i965: enable OpenGL 4.0 to Ivybridge/Baytrail
[mesa.git] / src / mesa / drivers / dri / i965 / intel_screen.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <drm_fourcc.h>
27 #include <errno.h>
28 #include <time.h>
29 #include <unistd.h>
30 #include "main/context.h"
31 #include "main/framebuffer.h"
32 #include "main/renderbuffer.h"
33 #include "main/texobj.h"
34 #include "main/hash.h"
35 #include "main/fbobject.h"
36 #include "main/version.h"
37 #include "swrast/s_renderbuffer.h"
38 #include "util/ralloc.h"
39 #include "brw_defines.h"
40 #include "compiler/nir/nir.h"
41
42 #include "utils.h"
43 #include "xmlpool.h"
44
45 #ifndef DRM_FORMAT_MOD_INVALID
46 #define DRM_FORMAT_MOD_INVALID ((1ULL<<56) - 1)
47 #endif
48
49 #ifndef DRM_FORMAT_MOD_LINEAR
50 #define DRM_FORMAT_MOD_LINEAR 0
51 #endif
52
53 static const __DRIconfigOptionsExtension brw_config_options = {
54 .base = { __DRI_CONFIG_OPTIONS, 1 },
55 .xml =
56 DRI_CONF_BEGIN
57 DRI_CONF_SECTION_PERFORMANCE
58 DRI_CONF_VBLANK_MODE(DRI_CONF_VBLANK_ALWAYS_SYNC)
59 /* Options correspond to DRI_CONF_BO_REUSE_DISABLED,
60 * DRI_CONF_BO_REUSE_ALL
61 */
62 DRI_CONF_OPT_BEGIN_V(bo_reuse, enum, 1, "0:1")
63 DRI_CONF_DESC_BEGIN(en, "Buffer object reuse")
64 DRI_CONF_ENUM(0, "Disable buffer object reuse")
65 DRI_CONF_ENUM(1, "Enable reuse of all sizes of buffer objects")
66 DRI_CONF_DESC_END
67 DRI_CONF_OPT_END
68 DRI_CONF_SECTION_END
69
70 DRI_CONF_SECTION_QUALITY
71 DRI_CONF_FORCE_S3TC_ENABLE("false")
72
73 DRI_CONF_PRECISE_TRIG("false")
74
75 DRI_CONF_OPT_BEGIN(clamp_max_samples, int, -1)
76 DRI_CONF_DESC(en, "Clamp the value of GL_MAX_SAMPLES to the "
77 "given integer. If negative, then do not clamp.")
78 DRI_CONF_OPT_END
79 DRI_CONF_SECTION_END
80
81 DRI_CONF_SECTION_DEBUG
82 DRI_CONF_NO_RAST("false")
83 DRI_CONF_ALWAYS_FLUSH_BATCH("false")
84 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
85 DRI_CONF_DISABLE_THROTTLING("false")
86 DRI_CONF_FORCE_GLSL_EXTENSIONS_WARN("false")
87 DRI_CONF_FORCE_GLSL_VERSION(0)
88 DRI_CONF_DISABLE_GLSL_LINE_CONTINUATIONS("false")
89 DRI_CONF_DISABLE_BLEND_FUNC_EXTENDED("false")
90 DRI_CONF_DUAL_COLOR_BLEND_BY_LOCATION("false")
91 DRI_CONF_ALLOW_GLSL_EXTENSION_DIRECTIVE_MIDSHADER("false")
92 DRI_CONF_ALLOW_HIGHER_COMPAT_VERSION("false")
93 DRI_CONF_FORCE_GLSL_ABS_SQRT("false")
94
95 DRI_CONF_OPT_BEGIN_B(shader_precompile, "true")
96 DRI_CONF_DESC(en, "Perform code generation at shader link time.")
97 DRI_CONF_OPT_END
98 DRI_CONF_SECTION_END
99
100 DRI_CONF_SECTION_MISCELLANEOUS
101 DRI_CONF_GLSL_ZERO_INIT("false")
102 DRI_CONF_SECTION_END
103 DRI_CONF_END
104 };
105
106 #include "intel_batchbuffer.h"
107 #include "intel_buffers.h"
108 #include "brw_bufmgr.h"
109 #include "intel_fbo.h"
110 #include "intel_mipmap_tree.h"
111 #include "intel_screen.h"
112 #include "intel_tex.h"
113 #include "intel_image.h"
114
115 #include "brw_context.h"
116
117 #include "i915_drm.h"
118
119 /**
120 * For debugging purposes, this returns a time in seconds.
121 */
122 double
123 get_time(void)
124 {
125 struct timespec tp;
126
127 clock_gettime(CLOCK_MONOTONIC, &tp);
128
129 return tp.tv_sec + tp.tv_nsec / 1000000000.0;
130 }
131
132 static const __DRItexBufferExtension intelTexBufferExtension = {
133 .base = { __DRI_TEX_BUFFER, 3 },
134
135 .setTexBuffer = intelSetTexBuffer,
136 .setTexBuffer2 = intelSetTexBuffer2,
137 .releaseTexBuffer = NULL,
138 };
139
140 static void
141 intel_dri2_flush_with_flags(__DRIcontext *cPriv,
142 __DRIdrawable *dPriv,
143 unsigned flags,
144 enum __DRI2throttleReason reason)
145 {
146 struct brw_context *brw = cPriv->driverPrivate;
147
148 if (!brw)
149 return;
150
151 struct gl_context *ctx = &brw->ctx;
152
153 FLUSH_VERTICES(ctx, 0);
154
155 if (flags & __DRI2_FLUSH_DRAWABLE)
156 intel_resolve_for_dri2_flush(brw, dPriv);
157
158 if (reason == __DRI2_THROTTLE_SWAPBUFFER)
159 brw->need_swap_throttle = true;
160 if (reason == __DRI2_THROTTLE_FLUSHFRONT)
161 brw->need_flush_throttle = true;
162
163 intel_batchbuffer_flush(brw);
164 }
165
166 /**
167 * Provides compatibility with loaders that only support the older (version
168 * 1-3) flush interface.
169 *
170 * That includes libGL up to Mesa 9.0, and the X Server at least up to 1.13.
171 */
172 static void
173 intel_dri2_flush(__DRIdrawable *drawable)
174 {
175 intel_dri2_flush_with_flags(drawable->driContextPriv, drawable,
176 __DRI2_FLUSH_DRAWABLE,
177 __DRI2_THROTTLE_SWAPBUFFER);
178 }
179
180 static const struct __DRI2flushExtensionRec intelFlushExtension = {
181 .base = { __DRI2_FLUSH, 4 },
182
183 .flush = intel_dri2_flush,
184 .invalidate = dri2InvalidateDrawable,
185 .flush_with_flags = intel_dri2_flush_with_flags,
186 };
187
188 static struct intel_image_format intel_image_formats[] = {
189 { __DRI_IMAGE_FOURCC_ARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
190 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
191
192 { __DRI_IMAGE_FOURCC_ABGR8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
193 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
194
195 { __DRI_IMAGE_FOURCC_SARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
196 { { 0, 0, 0, __DRI_IMAGE_FORMAT_SARGB8, 4 } } },
197
198 { __DRI_IMAGE_FOURCC_XRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
199 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB8888, 4 }, } },
200
201 { __DRI_IMAGE_FOURCC_XBGR8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
202 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 }, } },
203
204 { __DRI_IMAGE_FOURCC_ARGB1555, __DRI_IMAGE_COMPONENTS_RGBA, 1,
205 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB1555, 2 } } },
206
207 { __DRI_IMAGE_FOURCC_RGB565, __DRI_IMAGE_COMPONENTS_RGB, 1,
208 { { 0, 0, 0, __DRI_IMAGE_FORMAT_RGB565, 2 } } },
209
210 { __DRI_IMAGE_FOURCC_R8, __DRI_IMAGE_COMPONENTS_R, 1,
211 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 }, } },
212
213 { __DRI_IMAGE_FOURCC_R16, __DRI_IMAGE_COMPONENTS_R, 1,
214 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 1 }, } },
215
216 { __DRI_IMAGE_FOURCC_GR88, __DRI_IMAGE_COMPONENTS_RG, 1,
217 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 }, } },
218
219 { __DRI_IMAGE_FOURCC_GR1616, __DRI_IMAGE_COMPONENTS_RG, 1,
220 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR1616, 2 }, } },
221
222 { __DRI_IMAGE_FOURCC_YUV410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
223 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
224 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
225 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
226
227 { __DRI_IMAGE_FOURCC_YUV411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
228 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
229 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
230 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
231
232 { __DRI_IMAGE_FOURCC_YUV420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
233 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
234 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
235 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
236
237 { __DRI_IMAGE_FOURCC_YUV422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
238 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
239 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
240 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
241
242 { __DRI_IMAGE_FOURCC_YUV444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
243 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
244 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
245 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
246
247 { __DRI_IMAGE_FOURCC_YVU410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
248 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
249 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
250 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
251
252 { __DRI_IMAGE_FOURCC_YVU411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
253 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
254 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
255 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
256
257 { __DRI_IMAGE_FOURCC_YVU420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
258 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
259 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
260 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
261
262 { __DRI_IMAGE_FOURCC_YVU422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
263 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
264 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
265 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
266
267 { __DRI_IMAGE_FOURCC_YVU444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
268 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
269 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
270 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
271
272 { __DRI_IMAGE_FOURCC_NV12, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
273 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
274 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR88, 2 } } },
275
276 { __DRI_IMAGE_FOURCC_NV16, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
277 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
278 { 1, 1, 0, __DRI_IMAGE_FORMAT_GR88, 2 } } },
279
280 /* For YUYV buffers, we set up two overlapping DRI images and treat
281 * them as planar buffers in the compositors. Plane 0 is GR88 and
282 * samples YU or YV pairs and places Y into the R component, while
283 * plane 1 is ARGB and samples YUYV clusters and places pairs and
284 * places U into the G component and V into A. This lets the
285 * texture sampler interpolate the Y components correctly when
286 * sampling from plane 0, and interpolate U and V correctly when
287 * sampling from plane 1. */
288 { __DRI_IMAGE_FOURCC_YUYV, __DRI_IMAGE_COMPONENTS_Y_XUXV, 2,
289 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
290 { 0, 1, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } }
291 };
292
293 static void
294 intel_image_warn_if_unaligned(__DRIimage *image, const char *func)
295 {
296 uint32_t tiling, swizzle;
297 brw_bo_get_tiling(image->bo, &tiling, &swizzle);
298
299 if (tiling != I915_TILING_NONE && (image->offset & 0xfff)) {
300 _mesa_warning(NULL, "%s: offset 0x%08x not on tile boundary",
301 func, image->offset);
302 }
303 }
304
305 static struct intel_image_format *
306 intel_image_format_lookup(int fourcc)
307 {
308 struct intel_image_format *f = NULL;
309
310 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
311 if (intel_image_formats[i].fourcc == fourcc) {
312 f = &intel_image_formats[i];
313 break;
314 }
315 }
316
317 return f;
318 }
319
320 static boolean intel_lookup_fourcc(int dri_format, int *fourcc)
321 {
322 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
323 if (intel_image_formats[i].planes[0].dri_format == dri_format) {
324 *fourcc = intel_image_formats[i].fourcc;
325 return true;
326 }
327 }
328 return false;
329 }
330
331 static __DRIimage *
332 intel_allocate_image(struct intel_screen *screen, int dri_format,
333 void *loaderPrivate)
334 {
335 __DRIimage *image;
336
337 image = calloc(1, sizeof *image);
338 if (image == NULL)
339 return NULL;
340
341 image->screen = screen;
342 image->dri_format = dri_format;
343 image->offset = 0;
344
345 image->format = driImageFormatToGLFormat(dri_format);
346 if (dri_format != __DRI_IMAGE_FORMAT_NONE &&
347 image->format == MESA_FORMAT_NONE) {
348 free(image);
349 return NULL;
350 }
351
352 image->internal_format = _mesa_get_format_base_format(image->format);
353 image->data = loaderPrivate;
354
355 return image;
356 }
357
358 /**
359 * Sets up a DRIImage structure to point to a slice out of a miptree.
