgb_cap_set;
1638 }
1639
1640 /*
1641 * Assert here that the gl_config has an expected depth/stencil bit
1642 * combination: one of d24/s8, d16/s0, d0/s0. (See intelInitScreen2(),
1643 * which constructs the advertised configs.)
1644 */
1645 if (mesaVis->depthBits == 24) {
1646 assert(mesaVis->stencilBits == 8);
1647
1648 if (screen->devinfo.has_hiz_and_separate_stencil) {
1649 rb = intel_create_private_renderbuffer(screen,
1650 MESA_FORMAT_Z24_UNORM_X8_UINT,
1651 num_samples);
1652 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1653 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_S_UINT8,
1654 num_samples);
1655 _mesa_attach_and_own_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1656 } else {
1657 /*
1658 * Use combined depth/stencil. Note that the renderbuffer is
1659 * attached to two attachment points.
1660 */
1661 rb = intel_create_private_renderbuffer(screen,
1662 MESA_FORMAT_Z24_UNORM_S8_UINT,
1663 num_samples);
1664 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1665 _mesa_attach_and_reference_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1666 }
1667 }
1668 else if (mesaVis->depthBits == 16) {
1669 assert(mesaVis->stencilBits == 0);
1670 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_Z_UNORM16,
1671 num_samples);
1672 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1673 }
1674 else {
1675 assert(mesaVis->depthBits == 0);
1676 assert(mesaVis->stencilBits == 0);
1677 }
1678
1679 /* now add any/all software-based renderbuffers we may need */
1680 _swrast_add_soft_renderbuffers(fb,
1681 false, /* never sw color */
1682 false, /* never sw depth */
1683 false, /* never sw stencil */
1684 mesaVis->accumRedBits > 0,
1685 false, /* never sw alpha */
1686 false /* never sw aux */ );
1687 driDrawPriv->driverPrivate = fb;
1688
1689 return true;
1690 }
1691
1692 static void
1693 intelDestroyBuffer(__DRIdrawable * driDrawPriv)
1694 {
1695 struct gl_framebuffer *fb = driDrawPriv->driverPrivate;
1696
1697 _mesa_reference_framebuffer(&fb, NULL);
1698 }
1699
1700 static void
1701 intel_cs_timestamp_frequency(struct intel_screen *screen)
1702 {
1703 /* We shouldn't need to update gen_device_info.timestamp_frequency prior to
1704 * gen10, PCI-id is enough to figure it out.
1705 */
1706 assert(screen->devinfo.gen >= 10);
1707
1708 int ret, freq;
1709
1710 ret = intel_get_param(screen, I915_PARAM_CS_TIMESTAMP_FREQUENCY,
1711 &freq);
1712 if (ret < 0) {
1713 _mesa_warning(NULL,
1714 "Kernel 4.15 required to read the CS timestamp frequency.\n");
1715 return;
1716 }
1717
1718 screen->devinfo.timestamp_frequency = freq;
1719 }
1720
1721 static void
1722 intel_detect_sseu(struct intel_screen *screen)
1723 {
1724 assert(screen->devinfo.gen >= 8);
1725 int ret;
1726
1727 screen->subslice_total = -1;
1728 screen->eu_total = -1;
1729
1730 ret = intel_get_param(screen, I915_PARAM_SUBSLICE_TOTAL,
1731 &screen->subslice_total);
1732 if (ret < 0 && ret != -EINVAL)
1733 goto err_out;
1734
1735 ret = intel_get_param(screen,
1736 I915_PARAM_EU_TOTAL, &screen->eu_total);
1737 if (ret < 0 && ret != -EINVAL)
1738 goto err_out;
1739
1740 /* Without this information, we cannot get the right Braswell brandstrings,
1741 * and we have to use conservative numbers for GPGPU on many platforms, but
1742 * otherwise, things will just work.
1743 */
1744 if (screen->subslice_total < 1 || screen->eu_total < 1)
1745 _mesa_warning(NULL,
1746 "Kernel 4.1 required to properly query GPU properties.\n");
1747
1748 return;
1749
1750 err_out:
1751 screen->subslice_total = -1;
1752 screen->eu_total = -1;
1753 _mesa_warning(NULL, "Failed to query GPU properties (%s).\n", strerror(-ret));
1754 }
1755
1756 static bool
1757 intel_init_bufmgr(struct intel_screen *screen)
1758 {
1759 __DRIscreen *dri_screen = screen->driScrnPriv;
1760
1761 if (getenv("INTEL_NO_HW") != NULL)
1762 screen->no_hw = true;
1763
1764 screen->bufmgr = brw_bufmgr_init(&screen->devinfo, dri_screen->fd);
1765 if (screen->bufmgr == NULL) {
1766 fprintf(stderr, "[%s:%u] Error initializing buffer manager.\n",
1767 __func__, __LINE__);
1768 return false;
1769 }
1770
1771 if (!intel_get_boolean(screen, I915_PARAM_HAS_WAIT_TIMEOUT)) {
1772 fprintf(stderr, "[%s: %u] Kernel 3.6 required.\n", __func__, __LINE__);
1773 return false;
1774 }
1775
1776 return true;
1777 }
1778
1779 static bool
1780 intel_detect_swizzling(struct intel_screen *screen)
1781 {
1782 struct brw_bo *buffer;
1783 unsigned flags = 0;
1784 uint32_t aligned_pitch;
1785 uint32_t tiling = I915_TILING_X;
1786 uint32_t swizzle_mode = 0;
1787
1788 buffer = brw_bo_alloc_tiled_2d(screen->bufmgr, "swizzle test",
1789 64, 64, 4, tiling, &aligned_pitch, flags);
1790 if (buffer == NULL)
1791 return false;
1792
1793 brw_bo_get_tiling(buffer, &tiling, &swizzle_mode);
1794 brw_bo_unreference(buffer);
1795
1796 if (swizzle_mode == I915_BIT_6_SWIZZLE_NONE)
1797 return false;
1798 else
1799 return true;
1800 }
1801
1802 static int
1803 intel_detect_timestamp(struct intel_screen *screen)
1804 {
1805 uint64_t dummy = 0, last = 0;
1806 int upper, lower, loops;
1807
1808 /* On 64bit systems, some old kernels trigger a hw bug resulting in the
1809 * TIMESTAMP register being shifted and the low 32bits always zero.
