i965: Bump official kernel requirement to Linux v3.9.
[mesa.git] / src / mesa / drivers / dri / i965 / intel_screen.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <drm_fourcc.h>
27 #include <errno.h>
28 #include <time.h>
29 #include <unistd.h>
30 #include "main/context.h"
31 #include "main/framebuffer.h"
32 #include "main/renderbuffer.h"
33 #include "main/texobj.h"
34 #include "main/hash.h"
35 #include "main/fbobject.h"
36 #include "main/version.h"
37 #include "swrast/s_renderbuffer.h"
38 #include "util/ralloc.h"
39 #include "brw_defines.h"
40 #include "brw_state.h"
41 #include "compiler/nir/nir.h"
42
43 #include "utils.h"
44 #include "util/disk_cache.h"
45 #include "util/xmlpool.h"
46
47 static const __DRIconfigOptionsExtension brw_config_options = {
48 .base = { __DRI_CONFIG_OPTIONS, 1 },
49 .xml =
50 DRI_CONF_BEGIN
51 DRI_CONF_SECTION_PERFORMANCE
52 /* Options correspond to DRI_CONF_BO_REUSE_DISABLED,
53 * DRI_CONF_BO_REUSE_ALL
54 */
55 DRI_CONF_OPT_BEGIN_V(bo_reuse, enum, 1, "0:1")
56 DRI_CONF_DESC_BEGIN(en, "Buffer object reuse")
57 DRI_CONF_ENUM(0, "Disable buffer object reuse")
58 DRI_CONF_ENUM(1, "Enable reuse of all sizes of buffer objects")
59 DRI_CONF_DESC_END
60 DRI_CONF_OPT_END
61 DRI_CONF_MESA_NO_ERROR("false")
62 DRI_CONF_SECTION_END
63
64 DRI_CONF_SECTION_QUALITY
65 DRI_CONF_PRECISE_TRIG("false")
66
67 DRI_CONF_OPT_BEGIN(clamp_max_samples, int, -1)
68 DRI_CONF_DESC(en, "Clamp the value of GL_MAX_SAMPLES to the "
69 "given integer. If negative, then do not clamp.")
70 DRI_CONF_OPT_END
71 DRI_CONF_SECTION_END
72
73 DRI_CONF_SECTION_DEBUG
74 DRI_CONF_NO_RAST("false")
75 DRI_CONF_ALWAYS_FLUSH_BATCH("false")
76 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
77 DRI_CONF_DISABLE_THROTTLING("false")
78 DRI_CONF_FORCE_GLSL_EXTENSIONS_WARN("false")
79 DRI_CONF_FORCE_GLSL_VERSION(0)
80 DRI_CONF_DISABLE_GLSL_LINE_CONTINUATIONS("false")
81 DRI_CONF_DISABLE_BLEND_FUNC_EXTENDED("false")
82 DRI_CONF_DUAL_COLOR_BLEND_BY_LOCATION("false")
83 DRI_CONF_ALLOW_GLSL_EXTENSION_DIRECTIVE_MIDSHADER("false")
84 DRI_CONF_ALLOW_GLSL_BUILTIN_VARIABLE_REDECLARATION("false")
85 DRI_CONF_ALLOW_GLSL_CROSS_STAGE_INTERPOLATION_MISMATCH("false")
86 DRI_CONF_ALLOW_HIGHER_COMPAT_VERSION("false")
87 DRI_CONF_FORCE_GLSL_ABS_SQRT("false")
88
89 DRI_CONF_OPT_BEGIN_B(shader_precompile, "true")
90 DRI_CONF_DESC(en, "Perform code generation at shader link time.")
91 DRI_CONF_OPT_END
92 DRI_CONF_SECTION_END
93
94 DRI_CONF_SECTION_MISCELLANEOUS
95 DRI_CONF_GLSL_ZERO_INIT("false")
96 DRI_CONF_ALLOW_RGB10_CONFIGS("false")
97 DRI_CONF_SECTION_END
98 DRI_CONF_END
99 };
100
101 #include "intel_batchbuffer.h"
102 #include "intel_buffers.h"
103 #include "brw_bufmgr.h"
104 #include "intel_fbo.h"
105 #include "intel_mipmap_tree.h"
106 #include "intel_screen.h"
107 #include "intel_tex.h"
108 #include "intel_image.h"
109
110 #include "brw_context.h"
111
112 #include "i915_drm.h"
113
114 /**
115 * For debugging purposes, this returns a time in seconds.
116 */
117 double
118 get_time(void)
119 {
120 struct timespec tp;
121
122 clock_gettime(CLOCK_MONOTONIC, &tp);
123
124 return tp.tv_sec + tp.tv_nsec / 1000000000.0;
125 }
126
127 static const __DRItexBufferExtension intelTexBufferExtension = {
128 .base = { __DRI_TEX_BUFFER, 3 },
129
130 .setTexBuffer = intelSetTexBuffer,
131 .setTexBuffer2 = intelSetTexBuffer2,
132 .releaseTexBuffer = NULL,
133 };
134
135 static void
136 intel_dri2_flush_with_flags(__DRIcontext *cPriv,
137 __DRIdrawable *dPriv,
138 unsigned flags,
139 enum __DRI2throttleReason reason)
140 {
141 struct brw_context *brw = cPriv->driverPrivate;
142
143 if (!brw)
144 return;
145
146 struct gl_context *ctx = &brw->ctx;
147
148 FLUSH_VERTICES(ctx, 0);
149
150 if (flags & __DRI2_FLUSH_DRAWABLE)
151 intel_resolve_for_dri2_flush(brw, dPriv);
152
153 if (reason == __DRI2_THROTTLE_SWAPBUFFER)
154 brw->need_swap_throttle = true;
155 if (reason == __DRI2_THROTTLE_FLUSHFRONT)
156 brw->need_flush_throttle = true;
157
158 intel_batchbuffer_flush(brw);
159 }
160
161 /**
162 * Provides compatibility with loaders that only support the older (version
163 * 1-3) flush interface.
164 *
165 * That includes libGL up to Mesa 9.0, and the X Server at least up to 1.13.
166 */
167 static void
168 intel_dri2_flush(__DRIdrawable *drawable)
169 {
170 intel_dri2_flush_with_flags(drawable->driContextPriv, drawable,
171 __DRI2_FLUSH_DRAWABLE,
172 __DRI2_THROTTLE_SWAPBUFFER);
173 }
174
175 static const struct __DRI2flushExtensionRec intelFlushExtension = {
176 .base = { __DRI2_FLUSH, 4 },
177
178 .flush = intel_dri2_flush,
179 .invalidate = dri2InvalidateDrawable,
180 .flush_with_flags = intel_dri2_flush_with_flags,
181 };
182
183 static const struct intel_image_format intel_image_formats[] = {
184 { __DRI_IMAGE_FOURCC_ARGB2101010, __DRI_IMAGE_COMPONENTS_RGBA, 1,
185 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB2101010, 4 } } },
186
187 { __DRI_IMAGE_FOURCC_XRGB2101010, __DRI_IMAGE_COMPONENTS_RGB, 1,
188 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB2101010, 4 } } },
189
190 { __DRI_IMAGE_FOURCC_ARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
191 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
192
193 { __DRI_IMAGE_FOURCC_ABGR8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
194 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
195
196 { __DRI_IMAGE_FOURCC_SARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
197 { { 0, 0, 0, __DRI_IMAGE_FORMAT_SARGB8, 4 } } },
198
199 { __DRI_IMAGE_FOURCC_XRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
200 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB8888, 4 }, } },
201
202 { __DRI_IMAGE_FOURCC_XBGR8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
203 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 }, } },
204
205 { __DRI_IMAGE_FOURCC_ARGB1555, __DRI_IMAGE_COMPONENTS_RGBA, 1,
206 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB1555, 2 } } },
207
208 { __DRI_IMAGE_FOURCC_RGB565, __DRI_IMAGE_COMPONENTS_RGB, 1,
209 { { 0, 0, 0, __DRI_IMAGE_FORMAT_RGB565, 2 } } },
210
211 { __DRI_IMAGE_FOURCC_R8, __DRI_IMAGE_COMPONENTS_R, 1,
212 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 }, } },
213
214 { __DRI_IMAGE_FOURCC_R16, __DRI_IMAGE_COMPONENTS_R, 1,
215 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 1 }, } },
216
217 { __DRI_IMAGE_FOURCC_GR88, __DRI_IMAGE_COMPONENTS_RG, 1,
218 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 }, } },
219
220 { __DRI_IMAGE_FOURCC_GR1616, __DRI_IMAGE_COMPONENTS_RG, 1,
221 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR1616, 2 }, } },
222
223 { __DRI_IMAGE_FOURCC_YUV410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
224 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
225 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
226 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
227
228 { __DRI_IMAGE_FOURCC_YUV411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
229 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
230 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
231 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
232
233 { __DRI_IMAGE_FOURCC_YUV420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
234 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
235 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
236 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
237
238 { __DRI_IMAGE_FOURCC_YUV422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
239 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
240 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
241 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
242
243 { __DRI_IMAGE_FOURCC_YUV444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
244 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
245 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
246 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
247
248 { __DRI_IMAGE_FOURCC_YVU410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
249 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
250 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
251 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
252
253 { __DRI_IMAGE_FOURCC_YVU411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
254 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
255 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
256 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
257
258 { __DRI_IMAGE_FOURCC_YVU420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
259 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
260 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
261 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
262
263 { __DRI_IMAGE_FOURCC_YVU422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
264 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
265 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
266 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
267
268 { __DRI_IMAGE_FOURCC_YVU444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
269 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
270 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
271 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
272
273 { __DRI_IMAGE_FOURCC_NV12, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
274 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
275 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR88, 2 } } },
276
277 { __DRI_IMAGE_FOURCC_NV16, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
278 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
279 { 1, 1, 0, __DRI_IMAGE_FORMAT_GR88, 2 } } },
280
281 /* For YUYV and UYVY buffers, we set up two overlapping DRI images
282 * and treat them as planar buffers in the compositors.