360 */
361 static void
362 intel_setup_image_from_mipmap_tree(struct brw_context *brw, __DRIimage *image,
363 struct intel_mipmap_tree *mt, GLuint level,
364 GLuint zoffset)
365 {
366 intel_miptree_make_shareable(brw, mt);
367
368 intel_miptree_check_level_layer(mt, level, zoffset);
369
370 image->width = minify(mt->physical_width0, level - mt->first_level);
371 image->height = minify(mt->physical_height0, level - mt->first_level);
372 image->pitch = mt->pitch;
373
374 image->offset = intel_miptree_get_tile_offsets(mt, level, zoffset,
375 &image->tile_x,
376 &image->tile_y);
377
378 brw_bo_unreference(image->bo);
379 image->bo = mt->bo;
380 brw_bo_reference(mt->bo);
381 }
382
383 static __DRIimage *
384 intel_create_image_from_name(__DRIscreen *dri_screen,
385 int width, int height, int format,
386 int name, int pitch, void *loaderPrivate)
387 {
388 struct intel_screen *screen = dri_screen->driverPrivate;
389 __DRIimage *image;
390 int cpp;
391
392 image = intel_allocate_image(screen, format, loaderPrivate);
393 if (image == NULL)
394 return NULL;
395
396 if (image->format == MESA_FORMAT_NONE)
397 cpp = 1;
398 else
399 cpp = _mesa_get_format_bytes(image->format);
400
401 image->width = width;
402 image->height = height;
403 image->pitch = pitch * cpp;
404 image->bo = brw_bo_gem_create_from_name(screen->bufmgr, "image",
405 name);
406 if (!image->bo) {
407 free(image);
408 return NULL;
409 }
410
411 return image;
412 }
413
414 static __DRIimage *
415 intel_create_image_from_renderbuffer(__DRIcontext *context,
416 int renderbuffer, void *loaderPrivate)
417 {
418 __DRIimage *image;
419 struct brw_context *brw = context->driverPrivate;
420 struct gl_context *ctx = &brw->ctx;
421 struct gl_renderbuffer *rb;
422 struct intel_renderbuffer *irb;
423
424 rb = _mesa_lookup_renderbuffer(ctx, renderbuffer);
425 if (!rb) {
426 _mesa_error(ctx, GL_INVALID_OPERATION, "glRenderbufferExternalMESA");
427 return NULL;
428 }
429
430 irb = intel_renderbuffer(rb);
431 intel_miptree_make_shareable(brw, irb->mt);
432 image = calloc(1, sizeof *image);
433 if (image == NULL)
434 return NULL;
435
436 image->internal_format = rb->InternalFormat;
437 image->format = rb->Format;
438 image->offset = 0;
439 image->data = loaderPrivate;
440 brw_bo_unreference(image->bo);
441 image->bo = irb->mt->bo;
442 brw_bo_reference(irb->mt->bo);
443 image->width = rb->Width;
444 image->height = rb->Height;
445 image->pitch = irb->mt->pitch;
446 image->dri_format = driGLFormatToImageFormat(image->format);
447 image->has_depthstencil = irb->mt->stencil_mt? true : false;
448
449 rb->NeedsFinishRenderTexture = true;
450 return image;
451 }
452
453 static __DRIimage *
454 intel_create_image_from_texture(__DRIcontext *context, int target,
455 unsigned texture, int zoffset,
456 int level,
457 unsigned *error,
458 void *loaderPrivate)
459 {
460 __DRIimage *image;
461 struct brw_context *brw = context->driverPrivate;
462 struct gl_texture_object *obj;
463 struct intel_texture_object *iobj;
464 GLuint face = 0;
465
466 obj = _mesa_lookup_texture(&brw->ctx, texture);
467 if (!obj || obj->Target != target) {
468 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
469 return NULL;
470 }
471
472 if (target == GL_TEXTURE_CUBE_MAP)
473 face = zoffset;
474
475 _mesa_test_texobj_completeness(&brw->ctx, obj);
476 iobj = intel_texture_object(obj);
477 if (!obj->_BaseComplete || (level > 0 && !obj->_MipmapComplete)) {
478 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
479 return NULL;
480 }
481
482 if (level < obj->BaseLevel || level > obj->_MaxLevel) {
483 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
484 return NULL;
485 }
486
487 if (target == GL_TEXTURE_3D && obj->Image[face][level]->Depth < zoffset) {
488 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
489 return NULL;
490 }
491 image = calloc(1, sizeof *image);
492 if (image == NULL) {
493 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
494 return NULL;
495 }
496
497 image->internal_format = obj->Image[face][level]->InternalFormat;
498 image->format = obj->Image[face][level]->TexFormat;
499 image->data = loaderPrivate;
500 intel_setup_image_from_mipmap_tree(brw, image, iobj->mt, level, zoffset);
501 image->dri_format = driGLFormatToImageFormat(image->format);
502 image->has_depthstencil = iobj->mt->stencil_mt? true : false;
503 if (image->dri_format == MESA_FORMAT_NONE) {
504 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
505 free(image);
506 return NULL;
507 }
508
509 *error = __DRI_IMAGE_ERROR_SUCCESS;
510 return image;
511 }
512
513 static void
514 intel_destroy_image(__DRIimage *image)
515 {
516 brw_bo_unreference(image->bo);
517 free(image);
518 }
519
520 enum modifier_priority {
521 MODIFIER_PRIORITY_INVALID = 0,
522 MODIFIER_PRIORITY_LINEAR,
523 MODIFIER_PRIORITY_X,
524 MODIFIER_PRIORITY_Y,
525 };
526
527 const uint64_t priority_to_modifier[] = {
528 [MODIFIER_PRIORITY_INVALID] = DRM_FORMAT_MOD_INVALID,
529 [MODIFIER_PRIORITY_LINEAR] = DRM_FORMAT_MOD_LINEAR,
530 [MODIFIER_PRIORITY_X] = I915_FORMAT_MOD_X_TILED,
531 [MODIFIER_PRIORITY_Y] = I915_FORMAT_MOD_Y_TILED,
532 };
533
534 static uint64_t
535 select_best_modifier(struct gen_device_info *devinfo,
536 const uint64_t *modifiers,
537 const unsigned count)
538 {
539 enum modifier_priority prio = MODIFIER_PRIORITY_INVALID;
540
541 for (int i = 0; i < count; i++) {
542 switch (modifiers[i]) {
543 case I915_FORMAT_MOD_Y_TILED:
544 prio = MAX2(prio, MODIFIER_PRIORITY_Y);
545 break;
546 case I915_FORMAT_MOD_X_TILED:
547 prio = MAX2(prio, MODIFIER_PRIORITY_X);
548 break;
549 case DRM_FORMAT_MOD_LINEAR:
550 prio = MAX2(prio, MODIFIER_PRIORITY_LINEAR);
551 break;
552 case DRM_FORMAT_MOD_INVALID:
553 default:
554 break;
555 }
556 }
557
558 return priority_to_modifier[prio];
559 }
560
561 static __DRIimage *
562 intel_create_image_common(__DRIscreen *dri_screen,
563 int width, int height, int format,
564 unsigned int use,
565 const uint64_t *modifiers,
566 unsigned count,
567 void *loaderPrivate)
568 {
569 __DRIimage *image;
570 struct intel_screen *screen = dri_screen->driverPrivate;
571 /* Historically, X-tiled was the default, and so lack of modifier means
572 * X-tiled.
573 */
574 uint32_t tiling = I915_TILING_X;
575 int cpp;
576
577 /* Callers of this may specify a modifier, or a dri usage, but not both. The
578 * newer modifier interface deprecates the older usage flags newer modifier
579 * interface deprecates the older usage flags.