1810 *
1811 * More recent kernels offer an interface to read the full 36bits
1812 * everywhere.
1813 */
1814 if (brw_reg_read(screen->bufmgr, TIMESTAMP | 1, &dummy) == 0)
1815 return 3;
1816
1817 /* Determine if we have a 32bit or 64bit kernel by inspecting the
1818 * upper 32bits for a rapidly changing timestamp.
1819 */
1820 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &last))
1821 return 0;
1822
1823 upper = lower = 0;
1824 for (loops = 0; loops < 10; loops++) {
1825 /* The TIMESTAMP should change every 80ns, so several round trips
1826 * through the kernel should be enough to advance it.
1827 */
1828 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &dummy))
1829 return 0;
1830
1831 upper += (dummy >> 32) != (last >> 32);
1832 if (upper > 1) /* beware 32bit counter overflow */
1833 return 2; /* upper dword holds the low 32bits of the timestamp */
1834
1835 lower += (dummy & 0xffffffff) != (last & 0xffffffff);
1836 if (lower > 1)
1837 return 1; /* timestamp is unshifted */
1838
1839 last = dummy;
1840 }
1841
1842 /* No advancement? No timestamp! */
1843 return 0;
1844 }
1845
1846 /**
1847 * Test if we can use MI_LOAD_REGISTER_MEM from an untrusted batchbuffer.
1848 *
1849 * Some combinations of hardware and kernel versions allow this feature,
1850 * while others don't. Instead of trying to enumerate every case, just
1851 * try and write a register and see if works.
1852 */
1853 static bool
1854 intel_detect_pipelined_register(struct intel_screen *screen,
1855 int reg, uint32_t expected_value, bool reset)
1856 {
1857 if (screen->no_hw)
1858 return false;
1859
1860 struct brw_bo *results, *bo;
1861 uint32_t *batch;
1862 uint32_t offset = 0;
1863 void *map;
1864 bool success = false;
1865
1866 /* Create a zero'ed temporary buffer for reading our results */
1867 results = brw_bo_alloc(screen->bufmgr, "registers", 4096, 0);
1868 if (results == NULL)
1869 goto err;
1870
1871 bo = brw_bo_alloc(screen->bufmgr, "batchbuffer", 4096, 0);
1872 if (bo == NULL)
1873 goto err_results;
1874
1875 map = brw_bo_map(NULL, bo, MAP_WRITE);
1876 if (!map)
1877 goto err_batch;
1878
1879 batch = map;
1880
1881 /* Write the register. */
1882 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1883 *batch++ = reg;
1884 *batch++ = expected_value;
1885
1886 /* Save the register's value back to the buffer. */
1887 *batch++ = MI_STORE_REGISTER_MEM | (3 - 2);
1888 *batch++ = reg;
1889 struct drm_i915_gem_relocation_entry reloc = {
1890 .offset = (char *) batch - (char *) map,
1891 .delta = offset * sizeof(uint32_t),
1892 .target_handle = results->gem_handle,
1893 .read_domains = I915_GEM_DOMAIN_INSTRUCTION,
1894 .write_domain = I915_GEM_DOMAIN_INSTRUCTION,
1895 };
1896 *batch++ = reloc.presumed_offset + reloc.delta;
1897
1898 /* And afterwards clear the register */
1899 if (reset) {
1900 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1901 *batch++ = reg;
1902 *batch++ = 0;
1903 }
1904
1905 *batch++ = MI_BATCH_BUFFER_END;
1906
1907 struct drm_i915_gem_exec_object2 exec_objects[2] = {
1908 {
1909 .handle = results->gem_handle,
1910 },
1911 {
1912 .handle = bo->gem_handle,
1913 .relocation_count = 1,
1914 .relocs_ptr = (uintptr_t) &reloc,
1915 }
1916 };
1917
1918 struct drm_i915_gem_execbuffer2 execbuf = {
1919 .buffers_ptr = (uintptr_t) exec_objects,
1920 .buffer_count = 2,
1921 .batch_len = ALIGN((char *) batch - (char *) map, 8),
1922 .flags = I915_EXEC_RENDER,
1923 };
1924
1925 /* Don't bother with error checking - if the execbuf fails, the
1926 * value won't be written and we'll just report that there's no access.
1927 */
1928 __DRIscreen *dri_screen = screen->driScrnPriv;
1929 drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf);
1930
1931 /* Check whether the value got written. */
1932 void *results_map = brw_bo_map(NULL, results, MAP_READ);
1933 if (results_map) {
1934 success = *((uint32_t *)results_map + offset) == expected_value;
1935 brw_bo_unmap(results);
1936 }
1937
1938 err_batch:
1939 brw_bo_unreference(bo);
1940 err_results:
1941 brw_bo_unreference(results);
1942 err:
1943 return success;
1944 }
1945
1946 static bool
1947 intel_detect_pipelined_so(struct intel_screen *screen)
1948 {
1949 const struct gen_device_info *devinfo = &screen->devinfo;
1950
1951 /* Supposedly, Broadwell just works. */
1952 if (devinfo->gen >= 8)
1953 return true;
1954
1955 if (devinfo->gen <= 6)
1956 return false;
1957
1958 /* See the big explanation about command parser versions below */
1959 if (screen->cmd_parser_version >= (devinfo->is_haswell ? 7 : 2))
1960 return true;
1961
1962 /* We use SO_WRITE_OFFSET0 since you're supposed to write it (unlike the
1963 * statistics registers), and we already reset it to zero before using it.