283 * Plane 0 is GR88 and samples YU or YV pairs and places Y into
284 * the R component, while plane 1 is ARGB/ABGR and samples YUYV/UYVY
285 * clusters and places pairs and places U into the G component and
286 * V into A. This lets the texture sampler interpolate the Y
287 * components correctly when sampling from plane 0, and interpolate
288 * U and V correctly when sampling from plane 1. */
289 { __DRI_IMAGE_FOURCC_YUYV, __DRI_IMAGE_COMPONENTS_Y_XUXV, 2,
290 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
291 { 0, 1, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
292 { __DRI_IMAGE_FOURCC_UYVY, __DRI_IMAGE_COMPONENTS_Y_UXVX, 2,
293 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
294 { 0, 1, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } }
295 };
296
297 static const struct {
298 uint64_t modifier;
299 unsigned since_gen;
300 } supported_modifiers[] = {
301 { .modifier = DRM_FORMAT_MOD_LINEAR , .since_gen = 1 },
302 { .modifier = I915_FORMAT_MOD_X_TILED , .since_gen = 1 },
303 { .modifier = I915_FORMAT_MOD_Y_TILED , .since_gen = 6 },
304 { .modifier = I915_FORMAT_MOD_Y_TILED_CCS , .since_gen = 9 },
305 };
306
307 static bool
308 modifier_is_supported(const struct gen_device_info *devinfo,
309 const struct intel_image_format *fmt, int dri_format,
310 uint64_t modifier)
311 {
312 const struct isl_drm_modifier_info *modinfo =
313 isl_drm_modifier_get_info(modifier);
314 int i;
315
316 /* ISL had better know about the modifier */
317 if (!modinfo)
318 return false;
319
320 if (modinfo->aux_usage == ISL_AUX_USAGE_CCS_E) {
321 /* If INTEL_DEBUG=norbc is set, don't support any CCS_E modifiers */
322 if (unlikely(INTEL_DEBUG & DEBUG_NO_RBC))
323 return false;
324
325 /* CCS_E is not supported for planar images */
326 if (fmt && fmt->nplanes > 1)
327 return false;
328
329 if (fmt) {
330 assert(dri_format == 0);
331 dri_format = fmt->planes[0].dri_format;
332 }
333
334 mesa_format format = driImageFormatToGLFormat(dri_format);
335 format = _mesa_get_srgb_format_linear(format);
336 if (!isl_format_supports_ccs_e(devinfo,
337 brw_isl_format_for_mesa_format(format)))
338 return false;
339 }
340
341 for (i = 0; i < ARRAY_SIZE(supported_modifiers); i++) {
342 if (supported_modifiers[i].modifier != modifier)
343 continue;
344
345 return supported_modifiers[i].since_gen <= devinfo->gen;
346 }
347
348 return false;
349 }
350
351 static uint64_t
352 tiling_to_modifier(uint32_t tiling)
353 {
354 static const uint64_t map[] = {
355 [I915_TILING_NONE] = DRM_FORMAT_MOD_LINEAR,
356 [I915_TILING_X] = I915_FORMAT_MOD_X_TILED,
357 [I915_TILING_Y] = I915_FORMAT_MOD_Y_TILED,
358 };
359
360 assert(tiling < ARRAY_SIZE(map));
361
362 return map[tiling];
363 }
364
365 static void
366 intel_image_warn_if_unaligned(__DRIimage *image, const char *func)
367 {
368 uint32_t tiling, swizzle;
369 brw_bo_get_tiling(image->bo, &tiling, &swizzle);
370
371 if (tiling != I915_TILING_NONE && (image->offset & 0xfff)) {
372 _mesa_warning(NULL, "%s: offset 0x%08x not on tile boundary",
373 func, image->offset);
374 }
375 }
376
377 static const struct intel_image_format *
378 intel_image_format_lookup(int fourcc)
379 {
380 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
381 if (intel_image_formats[i].fourcc == fourcc)
382 return &intel_image_formats[i];
383 }
384
385 return NULL;
386 }
387
388 static boolean intel_lookup_fourcc(int dri_format, int *fourcc)
389 {
390 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
391 if (intel_image_formats[i].planes[0].dri_format == dri_format) {
392 *fourcc = intel_image_formats[i].fourcc;
393 return true;
394 }
395 }
396 return false;
397 }
398
399 static __DRIimage *
400 intel_allocate_image(struct intel_screen *screen, int dri_format,
401 void *loaderPrivate)
402 {
403 __DRIimage *image;
404
405 image = calloc(1, sizeof *image);
406 if (image == NULL)
407 return NULL;
408
409 image->screen = screen;
410 image->dri_format = dri_format;
411 image->offset = 0;
412
413 image->format = driImageFormatToGLFormat(dri_format);
414 if (dri_format != __DRI_IMAGE_FORMAT_NONE &&
415 image->format == MESA_FORMAT_NONE) {
416 free(image);
417 return NULL;
418 }
419
420 image->internal_format = _mesa_get_format_base_format(image->format);
421 image->data = loaderPrivate;
422
423 return image;
424 }
425
426 /**
427 * Sets up a DRIImage structure to point to a slice out of a miptree.
428 */
429 static void
430 intel_setup_image_from_mipmap_tree(struct brw_context *brw, __DRIimage *image,
431 struct intel_mipmap_tree *mt, GLuint level,
432 GLuint zoffset)
433 {
434 intel_miptree_make_shareable(brw, mt);
435
436 intel_miptree_check_level_layer(mt, level, zoffset);
437
438 image->width = minify(mt->surf.phys_level0_sa.width,
439 level - mt->first_level);
440 image->height = minify(mt->surf.phys_level0_sa.height,
441 level - mt->first_level);
442 image->pitch = mt->surf.row_pitch;
443
444 image->offset = intel_miptree_get_tile_offsets(mt, level, zoffset,
445 &image->tile_x,
446 &image->tile_y);
447
448 brw_bo_unreference(image->bo);
449 image->bo = mt->bo;
450 brw_bo_reference(mt->bo);
451 }
452
453 static __DRIimage *
454 intel_create_image_from_name(__DRIscreen *dri_screen,
455 int width, int height, int format,
456 int name, int pitch, void *loaderPrivate)
457 {
458 struct intel_screen *screen = dri_screen->driverPrivate;
459 __DRIimage *image;
460 int cpp;
461
462 image = intel_allocate_image(screen, format, loaderPrivate);
463 if (image == NULL)
464 return NULL;
465
466 if (image->format == MESA_FORMAT_NONE)
467 cpp = 1;
468 else
469 cpp = _mesa_get_format_bytes(image->format);
470
471 image->width = width;
472 image->height = height;
473 image->pitch = pitch * cpp;
474 image->bo = brw_bo_gem_create_from_name(screen->bufmgr, "image",
475 name);
476 if (!image->bo) {
477 free(image);
478 return NULL;
479 }
480 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
481
482 return image;
483 }
484
485 static __DRIimage *
486 intel_create_image_from_renderbuffer(__DRIcontext *context,
487 int renderbuffer, void *loaderPrivate)
488 {
489 __DRIimage *image;
490 struct brw_context *brw = context->driverPrivate;
491 struct gl_context *ctx = &brw->ctx;
492 struct gl_renderbuffer *rb;
493 struct intel_renderbuffer *irb;
494
495 rb = _mesa_lookup_renderbuffer(ctx, renderbuffer);
496 if (!rb) {
497 _mesa_error(ctx, GL_INVALID_OPERATION, "glRenderbufferExternalMESA");
498 return NULL;
499 }
500
501 irb = intel_renderbuffer(rb);
502 intel_miptree_make_shareable(brw, irb->mt);
503 image = calloc(1, sizeof *image);
504 if (image == NULL)
505 return NULL;
506
507 image->internal_format = rb->InternalFormat;
508 image->format = rb->Format;
509 image->modifier = tiling_to_modifier(
510 isl_tiling_to_i915_tiling(irb->mt->surf.tiling));
511 image->offset = 0;
512 image->data = loaderPrivate;
513 brw_bo_unreference(image->bo);
514 image->bo = irb->mt->bo;
515 brw_bo_reference(irb->mt->bo);
516 image->width = rb->Width;
517 image->height = rb->Height;
518 image->pitch = irb->mt->surf.row_pitch;
519 image->dri_format = driGLFormatToImageFormat(image->format);
520 image->has_depthstencil = irb->mt->stencil_mt? true : false;
521
522 rb->NeedsFinishRenderTexture = true;
523 return image;
524 }
525
526 static __DRIimage *
527 intel_create_image_from_texture(__DRIcontext *context, int target,
528 unsigned texture, int zoffset,
529 int level,
530 unsigned *error,
531 void *loaderPrivate)
532 {
533 __DRIimage *image;
534 struct brw_context *brw = context->driverPrivate;
535 struct gl_texture_object *obj;
536 struct intel_texture_object *iobj;
537 GLuint face = 0;
538
539 obj = _mesa_lookup_texture(&brw->ctx, texture);
540 if (!obj || obj->Target != target) {
541 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
542 return NULL;
543 }
544
545 if (target == GL_TEXTURE_CUBE_MAP)
546 face = zoffset;
547
548 _mesa_test_texobj_completeness(&brw->ctx, obj);
549 iobj = intel_texture_object(obj);
550 if (!obj->_BaseComplete || (level > 0 && !obj->_MipmapComplete)) {
551 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
552 return NULL;
553 }
554
555 if (level < obj->BaseLevel || level > obj->_MaxLevel) {
556 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
557 return NULL;
558 }
559
560 if (target == GL_TEXTURE_3D && obj->Image[face][level]->Depth < zoffset) {
561 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
562 return NULL;
563 }
564 image = calloc(1, sizeof *image);
565 if (image == NULL) {
566 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
567 return NULL;
568 }
569
570 image->internal_format = obj->Image[face][level]->InternalFormat;
571 image->format = obj->Image[face][level]->TexFormat;
572 image->modifier = tiling_to_modifier(
573 isl_tiling_to_i915_tiling(iobj->mt->surf.tiling));
574 image->data = loaderPrivate;
575 intel_setup_image_from_mipmap_tree(brw, image, iobj->mt, level, zoffset);
576 image->dri_format = driGLFormatToImageFormat(image->format);
577 image->has_depthstencil = iobj->mt->stencil_mt? true : false;
578 if (image->dri_format == MESA_FORMAT_NONE) {
579 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
580 free(image);
581 return NULL;
582 }
583
584 *error = __DRI_IMAGE_ERROR_SUCCESS;
585 return image;
586 }
587
588 static void
589 intel_destroy_image(__DRIimage *image)
590 {
591 brw_bo_unreference(image->bo);
592 free(image);
593 }
594
595 enum modifier_priority {
596 MODIFIER_PRIORITY_INVALID = 0,
597 MODIFIER_PRIORITY_LINEAR,
598 MODIFIER_PRIORITY_X,
599 MODIFIER_PRIORITY_Y,
600 MODIFIER_PRIORITY_Y_CCS,
601 };
602
603 const uint64_t priority_to_modifier[] = {
604 [MODIFIER_PRIORITY_INVALID] = DRM_FORMAT_MOD_INVALID,
605 [MODIFIER_PRIORITY_LINEAR] = DRM_FORMAT_MOD_LINEAR,
606 [MODIFIER_PRIORITY_X] = I915_FORMAT_MOD_X_TILED,
607 [MODIFIER_PRIORITY_Y] = I915_FORMAT_MOD_Y_TILED,
608 [MODIFIER_PRIORITY_Y_CCS] = I915_FORMAT_MOD_Y_TILED_CCS,
609 };
610
611 static uint64_t
612 select_best_modifier(struct gen_device_info *devinfo,
613 int dri_format,
614 const uint64_t *modifiers,
615 const unsigned count)
616 {
617 enum modifier_priority prio = MODIFIER_PRIORITY_INVALID;
618
619 for (int i = 0; i < count; i++) {
620 if (!modifier_is_supported(devinfo, NULL, dri_format, modifiers[i]))
621 continue;
622
623 switch (modifiers[i]) {
624 case I915_FORMAT_MOD_Y_TILED_CCS:
625 prio = MAX2(prio, MODIFIER_PRIORITY_Y_CCS);
626 break;
627 case I915_FORMAT_MOD_Y_TILED:
628 prio = MAX2(prio, MODIFIER_PRIORITY_Y);
629 break;
630 case I915_FORMAT_MOD_X_TILED:
631 prio = MAX2(prio, MODIFIER_PRIORITY_X);
632 break;
633 case DRM_FORMAT_MOD_LINEAR:
634 prio = MAX2(prio, MODIFIER_PRIORITY_LINEAR);
635 break;
636 case DRM_FORMAT_MOD_INVALID:
637 default:
638 break;
639 }
640 }
641
642 return priority_to_modifier[prio];
643 }
644
645 static __DRIimage *
646 intel_create_image_common(__DRIscreen *dri_screen,
647 int width, int height, int format,
648 unsigned int use,
649 const uint64_t *modifiers,
650 unsigned count,
651 void *loaderPrivate)
652 {
653 __DRIimage *image;
654 struct intel_screen *screen = dri_screen->driverPrivate;
655 uint64_t modifier = DRM_FORMAT_MOD_INVALID;
656 bool ok;
657
658 /* Callers of this may specify a modifier, or a dri usage, but not both. The
659 * newer modifier interface deprecates the older usage flags newer modifier
660 * interface deprecates the older usage flags.