580 */
581 assert(!(use && count));
582
583 uint64_t modifier = select_best_modifier(&screen->devinfo, modifiers, count);
584 switch (modifier) {
585 case I915_FORMAT_MOD_X_TILED:
586 assert(tiling == I915_TILING_X);
587 break;
588 case DRM_FORMAT_MOD_LINEAR:
589 tiling = I915_TILING_NONE;
590 break;
591 case I915_FORMAT_MOD_Y_TILED:
592 tiling = I915_TILING_Y;
593 break;
594 case DRM_FORMAT_MOD_INVALID:
595 if (modifiers)
596 return NULL;
597 default:
598 break;
599 }
600
601 if (use & __DRI_IMAGE_USE_CURSOR) {
602 if (width != 64 || height != 64)
603 return NULL;
604 tiling = I915_TILING_NONE;
605 }
606
607 if (use & __DRI_IMAGE_USE_LINEAR)
608 tiling = I915_TILING_NONE;
609
610 image = intel_allocate_image(screen, format, loaderPrivate);
611 if (image == NULL)
612 return NULL;
613
614 cpp = _mesa_get_format_bytes(image->format);
615 image->bo = brw_bo_alloc_tiled(screen->bufmgr, "image",
616 width, height, cpp, tiling,
617 &image->pitch, 0);
618 if (image->bo == NULL) {
619 free(image);
620 return NULL;
621 }
622 image->width = width;
623 image->height = height;
624 image->modifier = modifier;
625
626 return image;
627 }
628
629 static __DRIimage *
630 intel_create_image(__DRIscreen *dri_screen,
631 int width, int height, int format,
632 unsigned int use,
633 void *loaderPrivate)
634 {
635 return intel_create_image_common(dri_screen, width, height, format, use, NULL, 0,
636 loaderPrivate);
637 }
638
639 static __DRIimage *
640 intel_create_image_with_modifiers(__DRIscreen *dri_screen,
641 int width, int height, int format,
642 const uint64_t *modifiers,
643 const unsigned count,
644 void *loaderPrivate)
645 {
646 return intel_create_image_common(dri_screen, width, height, format, 0,
647 modifiers, count, loaderPrivate);
648 }
649
650 static GLboolean
651 intel_query_image(__DRIimage *image, int attrib, int *value)
652 {
653 switch (attrib) {
654 case __DRI_IMAGE_ATTRIB_STRIDE:
655 *value = image->pitch;
656 return true;
657 case __DRI_IMAGE_ATTRIB_HANDLE:
658 *value = image->bo->gem_handle;
659 return true;
660 case __DRI_IMAGE_ATTRIB_NAME:
661 return !brw_bo_flink(image->bo, (uint32_t *) value);
662 case __DRI_IMAGE_ATTRIB_FORMAT:
663 *value = image->dri_format;
664 return true;
665 case __DRI_IMAGE_ATTRIB_WIDTH:
666 *value = image->width;
667 return true;
668 case __DRI_IMAGE_ATTRIB_HEIGHT:
669 *value = image->height;
670 return true;
671 case __DRI_IMAGE_ATTRIB_COMPONENTS:
672 if (image->planar_format == NULL)
673 return false;
674 *value = image->planar_format->components;
675 return true;
676 case __DRI_IMAGE_ATTRIB_FD:
677 return !brw_bo_gem_export_to_prime(image->bo, value);
678 case __DRI_IMAGE_ATTRIB_FOURCC:
679 return intel_lookup_fourcc(image->dri_format, value);
680 case __DRI_IMAGE_ATTRIB_NUM_PLANES:
681 *value = 1;
682 return true;
683 case __DRI_IMAGE_ATTRIB_OFFSET:
684 *value = image->offset;
685 return true;
686 case __DRI_IMAGE_ATTRIB_MODIFIER_LOWER:
687 *value = (image->modifier & 0xffffffff);
688 return true;
689 case __DRI_IMAGE_ATTRIB_MODIFIER_UPPER:
690 *value = ((image->modifier >> 32) & 0xffffffff);
691 return true;
692
693 default:
694 return false;
695 }
696 }
697
698 static __DRIimage *
699 intel_dup_image(__DRIimage *orig_image, void *loaderPrivate)
700 {
701 __DRIimage *image;
702
703 image = calloc(1, sizeof *image);
704 if (image == NULL)
705 return NULL;
706
707 brw_bo_reference(orig_image->bo);
708 image->bo = orig_image->bo;
709 image->internal_format = orig_image->internal_format;
710 image->planar_format = orig_image->planar_format;
711 image->dri_format = orig_image->dri_format;
712 image->format = orig_image->format;
713 image->offset = orig_image->offset;
714 image->width = orig_image->width;
715 image->height = orig_image->height;
716 image->pitch = orig_image->pitch;
717 image->tile_x = orig_image->tile_x;
718 image->tile_y = orig_image->tile_y;
719 image->has_depthstencil = orig_image->has_depthstencil;
720 image->data = loaderPrivate;
721
722 memcpy(image->strides, orig_image->strides, sizeof(image->strides));
723 memcpy(image->offsets, orig_image->offsets, sizeof(image->offsets));
724
725 return image;
726 }
727
728 static GLboolean
729 intel_validate_usage(__DRIimage *image, unsigned int use)
730 {
731 if (use & __DRI_IMAGE_USE_CURSOR) {
732 if (image->width != 64 || image->height != 64)
733 return GL_FALSE;
734 }
735
736 return GL_TRUE;
737 }
738
739 static __DRIimage *
740 intel_create_image_from_names(__DRIscreen *dri_screen,
741 int width, int height, int fourcc,
742 int *names, int num_names,
743 int *strides, int *offsets,
744 void *loaderPrivate)
745 {
746 struct intel_image_format *f = NULL;
747 __DRIimage *image;
748 int i, index;
749
750 if (dri_screen == NULL || names == NULL || num_names != 1)
751 return NULL;
752
753 f = intel_image_format_lookup(fourcc);
754 if (f == NULL)
755 return NULL;
756
757 image = intel_create_image_from_name(dri_screen, width, height,
758 __DRI_IMAGE_FORMAT_NONE,
759 names[0], strides[0],
760 loaderPrivate);
761
762 if (image == NULL)
763 return NULL;
764
765 image->planar_format = f;
766 for (i = 0; i < f->nplanes; i++) {
767 index = f->planes[i].buffer_index;
768 image->offsets[index] = offsets[index];
769 image->strides[index] = strides[index];
770 }
771
772 return image;
773 }
774
775 static __DRIimage *
776 intel_create_image_from_fds(__DRIscreen *dri_screen,
777 int width, int height, int fourcc,
778 int *fds, int num_fds, int *strides, int *offsets,
779 void *loaderPrivate)
780 {
781 struct intel_screen *screen = dri_screen->driverPrivate;
782 struct intel_image_format *f;
783 __DRIimage *image;
784 int i, index;
785
786 if (fds == NULL || num_fds < 1)
787 return NULL;
788
789 /* We only support all planes from the same bo */
790 for (i = 0; i < num_fds; i++)
791 if (fds[0] != fds[i])
792 return NULL;
793
794 f = intel_image_format_lookup(fourcc);
795 if (f == NULL)
796 return NULL;
797
798 if (f->nplanes == 1)
799 image = intel_allocate_image(screen, f->planes[0].dri_format,
800 loaderPrivate);
801 else
802 image = intel_allocate_image(screen, __DRI_IMAGE_FORMAT_NONE,
803 loaderPrivate);
804
805 if (image == NULL)
806 return NULL;
807
808 image->width = width;
809 image->height = height;
810 image->pitch = strides[0];
811
812 image->planar_format = f;
813 int size = 0;
814 for (i = 0; i < f->nplanes; i++) {
815 index = f->planes[i].buffer_index;
816 image->offsets[index] = offsets[index];
817 image->strides[index] = strides[index];
818
819 const int plane_height = height >> f->planes[i].height_shift;
820 const int end = offsets[index] + plane_height * strides[index];
821 if (size < end)
822 size = end;
823 }
824
825 image->bo = brw_bo_gem_create_from_prime(screen->bufmgr,
826 fds[0], size);
827 if (image->bo == NULL) {
828 free(image);
829 return NULL;
830 }
831
832 if (f->nplanes == 1) {
833 image->offset = image->offsets[0];
834 intel_image_warn_if_unaligned(image, __func__);
835 }
836
837 return image;
838 }
839
840 static __DRIimage *
841 intel_create_image_from_dma_bufs(__DRIscreen *dri_screen,
842 int width, int height, int fourcc,
843 int *fds, int num_fds,
844 int *strides, int *offsets,
845 enum __DRIYUVColorSpace yuv_color_space,
846 enum __DRISampleRange sample_range,
847 enum __DRIChromaSiting horizontal_siting,
848 enum __DRIChromaSiting vertical_siting,
849 unsigned *error,
850 void *loaderPrivate)
851 {
852 __DRIimage *image;
853 struct intel_image_format *f = intel_image_format_lookup(fourcc);
854
855 if (!f) {
856 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
857 return NULL;
858 }
859
860 image = intel_create_image_from_fds(dri_screen, width, height, fourcc, fds,
861 num_fds, strides, offsets,
862 loaderPrivate);
863
864 /*
865 * Invalid parameters and any inconsistencies between are assumed to be
866 * checked by the caller. Therefore besides unsupported formats one can fail
867 * only in allocation.