1964 */
1965 return intel_detect_pipelined_register(screen,
1966 GEN7_SO_WRITE_OFFSET(0),
1967 0x1337d0d0,
1968 false);
1969 }
1970
1971 /**
1972 * Return array of MSAA modes supported by the hardware. The array is
1973 * zero-terminated and sorted in decreasing order.
1974 */
1975 const int*
1976 intel_supported_msaa_modes(const struct intel_screen *screen)
1977 {
1978 static const int gen9_modes[] = {16, 8, 4, 2, 0, -1};
1979 static const int gen8_modes[] = {8, 4, 2, 0, -1};
1980 static const int gen7_modes[] = {8, 4, 0, -1};
1981 static const int gen6_modes[] = {4, 0, -1};
1982 static const int gen4_modes[] = {0, -1};
1983
1984 if (screen->devinfo.gen >= 9) {
1985 return gen9_modes;
1986 } else if (screen->devinfo.gen >= 8) {
1987 return gen8_modes;
1988 } else if (screen->devinfo.gen >= 7) {
1989 return gen7_modes;
1990 } else if (screen->devinfo.gen == 6) {
1991 return gen6_modes;
1992 } else {
1993 return gen4_modes;
1994 }
1995 }
1996
1997 static unsigned
1998 intel_loader_get_cap(const __DRIscreen *dri_screen, enum dri_loader_cap cap)
1999 {
2000 if (dri_screen->dri2.loader && dri_screen->dri2.loader->base.version >= 4 &&
2001 dri_screen->dri2.loader->getCapability)
2002 return dri_screen->dri2.loader->getCapability(dri_screen->loaderPrivate, cap);
2003
2004 if (dri_screen->image.loader && dri_screen->image.loader->base.version >= 2 &&
2005 dri_screen->image.loader->getCapability)
2006 return dri_screen->image.loader->getCapability(dri_screen->loaderPrivate, cap);
2007
2008 return 0;
2009 }
2010
2011 static __DRIconfig**
2012 intel_screen_make_configs(__DRIscreen *dri_screen)
2013 {
2014 static const mesa_format formats[] = {
2015 MESA_FORMAT_B5G6R5_UNORM,
2016 MESA_FORMAT_B8G8R8A8_UNORM,
2017 MESA_FORMAT_B8G8R8X8_UNORM,
2018
2019 MESA_FORMAT_B8G8R8A8_SRGB,
2020
2021 /* For 10 bpc, 30 bit depth framebuffers. */
2022 MESA_FORMAT_B10G10R10A2_UNORM,
2023 MESA_FORMAT_B10G10R10X2_UNORM,
2024
2025 /* The 32-bit RGBA format must not precede the 32-bit BGRA format.
2026 * Likewise for RGBX and BGRX. Otherwise, the GLX client and the GLX
2027 * server may disagree on which format the GLXFBConfig represents,
2028 * resulting in swapped color channels.
2029 *
2030 * The problem, as of 2017-05-30:
2031 * When matching a GLXFBConfig to a __DRIconfig, GLX ignores the channel
2032 * order and chooses the first __DRIconfig with the expected channel
2033 * sizes. Specifically, GLX compares the GLXFBConfig's and __DRIconfig's
2034 * __DRI_ATTRIB_{CHANNEL}_SIZE but ignores __DRI_ATTRIB_{CHANNEL}_MASK.
2035 *
2036 * EGL does not suffer from this problem. It correctly compares the
2037 * channel masks when matching EGLConfig to __DRIconfig.
2038 */
2039
2040 /* Required by Android, for HAL_PIXEL_FORMAT_RGBA_8888. */
2041 MESA_FORMAT_R8G8B8A8_UNORM,
2042
2043 /* Required by Android, for HAL_PIXEL_FORMAT_RGBX_8888. */
2044 MESA_FORMAT_R8G8B8X8_UNORM,
2045 };
2046
2047 /* GLX_SWAP_COPY_OML is not supported due to page flipping. */
2048 static const GLenum back_buffer_modes[] = {
2049 __DRI_ATTRIB_SWAP_UNDEFINED, __DRI_ATTRIB_SWAP_NONE
2050 };
2051
2052 static const uint8_t singlesample_samples[1] = {0};
2053
2054 struct intel_screen *screen = dri_screen->driverPrivate;
2055 const struct gen_device_info *devinfo = &screen->devinfo;
2056 uint8_t depth_bits[4], stencil_bits[4];
2057 __DRIconfig **configs = NULL;
2058
2059 /* Expose only BGRA ordering if the loader doesn't support RGBA ordering. */
2060 unsigned num_formats;
2061 if (intel_loader_get_cap(dri_screen, DRI_LOADER_CAP_RGBA_ORDERING))
2062 num_formats = ARRAY_SIZE(formats);
2063 else
2064 num_formats = ARRAY_SIZE(formats) - 2; /* all - RGBA_ORDERING formats */
2065
2066 /* Generate singlesample configs without accumulation buffer. */
2067 for (unsigned i = 0; i < num_formats; i++) {
2068 __DRIconfig **new_configs;
2069 int num_depth_stencil_bits = 2;
2070
2071 /* Starting with DRI2 protocol version 1.1 we can request a depth/stencil
2072 * buffer that has a different number of bits per pixel than the color
2073 * buffer, gen >= 6 supports this.