661 */
662 assert(!(use && count));
663
664 if (use & __DRI_IMAGE_USE_CURSOR) {
665 if (width != 64 || height != 64)
666 return NULL;
667 modifier = DRM_FORMAT_MOD_LINEAR;
668 }
669
670 if (use & __DRI_IMAGE_USE_LINEAR)
671 modifier = DRM_FORMAT_MOD_LINEAR;
672
673 if (modifier == DRM_FORMAT_MOD_INVALID) {
674 if (modifiers) {
675 /* User requested specific modifiers */
676 modifier = select_best_modifier(&screen->devinfo, format,
677 modifiers, count);
678 if (modifier == DRM_FORMAT_MOD_INVALID)
679 return NULL;
680 } else {
681 /* Historically, X-tiled was the default, and so lack of modifier means
682 * X-tiled.
683 */
684 modifier = I915_FORMAT_MOD_X_TILED;
685 }
686 }
687
688 image = intel_allocate_image(screen, format, loaderPrivate);
689 if (image == NULL)
690 return NULL;
691
692 const struct isl_drm_modifier_info *mod_info =
693 isl_drm_modifier_get_info(modifier);
694
695 struct isl_surf surf;
696 ok = isl_surf_init(&screen->isl_dev, &surf,
697 .dim = ISL_SURF_DIM_2D,
698 .format = brw_isl_format_for_mesa_format(image->format),
699 .width = width,
700 .height = height,
701 .depth = 1,
702 .levels = 1,
703 .array_len = 1,
704 .samples = 1,
705 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
706 ISL_SURF_USAGE_TEXTURE_BIT |
707 ISL_SURF_USAGE_STORAGE_BIT,
708 .tiling_flags = (1 << mod_info->tiling));
709 assert(ok);
710 if (!ok) {
711 free(image);
712 return NULL;
713 }
714
715 struct isl_surf aux_surf;
716 if (mod_info->aux_usage == ISL_AUX_USAGE_CCS_E) {
717 ok = isl_surf_get_ccs_surf(&screen->isl_dev, &surf, &aux_surf, 0);
718 if (!ok) {
719 free(image);
720 return NULL;
721 }
722 } else {
723 assert(mod_info->aux_usage == ISL_AUX_USAGE_NONE);
724 aux_surf.size = 0;
725 }
726
727 /* We request that the bufmgr zero the buffer for us for two reasons:
728 *
729 * 1) If a buffer gets re-used from the pool, we don't want to leak random
730 * garbage from our process to some other.
731 *
732 * 2) For images with CCS_E, we want to ensure that the CCS starts off in
733 * a valid state. A CCS value of 0 indicates that the given block is
734 * in the pass-through state which is what we want.
735 */
736 image->bo = brw_bo_alloc_tiled(screen->bufmgr, "image",
737 surf.size + aux_surf.size,
738 isl_tiling_to_i915_tiling(mod_info->tiling),
739 surf.row_pitch, BO_ALLOC_ZEROED);
740 if (image->bo == NULL) {
741 free(image);
742 return NULL;
743 }
744 image->width = width;
745 image->height = height;
746 image->pitch = surf.row_pitch;
747 image->modifier = modifier;
748
749 if (aux_surf.size) {
750 image->aux_offset = surf.size;
751 image->aux_pitch = aux_surf.row_pitch;
752 }
753
754 return image;
755 }
756
757 static __DRIimage *
758 intel_create_image(__DRIscreen *dri_screen,
759 int width, int height, int format,
760 unsigned int use,
761 void *loaderPrivate)
762 {
763 return intel_create_image_common(dri_screen, width, height, format, use, NULL, 0,
764 loaderPrivate);
765 }
766
767 static void *
768 intel_map_image(__DRIcontext *context, __DRIimage *image,
769 int x0, int y0, int width, int height,
770 unsigned int flags, int *stride, void **map_info)
771 {
772 struct brw_context *brw = NULL;
773 struct brw_bo *bo = NULL;
774 void *raw_data = NULL;
775 GLuint pix_w = 1;
776 GLuint pix_h = 1;
777 GLint pix_bytes = 1;
778
779 if (!context || !image || !stride || !map_info || *map_info)
780 return NULL;
781
782 if (x0 < 0 || x0 >= image->width || width > image->width - x0)
783 return NULL;
784
785 if (y0 < 0 || y0 >= image->height || height > image->height - y0)
786 return NULL;
787
788 if (flags & MAP_INTERNAL_MASK)
789 return NULL;
790
791 brw = context->driverPrivate;
792 bo = image->bo;
793
794 assert(brw);
795 assert(bo);
796
797 /* DRI flags and GL_MAP.*_BIT flags are the same, so just pass them on. */
798 raw_data = brw_bo_map(brw, bo, flags);
799 if (!raw_data)
800 return NULL;
801
802 _mesa_get_format_block_size(image->format, &pix_w, &pix_h);
803 pix_bytes = _mesa_get_format_bytes(image->format);
804
805 assert(pix_w);
806 assert(pix_h);
807 assert(pix_bytes > 0);
808
809 raw_data += (x0 / pix_w) * pix_bytes + (y0 / pix_h) * image->pitch;
810
811 brw_bo_reference(bo);
812
813 *stride = image->pitch;
814 *map_info = bo;
815
816 return raw_data;
817 }
818
819 static void
820 intel_unmap_image(__DRIcontext *context, __DRIimage *image, void *map_info)
821 {
822 struct brw_bo *bo = map_info;
823
824 brw_bo_unmap(bo);
825 brw_bo_unreference(bo);
826 }
827
828 static __DRIimage *
829 intel_create_image_with_modifiers(__DRIscreen *dri_screen,
830 int width, int height, int format,
831 const uint64_t *modifiers,
832 const unsigned count,
833 void *loaderPrivate)
834 {
835 return intel_create_image_common(dri_screen, width, height, format, 0,
836 modifiers, count, loaderPrivate);
837 }
838
839 static GLboolean
840 intel_query_image(__DRIimage *image, int attrib, int *value)
841 {
842 switch (attrib) {
843 case __DRI_IMAGE_ATTRIB_STRIDE:
844 *value = image->pitch;
845 return true;
846 case __DRI_IMAGE_ATTRIB_HANDLE:
847 *value = brw_bo_export_gem_handle(image->bo);
848 return true;
849 case __DRI_IMAGE_ATTRIB_NAME:
850 return !brw_bo_flink(image->bo, (uint32_t *) value);
851 case __DRI_IMAGE_ATTRIB_FORMAT:
852 *value = image->dri_format;
853 return true;
854 case __DRI_IMAGE_ATTRIB_WIDTH:
855 *value = image->width;
856 return true;
857 case __DRI_IMAGE_ATTRIB_HEIGHT:
858 *value = image->height;
859 return true;
860 case __DRI_IMAGE_ATTRIB_COMPONENTS:
861 if (image->planar_format == NULL)
862 return false;
863 *value = image->planar_format->components;
864 return true;
865 case __DRI_IMAGE_ATTRIB_FD:
866 return !brw_bo_gem_export_to_prime(image->bo, value);
867 case __DRI_IMAGE_ATTRIB_FOURCC:
868 return intel_lookup_fourcc(image->dri_format, value);
869 case __DRI_IMAGE_ATTRIB_NUM_PLANES:
870 if (isl_drm_modifier_has_aux(image->modifier)) {
871 assert(!image->planar_format || image->planar_format->nplanes == 1);
872 *value = 2;
873 } else if (image->planar_format) {
874 *value = image->planar_format->nplanes;
875 } else {
876 *value = 1;
877 }
878 return true;
879 case __DRI_IMAGE_ATTRIB_OFFSET:
880 *value = image->offset;
881 return true;
882 case __DRI_IMAGE_ATTRIB_MODIFIER_LOWER:
883 *value = (image->modifier & 0xffffffff);
884 return true;
885 case __DRI_IMAGE_ATTRIB_MODIFIER_UPPER:
886 *value = ((image->modifier >> 32) & 0xffffffff);
887 return true;
888
889 default:
890 return false;
891 }
892 }
893
894 static GLboolean
895 intel_query_format_modifier_attribs(__DRIscreen *dri_screen,
896 uint32_t fourcc, uint64_t modifier,
897 int attrib, uint64_t *value)
898 {
899 struct intel_screen *screen = dri_screen->driverPrivate;
900 const struct intel_image_format *f = intel_image_format_lookup(fourcc);
901
902 if (!modifier_is_supported(&screen->devinfo, f, 0, modifier))
903 return false;
904
905 switch (attrib) {
906 case __DRI_IMAGE_FORMAT_MODIFIER_ATTRIB_PLANE_COUNT:
907 *value = isl_drm_modifier_has_aux(modifier) ? 2 : f->nplanes;
908 return true;
909
910 default:
911 return false;
912 }
913 }
914
915 static __DRIimage *
916 intel_dup_image(__DRIimage *orig_image, void *loaderPrivate)
917 {
918 __DRIimage *image;
919
920 image = calloc(1, sizeof *image);
921 if (image == NULL)
922 return NULL;
923
924 brw_bo_reference(orig_image->bo);
925 image->bo = orig_image->bo;
926 image->internal_format = orig_image->internal_format;
927 image->planar_format = orig_image->planar_format;
928 image->dri_format = orig_image->dri_format;
929 image->format = orig_image->format;
930 image->modifier = orig_image->modifier;
931 image->offset = orig_image->offset;
932 image->width = orig_image->width;
933 image->height = orig_image->height;
934 image->pitch = orig_image->pitch;
935 image->tile_x = orig_image->tile_x;
936 image->tile_y = orig_image->tile_y;
937 image->has_depthstencil = orig_image->has_depthstencil;
938 image->data = loaderPrivate;
939 image->dma_buf_imported = orig_image->dma_buf_imported;
940 image->aux_offset = orig_image->aux_offset;
941 image->aux_pitch = orig_image->aux_pitch;
942
943 memcpy(image->strides, orig_image->strides, sizeof(image->strides));
944 memcpy(image->offsets, orig_image->offsets, sizeof(image->offsets));
945
946 return image;
947 }
948
949 static GLboolean
950 intel_validate_usage(__DRIimage *image, unsigned int use)
951 {
952 if (use & __DRI_IMAGE_USE_CURSOR) {
953 if (image->width != 64 || image->height != 64)
954 return GL_FALSE;
955 }
956
957 return GL_TRUE;
958 }
959
960 static __DRIimage *
961 intel_create_image_from_names(__DRIscreen *dri_screen,
962 int width, int height, int fourcc,
963 int *names, int num_names,
964 int *strides, int *offsets,
965 void *loaderPrivate)
966 {
967 const struct intel_image_format *f = NULL;
968 __DRIimage *image;
969 int i, index;
970
971 if (dri_screen == NULL || names == NULL || num_names != 1)
972 return NULL;
973
974 f = intel_image_format_lookup(fourcc);
975 if (f == NULL)
976 return NULL;
977
978 image = intel_create_image_from_name(dri_screen, width, height,
979 __DRI_IMAGE_FORMAT_NONE,
980 names[0], strides[0],
981 loaderPrivate);
982
983 if (image == NULL)
984 return NULL;
985
986 image->planar_format = f;
987 for (i = 0; i < f->nplanes; i++) {
988 index = f->planes[i].buffer_index;
989 image->offsets[index] = offsets[index];
990 image->strides[index] = strides[index];
991 }
992
993 return image;
994 }
995
996 static __DRIimage *
997 intel_create_image_from_fds_common(__DRIscreen *dri_screen,
998 int width, int height, int fourcc,
999 uint64_t modifier, int *fds, int num_fds,
1000 int *strides, int *offsets,
1001 void *loaderPrivate)
1002 {
1003 struct intel_screen *screen = dri_screen->driverPrivate;
1004 const struct intel_image_format *f;
1005 __DRIimage *image;
1006 int i, index;
1007 bool ok;
1008
1009 if (fds == NULL || num_fds < 1)
1010 return NULL;
1011
1012 f = intel_image_format_lookup(fourcc);
1013 if (f == NULL)
1014 return NULL;
1015
1016 if (modifier != DRM_FORMAT_MOD_INVALID &&
1017 !modifier_is_supported(&screen->devinfo, f, 0, modifier))
1018 return NULL;
1019
1020 if (f->nplanes == 1)
1021 image = intel_allocate_image(screen, f->planes[0].dri_format,
1022 loaderPrivate);
1023 else
1024 image = intel_allocate_image(screen, __DRI_IMAGE_FORMAT_NONE,
1025 loaderPrivate);
1026
1027 if (image == NULL)
1028 return NULL;
1029
1030 image->width = width;
1031 image->height = height;
1032 image->pitch = strides[0];
1033
1034 image->planar_format = f;
1035
1036 if (modifier != DRM_FORMAT_MOD_INVALID) {
1037 const struct isl_drm_modifier_info *mod_info =
1038 isl_drm_modifier_get_info(modifier);
1039 uint32_t tiling = isl_tiling_to_i915_tiling(mod_info->tiling);
1040 image->bo = brw_bo_gem_create_from_prime_tiled(screen->bufmgr, fds[0],
1041 tiling, strides[0]);
1042 } else {
1043 image->bo = brw_bo_gem_create_from_prime(screen->bufmgr, fds[0]);
1044 }
1045
1046 if (image->bo == NULL) {
1047 free(image);
1048 return NULL;
1049 }
1050
1051 /* We only support all planes from the same bo.