868 */
869 if (!image) {
870 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
871 return NULL;
872 }
873
874 image->dma_buf_imported = true;
875 image->yuv_color_space = yuv_color_space;
876 image->sample_range = sample_range;
877 image->horizontal_siting = horizontal_siting;
878 image->vertical_siting = vertical_siting;
879
880 *error = __DRI_IMAGE_ERROR_SUCCESS;
881 return image;
882 }
883
884 static __DRIimage *
885 intel_from_planar(__DRIimage *parent, int plane, void *loaderPrivate)
886 {
887 int width, height, offset, stride, dri_format, index;
888 struct intel_image_format *f;
889 __DRIimage *image;
890
891 if (parent == NULL || parent->planar_format == NULL)
892 return NULL;
893
894 f = parent->planar_format;
895
896 if (plane >= f->nplanes)
897 return NULL;
898
899 width = parent->width >> f->planes[plane].width_shift;
900 height = parent->height >> f->planes[plane].height_shift;
901 dri_format = f->planes[plane].dri_format;
902 index = f->planes[plane].buffer_index;
903 offset = parent->offsets[index];
904 stride = parent->strides[index];
905
906 image = intel_allocate_image(parent->screen, dri_format, loaderPrivate);
907 if (image == NULL)
908 return NULL;
909
910 if (offset + height * stride > parent->bo->size) {
911 _mesa_warning(NULL, "intel_create_sub_image: subimage out of bounds");
912 free(image);
913 return NULL;
914 }
915
916 image->bo = parent->bo;
917 brw_bo_reference(parent->bo);
918
919 image->width = width;
920 image->height = height;
921 image->pitch = stride;
922 image->offset = offset;
923
924 intel_image_warn_if_unaligned(image, __func__);
925
926 return image;
927 }
928
929 static const __DRIimageExtension intelImageExtension = {
930 .base = { __DRI_IMAGE, 14 },
931
932 .createImageFromName = intel_create_image_from_name,
933 .createImageFromRenderbuffer = intel_create_image_from_renderbuffer,
934 .destroyImage = intel_destroy_image,
935 .createImage = intel_create_image,
936 .queryImage = intel_query_image,
937 .dupImage = intel_dup_image,
938 .validateUsage = intel_validate_usage,
939 .createImageFromNames = intel_create_image_from_names,
940 .fromPlanar = intel_from_planar,
941 .createImageFromTexture = intel_create_image_from_texture,
942 .createImageFromFds = intel_create_image_from_fds,
943 .createImageFromDmaBufs = intel_create_image_from_dma_bufs,
944 .blitImage = NULL,
945 .getCapabilities = NULL,
946 .mapImage = NULL,
947 .unmapImage = NULL,
948 .createImageWithModifiers = intel_create_image_with_modifiers,
949 };
950
951 static uint64_t
952 get_aperture_size(int fd)
953 {
954 struct drm_i915_gem_get_aperture aperture;
955
956 if (drmIoctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture) != 0)
957 return 0;
958
959 return aperture.aper_size;
960 }
961
962 static int
963 brw_query_renderer_integer(__DRIscreen *dri_screen,
964 int param, unsigned int *value)
965 {
966 const struct intel_screen *const screen =
967 (struct intel_screen *) dri_screen->driverPrivate;
968
969 switch (param) {
970 case __DRI2_RENDERER_VENDOR_ID:
971 value[0] = 0x8086;
972 return 0;
973 case __DRI2_RENDERER_DEVICE_ID:
974 value[0] = screen->deviceID;
975 return 0;
976 case __DRI2_RENDERER_ACCELERATED:
977 value[0] = 1;
978 return 0;
979 case __DRI2_RENDERER_VIDEO_MEMORY: {
980 /* Once a batch uses more than 75% of the maximum mappable size, we
981 * assume that there's some fragmentation, and we start doing extra
982 * flushing, etc. That's the big cliff apps will care about.
983 */
984 const unsigned gpu_mappable_megabytes =
985 screen->aperture_threshold / (1024 * 1024);
986
987 const long system_memory_pages = sysconf(_SC_PHYS_PAGES);
988 const long system_page_size = sysconf(_SC_PAGE_SIZE);
989
990 if (system_memory_pages <= 0 || system_page_size <= 0)
991 return -1;
992
993 const uint64_t system_memory_bytes = (uint64_t) system_memory_pages
994 * (uint64_t) system_page_size;
995
996 const unsigned system_memory_megabytes =
997 (unsigned) (system_memory_bytes / (1024 * 1024));
998
999 value[0] = MIN2(system_memory_megabytes, gpu_mappable_megabytes);
1000 return 0;
1001 }
1002 case __DRI2_RENDERER_UNIFIED_MEMORY_ARCHITECTURE:
1003 value[0] = 1;
1004 return 0;
1005 case __DRI2_RENDERER_HAS_TEXTURE_3D:
1006 value[0] = 1;
1007 return 0;
1008 default:
1009 return driQueryRendererIntegerCommon(dri_screen, param, value);
1010 }
1011
1012 return -1;
1013 }
1014
1015 static int
1016 brw_query_renderer_string(__DRIscreen *dri_screen,
1017 int param, const char **value)
1018 {
1019 const struct intel_screen *screen =
1020 (struct intel_screen *) dri_screen->driverPrivate;
1021
1022 switch (param) {
1023 case __DRI2_RENDERER_VENDOR_ID:
1024 value[0] = brw_vendor_string;
1025 return 0;
1026 case __DRI2_RENDERER_DEVICE_ID:
1027 value[0] = brw_get_renderer_string(screen);
1028 return 0;
1029 default:
1030 break;
1031 }
1032
1033 return -1;
1034 }
1035
1036 static const __DRI2rendererQueryExtension intelRendererQueryExtension = {
1037 .base = { __DRI2_RENDERER_QUERY, 1 },
1038
1039 .queryInteger = brw_query_renderer_integer,
1040 .queryString = brw_query_renderer_string
1041 };
1042
1043 static const __DRIrobustnessExtension dri2Robustness = {
1044 .base = { __DRI2_ROBUSTNESS, 1 }
1045 };
1046
1047 static const __DRIextension *screenExtensions[] = {
1048 &intelTexBufferExtension.base,
1049 &intelFenceExtension.base,
1050 &intelFlushExtension.base,
1051 &intelImageExtension.base,
1052 &intelRendererQueryExtension.base,
1053 &dri2ConfigQueryExtension.base,
1054 NULL
1055 };
1056
1057 static const __DRIextension *intelRobustScreenExtensions[] = {
1058 &intelTexBufferExtension.base,
1059 &intelFenceExtension.base,
1060 &intelFlushExtension.base,
1061 &intelImageExtension.base,
1062 &intelRendererQueryExtension.base,
1063 &dri2ConfigQueryExtension.base,
1064 &dri2Robustness.base,
1065 NULL
1066 };
1067
1068 static int
1069 intel_get_param(struct intel_screen *screen, int param, int *value)
1070 {
1071 int ret = 0;
1072 struct drm_i915_getparam gp;
1073
1074 memset(&gp, 0, sizeof(gp));
1075 gp.param = param;
1076 gp.value = value;
1077
1078 if (drmIoctl(screen->driScrnPriv->fd, DRM_IOCTL_I915_GETPARAM, &gp) == -1) {
1079 ret = -errno;
1080 if (ret != -EINVAL)
1081 _mesa_warning(NULL, "drm_i915_getparam: %d", ret);
1082 }
1083
1084 return ret;
1085 }
1086
1087 static bool
1088 intel_get_boolean(struct intel_screen *screen, int param)
1089 {
1090 int value = 0;
1091 return (intel_get_param(screen, param, &value) == 0) && value;
1092 }
1093
1094 static int
1095 intel_get_integer(struct intel_screen *screen, int param)
1096 {
1097 int value = -1;
1098
1099 if (intel_get_param(screen, param, &value) == 0)
1100 return value;
1101
1102 return -1;
1103 }
1104
1105 static void
1106 intelDestroyScreen(__DRIscreen * sPriv)
1107 {
1108 struct intel_screen *screen = sPriv->driverPrivate;
1109
1110 brw_bufmgr_destroy(screen->bufmgr);
1111 driDestroyOptionInfo(&screen->optionCache);
1112
1113 ralloc_free(screen);
1114 sPriv->driverPrivate = NULL;
1115 }
1116
1117
1118 /**
1119 * This is called when we need to set up GL rendering to a new X window.
1120 */
1121 static GLboolean
1122 intelCreateBuffer(__DRIscreen *dri_screen,
1123 __DRIdrawable * driDrawPriv,
1124 const struct gl_config * mesaVis, GLboolean isPixmap)
1125 {
1126 struct intel_renderbuffer *rb;
1127 struct intel_screen *screen = (struct intel_screen *)
1128 dri_screen->driverPrivate;
1129 mesa_format rgbFormat;
1130 unsigned num_samples =
1131 intel_quantize_num_samples(screen, mesaVis->samples);
1132 struct gl_framebuffer *fb;
1133
1134 if (isPixmap)
1135 return false;
1136
1137 fb = CALLOC_STRUCT(gl_framebuffer);
1138 if (!fb)
1139 return false;
1140
1141 _mesa_initialize_window_framebuffer(fb, mesaVis);
1142
1143 if (screen->winsys_msaa_samples_override != -1) {
1144 num_samples = screen->winsys_msaa_samples_override;
1145 fb->Visual.samples = num_samples;
1146 }
1147
1148 if (mesaVis->redBits == 5) {
1149 rgbFormat = mesaVis->redMask == 0x1f ? MESA_FORMAT_R5G6B5_UNORM
1150 : MESA_FORMAT_B5G6R5_UNORM;
1151 } else if (mesaVis->sRGBCapable) {
1152 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1153 : MESA_FORMAT_B8G8R8A8_SRGB;
1154 } else if (mesaVis->alphaBits == 0) {
1155 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8X8_UNORM
1156 : MESA_FORMAT_B8G8R8X8_UNORM;
1157 } else {
1158 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1159 : MESA_FORMAT_B8G8R8A8_SRGB;
1160 fb->Visual.sRGBCapable = true;
1161 }
1162
1163 /* setup the hardware-based renderbuffers */
1164 rb = intel_create_renderbuffer(rgbFormat, num_samples);
1165 _mesa_add_renderbuffer_without_ref(fb, BUFFER_FRONT_LEFT, &rb->Base.Base);
1166
1167 if (mesaVis->doubleBufferMode) {
1168 rb = intel_create_renderbuffer(rgbFormat, num_samples);
1169 _mesa_add_renderbuffer_without_ref(fb, BUFFER_BACK_LEFT, &rb->Base.Base);
1170 }
1171
1172 /*
1173 * Assert here that the gl_config has an expected depth/stencil bit
1174 * combination: one of d24/s8, d16/s0, d0/s0. (See intelInitScreen2(),
1175 * which constructs the advertised configs.)