2074 */
2075 depth_bits[0] = 0;
2076 stencil_bits[0] = 0;
2077
2078 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2079 depth_bits[1] = 16;
2080 stencil_bits[1] = 0;
2081 if (devinfo->gen >= 6) {
2082 depth_bits[2] = 24;
2083 stencil_bits[2] = 8;
2084 num_depth_stencil_bits = 3;
2085 }
2086 } else {
2087 depth_bits[1] = 24;
2088 stencil_bits[1] = 8;
2089 }
2090
2091 new_configs = driCreateConfigs(formats[i],
2092 depth_bits,
2093 stencil_bits,
2094 num_depth_stencil_bits,
2095 back_buffer_modes, 2,
2096 singlesample_samples, 1,
2097 false, false);
2098 configs = driConcatConfigs(configs, new_configs);
2099 }
2100
2101 /* Generate the minimum possible set of configs that include an
2102 * accumulation buffer.
2103 */
2104 for (unsigned i = 0; i < num_formats; i++) {
2105 __DRIconfig **new_configs;
2106
2107 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2108 depth_bits[0] = 16;
2109 stencil_bits[0] = 0;
2110 } else {
2111 depth_bits[0] = 24;
2112 stencil_bits[0] = 8;
2113 }
2114
2115 new_configs = driCreateConfigs(formats[i],
2116 depth_bits, stencil_bits, 1,
2117 back_buffer_modes, 1,
2118 singlesample_samples, 1,
2119 true, false);
2120 configs = driConcatConfigs(configs, new_configs);
2121 }
2122
2123 /* Generate multisample configs.
2124 *
2125 * This loop breaks early, and hence is a no-op, on gen < 6.
2126 *
2127 * Multisample configs must follow the singlesample configs in order to
2128 * work around an X server bug present in 1.12. The X server chooses to
2129 * associate the first listed RGBA888-Z24S8 config, regardless of its
2130 * sample count, with the 32-bit depth visual used for compositing.
2131 *
2132 * Only doublebuffer configs with GLX_SWAP_UNDEFINED_OML behavior are
2133 * supported. Singlebuffer configs are not supported because no one wants
2134 * them.
2135 */
2136 for (unsigned i = 0; i < num_formats; i++) {
2137 if (devinfo->gen < 6)
2138 break;
2139
2140 __DRIconfig **new_configs;
2141 const int num_depth_stencil_bits = 2;
2142 int num_msaa_modes = 0;
2143 const uint8_t *multisample_samples = NULL;
2144
2145 depth_bits[0] = 0;
2146 stencil_bits[0] = 0;
2147
2148 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2149 depth_bits[1] = 16;
2150 stencil_bits[1] = 0;
2151 } else {
2152 depth_bits[1] = 24;
2153 stencil_bits[1] = 8;
2154 }
2155
2156 if (devinfo->gen >= 9) {
2157 static const uint8_t multisample_samples_gen9[] = {2, 4, 8, 16};
2158 multisample_samples = multisample_samples_gen9;
2159 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen9);
2160 } else if (devinfo->gen == 8) {
2161 static const uint8_t multisample_samples_gen8[] = {2, 4, 8};
2162 multisample_samples = multisample_samples_gen8;
2163 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen8);
2164 } else if (devinfo->gen == 7) {
2165 static const uint8_t multisample_samples_gen7[] = {4, 8};
2166 multisample_samples = multisample_samples_gen7;
2167 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen7);
2168 } else if (devinfo->gen == 6) {
2169 static const uint8_t multisample_samples_gen6[] = {4};
2170 multisample_samples = multisample_samples_gen6;
2171 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen6);
2172 }
2173
2174 new_configs = driCreateConfigs(formats[i],
2175 depth_bits,
2176 stencil_bits,
2177 num_depth_stencil_bits,
2178 back_buffer_modes, 1,
2179 multisample_samples,
2180 num_msaa_modes,
2181 false, false);
2182 configs = driConcatConfigs(configs, new_configs);
2183 }
2184
2185 if (configs == NULL) {
2186 fprintf(stderr, "[%s:%u] Error creating FBConfig!\n", __func__,
2187 __LINE__);
2188 return NULL;
2189 }
2190
2191 return configs;
2192 }
2193
2194 static void
2195 set_max_gl_versions(struct intel_screen *screen)
2196 {
2197 __DRIscreen *dri_screen = screen->driScrnPriv;
2198 const bool has_astc = screen->devinfo.gen >= 9;
2199
2200 switch (screen->devinfo.gen) {
2201 case 10:
2202 case 9:
2203 case 8:
2204 dri_screen->max_gl_core_version = 45;
2205 dri_screen->max_gl_compat_version = 30;
2206 dri_screen->max_gl_es1_version = 11;
2207 dri_screen->max_gl_es2_version = has_astc ? 32 : 31;
2208 break;
2209 case 7:
2210 dri_screen->max_gl_core_version = 33;
2211 if (can_do_pipelined_register_writes(screen)) {
2212 dri_screen->max_gl_core_version = 42;
2213 if (screen->devinfo.is_haswell && can_do_compute_dispatch(screen))
2214 dri_screen->max_gl_core_version = 43;
2215 if (screen->devinfo.is_haswell && can_do_mi_math_and_lrr(screen))
2216 dri_screen->max_gl_core_version = 45;
2217 }
2218 dri_screen->max_gl_compat_version = 30;
2219 dri_screen->max_gl_es1_version = 11;
2220 dri_screen->max_gl_es2_version = screen->devinfo.is_haswell ? 31 : 30;
2221 break;
2222 case 6:
2223 dri_screen->max_gl_core_version = 33;
2224 dri_screen->max_gl_compat_version = 30;
2225 dri_screen->max_gl_es1_version = 11;
2226 dri_screen->max_gl_es2_version = 30;
2227 break;
2228 case 5:
2229 case 4:
2230 dri_screen->max_gl_core_version = 0;
2231 dri_screen->max_gl_compat_version = 21;
2232 dri_screen->max_gl_es1_version = 11;
2233 dri_screen->max_gl_es2_version = 20;
2234 break;
2235 default:
2236 unreachable("unrecognized intel_screen::gen");
2237 }
2238 }
2239
2240 /**
2241 * Return the revision (generally the revid field of the PCI header) of the
2242 * graphics device.