1052 * brw_bo_gem_create_from_prime() should return the same pointer for all
1053 * fds received here */
1054 for (i = 1; i < num_fds; i++) {
1055 struct brw_bo *aux = brw_bo_gem_create_from_prime(screen->bufmgr, fds[i]);
1056 brw_bo_unreference(aux);
1057 if (aux != image->bo) {
1058 brw_bo_unreference(image->bo);
1059 free(image);
1060 return NULL;
1061 }
1062 }
1063
1064 if (modifier != DRM_FORMAT_MOD_INVALID)
1065 image->modifier = modifier;
1066 else
1067 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
1068
1069 const struct isl_drm_modifier_info *mod_info =
1070 isl_drm_modifier_get_info(image->modifier);
1071
1072 int size = 0;
1073 struct isl_surf surf;
1074 for (i = 0; i < f->nplanes; i++) {
1075 index = f->planes[i].buffer_index;
1076 image->offsets[index] = offsets[index];
1077 image->strides[index] = strides[index];
1078
1079 mesa_format format = driImageFormatToGLFormat(f->planes[i].dri_format);
1080
1081 ok = isl_surf_init(&screen->isl_dev, &surf,
1082 .dim = ISL_SURF_DIM_2D,
1083 .format = brw_isl_format_for_mesa_format(format),
1084 .width = image->width >> f->planes[i].width_shift,
1085 .height = image->height >> f->planes[i].height_shift,
1086 .depth = 1,
1087 .levels = 1,
1088 .array_len = 1,
1089 .samples = 1,
1090 .row_pitch = strides[index],
1091 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
1092 ISL_SURF_USAGE_TEXTURE_BIT |
1093 ISL_SURF_USAGE_STORAGE_BIT,
1094 .tiling_flags = (1 << mod_info->tiling));
1095 if (!ok) {
1096 brw_bo_unreference(image->bo);
1097 free(image);
1098 return NULL;
1099 }
1100
1101 const int end = offsets[index] + surf.size;
1102 if (size < end)
1103 size = end;
1104 }
1105
1106 if (mod_info->aux_usage == ISL_AUX_USAGE_CCS_E) {
1107 /* Even though we initialize surf in the loop above, we know that
1108 * anything with CCS_E will have exactly one plane so surf is properly
1109 * initialized when we get here.
1110 */
1111 assert(f->nplanes == 1);
1112
1113 image->aux_offset = offsets[1];
1114 image->aux_pitch = strides[1];
1115
1116 /* Scanout hardware requires that the CCS be placed after the main
1117 * surface in memory. We consider any CCS that is placed any earlier in
1118 * memory to be invalid and reject it.
1119 *
1120 * At some point in the future, this restriction may be relaxed if the
1121 * hardware becomes less strict but we may need a new modifier for that.
1122 */
1123 assert(size > 0);
1124 if (image->aux_offset < size) {
1125 brw_bo_unreference(image->bo);
1126 free(image);
1127 return NULL;
1128 }
1129
1130 struct isl_surf aux_surf;
1131 ok = isl_surf_get_ccs_surf(&screen->isl_dev, &surf, &aux_surf,
1132 image->aux_pitch);
1133 if (!ok) {
1134 brw_bo_unreference(image->bo);
1135 free(image);
1136 return NULL;
1137 }
1138
1139 const int end = image->aux_offset + aux_surf.size;
1140 if (size < end)
1141 size = end;
1142 } else {
1143 assert(mod_info->aux_usage == ISL_AUX_USAGE_NONE);
1144 }
1145
1146 /* Check that the requested image actually fits within the BO. 'size'
1147 * is already relative to the offsets, so we don't need to add that. */
1148 if (image->bo->size == 0) {
1149 image->bo->size = size;
1150 } else if (size > image->bo->size) {
1151 brw_bo_unreference(image->bo);
1152 free(image);
1153 return NULL;
1154 }
1155
1156 if (f->nplanes == 1) {
1157 image->offset = image->offsets[0];
1158 intel_image_warn_if_unaligned(image, __func__);
1159 }
1160
1161 return image;
1162 }
1163
1164 static __DRIimage *
1165 intel_create_image_from_fds(__DRIscreen *dri_screen,
1166 int width, int height, int fourcc,
1167 int *fds, int num_fds, int *strides, int *offsets,
1168 void *loaderPrivate)
1169 {
1170 return intel_create_image_from_fds_common(dri_screen, width, height, fourcc,
1171 DRM_FORMAT_MOD_INVALID,
1172 fds, num_fds, strides, offsets,
1173 loaderPrivate);
1174 }
1175
1176 static __DRIimage *
1177 intel_create_image_from_dma_bufs2(__DRIscreen *dri_screen,
1178 int width, int height,
1179 int fourcc, uint64_t modifier,
1180 int *fds, int num_fds,
1181 int *strides, int *offsets,
1182 enum __DRIYUVColorSpace yuv_color_space,
1183 enum __DRISampleRange sample_range,
1184 enum __DRIChromaSiting horizontal_siting,
1185 enum __DRIChromaSiting vertical_siting,
1186 unsigned *error,
1187 void *loaderPrivate)
1188 {
1189 __DRIimage *image;
1190 const struct intel_image_format *f = intel_image_format_lookup(fourcc);
1191
1192 if (!f) {
1193 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
1194 return NULL;
1195 }
1196
1197 image = intel_create_image_from_fds_common(dri_screen, width, height,
1198 fourcc, modifier,
1199 fds, num_fds, strides, offsets,
1200 loaderPrivate);
1201
1202 /*
1203 * Invalid parameters and any inconsistencies between are assumed to be
1204 * checked by the caller. Therefore besides unsupported formats one can fail
1205 * only in allocation.
1206 */
1207 if (!image) {
1208 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
1209 return NULL;
1210 }
1211
1212 image->dma_buf_imported = true;
1213 image->yuv_color_space = yuv_color_space;
1214 image->sample_range = sample_range;
1215 image->horizontal_siting = horizontal_siting;
1216 image->vertical_siting = vertical_siting;
1217
1218 *error = __DRI_IMAGE_ERROR_SUCCESS;
1219 return image;
1220 }
1221
1222 static __DRIimage *
1223 intel_create_image_from_dma_bufs(__DRIscreen *dri_screen,
1224 int width, int height, int fourcc,
1225 int *fds, int num_fds,
1226 int *strides, int *offsets,
1227 enum __DRIYUVColorSpace yuv_color_space,
1228 enum __DRISampleRange sample_range,
1229 enum __DRIChromaSiting horizontal_siting,
1230 enum __DRIChromaSiting vertical_siting,
1231 unsigned *error,
1232 void *loaderPrivate)
1233 {
1234 return intel_create_image_from_dma_bufs2(dri_screen, width, height,
1235 fourcc, DRM_FORMAT_MOD_INVALID,
1236 fds, num_fds, strides, offsets,
1237 yuv_color_space,
1238 sample_range,
1239 horizontal_siting,
1240 vertical_siting,
1241 error,
1242 loaderPrivate);
1243 }
1244
1245 static GLboolean
1246 intel_query_dma_buf_formats(__DRIscreen *screen, int max,
1247 int *formats, int *count)
1248 {
1249 int i, j = 0;
1250
1251 if (max == 0) {
1252 *count = ARRAY_SIZE(intel_image_formats) - 1; /* not SARGB */
1253 return true;
1254 }
1255
1256 for (i = 0; i < (ARRAY_SIZE(intel_image_formats)) && j < max; i++) {
1257 if (intel_image_formats[i].fourcc == __DRI_IMAGE_FOURCC_SARGB8888)
1258 continue;
1259 formats[j++] = intel_image_formats[i].fourcc;
1260 }
1261
1262 *count = j;
1263 return true;
1264 }
1265
1266 static GLboolean
1267 intel_query_dma_buf_modifiers(__DRIscreen *_screen, int fourcc, int max,
1268 uint64_t *modifiers,
1269 unsigned int *external_only,
1270 int *count)
1271 {
1272 struct intel_screen *screen = _screen->driverPrivate;
1273 const struct intel_image_format *f;
1274 int num_mods = 0, i;
1275
1276 f = intel_image_format_lookup(fourcc);
1277 if (f == NULL)
1278 return false;
1279
1280 for (i = 0; i < ARRAY_SIZE(supported_modifiers); i++) {
1281 uint64_t modifier = supported_modifiers[i].modifier;
1282 if (!modifier_is_supported(&screen->devinfo, f, 0, modifier))
1283 continue;
1284
1285 num_mods++;
1286 if (max == 0)
1287 continue;
1288
1289 modifiers[num_mods - 1] = modifier;
1290 if (num_mods >= max)
1291 break;
1292 }
1293
1294 if (external_only != NULL) {
1295 for (i = 0; i < num_mods && i < max; i++) {
1296 if (f->components == __DRI_IMAGE_COMPONENTS_Y_U_V ||
1297 f->components == __DRI_IMAGE_COMPONENTS_Y_UV ||
1298 f->components == __DRI_IMAGE_COMPONENTS_Y_XUXV) {
1299 external_only[i] = GL_TRUE;
1300 }
1301 else {
1302 external_only[i] = GL_FALSE;
1303 }
1304 }
1305 }
1306
1307 *count = num_mods;
1308 return true;
1309 }
1310
1311 static __DRIimage *
1312 intel_from_planar(__DRIimage *parent, int plane, void *loaderPrivate)
1313 {
1314 int width, height, offset, stride, dri_format, index;
1315 const struct intel_image_format *f;
1316 __DRIimage *image;
1317
1318 if (parent == NULL) {
1319 return NULL;
1320 } else if (parent->planar_format == NULL) {
1321 const bool is_aux =
1322 isl_drm_modifier_has_aux(parent->modifier) && plane == 1;
1323 if (!is_aux)
1324 return NULL;
1325
1326 width = parent->width;
1327 height = parent->height;
1328 dri_format = parent->dri_format;
1329 offset = parent->aux_offset;
1330 stride = parent->aux_pitch;
1331 } else {
1332 /* Planar formats don't support aux buffers/images */
1333 assert(!isl_drm_modifier_has_aux(parent->modifier));
1334 f = parent->planar_format;
1335
1336 if (plane >= f->nplanes)
1337 return NULL;
1338
1339 width = parent->width >> f->planes[plane].width_shift;
1340 height = parent->height >> f->planes[plane].height_shift;
1341 dri_format = f->planes[plane].dri_format;
1342 index = f->planes[plane].buffer_index;
1343 offset = parent->offsets[index];
1344 stride = parent->strides[index];
1345
1346 if (offset + height * stride > parent->bo->size) {
1347 _mesa_warning(NULL, "intel_create_sub_image: subimage out of bounds");
1348 return NULL;
1349 }
1350 }
1351
1352 image = intel_allocate_image(parent->screen, dri_format, loaderPrivate);
1353 if (image == NULL)
1354 return NULL;
1355
1356 image->bo = parent->bo;
1357 brw_bo_reference(parent->bo);
1358 image->modifier = parent->modifier;
1359
1360 image->width = width;
1361 image->height = height;
1362 image->pitch = stride;
1363 image->offset = offset;
1364
1365 intel_image_warn_if_unaligned(image, __func__);
1366
1367 return image;
1368 }
1369
1370 static const __DRIimageExtension intelImageExtension = {
1371 .base = { __DRI_IMAGE, 16 },
1372
1373 .createImageFromName = intel_create_image_from_name,
1374 .createImageFromRenderbuffer = intel_create_image_from_renderbuffer,
1375 .destroyImage = intel_destroy_image,
1376 .createImage = intel_create_image,
1377 .queryImage = intel_query_image,
1378 .dupImage = intel_dup_image,
1379 .validateUsage = intel_validate_usage,
1380 .createImageFromNames = intel_create_image_from_names,
1381 .fromPlanar = intel_from_planar,
1382 .createImageFromTexture = intel_create_image_from_texture,
1383 .createImageFromFds = intel_create_image_from_fds,
1384 .createImageFromDmaBufs = intel_create_image_from_dma_bufs,
1385 .blitImage = NULL,
1386 .getCapabilities = NULL,
1387 .mapImage = intel_map_image,
1388 .unmapImage = intel_unmap_image,
1389 .createImageWithModifiers = intel_create_image_with_modifiers,
1390 .createImageFromDmaBufs2 = intel_create_image_from_dma_bufs2,
1391 .queryDmaBufFormats = intel_query_dma_buf_formats,
1392 .queryDmaBufModifiers = intel_query_dma_buf_modifiers,
1393 .queryDmaBufFormatModifierAttribs = intel_query_format_modifier_attribs,
1394 };
1395
1396 static uint64_t
1397 get_aperture_size(int fd)
1398 {
1399 struct drm_i915_gem_get_aperture aperture;
1400
1401 if (drmIoctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture) != 0)
1402 return 0;
1403
1404 return aperture.aper_size;
1405 }
1406
1407 static int
1408 brw_query_renderer_integer(__DRIscreen *dri_screen,
1409 int param, unsigned int *value)
1410 {
1411 const struct intel_screen *const screen =
1412 (struct intel_screen *) dri_screen->driverPrivate;
1413
1414 switch (param) {
1415 case __DRI2_RENDERER_VENDOR_ID:
1416 value[0] = 0x8086;
1417 return 0;
1418 case __DRI2_RENDERER_DEVICE_ID:
1419 value[0] = screen->deviceID;
1420 return 0;
1421 case __DRI2_RENDERER_ACCELERATED:
1422 value[0] = 1;
1423 return 0;
1424 case __DRI2_RENDERER_VIDEO_MEMORY: {
1425 /* Once a batch uses more than 75% of the maximum mappable size, we
1426 * assume that there's some fragmentation, and we start doing extra
1427 * flushing, etc. That's the big cliff apps will care about.