1176 */
1177 if (mesaVis->depthBits == 24) {
1178 assert(mesaVis->stencilBits == 8);
1179
1180 if (screen->devinfo.has_hiz_and_separate_stencil) {
1181 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z24_UNORM_X8_UINT,
1182 num_samples);
1183 _mesa_add_renderbuffer_without_ref(fb, BUFFER_DEPTH, &rb->Base.Base);
1184 rb = intel_create_private_renderbuffer(MESA_FORMAT_S_UINT8,
1185 num_samples);
1186 _mesa_add_renderbuffer_without_ref(fb, BUFFER_STENCIL,
1187 &rb->Base.Base);
1188 } else {
1189 /*
1190 * Use combined depth/stencil. Note that the renderbuffer is
1191 * attached to two attachment points.
1192 */
1193 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z24_UNORM_S8_UINT,
1194 num_samples);
1195 _mesa_add_renderbuffer_without_ref(fb, BUFFER_DEPTH, &rb->Base.Base);
1196 _mesa_add_renderbuffer(fb, BUFFER_STENCIL, &rb->Base.Base);
1197 }
1198 }
1199 else if (mesaVis->depthBits == 16) {
1200 assert(mesaVis->stencilBits == 0);
1201 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z_UNORM16,
1202 num_samples);
1203 _mesa_add_renderbuffer_without_ref(fb, BUFFER_DEPTH, &rb->Base.Base);
1204 }
1205 else {
1206 assert(mesaVis->depthBits == 0);
1207 assert(mesaVis->stencilBits == 0);
1208 }
1209
1210 /* now add any/all software-based renderbuffers we may need */
1211 _swrast_add_soft_renderbuffers(fb,
1212 false, /* never sw color */
1213 false, /* never sw depth */
1214 false, /* never sw stencil */
1215 mesaVis->accumRedBits > 0,
1216 false, /* never sw alpha */
1217 false /* never sw aux */ );
1218 driDrawPriv->driverPrivate = fb;
1219
1220 return true;
1221 }
1222
1223 static void
1224 intelDestroyBuffer(__DRIdrawable * driDrawPriv)
1225 {
1226 struct gl_framebuffer *fb = driDrawPriv->driverPrivate;
1227
1228 _mesa_reference_framebuffer(&fb, NULL);
1229 }
1230
1231 static void
1232 intel_detect_sseu(struct intel_screen *screen)
1233 {
1234 assert(screen->devinfo.gen >= 8);
1235 int ret;
1236
1237 screen->subslice_total = -1;
1238 screen->eu_total = -1;
1239
1240 ret = intel_get_param(screen, I915_PARAM_SUBSLICE_TOTAL,
1241 &screen->subslice_total);
1242 if (ret < 0 && ret != -EINVAL)
1243 goto err_out;
1244
1245 ret = intel_get_param(screen,
1246 I915_PARAM_EU_TOTAL, &screen->eu_total);
1247 if (ret < 0 && ret != -EINVAL)
1248 goto err_out;
1249
1250 /* Without this information, we cannot get the right Braswell brandstrings,
1251 * and we have to use conservative numbers for GPGPU on many platforms, but
1252 * otherwise, things will just work.
1253 */
1254 if (screen->subslice_total < 1 || screen->eu_total < 1)
1255 _mesa_warning(NULL,
1256 "Kernel 4.1 required to properly query GPU properties.\n");
1257
1258 return;
1259
1260 err_out:
1261 screen->subslice_total = -1;
1262 screen->eu_total = -1;
1263 _mesa_warning(NULL, "Failed to query GPU properties (%s).\n", strerror(-ret));
1264 }
1265
1266 static bool
1267 intel_init_bufmgr(struct intel_screen *screen)
1268 {
1269 __DRIscreen *dri_screen = screen->driScrnPriv;
1270
1271 if (getenv("INTEL_NO_HW") != NULL)
1272 screen->no_hw = true;
1273
1274 screen->bufmgr = brw_bufmgr_init(&screen->devinfo, dri_screen->fd, BATCH_SZ);
1275 if (screen->bufmgr == NULL) {
1276 fprintf(stderr, "[%s:%u] Error initializing buffer manager.\n",
1277 __func__, __LINE__);
1278 return false;
1279 }
1280
1281 if (!intel_get_boolean(screen, I915_PARAM_HAS_WAIT_TIMEOUT)) {
1282 fprintf(stderr, "[%s: %u] Kernel 3.6 required.\n", __func__, __LINE__);
1283 return false;
1284 }
1285
1286 return true;
1287 }
1288
1289 static bool
1290 intel_detect_swizzling(struct intel_screen *screen)
1291 {
1292 struct brw_bo *buffer;
1293 unsigned flags = 0;
1294 uint32_t aligned_pitch;
1295 uint32_t tiling = I915_TILING_X;
1296 uint32_t swizzle_mode = 0;
1297
1298 buffer = brw_bo_alloc_tiled(screen->bufmgr, "swizzle test",
1299 64, 64, 4, tiling, &aligned_pitch, flags);
1300 if (buffer == NULL)
1301 return false;
1302
1303 brw_bo_get_tiling(buffer, &tiling, &swizzle_mode);
1304 brw_bo_unreference(buffer);
1305
1306 if (swizzle_mode == I915_BIT_6_SWIZZLE_NONE)
1307 return false;
1308 else
1309 return true;
1310 }
1311
1312 static int
1313 intel_detect_timestamp(struct intel_screen *screen)
1314 {
1315 uint64_t dummy = 0, last = 0;
1316 int upper, lower, loops;
1317
1318 /* On 64bit systems, some old kernels trigger a hw bug resulting in the
1319 * TIMESTAMP register being shifted and the low 32bits always zero.
1320 *
1321 * More recent kernels offer an interface to read the full 36bits
1322 * everywhere.
1323 */
1324 if (brw_reg_read(screen->bufmgr, TIMESTAMP | 1, &dummy) == 0)
1325 return 3;
1326
1327 /* Determine if we have a 32bit or 64bit kernel by inspecting the
1328 * upper 32bits for a rapidly changing timestamp.
1329 */
1330 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &last))
1331 return 0;
1332
1333 upper = lower = 0;
1334 for (loops = 0; loops < 10; loops++) {
1335 /* The TIMESTAMP should change every 80ns, so several round trips
1336 * through the kernel should be enough to advance it.
1337 */
1338 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &dummy))
1339 return 0;
1340
1341 upper += (dummy >> 32) != (last >> 32);
1342 if (upper > 1) /* beware 32bit counter overflow */
1343 return 2; /* upper dword holds the low 32bits of the timestamp */
1344
1345 lower += (dummy & 0xffffffff) != (last & 0xffffffff);
1346 if (lower > 1)
1347 return 1; /* timestamp is unshifted */
1348
1349 last = dummy;
1350 }
1351
1352 /* No advancement? No timestamp! */
1353 return 0;
1354 }
1355
1356 /**
1357 * Test if we can use MI_LOAD_REGISTER_MEM from an untrusted batchbuffer.
1358 *
1359 * Some combinations of hardware and kernel versions allow this feature,
1360 * while others don't. Instead of trying to enumerate every case, just
1361 * try and write a register and see if works.
1362 */
1363 static bool
1364 intel_detect_pipelined_register(struct intel_screen *screen,
1365 int reg, uint32_t expected_value, bool reset)
1366 {
1367 if (screen->no_hw)
1368 return false;
1369
1370 struct brw_bo *results, *bo;
1371 uint32_t *batch;
1372 uint32_t offset = 0;
1373 bool success = false;
1374
1375 /* Create a zero'ed temporary buffer for reading our results */
1376 results = brw_bo_alloc(screen->bufmgr, "registers", 4096, 0);
1377 if (results == NULL)
1378 goto err;
1379
1380 bo = brw_bo_alloc(screen->bufmgr, "batchbuffer", 4096, 0);
1381 if (bo == NULL)
1382 goto err_results;
1383
1384 if (brw_bo_map(NULL, bo, 1))
1385 goto err_batch;
1386
1387 batch = bo->virtual;
1388
1389 /* Write the register. */
1390 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1391 *batch++ = reg;
1392 *batch++ = expected_value;
1393
1394 /* Save the register's value back to the buffer. */
1395 *batch++ = MI_STORE_REGISTER_MEM | (3 - 2);
1396 *batch++ = reg;
1397 struct drm_i915_gem_relocation_entry reloc = {
1398 .offset = (char *) batch - (char *) bo->virtual,
1399 .delta = offset * sizeof(uint32_t),
1400 .target_handle = results->gem_handle,
1401 .read_domains = I915_GEM_DOMAIN_INSTRUCTION,
1402 .write_domain = I915_GEM_DOMAIN_INSTRUCTION,
1403 };
1404 *batch++ = reloc.presumed_offset + reloc.delta;
1405
1406 /* And afterwards clear the register */
1407 if (reset) {
1408 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1409 *batch++ = reg;
1410 *batch++ = 0;
1411 }
1412
1413 *batch++ = MI_BATCH_BUFFER_END;
1414
1415 struct drm_i915_gem_exec_object2 exec_objects[2] = {
1416 {
1417 .handle = results->gem_handle,
1418 },
1419 {
1420 .handle = bo->gem_handle,
1421 .relocation_count = 1,
1422 .relocs_ptr = (uintptr_t) &reloc,
1423 }
1424 };
1425
1426 struct drm_i915_gem_execbuffer2 execbuf = {
1427 .buffers_ptr = (uintptr_t) exec_objects,
1428 .buffer_count = 2,
1429 .batch_len = ALIGN((char *) batch - (char *) bo->virtual, 8),
1430 .flags = I915_EXEC_RENDER,
1431 };
1432
1433 /* Don't bother with error checking - if the execbuf fails, the
1434 * value won't be written and we'll just report that there's no access.