2243 */
2244 int
2245 intel_device_get_revision(int fd)
2246 {
2247 struct drm_i915_getparam gp;
2248 int revision;
2249 int ret;
2250
2251 memset(&gp, 0, sizeof(gp));
2252 gp.param = I915_PARAM_REVISION;
2253 gp.value = &revision;
2254
2255 ret = drmCommandWriteRead(fd, DRM_I915_GETPARAM, &gp, sizeof(gp));
2256 if (ret)
2257 revision = -1;
2258
2259 return revision;
2260 }
2261
2262 static void
2263 shader_debug_log_mesa(void *data, const char *fmt, ...)
2264 {
2265 struct brw_context *brw = (struct brw_context *)data;
2266 va_list args;
2267
2268 va_start(args, fmt);
2269 GLuint msg_id = 0;
2270 _mesa_gl_vdebug(&brw->ctx, &msg_id,
2271 MESA_DEBUG_SOURCE_SHADER_COMPILER,
2272 MESA_DEBUG_TYPE_OTHER,
2273 MESA_DEBUG_SEVERITY_NOTIFICATION, fmt, args);
2274 va_end(args);
2275 }
2276
2277 static void
2278 shader_perf_log_mesa(void *data, const char *fmt, ...)
2279 {
2280 struct brw_context *brw = (struct brw_context *)data;
2281
2282 va_list args;
2283 va_start(args, fmt);
2284
2285 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
2286 va_list args_copy;
2287 va_copy(args_copy, args);
2288 vfprintf(stderr, fmt, args_copy);
2289 va_end(args_copy);
2290 }
2291
2292 if (brw->perf_debug) {
2293 GLuint msg_id = 0;
2294 _mesa_gl_vdebug(&brw->ctx, &msg_id,
2295 MESA_DEBUG_SOURCE_SHADER_COMPILER,
2296 MESA_DEBUG_TYPE_PERFORMANCE,
2297 MESA_DEBUG_SEVERITY_MEDIUM, fmt, args);
2298 }
2299 va_end(args);
2300 }
2301
2302 static int
2303 parse_devid_override(const char *devid_override)
2304 {
2305 static const struct {
2306 const char *name;
2307 int pci_id;
2308 } name_map[] = {
2309 { "brw", 0x2a02 },
2310 { "g4x", 0x2a42 },
2311 { "ilk", 0x0042 },
2312 { "snb", 0x0126 },
2313 { "ivb", 0x016a },
2314 { "hsw", 0x0d2e },
2315 { "byt", 0x0f33 },
2316 { "bdw", 0x162e },
2317 { "chv", 0x22B3 },
2318 { "skl", 0x1912 },
2319 { "bxt", 0x5A85 },
2320 { "kbl", 0x5912 },
2321 { "glk", 0x3185 },
2322 { "cnl", 0x5a52 },
2323 };
2324
2325 for (unsigned i = 0; i < ARRAY_SIZE(name_map); i++) {
2326 if (!strcmp(name_map[i].name, devid_override))
2327 return name_map[i].pci_id;
2328 }
2329
2330 return strtol(devid_override, NULL, 0);
2331 }
2332
2333 /**
2334 * Get the PCI ID for the device. This can be overridden by setting the
2335 * INTEL_DEVID_OVERRIDE environment variable to the desired ID.
2336 *
2337 * Returns -1 on ioctl failure.
2338 */
2339 static int
2340 get_pci_device_id(struct intel_screen *screen)
2341 {
2342 if (geteuid() == getuid()) {
2343 char *devid_override = getenv("INTEL_DEVID_OVERRIDE");
2344 if (devid_override) {
2345 screen->no_hw = true;
2346 return parse_devid_override(devid_override);
2347 }
2348 }
2349
2350 return intel_get_integer(screen, I915_PARAM_CHIPSET_ID);
2351 }
2352
2353 /**
2354 * This is the driver specific part of the createNewScreen entry point.
2355 * Called when using DRI2.