1428 */
1429 const unsigned gpu_mappable_megabytes =
1430 screen->aperture_threshold / (1024 * 1024);
1431
1432 const long system_memory_pages = sysconf(_SC_PHYS_PAGES);
1433 const long system_page_size = sysconf(_SC_PAGE_SIZE);
1434
1435 if (system_memory_pages <= 0 || system_page_size <= 0)
1436 return -1;
1437
1438 const uint64_t system_memory_bytes = (uint64_t) system_memory_pages
1439 * (uint64_t) system_page_size;
1440
1441 const unsigned system_memory_megabytes =
1442 (unsigned) (system_memory_bytes / (1024 * 1024));
1443
1444 value[0] = MIN2(system_memory_megabytes, gpu_mappable_megabytes);
1445 return 0;
1446 }
1447 case __DRI2_RENDERER_UNIFIED_MEMORY_ARCHITECTURE:
1448 value[0] = 1;
1449 return 0;
1450 case __DRI2_RENDERER_HAS_TEXTURE_3D:
1451 value[0] = 1;
1452 return 0;
1453 case __DRI2_RENDERER_HAS_CONTEXT_PRIORITY:
1454 value[0] = 0;
1455 if (brw_hw_context_set_priority(screen->bufmgr,
1456 0, BRW_CONTEXT_HIGH_PRIORITY) == 0)
1457 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_HIGH;
1458 if (brw_hw_context_set_priority(screen->bufmgr,
1459 0, BRW_CONTEXT_LOW_PRIORITY) == 0)
1460 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_LOW;
1461 /* reset to default last, just in case */
1462 if (brw_hw_context_set_priority(screen->bufmgr,
1463 0, BRW_CONTEXT_MEDIUM_PRIORITY) == 0)
1464 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_MEDIUM;
1465 return 0;
1466 case __DRI2_RENDERER_HAS_FRAMEBUFFER_SRGB:
1467 value[0] = 1;
1468 return 0;
1469 default:
1470 return driQueryRendererIntegerCommon(dri_screen, param, value);
1471 }
1472
1473 return -1;
1474 }
1475
1476 static int
1477 brw_query_renderer_string(__DRIscreen *dri_screen,
1478 int param, const char **value)
1479 {
1480 const struct intel_screen *screen =
1481 (struct intel_screen *) dri_screen->driverPrivate;
1482
1483 switch (param) {
1484 case __DRI2_RENDERER_VENDOR_ID:
1485 value[0] = brw_vendor_string;
1486 return 0;
1487 case __DRI2_RENDERER_DEVICE_ID:
1488 value[0] = brw_get_renderer_string(screen);
1489 return 0;
1490 default:
1491 break;
1492 }
1493
1494 return -1;
1495 }
1496
1497 static const __DRI2rendererQueryExtension intelRendererQueryExtension = {
1498 .base = { __DRI2_RENDERER_QUERY, 1 },
1499
1500 .queryInteger = brw_query_renderer_integer,
1501 .queryString = brw_query_renderer_string
1502 };
1503
1504 static const __DRIrobustnessExtension dri2Robustness = {
1505 .base = { __DRI2_ROBUSTNESS, 1 }
1506 };
1507
1508 static const __DRIextension *screenExtensions[] = {
1509 &intelTexBufferExtension.base,
1510 &intelFenceExtension.base,
1511 &intelFlushExtension.base,
1512 &intelImageExtension.base,
1513 &intelRendererQueryExtension.base,
1514 &dri2ConfigQueryExtension.base,
1515 &dri2NoErrorExtension.base,
1516 NULL
1517 };
1518
1519 static const __DRIextension *intelRobustScreenExtensions[] = {
1520 &intelTexBufferExtension.base,
1521 &intelFenceExtension.base,
1522 &intelFlushExtension.base,
1523 &intelImageExtension.base,
1524 &intelRendererQueryExtension.base,
1525 &dri2ConfigQueryExtension.base,
1526 &dri2Robustness.base,
1527 &dri2NoErrorExtension.base,
1528 NULL
1529 };
1530
1531 static int
1532 intel_get_param(struct intel_screen *screen, int param, int *value)
1533 {
1534 int ret = 0;
1535 struct drm_i915_getparam gp;
1536
1537 memset(&gp, 0, sizeof(gp));
1538 gp.param = param;
1539 gp.value = value;
1540
1541 if (drmIoctl(screen->driScrnPriv->fd, DRM_IOCTL_I915_GETPARAM, &gp) == -1) {
1542 ret = -errno;
1543 if (ret != -EINVAL)
1544 _mesa_warning(NULL, "drm_i915_getparam: %d", ret);
1545 }
1546
1547 return ret;
1548 }
1549
1550 static bool
1551 intel_get_boolean(struct intel_screen *screen, int param)
1552 {
1553 int value = 0;
1554 return (intel_get_param(screen, param, &value) == 0) && value;
1555 }
1556
1557 static int
1558 intel_get_integer(struct intel_screen *screen, int param)
1559 {
1560 int value = -1;
1561
1562 if (intel_get_param(screen, param, &value) == 0)
1563 return value;
1564
1565 return -1;
1566 }
1567
1568 static void
1569 intelDestroyScreen(__DRIscreen * sPriv)
1570 {
1571 struct intel_screen *screen = sPriv->driverPrivate;
1572
1573 brw_bufmgr_destroy(screen->bufmgr);
1574 driDestroyOptionInfo(&screen->optionCache);
1575
1576 disk_cache_destroy(screen->disk_cache);
1577
1578 ralloc_free(screen);
1579 sPriv->driverPrivate = NULL;
1580 }
1581
1582
1583 /**
1584 * Create a gl_framebuffer and attach it to __DRIdrawable::driverPrivate.
1585 *
1586 *_This implements driDriverAPI::createNewDrawable, which the DRI layer calls
1587 * when creating a EGLSurface, GLXDrawable, or GLXPixmap. Despite the name,
1588 * this does not allocate GPU memory.
1589 */
1590 static GLboolean
1591 intelCreateBuffer(__DRIscreen *dri_screen,
1592 __DRIdrawable * driDrawPriv,
1593 const struct gl_config * mesaVis, GLboolean isPixmap)
1594 {
1595 struct intel_renderbuffer *rb;
1596 struct intel_screen *screen = (struct intel_screen *)
1597 dri_screen->driverPrivate;
1598 mesa_format rgbFormat;
1599 unsigned num_samples =
1600 intel_quantize_num_samples(screen, mesaVis->samples);
1601
1602 if (isPixmap)
1603 return false;
1604
1605 struct gl_framebuffer *fb = CALLOC_STRUCT(gl_framebuffer);
1606 if (!fb)
1607 return false;
1608
1609 _mesa_initialize_window_framebuffer(fb, mesaVis);
1610
1611 if (screen->winsys_msaa_samples_override != -1) {
1612 num_samples = screen->winsys_msaa_samples_override;
1613 fb->Visual.samples = num_samples;
1614 }
1615
1616 if (mesaVis->redBits == 10 && mesaVis->alphaBits > 0) {
1617 rgbFormat = mesaVis->redMask == 0x3ff00000 ? MESA_FORMAT_B10G10R10A2_UNORM
1618 : MESA_FORMAT_R10G10B10A2_UNORM;
1619 } else if (mesaVis->redBits == 10) {
1620 rgbFormat = mesaVis->redMask == 0x3ff00000 ? MESA_FORMAT_B10G10R10X2_UNORM
1621 : MESA_FORMAT_R10G10B10X2_UNORM;
1622 } else if (mesaVis->redBits == 5) {
1623 rgbFormat = mesaVis->redMask == 0x1f ? MESA_FORMAT_R5G6B5_UNORM
1624 : MESA_FORMAT_B5G6R5_UNORM;
1625 } else if (mesaVis->sRGBCapable) {
1626 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1627 : MESA_FORMAT_B8G8R8A8_SRGB;
1628 } else if (mesaVis->alphaBits == 0) {
1629 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8X8_UNORM
1630 : MESA_FORMAT_B8G8R8X8_UNORM;
1631 } else {
1632 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1633 : MESA_FORMAT_B8G8R8A8_SRGB;
1634 fb->Visual.sRGBCapable = true;
1635 }
1636
1637 /* mesaVis->sRGBCapable was set, user is asking for sRGB */
1638 bool srgb_cap_set = mesaVis->redBits >= 8 && mesaVis->sRGBCapable;
1639
1640 /* setup the hardware-based renderbuffers */
1641 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1642 _mesa_attach_and_own_rb(fb, BUFFER_FRONT_LEFT, &rb->Base.Base);
1643 rb->need_srgb = srgb_cap_set;
1644
1645 if (mesaVis->doubleBufferMode) {
1646 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1647 _mesa_attach_and_own_rb(fb, BUFFER_BACK_LEFT, &rb->Base.Base);
1648 rb->need_srgb = srgb_cap_set;
1649 }
1650
1651 /*
1652 * Assert here that the gl_config has an expected depth/stencil bit
1653 * combination: one of d24/s8, d16/s0, d0/s0. (See intelInitScreen2(),
1654 * which constructs the advertised configs.)