1435 */
1436 __DRIscreen *dri_screen = screen->driScrnPriv;
1437 drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf);
1438
1439 /* Check whether the value got written. */
1440 if (brw_bo_map(NULL, results, false) == 0) {
1441 success = *((uint32_t *)results->virtual + offset) == expected_value;
1442 brw_bo_unmap(results);
1443 }
1444
1445 err_batch:
1446 brw_bo_unreference(bo);
1447 err_results:
1448 brw_bo_unreference(results);
1449 err:
1450 return success;
1451 }
1452
1453 static bool
1454 intel_detect_pipelined_so(struct intel_screen *screen)
1455 {
1456 const struct gen_device_info *devinfo = &screen->devinfo;
1457
1458 /* Supposedly, Broadwell just works. */
1459 if (devinfo->gen >= 8)
1460 return true;
1461
1462 if (devinfo->gen <= 6)
1463 return false;
1464
1465 /* See the big explanation about command parser versions below */
1466 if (screen->cmd_parser_version >= (devinfo->is_haswell ? 7 : 2))
1467 return true;
1468
1469 /* We use SO_WRITE_OFFSET0 since you're supposed to write it (unlike the
1470 * statistics registers), and we already reset it to zero before using it.
1471 */
1472 return intel_detect_pipelined_register(screen,
1473 GEN7_SO_WRITE_OFFSET(0),
1474 0x1337d0d0,
1475 false);
1476 }
1477
1478 /**
1479 * Return array of MSAA modes supported by the hardware. The array is
1480 * zero-terminated and sorted in decreasing order.
1481 */
1482 const int*
1483 intel_supported_msaa_modes(const struct intel_screen *screen)
1484 {
1485 static const int gen9_modes[] = {16, 8, 4, 2, 0, -1};
1486 static const int gen8_modes[] = {8, 4, 2, 0, -1};
1487 static const int gen7_modes[] = {8, 4, 0, -1};
1488 static const int gen6_modes[] = {4, 0, -1};
1489 static const int gen4_modes[] = {0, -1};
1490
1491 if (screen->devinfo.gen >= 9) {
1492 return gen9_modes;
1493 } else if (screen->devinfo.gen >= 8) {
1494 return gen8_modes;
1495 } else if (screen->devinfo.gen >= 7) {
1496 return gen7_modes;
1497 } else if (screen->devinfo.gen == 6) {
1498 return gen6_modes;
1499 } else {
1500 return gen4_modes;
1501 }
1502 }
1503
1504 static __DRIconfig**
1505 intel_screen_make_configs(__DRIscreen *dri_screen)
1506 {
1507 static const mesa_format formats[] = {
1508 MESA_FORMAT_B5G6R5_UNORM,
1509 MESA_FORMAT_B8G8R8A8_UNORM,
1510 MESA_FORMAT_B8G8R8X8_UNORM
1511 };
1512
1513 /* GLX_SWAP_COPY_OML is not supported due to page flipping. */
1514 static const GLenum back_buffer_modes[] = {
1515 GLX_SWAP_UNDEFINED_OML, GLX_NONE,
1516 };
1517
1518 static const uint8_t singlesample_samples[1] = {0};
1519 static const uint8_t multisample_samples[2] = {4, 8};
1520
1521 struct intel_screen *screen = dri_screen->driverPrivate;
1522 const struct gen_device_info *devinfo = &screen->devinfo;
1523 uint8_t depth_bits[4], stencil_bits[4];
1524 __DRIconfig **configs = NULL;
1525
1526 /* Generate singlesample configs without accumulation buffer. */
1527 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1528 __DRIconfig **new_configs;
1529 int num_depth_stencil_bits = 2;
1530
1531 /* Starting with DRI2 protocol version 1.1 we can request a depth/stencil
1532 * buffer that has a different number of bits per pixel than the color
1533 * buffer, gen >= 6 supports this.
1534 */
1535 depth_bits[0] = 0;
1536 stencil_bits[0] = 0;
1537
1538 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1539 depth_bits[1] = 16;
1540 stencil_bits[1] = 0;
1541 if (devinfo->gen >= 6) {
1542 depth_bits[2] = 24;
1543 stencil_bits[2] = 8;
1544 num_depth_stencil_bits = 3;
1545 }
1546 } else {
1547 depth_bits[1] = 24;
1548 stencil_bits[1] = 8;
1549 }
1550
1551 new_configs = driCreateConfigs(formats[i],
1552 depth_bits,
1553 stencil_bits,
1554 num_depth_stencil_bits,
1555 back_buffer_modes, 2,
1556 singlesample_samples, 1,
1557 false, false);
1558 configs = driConcatConfigs(configs, new_configs);
1559 }
1560
1561 /* Generate the minimum possible set of configs that include an
1562 * accumulation buffer.
1563 */
1564 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1565 __DRIconfig **new_configs;
1566
1567 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1568 depth_bits[0] = 16;
1569 stencil_bits[0] = 0;
1570 } else {
1571 depth_bits[0] = 24;
1572 stencil_bits[0] = 8;
1573 }
1574
1575 new_configs = driCreateConfigs(formats[i],
1576 depth_bits, stencil_bits, 1,
1577 back_buffer_modes, 1,
1578 singlesample_samples, 1,
1579 true, false);
1580 configs = driConcatConfigs(configs, new_configs);
1581 }
1582
1583 /* Generate multisample configs.
1584 *
1585 * This loop breaks early, and hence is a no-op, on gen < 6.
1586 *
1587 * Multisample configs must follow the singlesample configs in order to
1588 * work around an X server bug present in 1.12. The X server chooses to
1589 * associate the first listed RGBA888-Z24S8 config, regardless of its
1590 * sample count, with the 32-bit depth visual used for compositing.
1591 *
1592 * Only doublebuffer configs with GLX_SWAP_UNDEFINED_OML behavior are
1593 * supported. Singlebuffer configs are not supported because no one wants
1594 * them.
1595 */
1596 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1597 if (devinfo->gen < 6)
1598 break;
1599
1600 __DRIconfig **new_configs;
1601 const int num_depth_stencil_bits = 2;
1602 int num_msaa_modes = 0;
1603
1604 depth_bits[0] = 0;
1605 stencil_bits[0] = 0;
1606
1607 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1608 depth_bits[1] = 16;
1609 stencil_bits[1] = 0;
1610 } else {
1611 depth_bits[1] = 24;
1612 stencil_bits[1] = 8;
1613 }
1614
1615 if (devinfo->gen >= 7)
1616 num_msaa_modes = 2;
1617 else if (devinfo->gen == 6)
1618 num_msaa_modes = 1;
1619
1620 new_configs = driCreateConfigs(formats[i],
1621 depth_bits,
1622 stencil_bits,
1623 num_depth_stencil_bits,
1624 back_buffer_modes, 1,
1625 multisample_samples,
1626 num_msaa_modes,
1627 false, false);
1628 configs = driConcatConfigs(configs, new_configs);
1629 }
1630
1631 if (configs == NULL) {
1632 fprintf(stderr, "[%s:%u] Error creating FBConfig!\n", __func__,
1633 __LINE__);
1634 return NULL;
1635 }
1636
1637 return configs;
1638 }
1639
1640 static void
1641 set_max_gl_versions(struct intel_screen *screen)
1642 {
1643 __DRIscreen *dri_screen = screen->driScrnPriv;
1644 const bool has_astc = screen->devinfo.gen >= 9;
1645
1646 switch (screen->devinfo.gen) {
1647 case 9:
1648 case 8:
1649 dri_screen->max_gl_core_version = 45;
1650 dri_screen->max_gl_compat_version = 30;
1651 dri_screen->max_gl_es1_version = 11;
1652 dri_screen->max_gl_es2_version = has_astc ? 32 : 31;
1653 break;
1654 case 7:
1655 dri_screen->max_gl_core_version = 33;
1656 if (can_do_pipelined_register_writes(screen)) {
1657 dri_screen->max_gl_core_version = screen->devinfo.is_haswell ? 42 : 40;
1658 if (screen->devinfo.is_haswell && can_do_compute_dispatch(screen))
1659 dri_screen->max_gl_core_version = 43;
1660 if (screen->devinfo.is_haswell && can_do_mi_math_and_lrr(screen))
1661 dri_screen->max_gl_core_version = 45;
1662 }
1663 dri_screen->max_gl_compat_version = 30;
1664 dri_screen->max_gl_es1_version = 11;
1665 dri_screen->max_gl_es2_version = screen->devinfo.is_haswell ? 31 : 30;
1666 break;
1667 case 6:
1668 dri_screen->max_gl_core_version = 33;
1669 dri_screen->max_gl_compat_version = 30;
1670 dri_screen->max_gl_es1_version = 11;
1671 dri_screen->max_gl_es2_version = 30;
1672 break;
1673 case 5:
1674 case 4:
1675 dri_screen->max_gl_core_version = 0;
1676 dri_screen->max_gl_compat_version = 21;
1677 dri_screen->max_gl_es1_version = 11;
1678 dri_screen->max_gl_es2_version = 20;
1679 break;
1680 default:
1681 unreachable("unrecognized intel_screen::gen");
1682 }
1683 }
1684
1685 /**
1686 * Return the revision (generally the revid field of the PCI header) of the
1687 * graphics device.
1688 *
1689 * XXX: This function is useful to keep around even if it is not currently in
1690 * use. It is necessary for new platforms and revision specific workarounds or
1691 * features. Please don't remove it so that we know it at least continues to
1692 * build.