2356 *
2357 * \return the struct gl_config supported by this driver
2358 */
2359 static const
2360 __DRIconfig **intelInitScreen2(__DRIscreen *dri_screen)
2361 {
2362 struct intel_screen *screen;
2363
2364 if (dri_screen->image.loader) {
2365 } else if (dri_screen->dri2.loader->base.version <= 2 ||
2366 dri_screen->dri2.loader->getBuffersWithFormat == NULL) {
2367 fprintf(stderr,
2368 "\nERROR! DRI2 loader with getBuffersWithFormat() "
2369 "support required\n");
2370 return NULL;
2371 }
2372
2373 /* Allocate the private area */
2374 screen = rzalloc(NULL, struct intel_screen);
2375 if (!screen) {
2376 fprintf(stderr, "\nERROR! Allocating private area failed\n");
2377 return NULL;
2378 }
2379 /* parse information in __driConfigOptions */
2380 driParseOptionInfo(&screen->optionCache, brw_config_options.xml);
2381
2382 screen->driScrnPriv = dri_screen;
2383 dri_screen->driverPrivate = (void *) screen;
2384
2385 screen->deviceID = get_pci_device_id(screen);
2386
2387 if (!gen_get_device_info(screen->deviceID, &screen->devinfo))
2388 return NULL;
2389
2390 if (!intel_init_bufmgr(screen))
2391 return NULL;
2392
2393 const struct gen_device_info *devinfo = &screen->devinfo;
2394
2395 brw_process_intel_debug_variable();
2396
2397 if ((INTEL_DEBUG & DEBUG_SHADER_TIME) && devinfo->gen < 7) {
2398 fprintf(stderr,
2399 "shader_time debugging requires gen7 (Ivybridge) or better.\n");
2400 INTEL_DEBUG &= ~DEBUG_SHADER_TIME;
2401 }
2402
2403 if (intel_get_integer(screen, I915_PARAM_MMAP_GTT_VERSION) >= 1) {
2404 /* Theorectically unlimited! At least for individual objects...
2405 *
2406 * Currently the entire (global) address space for all GTT maps is
2407 * limited to 64bits. That is all objects on the system that are
2408 * setup for GTT mmapping must fit within 64bits. An attempt to use
2409 * one that exceeds the limit with fail in brw_bo_map_gtt().
2410 *
2411 * Long before we hit that limit, we will be practically limited by
2412 * that any single object must fit in physical memory (RAM). The upper
2413 * limit on the CPU's address space is currently 48bits (Skylake), of
2414 * which only 39bits can be physical memory. (The GPU itself also has
2415 * a 48bit addressable virtual space.) We can fit over 32 million
2416 * objects of the current maximum allocable size before running out
2417 * of mmap space.
2418 */
2419 screen->max_gtt_map_object_size = UINT64_MAX;
2420 } else {
2421 /* Estimate the size of the mappable aperture into the GTT. There's an
2422 * ioctl to get the whole GTT size, but not one to get the mappable subset.
2423 * It turns out it's basically always 256MB, though some ancient hardware
2424 * was smaller.
2425 */
2426 uint32_t gtt_size = 256 * 1024 * 1024;
2427
2428 /* We don't want to map two objects such that a memcpy between them would
2429 * just fault one mapping in and then the other over and over forever. So
2430 * we would need to divide the GTT size by 2. Additionally, some GTT is
2431 * taken up by things like the framebuffer and the ringbuffer and such, so
2432 * be more conservative.
2433 */
2434 screen->max_gtt_map_object_size = gtt_size / 4;
2435 }
2436
2437 screen->aperture_threshold = get_aperture_size(dri_screen->fd) * 3 / 4;
2438
2439 screen->hw_has_swizzling = intel_detect_swizzling(screen);
2440 screen->hw_has_timestamp = intel_detect_timestamp(screen);
2441
2442 isl_device_init(&screen->isl_dev, &screen->devinfo,
2443 screen->hw_has_swizzling);
2444
2445 if (devinfo->gen >= 10)
2446 intel_cs_timestamp_frequency(screen);
2447
2448 /* GENs prior to 8 do not support EU/Subslice info */
2449 if (devinfo->gen >= 8) {
2450 intel_detect_sseu(screen);
2451 } else if (devinfo->gen == 7) {
2452 screen->subslice_total = 1 << (devinfo->gt - 1);
2453 }
2454
2455 /* Gen7-7.5 kernel requirements / command parser saga:
2456 *
2457 * - pre-v3.16:
2458 * Haswell and Baytrail cannot use any privileged batchbuffer features.
2459 *
2460 * Ivybridge has aliasing PPGTT on by default, which accidentally marks
2461 * all batches secure, allowing them to use any feature with no checking.
2462 * This is effectively equivalent to a command parser version of
2463 * \infinity - everything is possible.
2464 *
2465 * The command parser does not exist, and querying the version will
2466 * return -EINVAL.
2467 *
2468 * - v3.16:
2469 * The kernel enables the command parser by default, for systems with
2470 * aliasing PPGTT enabled (Ivybridge and Haswell). However, the
2471 * hardware checker is still enabled, so Haswell and Baytrail cannot
2472 * do anything.
2473 *
2474 * Ivybridge goes from "everything is possible" to "only what the
2475 * command parser allows" (if the user boots with i915.cmd_parser=0,
2476 * then everything is possible again). We can only safely use features
2477 * allowed by the supported command parser version.
2478 *
2479 * Annoyingly, I915_PARAM_CMD_PARSER_VERSION reports the static version
2480 * implemented by the kernel, even if it's turned off. So, checking
2481 * for version > 0 does not mean that you can write registers. We have
2482 * to try it and see. The version does, however, indicate the age of
2483 * the kernel.
2484 *
2485 * Instead of matching the hardware checker's behavior of converting
2486 * privileged commands to MI_NOOP, it makes execbuf2 start returning
2487 * -EINVAL, making it dangerous to try and use privileged features.
2488 *
2489 * Effective command parser versions:
2490 * - Haswell: 0 (reporting 1, writes don't work)
2491 * - Baytrail: 0 (reporting 1, writes don't work)
2492 * - Ivybridge: 1 (enabled) or infinite (disabled)
2493 *
2494 * - v3.17:
2495 * Baytrail aliasing PPGTT is enabled, making it like Ivybridge:
2496 * effectively version 1 (enabled) or infinite (disabled).