1655 */
1656 if (mesaVis->depthBits == 24) {
1657 assert(mesaVis->stencilBits == 8);
1658
1659 if (screen->devinfo.has_hiz_and_separate_stencil) {
1660 rb = intel_create_private_renderbuffer(screen,
1661 MESA_FORMAT_Z24_UNORM_X8_UINT,
1662 num_samples);
1663 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1664 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_S_UINT8,
1665 num_samples);
1666 _mesa_attach_and_own_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1667 } else {
1668 /*
1669 * Use combined depth/stencil. Note that the renderbuffer is
1670 * attached to two attachment points.
1671 */
1672 rb = intel_create_private_renderbuffer(screen,
1673 MESA_FORMAT_Z24_UNORM_S8_UINT,
1674 num_samples);
1675 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1676 _mesa_attach_and_reference_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1677 }
1678 }
1679 else if (mesaVis->depthBits == 16) {
1680 assert(mesaVis->stencilBits == 0);
1681 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_Z_UNORM16,
1682 num_samples);
1683 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1684 }
1685 else {
1686 assert(mesaVis->depthBits == 0);
1687 assert(mesaVis->stencilBits == 0);
1688 }
1689
1690 /* now add any/all software-based renderbuffers we may need */
1691 _swrast_add_soft_renderbuffers(fb,
1692 false, /* never sw color */
1693 false, /* never sw depth */
1694 false, /* never sw stencil */
1695 mesaVis->accumRedBits > 0,
1696 false, /* never sw alpha */
1697 false /* never sw aux */ );
1698 driDrawPriv->driverPrivate = fb;
1699
1700 return true;
1701 }
1702
1703 static void
1704 intelDestroyBuffer(__DRIdrawable * driDrawPriv)
1705 {
1706 struct gl_framebuffer *fb = driDrawPriv->driverPrivate;
1707
1708 _mesa_reference_framebuffer(&fb, NULL);
1709 }
1710
1711 static void
1712 intel_cs_timestamp_frequency(struct intel_screen *screen)
1713 {
1714 /* We shouldn't need to update gen_device_info.timestamp_frequency prior to
1715 * gen10, PCI-id is enough to figure it out.
1716 */
1717 assert(screen->devinfo.gen >= 10);
1718
1719 int ret, freq;
1720
1721 ret = intel_get_param(screen, I915_PARAM_CS_TIMESTAMP_FREQUENCY,
1722 &freq);
1723 if (ret < 0) {
1724 _mesa_warning(NULL,
1725 "Kernel 4.15 required to read the CS timestamp frequency.\n");
1726 return;
1727 }
1728
1729 screen->devinfo.timestamp_frequency = freq;
1730 }
1731
1732 static void
1733 intel_detect_sseu(struct intel_screen *screen)
1734 {
1735 assert(screen->devinfo.gen >= 8);
1736 int ret;
1737
1738 screen->subslice_total = -1;
1739 screen->eu_total = -1;
1740
1741 ret = intel_get_param(screen, I915_PARAM_SUBSLICE_TOTAL,
1742 &screen->subslice_total);
1743 if (ret < 0 && ret != -EINVAL)
1744 goto err_out;
1745
1746 ret = intel_get_param(screen,
1747 I915_PARAM_EU_TOTAL, &screen->eu_total);
1748 if (ret < 0 && ret != -EINVAL)
1749 goto err_out;
1750
1751 /* Without this information, we cannot get the right Braswell brandstrings,
1752 * and we have to use conservative numbers for GPGPU on many platforms, but
1753 * otherwise, things will just work.
1754 */
1755 if (screen->subslice_total < 1 || screen->eu_total < 1)
1756 _mesa_warning(NULL,
1757 "Kernel 4.1 required to properly query GPU properties.\n");
1758
1759 return;
1760
1761 err_out:
1762 screen->subslice_total = -1;
1763 screen->eu_total = -1;
1764 _mesa_warning(NULL, "Failed to query GPU properties (%s).\n", strerror(-ret));
1765 }
1766
1767 static bool
1768 intel_init_bufmgr(struct intel_screen *screen)
1769 {
1770 __DRIscreen *dri_screen = screen->driScrnPriv;
1771
1772 if (getenv("INTEL_NO_HW") != NULL)
1773 screen->no_hw = true;
1774
1775 screen->bufmgr = brw_bufmgr_init(&screen->devinfo, dri_screen->fd);
1776 if (screen->bufmgr == NULL) {
1777 fprintf(stderr, "[%s:%u] Error initializing buffer manager.\n",
1778 __func__, __LINE__);
1779 return false;
1780 }
1781
1782 if (!intel_get_boolean(screen, I915_PARAM_HAS_EXEC_NO_RELOC)) {
1783 fprintf(stderr, "[%s: %u] Kernel 3.9 required.\n", __func__, __LINE__);
1784 return false;
1785 }
1786
1787 return true;
1788 }
1789
1790 static bool
1791 intel_detect_swizzling(struct intel_screen *screen)
1792 {
1793 struct brw_bo *buffer;
1794 unsigned flags = 0;
1795 uint32_t aligned_pitch;
1796 uint32_t tiling = I915_TILING_X;
1797 uint32_t swizzle_mode = 0;
1798
1799 buffer = brw_bo_alloc_tiled_2d(screen->bufmgr, "swizzle test",
1800 64, 64, 4, tiling, &aligned_pitch, flags);
1801 if (buffer == NULL)
1802 return false;
1803
1804 brw_bo_get_tiling(buffer, &tiling, &swizzle_mode);
1805 brw_bo_unreference(buffer);
1806
1807 if (swizzle_mode == I915_BIT_6_SWIZZLE_NONE)
1808 return false;
1809 else
1810 return true;
1811 }
1812
1813 static int
1814 intel_detect_timestamp(struct intel_screen *screen)
1815 {
1816 uint64_t dummy = 0, last = 0;
1817 int upper, lower, loops;
1818
1819 /* On 64bit systems, some old kernels trigger a hw bug resulting in the
1820 * TIMESTAMP register being shifted and the low 32bits always zero.
1821 *
1822 * More recent kernels offer an interface to read the full 36bits
1823 * everywhere.
1824 */
1825 if (brw_reg_read(screen->bufmgr, TIMESTAMP | 1, &dummy) == 0)
1826 return 3;
1827
1828 /* Determine if we have a 32bit or 64bit kernel by inspecting the
1829 * upper 32bits for a rapidly changing timestamp.
1830 */
1831 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &last))
1832 return 0;
1833
1834 upper = lower = 0;
1835 for (loops = 0; loops < 10; loops++) {
1836 /* The TIMESTAMP should change every 80ns, so several round trips
1837 * through the kernel should be enough to advance it.
1838 */
1839 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &dummy))
1840 return 0;
1841
1842 upper += (dummy >> 32) != (last >> 32);
1843 if (upper > 1) /* beware 32bit counter overflow */
1844 return 2; /* upper dword holds the low 32bits of the timestamp */
1845
1846 lower += (dummy & 0xffffffff) != (last & 0xffffffff);
1847 if (lower > 1)
1848 return 1; /* timestamp is unshifted */
1849
1850 last = dummy;
1851 }
1852
1853 /* No advancement? No timestamp! */
1854 return 0;
1855 }
1856
1857 /**
1858 * Test if we can use MI_LOAD_REGISTER_MEM from an untrusted batchbuffer.
1859 *
1860 * Some combinations of hardware and kernel versions allow this feature,
1861 * while others don't. Instead of trying to enumerate every case, just
1862 * try and write a register and see if works.
1863 */
1864 static bool
1865 intel_detect_pipelined_register(struct intel_screen *screen,
1866 int reg, uint32_t expected_value, bool reset)
1867 {
1868 if (screen->no_hw)
1869 return false;
1870
1871 struct brw_bo *results, *bo;
1872 uint32_t *batch;
1873 uint32_t offset = 0;
1874 void *map;
1875 bool success = false;
1876
1877 /* Create a zero'ed temporary buffer for reading our results */
1878 results = brw_bo_alloc(screen->bufmgr, "registers", 4096, 0);
1879 if (results == NULL)
1880 goto err;
1881
1882 bo = brw_bo_alloc(screen->bufmgr, "batchbuffer", 4096, 0);
1883 if (bo == NULL)
1884 goto err_results;
1885
1886 map = brw_bo_map(NULL, bo, MAP_WRITE);
1887 if (!map)
1888 goto err_batch;
1889
1890 batch = map;
1891
1892 /* Write the register. */
1893 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1894 *batch++ = reg;
1895 *batch++ = expected_value;
1896
1897 /* Save the register's value back to the buffer. */
1898 *batch++ = MI_STORE_REGISTER_MEM | (3 - 2);
1899 *batch++ = reg;
1900 struct drm_i915_gem_relocation_entry reloc = {
1901 .offset = (char *) batch - (char *) map,
1902 .delta = offset * sizeof(uint32_t),
1903 .target_handle = results->gem_handle,
1904 .read_domains = I915_GEM_DOMAIN_INSTRUCTION,
1905 .write_domain = I915_GEM_DOMAIN_INSTRUCTION,
1906 };
1907 *batch++ = reloc.presumed_offset + reloc.delta;
1908
1909 /* And afterwards clear the register */
1910 if (reset) {
1911 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1912 *batch++ = reg;
1913 *batch++ = 0;
1914 }
1915
1916 *batch++ = MI_BATCH_BUFFER_END;
1917
1918 struct drm_i915_gem_exec_object2 exec_objects[2] = {
1919 {
1920 .handle = results->gem_handle,
1921 },
1922 {
1923 .handle = bo->gem_handle,
1924 .relocation_count = 1,
1925 .relocs_ptr = (uintptr_t) &reloc,
1926 }
1927 };
1928
1929 struct drm_i915_gem_execbuffer2 execbuf = {
1930 .buffers_ptr = (uintptr_t) exec_objects,
1931 .buffer_count = 2,
1932 .batch_len = ALIGN((char *) batch - (char *) map, 8),
1933 .flags = I915_EXEC_RENDER,
1934 };
1935
1936 /* Don't bother with error checking - if the execbuf fails, the
1937 * value won't be written and we'll just report that there's no access.
1938 */
1939 __DRIscreen *dri_screen = screen->driScrnPriv;
1940 drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf);
1941
1942 /* Check whether the value got written. */
1943 void *results_map = brw_bo_map(NULL, results, MAP_READ);
1944 if (results_map) {
1945 success = *((uint32_t *)results_map + offset) == expected_value;
1946 brw_bo_unmap(results);
1947 }
1948
1949 err_batch:
1950 brw_bo_unreference(bo);
1951 err_results:
1952 brw_bo_unreference(results);
1953 err:
1954 return success;
1955 }
1956
1957 static bool
1958 intel_detect_pipelined_so(struct intel_screen *screen)
1959 {
1960 const struct gen_device_info *devinfo = &screen->devinfo;
1961
1962 /* Supposedly, Broadwell just works. */
1963 if (devinfo->gen >= 8)
1964 return true;
1965
1966 if (devinfo->gen <= 6)
1967 return false;
1968
1969 /* See the big explanation about command parser versions below */
1970 if (screen->cmd_parser_version >= (devinfo->is_haswell ? 7 : 2))
1971 return true;
1972
1973 /* We use SO_WRITE_OFFSET0 since you're supposed to write it (unlike the
1974 * statistics registers), and we already reset it to zero before using it.