1693 */
1694 static __attribute__((__unused__)) int
1695 brw_get_revision(int fd)
1696 {
1697 struct drm_i915_getparam gp;
1698 int revision;
1699 int ret;
1700
1701 memset(&gp, 0, sizeof(gp));
1702 gp.param = I915_PARAM_REVISION;
1703 gp.value = &revision;
1704
1705 ret = drmCommandWriteRead(fd, DRM_I915_GETPARAM, &gp, sizeof(gp));
1706 if (ret)
1707 revision = -1;
1708
1709 return revision;
1710 }
1711
1712 static void
1713 shader_debug_log_mesa(void *data, const char *fmt, ...)
1714 {
1715 struct brw_context *brw = (struct brw_context *)data;
1716 va_list args;
1717
1718 va_start(args, fmt);
1719 GLuint msg_id = 0;
1720 _mesa_gl_vdebug(&brw->ctx, &msg_id,
1721 MESA_DEBUG_SOURCE_SHADER_COMPILER,
1722 MESA_DEBUG_TYPE_OTHER,
1723 MESA_DEBUG_SEVERITY_NOTIFICATION, fmt, args);
1724 va_end(args);
1725 }
1726
1727 static void
1728 shader_perf_log_mesa(void *data, const char *fmt, ...)
1729 {
1730 struct brw_context *brw = (struct brw_context *)data;
1731
1732 va_list args;
1733 va_start(args, fmt);
1734
1735 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
1736 va_list args_copy;
1737 va_copy(args_copy, args);
1738 vfprintf(stderr, fmt, args_copy);
1739 va_end(args_copy);
1740 }
1741
1742 if (brw->perf_debug) {
1743 GLuint msg_id = 0;
1744 _mesa_gl_vdebug(&brw->ctx, &msg_id,
1745 MESA_DEBUG_SOURCE_SHADER_COMPILER,
1746 MESA_DEBUG_TYPE_PERFORMANCE,
1747 MESA_DEBUG_SEVERITY_MEDIUM, fmt, args);
1748 }
1749 va_end(args);
1750 }
1751
1752 static int
1753 parse_devid_override(const char *devid_override)
1754 {
1755 static const struct {
1756 const char *name;
1757 int pci_id;
1758 } name_map[] = {
1759 { "brw", 0x2a02 },
1760 { "g4x", 0x2a42 },
1761 { "ilk", 0x0042 },
1762 { "snb", 0x0126 },
1763 { "ivb", 0x016a },
1764 { "hsw", 0x0d2e },
1765 { "byt", 0x0f33 },
1766 { "bdw", 0x162e },
1767 { "skl", 0x1912 },
1768 { "kbl", 0x5912 },
1769 };
1770
1771 for (unsigned i = 0; i < ARRAY_SIZE(name_map); i++) {
1772 if (!strcmp(name_map[i].name, devid_override))
1773 return name_map[i].pci_id;
1774 }
1775
1776 return strtod(devid_override, NULL);
1777 }
1778
1779 /**
1780 * Get the PCI ID for the device. This can be overridden by setting the
1781 * INTEL_DEVID_OVERRIDE environment variable to the desired ID.
1782 *
1783 * Returns -1 on ioctl failure.
1784 */
1785 static int
1786 get_pci_device_id(struct intel_screen *screen)
1787 {
1788 if (geteuid() == getuid()) {
1789 char *devid_override = getenv("INTEL_DEVID_OVERRIDE");
1790 if (devid_override) {
1791 screen->no_hw = true;
1792 return parse_devid_override(devid_override);
1793 }
1794 }
1795
1796 return intel_get_integer(screen, I915_PARAM_CHIPSET_ID);
1797 }
1798
1799 /**
1800 * This is the driver specific part of the createNewScreen entry point.
1801 * Called when using DRI2.
1802 *
1803 * \return the struct gl_config supported by this driver
1804 */
1805 static const
1806 __DRIconfig **intelInitScreen2(__DRIscreen *dri_screen)
1807 {
1808 struct intel_screen *screen;
1809
1810 if (dri_screen->image.loader) {
1811 } else if (dri_screen->dri2.loader->base.version <= 2 ||
1812 dri_screen->dri2.loader->getBuffersWithFormat == NULL) {
1813 fprintf(stderr,
1814 "\nERROR! DRI2 loader with getBuffersWithFormat() "
1815 "support required\n");
1816 return NULL;
1817 }
1818
1819 /* Allocate the private area */
1820 screen = rzalloc(NULL, struct intel_screen);
1821 if (!screen) {
1822 fprintf(stderr, "\nERROR! Allocating private area failed\n");
1823 return NULL;
1824 }
1825 /* parse information in __driConfigOptions */
1826 driParseOptionInfo(&screen->optionCache, brw_config_options.xml);
1827
1828 screen->driScrnPriv = dri_screen;
1829 dri_screen->driverPrivate = (void *) screen;
1830
1831 screen->deviceID = get_pci_device_id(screen);
1832
1833 if (!gen_get_device_info(screen->deviceID, &screen->devinfo))
1834 return NULL;
1835
1836 if (!intel_init_bufmgr(screen))
1837 return NULL;
1838
1839 const struct gen_device_info *devinfo = &screen->devinfo;
1840
1841 brw_process_intel_debug_variable();
1842
1843 if ((INTEL_DEBUG & DEBUG_SHADER_TIME) && devinfo->gen < 7) {
1844 fprintf(stderr,
1845 "shader_time debugging requires gen7 (Ivybridge) or better.\n");
1846 INTEL_DEBUG &= ~DEBUG_SHADER_TIME;
1847 }
1848
1849 if (intel_get_integer(screen, I915_PARAM_MMAP_GTT_VERSION) >= 1) {
1850 /* Theorectically unlimited! At least for individual objects...
1851 *
1852 * Currently the entire (global) address space for all GTT maps is
1853 * limited to 64bits. That is all objects on the system that are
1854 * setup for GTT mmapping must fit within 64bits. An attempt to use
1855 * one that exceeds the limit with fail in brw_bo_map_gtt().
1856 *
1857 * Long before we hit that limit, we will be practically limited by
1858 * that any single object must fit in physical memory (RAM). The upper
1859 * limit on the CPU's address space is currently 48bits (Skylake), of
1860 * which only 39bits can be physical memory. (The GPU itself also has
1861 * a 48bit addressable virtual space.) We can fit over 32 million
1862 * objects of the current maximum allocable size before running out
1863 * of mmap space.
1864 */
1865 screen->max_gtt_map_object_size = UINT64_MAX;
1866 } else {
1867 /* Estimate the size of the mappable aperture into the GTT. There's an
1868 * ioctl to get the whole GTT size, but not one to get the mappable subset.
1869 * It turns out it's basically always 256MB, though some ancient hardware
1870 * was smaller.
1871 */
1872 uint32_t gtt_size = 256 * 1024 * 1024;
1873
1874 /* We don't want to map two objects such that a memcpy between them would
1875 * just fault one mapping in and then the other over and over forever. So
1876 * we would need to divide the GTT size by 2. Additionally, some GTT is
1877 * taken up by things like the framebuffer and the ringbuffer and such, so
1878 * be more conservative.
1879 */
1880 screen->max_gtt_map_object_size = gtt_size / 4;
1881 }
1882
1883 screen->aperture_threshold = get_aperture_size(dri_screen->fd) * 3 / 4;
1884
1885 screen->hw_has_swizzling = intel_detect_swizzling(screen);
1886 screen->hw_has_timestamp = intel_detect_timestamp(screen);
1887
1888 /* GENs prior to 8 do not support EU/Subslice info */
1889 if (devinfo->gen >= 8) {
1890 intel_detect_sseu(screen);
1891 } else if (devinfo->gen == 7) {
1892 screen->subslice_total = 1 << (devinfo->gt - 1);
1893 }
1894
1895 /* Gen7-7.5 kernel requirements / command parser saga:
1896 *
1897 * - pre-v3.16:
1898 * Haswell and Baytrail cannot use any privileged batchbuffer features.
1899 *
1900 * Ivybridge has aliasing PPGTT on by default, which accidentally marks
1901 * all batches secure, allowing them to use any feature with no checking.
1902 * This is effectively equivalent to a command parser version of
1903 * \infinity - everything is possible.
1904 *
1905 * The command parser does not exist, and querying the version will
1906 * return -EINVAL.
1907 *
1908 * - v3.16:
1909 * The kernel enables the command parser by default, for systems with
1910 * aliasing PPGTT enabled (Ivybridge and Haswell). However, the
1911 * hardware checker is still enabled, so Haswell and Baytrail cannot
1912 * do anything.
1913 *
1914 * Ivybridge goes from "everything is possible" to "only what the
1915 * command parser allows" (if the user boots with i915.cmd_parser=0,
1916 * then everything is possible again). We can only safely use features
1917 * allowed by the supported command parser version.
1918 *
1919 * Annoyingly, I915_PARAM_CMD_PARSER_VERSION reports the static version
1920 * implemented by the kernel, even if it's turned off. So, checking
1921 * for version > 0 does not mean that you can write registers. We have
1922 * to try it and see. The version does, however, indicate the age of
1923 * the kernel.
1924 *
1925 * Instead of matching the hardware checker's behavior of converting
1926 * privileged commands to MI_NOOP, it makes execbuf2 start returning
1927 * -EINVAL, making it dangerous to try and use privileged features.
1928 *
1929 * Effective command parser versions:
1930 * - Haswell: 0 (reporting 1, writes don't work)
1931 * - Baytrail: 0 (reporting 1, writes don't work)
1932 * - Ivybridge: 1 (enabled) or infinite (disabled)
1933 *
1934 * - v3.17:
1935 * Baytrail aliasing PPGTT is enabled, making it like Ivybridge:
1936 * effectively version 1 (enabled) or infinite (disabled).