2497 *
2498 * - v3.19: f1f55cc0556031c8ee3fe99dae7251e78b9b653b
2499 * Command parser v2 supports predicate writes.
2500 *
2501 * - Haswell: 0 (reporting 1, writes don't work)
2502 * - Baytrail: 2 (enabled) or infinite (disabled)
2503 * - Ivybridge: 2 (enabled) or infinite (disabled)
2504 *
2505 * So version >= 2 is enough to know that Ivybridge and Baytrail
2506 * will work. Haswell still can't do anything.
2507 *
2508 * - v4.0: Version 3 happened. Largely not relevant.
2509 *
2510 * - v4.1: 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
2511 * L3 config registers are properly saved and restored as part
2512 * of the hardware context. We can approximately detect this point
2513 * in time by checking if I915_PARAM_REVISION is recognized - it
2514 * landed in a later commit, but in the same release cycle.
2515 *
2516 * - v4.2: 245054a1fe33c06ad233e0d58a27ec7b64db9284
2517 * Command parser finally gains secure batch promotion. On Haswell,
2518 * the hardware checker gets disabled, which finally allows it to do
2519 * privileged commands.
2520 *
2521 * I915_PARAM_CMD_PARSER_VERSION reports 3. Effective versions:
2522 * - Haswell: 3 (enabled) or 0 (disabled)
2523 * - Baytrail: 3 (enabled) or infinite (disabled)
2524 * - Ivybridge: 3 (enabled) or infinite (disabled)
2525 *
2526 * Unfortunately, detecting this point in time is tricky, because
2527 * no version bump happened when this important change occurred.
2528 * On Haswell, if we can write any register, then the kernel is at
2529 * least this new, and we can start trusting the version number.
2530 *
2531 * - v4.4: 2bbe6bbb0dc94fd4ce287bdac9e1bd184e23057b and
2532 * Command parser reaches version 4, allowing access to Haswell
2533 * atomic scratch and chicken3 registers. If version >= 4, we know
2534 * the kernel is new enough to support privileged features on all
2535 * hardware. However, the user might have disabled it...and the
2536 * kernel will still report version 4. So we still have to guess
2537 * and check.
2538 *
2539 * - v4.4: 7b9748cb513a6bef4af87b79f0da3ff7e8b56cd8
2540 * Command parser v5 whitelists indirect compute shader dispatch
2541 * registers, needed for OpenGL 4.3 and later.
2542 *
2543 * - v4.8:
2544 * Command parser v7 lets us use MI_MATH on Haswell.
2545 *
2546 * Additionally, the kernel begins reporting version 0 when
2547 * the command parser is disabled, allowing us to skip the
2548 * guess-and-check step on Haswell. Unfortunately, this also
2549 * means that we can no longer use it as an indicator of the
2550 * age of the kernel.
2551 */
2552 if (intel_get_param(screen, I915_PARAM_CMD_PARSER_VERSION,
2553 &screen->cmd_parser_version) < 0) {
2554 /* Command parser does not exist - getparam is unrecognized */
2555 screen->cmd_parser_version = 0;
2556 }
2557
2558 /* Kernel 4.13 retuired for exec object capture */
2559 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_CAPTURE)) {
2560 screen->kernel_features |= KERNEL_ALLOWS_EXEC_CAPTURE;
2561 }
2562
2563 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_BATCH_FIRST)) {
2564 screen->kernel_features |= KERNEL_ALLOWS_EXEC_BATCH_FIRST;
2565 }
2566
2567 if (!intel_detect_pipelined_so(screen)) {
2568 /* We can't do anything, so the effective version is 0. */
2569 screen->cmd_parser_version = 0;
2570 } else {
2571 screen->kernel_features |= KERNEL_ALLOWS_SOL_OFFSET_WRITES;
2572 }
2573
2574 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 2)
2575 screen->kernel_features |= KERNEL_ALLOWS_PREDICATE_WRITES;
2576
2577 /* Haswell requires command parser version 4 in order to have L3
2578 * atomic scratch1 and chicken3 bits
2579 */
2580 if (devinfo->is_haswell && screen->cmd_parser_version >= 4) {
2581 screen->kernel_features |=
2582 KERNEL_ALLOWS_HSW_SCRATCH1_AND_ROW_CHICKEN3;
2583 }
2584
2585 /* Haswell requires command parser version 6 in order to write to the
2586 * MI_MATH GPR registers, and version 7 in order to use
2587 * MI_LOAD_REGISTER_REG (which all users of MI_MATH use).
2588 */
2589 if (devinfo->gen >= 8 ||
2590 (devinfo->is_haswell && screen->cmd_parser_version >= 7)) {
2591 screen->kernel_features |= KERNEL_ALLOWS_MI_MATH_AND_LRR;
2592 }
2593
2594 /* Gen7 needs at least command parser version 5 to support compute */
2595 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 5)
2596 screen->kernel_features |= KERNEL_ALLOWS_COMPUTE_DISPATCH;
2597
2598 const char *force_msaa = getenv("INTEL_FORCE_MSAA");
2599 if (force_msaa) {
2600 screen->winsys_msaa_samples_override =
2601 intel_quantize_num_samples(screen, atoi(force_msaa));
2602 printf("Forcing winsys sample count to %d\n",
2603 screen->winsys_msaa_samples_override);
2604 } else {
2605 screen->winsys_msaa_samples_override = -1;
2606 }
2607
2608 set_max_gl_versions(screen);
2609
2610 /* Notification of GPU resets requires hardware contexts and a kernel new
2611 * enough to support DRM_IOCTL_I915_GET_RESET_STATS. If the ioctl is
2612 * supported, calling it with a context of 0 will either generate EPERM or
2613 * no error. If the ioctl is not supported, it always generate EINVAL.