1975 */
1976 return intel_detect_pipelined_register(screen,
1977 GEN7_SO_WRITE_OFFSET(0),
1978 0x1337d0d0,
1979 false);
1980 }
1981
1982 /**
1983 * Return array of MSAA modes supported by the hardware. The array is
1984 * zero-terminated and sorted in decreasing order.
1985 */
1986 const int*
1987 intel_supported_msaa_modes(const struct intel_screen *screen)
1988 {
1989 static const int gen9_modes[] = {16, 8, 4, 2, 0, -1};
1990 static const int gen8_modes[] = {8, 4, 2, 0, -1};
1991 static const int gen7_modes[] = {8, 4, 0, -1};
1992 static const int gen6_modes[] = {4, 0, -1};
1993 static const int gen4_modes[] = {0, -1};
1994
1995 if (screen->devinfo.gen >= 9) {
1996 return gen9_modes;
1997 } else if (screen->devinfo.gen >= 8) {
1998 return gen8_modes;
1999 } else if (screen->devinfo.gen >= 7) {
2000 return gen7_modes;
2001 } else if (screen->devinfo.gen == 6) {
2002 return gen6_modes;
2003 } else {
2004 return gen4_modes;
2005 }
2006 }
2007
2008 static unsigned
2009 intel_loader_get_cap(const __DRIscreen *dri_screen, enum dri_loader_cap cap)
2010 {
2011 if (dri_screen->dri2.loader && dri_screen->dri2.loader->base.version >= 4 &&
2012 dri_screen->dri2.loader->getCapability)
2013 return dri_screen->dri2.loader->getCapability(dri_screen->loaderPrivate, cap);
2014
2015 if (dri_screen->image.loader && dri_screen->image.loader->base.version >= 2 &&
2016 dri_screen->image.loader->getCapability)
2017 return dri_screen->image.loader->getCapability(dri_screen->loaderPrivate, cap);
2018
2019 return 0;
2020 }
2021
2022 static __DRIconfig**
2023 intel_screen_make_configs(__DRIscreen *dri_screen)
2024 {
2025 static const mesa_format formats[] = {
2026 MESA_FORMAT_B5G6R5_UNORM,
2027 MESA_FORMAT_B8G8R8A8_UNORM,
2028 MESA_FORMAT_B8G8R8X8_UNORM,
2029
2030 MESA_FORMAT_B8G8R8A8_SRGB,
2031
2032 /* For 10 bpc, 30 bit depth framebuffers. */
2033 MESA_FORMAT_B10G10R10A2_UNORM,
2034 MESA_FORMAT_B10G10R10X2_UNORM,
2035
2036 /* The 32-bit RGBA format must not precede the 32-bit BGRA format.
2037 * Likewise for RGBX and BGRX. Otherwise, the GLX client and the GLX
2038 * server may disagree on which format the GLXFBConfig represents,
2039 * resulting in swapped color channels.
2040 *
2041 * The problem, as of 2017-05-30:
2042 * When matching a GLXFBConfig to a __DRIconfig, GLX ignores the channel
2043 * order and chooses the first __DRIconfig with the expected channel
2044 * sizes. Specifically, GLX compares the GLXFBConfig's and __DRIconfig's
2045 * __DRI_ATTRIB_{CHANNEL}_SIZE but ignores __DRI_ATTRIB_{CHANNEL}_MASK.
2046 *
2047 * EGL does not suffer from this problem. It correctly compares the
2048 * channel masks when matching EGLConfig to __DRIconfig.
2049 */
2050
2051 /* Required by Android, for HAL_PIXEL_FORMAT_RGBA_8888. */
2052 MESA_FORMAT_R8G8B8A8_UNORM,
2053
2054 /* Required by Android, for HAL_PIXEL_FORMAT_RGBX_8888. */
2055 MESA_FORMAT_R8G8B8X8_UNORM,
2056 };
2057
2058 /* GLX_SWAP_COPY_OML is not supported due to page flipping. */
2059 static const GLenum back_buffer_modes[] = {
2060 __DRI_ATTRIB_SWAP_UNDEFINED, __DRI_ATTRIB_SWAP_NONE
2061 };
2062
2063 static const uint8_t singlesample_samples[1] = {0};
2064
2065 struct intel_screen *screen = dri_screen->driverPrivate;
2066 const struct gen_device_info *devinfo = &screen->devinfo;
2067 uint8_t depth_bits[4], stencil_bits[4];
2068 __DRIconfig **configs = NULL;
2069
2070 /* Expose only BGRA ordering if the loader doesn't support RGBA ordering. */
2071 unsigned num_formats;
2072 if (intel_loader_get_cap(dri_screen, DRI_LOADER_CAP_RGBA_ORDERING))
2073 num_formats = ARRAY_SIZE(formats);
2074 else
2075 num_formats = ARRAY_SIZE(formats) - 2; /* all - RGBA_ORDERING formats */
2076
2077 /* Shall we expose 10 bpc formats? */
2078 bool allow_rgb10_configs = driQueryOptionb(&screen->optionCache,
2079 "allow_rgb10_configs");
2080
2081 /* Generate singlesample configs without accumulation buffer. */
2082 for (unsigned i = 0; i < num_formats; i++) {
2083 __DRIconfig **new_configs;
2084 int num_depth_stencil_bits = 2;
2085
2086 if (!allow_rgb10_configs &&
2087 (formats[i] == MESA_FORMAT_B10G10R10A2_UNORM ||
2088 formats[i] == MESA_FORMAT_B10G10R10X2_UNORM))
2089 continue;
2090
2091 /* Starting with DRI2 protocol version 1.1 we can request a depth/stencil
2092 * buffer that has a different number of bits per pixel than the color
2093 * buffer, gen >= 6 supports this.
2094 */
2095 depth_bits[0] = 0;
2096 stencil_bits[0] = 0;
2097
2098 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2099 depth_bits[1] = 16;
2100 stencil_bits[1] = 0;
2101 if (devinfo->gen >= 6) {
2102 depth_bits[2] = 24;
2103 stencil_bits[2] = 8;
2104 num_depth_stencil_bits = 3;
2105 }
2106 } else {
2107 depth_bits[1] = 24;
2108 stencil_bits[1] = 8;
2109 }
2110
2111 new_configs = driCreateConfigs(formats[i],
2112 depth_bits,
2113 stencil_bits,
2114 num_depth_stencil_bits,
2115 back_buffer_modes, 2,
2116 singlesample_samples, 1,
2117 false, false);
2118 configs = driConcatConfigs(configs, new_configs);
2119 }
2120
2121 /* Generate the minimum possible set of configs that include an
2122 * accumulation buffer.
2123 */
2124 for (unsigned i = 0; i < num_formats; i++) {
2125 __DRIconfig **new_configs;
2126
2127 if (!allow_rgb10_configs &&
2128 (formats[i] == MESA_FORMAT_B10G10R10A2_UNORM ||
2129 formats[i] == MESA_FORMAT_B10G10R10X2_UNORM))
2130 continue;
2131
2132 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2133 depth_bits[0] = 16;
2134 stencil_bits[0] = 0;
2135 } else {
2136 depth_bits[0] = 24;
2137 stencil_bits[0] = 8;
2138 }
2139
2140 new_configs = driCreateConfigs(formats[i],
2141 depth_bits, stencil_bits, 1,
2142 back_buffer_modes, 1,
2143 singlesample_samples, 1,
2144 true, false);
2145 configs = driConcatConfigs(configs, new_configs);
2146 }
2147
2148 /* Generate multisample configs.
2149 *
2150 * This loop breaks early, and hence is a no-op, on gen < 6.
2151 *
2152 * Multisample configs must follow the singlesample configs in order to
2153 * work around an X server bug present in 1.12. The X server chooses to
2154 * associate the first listed RGBA888-Z24S8 config, regardless of its
2155 * sample count, with the 32-bit depth visual used for compositing.
2156 *
2157 * Only doublebuffer configs with GLX_SWAP_UNDEFINED_OML behavior are
2158 * supported. Singlebuffer configs are not supported because no one wants
2159 * them.
2160 */
2161 for (unsigned i = 0; i < num_formats; i++) {
2162 if (devinfo->gen < 6)
2163 break;
2164
2165 if (!allow_rgb10_configs &&
2166 (formats[i] == MESA_FORMAT_B10G10R10A2_UNORM ||
2167 formats[i] == MESA_FORMAT_B10G10R10X2_UNORM))
2168 continue;
2169
2170 __DRIconfig **new_configs;
2171 const int num_depth_stencil_bits = 2;
2172 int num_msaa_modes = 0;
2173 const uint8_t *multisample_samples = NULL;
2174
2175 depth_bits[0] = 0;
2176 stencil_bits[0] = 0;
2177
2178 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2179 depth_bits[1] = 16;
2180 stencil_bits[1] = 0;
2181 } else {
2182 depth_bits[1] = 24;
2183 stencil_bits[1] = 8;
2184 }
2185
2186 if (devinfo->gen >= 9) {
2187 static const uint8_t multisample_samples_gen9[] = {2, 4, 8, 16};
2188 multisample_samples = multisample_samples_gen9;
2189 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen9);
2190 } else if (devinfo->gen == 8) {
2191 static const uint8_t multisample_samples_gen8[] = {2, 4, 8};
2192 multisample_samples = multisample_samples_gen8;
2193 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen8);
2194 } else if (devinfo->gen == 7) {
2195 static const uint8_t multisample_samples_gen7[] = {4, 8};
2196 multisample_samples = multisample_samples_gen7;
2197 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen7);
2198 } else if (devinfo->gen == 6) {
2199 static const uint8_t multisample_samples_gen6[] = {4};
2200 multisample_samples = multisample_samples_gen6;
2201 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen6);
2202 }
2203
2204 new_configs = driCreateConfigs(formats[i],
2205 depth_bits,
2206 stencil_bits,
2207 num_depth_stencil_bits,
2208 back_buffer_modes, 1,
2209 multisample_samples,
2210 num_msaa_modes,
2211 false, false);
2212 configs = driConcatConfigs(configs, new_configs);
2213 }
2214
2215 if (configs == NULL) {
2216 fprintf(stderr, "[%s:%u] Error creating FBConfig!\n", __func__,
2217 __LINE__);
2218 return NULL;
2219 }
2220
2221 return configs;
2222 }
2223
2224 static void
2225 set_max_gl_versions(struct intel_screen *screen)
2226 {
2227 __DRIscreen *dri_screen = screen->driScrnPriv;
2228 const bool has_astc = screen->devinfo.gen >= 9;
2229
2230 switch (screen->devinfo.gen) {
2231 case 10:
2232 case 9:
2233 case 8:
2234 dri_screen->max_gl_core_version = 45;
2235 dri_screen->max_gl_compat_version = 30;
2236 dri_screen->max_gl_es1_version = 11;
2237 dri_screen->max_gl_es2_version = has_astc ? 32 : 31;
2238 break;
2239 case 7:
2240 dri_screen->max_gl_core_version = 33;
2241 if (can_do_pipelined_register_writes(screen)) {
2242 dri_screen->max_gl_core_version = 42;
2243 if (screen->devinfo.is_haswell && can_do_compute_dispatch(screen))
2244 dri_screen->max_gl_core_version = 43;
2245 if (screen->devinfo.is_haswell && can_do_mi_math_and_lrr(screen))
2246 dri_screen->max_gl_core_version = 45;
2247 }
2248 dri_screen->max_gl_compat_version = 30;
2249 dri_screen->max_gl_es1_version = 11;
2250 dri_screen->max_gl_es2_version = screen->devinfo.is_haswell ? 31 : 30;
2251 break;
2252 case 6:
2253 dri_screen->max_gl_core_version = 33;
2254 dri_screen->max_gl_compat_version = 30;
2255 dri_screen->max_gl_es1_version = 11;
2256 dri_screen->max_gl_es2_version = 30;
2257 break;
2258 case 5:
2259 case 4:
2260 dri_screen->max_gl_core_version = 0;
2261 dri_screen->max_gl_compat_version = 21;
2262 dri_screen->max_gl_es1_version = 11;
2263 dri_screen->max_gl_es2_version = 20;
2264 break;
2265 default:
2266 unreachable("unrecognized intel_screen::gen");
2267 }
2268 }
2269
2270 /**
2271 * Return the revision (generally the revid field of the PCI header) of the
2272 * graphics device.