1937 *
1938 * - v3.19: f1f55cc0556031c8ee3fe99dae7251e78b9b653b
1939 * Command parser v2 supports predicate writes.
1940 *
1941 * - Haswell: 0 (reporting 1, writes don't work)
1942 * - Baytrail: 2 (enabled) or infinite (disabled)
1943 * - Ivybridge: 2 (enabled) or infinite (disabled)
1944 *
1945 * So version >= 2 is enough to know that Ivybridge and Baytrail
1946 * will work. Haswell still can't do anything.
1947 *
1948 * - v4.0: Version 3 happened. Largely not relevant.
1949 *
1950 * - v4.1: 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
1951 * L3 config registers are properly saved and restored as part
1952 * of the hardware context. We can approximately detect this point
1953 * in time by checking if I915_PARAM_REVISION is recognized - it
1954 * landed in a later commit, but in the same release cycle.
1955 *
1956 * - v4.2: 245054a1fe33c06ad233e0d58a27ec7b64db9284
1957 * Command parser finally gains secure batch promotion. On Haswell,
1958 * the hardware checker gets disabled, which finally allows it to do
1959 * privileged commands.
1960 *
1961 * I915_PARAM_CMD_PARSER_VERSION reports 3. Effective versions:
1962 * - Haswell: 3 (enabled) or 0 (disabled)
1963 * - Baytrail: 3 (enabled) or infinite (disabled)
1964 * - Ivybridge: 3 (enabled) or infinite (disabled)
1965 *
1966 * Unfortunately, detecting this point in time is tricky, because
1967 * no version bump happened when this important change occurred.
1968 * On Haswell, if we can write any register, then the kernel is at
1969 * least this new, and we can start trusting the version number.
1970 *
1971 * - v4.4: 2bbe6bbb0dc94fd4ce287bdac9e1bd184e23057b and
1972 * Command parser reaches version 4, allowing access to Haswell
1973 * atomic scratch and chicken3 registers. If version >= 4, we know
1974 * the kernel is new enough to support privileged features on all
1975 * hardware. However, the user might have disabled it...and the
1976 * kernel will still report version 4. So we still have to guess
1977 * and check.
1978 *
1979 * - v4.4: 7b9748cb513a6bef4af87b79f0da3ff7e8b56cd8
1980 * Command parser v5 whitelists indirect compute shader dispatch
1981 * registers, needed for OpenGL 4.3 and later.
1982 *
1983 * - v4.8:
1984 * Command parser v7 lets us use MI_MATH on Haswell.
1985 *
1986 * Additionally, the kernel begins reporting version 0 when
1987 * the command parser is disabled, allowing us to skip the
1988 * guess-and-check step on Haswell. Unfortunately, this also
1989 * means that we can no longer use it as an indicator of the
1990 * age of the kernel.
1991 */
1992 if (intel_get_param(screen, I915_PARAM_CMD_PARSER_VERSION,
1993 &screen->cmd_parser_version) < 0) {
1994 /* Command parser does not exist - getparam is unrecognized */
1995 screen->cmd_parser_version = 0;
1996 }
1997
1998 if (!intel_detect_pipelined_so(screen)) {
1999 /* We can't do anything, so the effective version is 0. */
2000 screen->cmd_parser_version = 0;
2001 } else {
2002 screen->kernel_features |= KERNEL_ALLOWS_SOL_OFFSET_WRITES;
2003 }
2004
2005 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 2)
2006 screen->kernel_features |= KERNEL_ALLOWS_PREDICATE_WRITES;
2007
2008 /* Haswell requires command parser version 4 in order to have L3
2009 * atomic scratch1 and chicken3 bits
2010 */
2011 if (devinfo->is_haswell && screen->cmd_parser_version >= 4) {
2012 screen->kernel_features |=
2013 KERNEL_ALLOWS_HSW_SCRATCH1_AND_ROW_CHICKEN3;
2014 }
2015
2016 /* Haswell requires command parser version 6 in order to write to the
2017 * MI_MATH GPR registers, and version 7 in order to use
2018 * MI_LOAD_REGISTER_REG (which all users of MI_MATH use).
2019 */
2020 if (devinfo->gen >= 8 ||
2021 (devinfo->is_haswell && screen->cmd_parser_version >= 7)) {
2022 screen->kernel_features |= KERNEL_ALLOWS_MI_MATH_AND_LRR;
2023 }
2024
2025 /* Gen7 needs at least command parser version 5 to support compute */
2026 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 5)
2027 screen->kernel_features |= KERNEL_ALLOWS_COMPUTE_DISPATCH;
2028
2029 const char *force_msaa = getenv("INTEL_FORCE_MSAA");
2030 if (force_msaa) {
2031 screen->winsys_msaa_samples_override =
2032 intel_quantize_num_samples(screen, atoi(force_msaa));
2033 printf("Forcing winsys sample count to %d\n",
2034 screen->winsys_msaa_samples_override);
2035 } else {
2036 screen->winsys_msaa_samples_override = -1;
2037 }
2038
2039 set_max_gl_versions(screen);
2040
2041 /* Notification of GPU resets requires hardware contexts and a kernel new
2042 * enough to support DRM_IOCTL_I915_GET_RESET_STATS. If the ioctl is
2043 * supported, calling it with a context of 0 will either generate EPERM or
2044 * no error. If the ioctl is not supported, it always generate EINVAL.
2045 * Use this to determine whether to advertise the __DRI2_ROBUSTNESS
2046 * extension to the loader.
2047 *
2048 * Don't even try on pre-Gen6, since we don't attempt to use contexts there.
2049 */
2050 if (devinfo->gen >= 6) {
2051 struct drm_i915_reset_stats stats;
2052 memset(&stats, 0, sizeof(stats));
2053
2054 const int ret = drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats);
2055
2056 screen->has_context_reset_notification =
2057 (ret != -1 || errno != EINVAL);
2058 }
2059
2060 dri_screen->extensions = !screen->has_context_reset_notification
2061 ? screenExtensions : intelRobustScreenExtensions;
2062
2063 screen->compiler = brw_compiler_create(screen, devinfo);
2064 screen->compiler->shader_debug_log = shader_debug_log_mesa;
2065 screen->compiler->shader_perf_log = shader_perf_log_mesa;
2066 screen->program_id = 1;
2067
2068 screen->has_exec_fence =
2069 intel_get_boolean(screen, I915_PARAM_HAS_EXEC_FENCE);
2070
2071 return (const __DRIconfig**) intel_screen_make_configs(dri_screen);
2072 }
2073
2074 struct intel_buffer {
2075 __DRIbuffer base;
2076 struct brw_bo *bo;
2077 };
2078
2079 static __DRIbuffer *
2080 intelAllocateBuffer(__DRIscreen *dri_screen,
2081 unsigned attachment, unsigned format,
2082 int width, int height)
2083 {
2084 struct intel_buffer *intelBuffer;
2085 struct intel_screen *screen = dri_screen->driverPrivate;
2086
2087 assert(attachment == __DRI_BUFFER_FRONT_LEFT ||
2088 attachment == __DRI_BUFFER_BACK_LEFT);
2089
2090 intelBuffer = calloc(1, sizeof *intelBuffer);
2091 if (intelBuffer == NULL)
2092 return NULL;
2093
2094 /* The front and back buffers are color buffers, which are X tiled. GEN9+
2095 * supports Y tiled and compressed buffers, but there is no way to plumb that
2096 * through to here. */
2097 uint32_t pitch;
2098 int cpp = format / 8;
2099 intelBuffer->bo = brw_bo_alloc_tiled(screen->bufmgr,
2100 "intelAllocateBuffer",
2101 width,
2102 height,
2103 cpp,
2104 I915_TILING_X, &pitch,
2105 BO_ALLOC_FOR_RENDER);
2106
2107 if (intelBuffer->bo == NULL) {
2108 free(intelBuffer);
2109 return NULL;
2110 }
2111
2112 brw_bo_flink(intelBuffer->bo, &intelBuffer->base.name);
2113
2114 intelBuffer->base.attachment = attachment;
2115 intelBuffer->base.cpp = cpp;
2116 intelBuffer->base.pitch = pitch;
2117
2118 return &intelBuffer->base;
2119 }
2120
2121 static void
2122 intelReleaseBuffer(__DRIscreen *dri_screen, __DRIbuffer *buffer)
2123 {
2124 struct intel_buffer *intelBuffer = (struct intel_buffer *) buffer;
2125
2126 brw_bo_unreference(intelBuffer->bo);
2127 free(intelBuffer);
2128 }
2129
2130 static const struct __DriverAPIRec brw_driver_api = {
2131 .InitScreen = intelInitScreen2,
2132 .DestroyScreen = intelDestroyScreen,
2133 .CreateContext = brwCreateContext,
2134 .DestroyContext = intelDestroyContext,
2135 .CreateBuffer = intelCreateBuffer,
2136 .DestroyBuffer = intelDestroyBuffer,
2137 .MakeCurrent = intelMakeCurrent,
2138 .UnbindContext = intelUnbindContext,
2139 .AllocateBuffer = intelAllocateBuffer,
2140 .ReleaseBuffer = intelReleaseBuffer
2141 };
2142
2143 static const struct __DRIDriverVtableExtensionRec brw_vtable = {
2144 .base = { __DRI_DRIVER_VTABLE, 1 },
2145 .vtable = &brw_driver_api,
2146 };
2147
2148 static const __DRIextension *brw_driver_extensions[] = {
2149 &driCoreExtension.base,
2150 &driImageDriverExtension.base,
2151 &driDRI2Extension.base,
2152 &brw_vtable.base,
2153 &brw_config_options.base,
2154 NULL
2155 };
2156
2157 PUBLIC const __DRIextension **__driDriverGetExtensions_i965(void)
2158 {
2159 globalDriverAPI = &brw_driver_api;
2160
2161 return brw_driver_extensions;
2162 }