2614 * Use this to determine whether to advertise the __DRI2_ROBUSTNESS
2615 * extension to the loader.
2616 *
2617 * Don't even try on pre-Gen6, since we don't attempt to use contexts there.
2618 */
2619 if (devinfo->gen >= 6) {
2620 struct drm_i915_reset_stats stats;
2621 memset(&stats, 0, sizeof(stats));
2622
2623 const int ret = drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats);
2624
2625 screen->has_context_reset_notification =
2626 (ret != -1 || errno != EINVAL);
2627 }
2628
2629 dri_screen->extensions = !screen->has_context_reset_notification
2630 ? screenExtensions : intelRobustScreenExtensions;
2631
2632 screen->compiler = brw_compiler_create(screen, devinfo);
2633 screen->compiler->shader_debug_log = shader_debug_log_mesa;
2634 screen->compiler->shader_perf_log = shader_perf_log_mesa;
2635 screen->compiler->constant_buffer_0_is_relative = true;
2636 screen->compiler->supports_pull_constants = true;
2637
2638 screen->has_exec_fence =
2639 intel_get_boolean(screen, I915_PARAM_HAS_EXEC_FENCE);
2640
2641 intel_screen_init_surface_formats(screen);
2642
2643 if (INTEL_DEBUG & (DEBUG_BATCH | DEBUG_SUBMIT)) {
2644 unsigned int caps = intel_get_integer(screen, I915_PARAM_HAS_SCHEDULER);
2645 if (caps) {
2646 fprintf(stderr, "Kernel scheduler detected: %08x\n", caps);
2647 if (caps & I915_SCHEDULER_CAP_PRIORITY)
2648 fprintf(stderr, " - User priority sorting enabled\n");
2649 if (caps & I915_SCHEDULER_CAP_PREEMPTION)
2650 fprintf(stderr, " - Preemption enabled\n");
2651 }
2652 }
2653
2654 return (const __DRIconfig**) intel_screen_make_configs(dri_screen);
2655 }
2656
2657 struct intel_buffer {
2658 __DRIbuffer base;
2659 struct brw_bo *bo;
2660 };
2661
2662 static __DRIbuffer *
2663 intelAllocateBuffer(__DRIscreen *dri_screen,
2664 unsigned attachment, unsigned format,
2665 int width, int height)
2666 {
2667 struct intel_buffer *intelBuffer;
2668 struct intel_screen *screen = dri_screen->driverPrivate;
2669
2670 assert(attachment == __DRI_BUFFER_FRONT_LEFT ||
2671 attachment == __DRI_BUFFER_BACK_LEFT);
2672
2673 intelBuffer = calloc(1, sizeof *intelBuffer);
2674 if (intelBuffer == NULL)
2675 return NULL;
2676
2677 /* The front and back buffers are color buffers, which are X tiled. GEN9+
2678 * supports Y tiled and compressed buffers, but there is no way to plumb that
2679 * through to here. */
2680 uint32_t pitch;
2681 int cpp = format / 8;
2682 intelBuffer->bo = brw_bo_alloc_tiled_2d(screen->bufmgr,
2683 "intelAllocateBuffer",
2684 width,
2685 height,
2686 cpp,
2687 I915_TILING_X, &pitch,
2688 BO_ALLOC_BUSY);
2689
2690 if (intelBuffer->bo == NULL) {
2691 free(intelBuffer);
2692 return NULL;
2693 }
2694
2695 brw_bo_flink(intelBuffer->bo, &intelBuffer->base.name);
2696
2697 intelBuffer->base.attachment = attachment;
2698 intelBuffer->base.cpp = cpp;
2699 intelBuffer->base.pitch = pitch;
2700
2701 return &intelBuffer->base;
2702 }
2703
2704 static void
2705 intelReleaseBuffer(__DRIscreen *dri_screen, __DRIbuffer *buffer)
2706 {
2707 struct intel_buffer *intelBuffer = (struct intel_buffer *) buffer;
2708
2709 brw_bo_unreference(intelBuffer->bo);
2710 free(intelBuffer);
2711 }
2712
2713 static const struct __DriverAPIRec brw_driver_api = {
2714 .InitScreen = intelInitScreen2,
2715 .DestroyScreen = intelDestroyScreen,
2716 .CreateContext = brwCreateContext,
2717 .DestroyContext = intelDestroyContext,
2718 .CreateBuffer = intelCreateBuffer,
2719 .DestroyBuffer = intelDestroyBuffer,
2720 .MakeCurrent = intelMakeCurrent,
2721 .UnbindContext = intelUnbindContext,
2722 .AllocateBuffer = intelAllocateBuffer,
2723 .ReleaseBuffer = intelReleaseBuffer
2724 };
2725
2726 static const struct __DRIDriverVtableExtensionRec brw_vtable = {
2727 .base = { __DRI_DRIVER_VTABLE, 1 },
2728 .vtable = &brw_driver_api,
2729 };
2730
2731 static const __DRIextension *brw_driver_extensions[] = {
2732 &driCoreExtension.base,
2733 &driImageDriverExtension.base,
2734 &driDRI2Extension.base,
2735 &brw_vtable.base,
2736 &brw_config_options.base,
2737 NULL
2738 };
2739
2740 PUBLIC const __DRIextension **__driDriverGetExtensions_i965(void)
2741 {
2742 globalDriverAPI = &brw_driver_api;
2743
2744 return brw_driver_extensions;
2745 }