2273 */
2274 int
2275 intel_device_get_revision(int fd)
2276 {
2277 struct drm_i915_getparam gp;
2278 int revision;
2279 int ret;
2280
2281 memset(&gp, 0, sizeof(gp));
2282 gp.param = I915_PARAM_REVISION;
2283 gp.value = &revision;
2284
2285 ret = drmCommandWriteRead(fd, DRM_I915_GETPARAM, &gp, sizeof(gp));
2286 if (ret)
2287 revision = -1;
2288
2289 return revision;
2290 }
2291
2292 static void
2293 shader_debug_log_mesa(void *data, const char *fmt, ...)
2294 {
2295 struct brw_context *brw = (struct brw_context *)data;
2296 va_list args;
2297
2298 va_start(args, fmt);
2299 GLuint msg_id = 0;
2300 _mesa_gl_vdebug(&brw->ctx, &msg_id,
2301 MESA_DEBUG_SOURCE_SHADER_COMPILER,
2302 MESA_DEBUG_TYPE_OTHER,
2303 MESA_DEBUG_SEVERITY_NOTIFICATION, fmt, args);
2304 va_end(args);
2305 }
2306
2307 static void
2308 shader_perf_log_mesa(void *data, const char *fmt, ...)
2309 {
2310 struct brw_context *brw = (struct brw_context *)data;
2311
2312 va_list args;
2313 va_start(args, fmt);
2314
2315 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
2316 va_list args_copy;
2317 va_copy(args_copy, args);
2318 vfprintf(stderr, fmt, args_copy);
2319 va_end(args_copy);
2320 }
2321
2322 if (brw->perf_debug) {
2323 GLuint msg_id = 0;
2324 _mesa_gl_vdebug(&brw->ctx, &msg_id,
2325 MESA_DEBUG_SOURCE_SHADER_COMPILER,
2326 MESA_DEBUG_TYPE_PERFORMANCE,
2327 MESA_DEBUG_SEVERITY_MEDIUM, fmt, args);
2328 }
2329 va_end(args);
2330 }
2331
2332 static int
2333 parse_devid_override(const char *devid_override)
2334 {
2335 static const struct {
2336 const char *name;
2337 int pci_id;
2338 } name_map[] = {
2339 { "brw", 0x2a02 },
2340 { "g4x", 0x2a42 },
2341 { "ilk", 0x0042 },
2342 { "snb", 0x0126 },
2343 { "ivb", 0x016a },
2344 { "hsw", 0x0d2e },
2345 { "byt", 0x0f33 },
2346 { "bdw", 0x162e },
2347 { "chv", 0x22B3 },
2348 { "skl", 0x1912 },
2349 { "bxt", 0x5A85 },
2350 { "kbl", 0x5912 },
2351 { "glk", 0x3185 },
2352 { "cnl", 0x5a52 },
2353 };
2354
2355 for (unsigned i = 0; i < ARRAY_SIZE(name_map); i++) {
2356 if (!strcmp(name_map[i].name, devid_override))
2357 return name_map[i].pci_id;
2358 }
2359
2360 return strtol(devid_override, NULL, 0);
2361 }
2362
2363 /**
2364 * Get the PCI ID for the device. This can be overridden by setting the
2365 * INTEL_DEVID_OVERRIDE environment variable to the desired ID.
2366 *
2367 * Returns -1 on ioctl failure.
2368 */
2369 static int
2370 get_pci_device_id(struct intel_screen *screen)
2371 {
2372 if (geteuid() == getuid()) {
2373 char *devid_override = getenv("INTEL_DEVID_OVERRIDE");
2374 if (devid_override) {
2375 screen->no_hw = true;
2376 return parse_devid_override(devid_override);
2377 }
2378 }
2379
2380 return intel_get_integer(screen, I915_PARAM_CHIPSET_ID);
2381 }
2382
2383 /**
2384 * This is the driver specific part of the createNewScreen entry point.
2385 * Called when using DRI2.
2386 *
2387 * \return the struct gl_config supported by this driver
2388 */
2389 static const
2390 __DRIconfig **intelInitScreen2(__DRIscreen *dri_screen)
2391 {
2392 struct intel_screen *screen;
2393
2394 if (dri_screen->image.loader) {
2395 } else if (dri_screen->dri2.loader->base.version <= 2 ||
2396 dri_screen->dri2.loader->getBuffersWithFormat == NULL) {
2397 fprintf(stderr,
2398 "\nERROR! DRI2 loader with getBuffersWithFormat() "
2399 "support required\n");
2400 return NULL;
2401 }
2402
2403 /* Allocate the private area */
2404 screen = rzalloc(NULL, struct intel_screen);
2405 if (!screen) {
2406 fprintf(stderr, "\nERROR! Allocating private area failed\n");
2407 return NULL;
2408 }
2409 /* parse information in __driConfigOptions */
2410 driOptionCache options;
2411 memset(&options, 0, sizeof(options));
2412
2413 driParseOptionInfo(&options, brw_config_options.xml);
2414 driParseConfigFiles(&screen->optionCache, &options, dri_screen->myNum, "i965");
2415 driDestroyOptionCache(&options);
2416
2417 screen->driScrnPriv = dri_screen;
2418 dri_screen->driverPrivate = (void *) screen;
2419
2420 screen->deviceID = get_pci_device_id(screen);
2421
2422 if (!gen_get_device_info(screen->deviceID, &screen->devinfo))
2423 return NULL;
2424
2425 if (!intel_init_bufmgr(screen))
2426 return NULL;
2427
2428 const struct gen_device_info *devinfo = &screen->devinfo;
2429
2430 brw_process_intel_debug_variable();
2431
2432 if ((INTEL_DEBUG & DEBUG_SHADER_TIME) && devinfo->gen < 7) {
2433 fprintf(stderr,
2434 "shader_time debugging requires gen7 (Ivybridge) or better.\n");
2435 INTEL_DEBUG &= ~DEBUG_SHADER_TIME;
2436 }
2437
2438 if (intel_get_integer(screen, I915_PARAM_MMAP_GTT_VERSION) >= 1) {
2439 /* Theorectically unlimited! At least for individual objects...
2440 *
2441 * Currently the entire (global) address space for all GTT maps is
2442 * limited to 64bits. That is all objects on the system that are
2443 * setup for GTT mmapping must fit within 64bits. An attempt to use
2444 * one that exceeds the limit with fail in brw_bo_map_gtt().
2445 *
2446 * Long before we hit that limit, we will be practically limited by
2447 * that any single object must fit in physical memory (RAM). The upper
2448 * limit on the CPU's address space is currently 48bits (Skylake), of
2449 * which only 39bits can be physical memory. (The GPU itself also has
2450 * a 48bit addressable virtual space.) We can fit over 32 million
2451 * objects of the current maximum allocable size before running out
2452 * of mmap space.
2453 */
2454 screen->max_gtt_map_object_size = UINT64_MAX;
2455 } else {
2456 /* Estimate the size of the mappable aperture into the GTT. There's an
2457 * ioctl to get the whole GTT size, but not one to get the mappable subset.
2458 * It turns out it's basically always 256MB, though some ancient hardware
2459 * was smaller.
2460 */
2461 uint32_t gtt_size = 256 * 1024 * 1024;
2462
2463 /* We don't want to map two objects such that a memcpy between them would
2464 * just fault one mapping in and then the other over and over forever. So
2465 * we would need to divide the GTT size by 2. Additionally, some GTT is
2466 * taken up by things like the framebuffer and the ringbuffer and such, so
2467 * be more conservative.
2468 */
2469 screen->max_gtt_map_object_size = gtt_size / 4;
2470 }
2471
2472 screen->aperture_threshold = get_aperture_size(dri_screen->fd) * 3 / 4;
2473
2474 screen->hw_has_swizzling = intel_detect_swizzling(screen);
2475 screen->hw_has_timestamp = intel_detect_timestamp(screen);
2476
2477 isl_device_init(&screen->isl_dev, &screen->devinfo,
2478 screen->hw_has_swizzling);
2479
2480 if (devinfo->gen >= 10)
2481 intel_cs_timestamp_frequency(screen);
2482
2483 /* GENs prior to 8 do not support EU/Subslice info */
2484 if (devinfo->gen >= 8) {
2485 intel_detect_sseu(screen);
2486 } else if (devinfo->gen == 7) {
2487 screen->subslice_total = 1 << (devinfo->gt - 1);
2488 }
2489
2490 /* Gen7-7.5 kernel requirements / command parser saga:
2491 *
2492 * - pre-v3.16:
2493 * Haswell and Baytrail cannot use any privileged batchbuffer features.
2494 *
2495 * Ivybridge has aliasing PPGTT on by default, which accidentally marks
2496 * all batches secure, allowing them to use any feature with no checking.
2497 * This is effectively equivalent to a command parser version of
2498 * \infinity - everything is possible.
2499 *
2500 * The command parser does not exist, and querying the version will
2501 * return -EINVAL.
2502 *
2503 * - v3.16:
2504 * The kernel enables the command parser by default, for systems with
2505 * aliasing PPGTT enabled (Ivybridge and Haswell). However, the
2506 * hardware checker is still enabled, so Haswell and Baytrail cannot
2507 * do anything.
2508 *
2509 * Ivybridge goes from "everything is possible" to "only what the
2510 * command parser allows" (if the user boots with i915.cmd_parser=0,
2511 * then everything is possible again). We can only safely use features
2512 * allowed by the supported command parser version.
2513 *
2514 * Annoyingly, I915_PARAM_CMD_PARSER_VERSION reports the static version
2515 * implemented by the kernel, even if it's turned off. So, checking
2516 * for version > 0 does not mean that you can write registers. We have
2517 * to try it and see. The version does, however, indicate the age of
2518 * the kernel.
2519 *
2520 * Instead of matching the hardware checker's behavior of converting
2521 * privileged commands to MI_NOOP, it makes execbuf2 start returning
2522 * -EINVAL, making it dangerous to try and use privileged features.
2523 *
2524 * Effective command parser versions:
2525 * - Haswell: 0 (reporting 1, writes don't work)
2526 * - Baytrail: 0 (reporting 1, writes don't work)
2527 * - Ivybridge: 1 (enabled) or infinite (disabled)
2528 *
2529 * - v3.17:
2530 * Baytrail aliasing PPGTT is enabled, making it like Ivybridge:
2531 * effectively version 1 (enabled) or infinite (disabled).
2532 *
2533 * - v3.19: f1f55cc0556031c8ee3fe99dae7251e78b9b653b
2534 * Command parser v2 supports predicate writes.
2535 *
2536 * - Haswell: 0 (reporting 1, writes don't work)
2537 * - Baytrail: 2 (enabled) or infinite (disabled)
2538 * - Ivybridge: 2 (enabled) or infinite (disabled)
2539 *
2540 * So version >= 2 is enough to know that Ivybridge and Baytrail
2541 * will work. Haswell still can't do anything.
2542 *
2543 * - v4.0: Version 3 happened. Largely not relevant.
2544 *
2545 * - v4.1: 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
2546 * L3 config registers are properly saved and restored as part
2547 * of the hardware context. We can approximately detect this point
2548 * in time by checking if I915_PARAM_REVISION is recognized - it
2549 * landed in a later commit, but in the same release cycle.
2550 *
2551 * - v4.2: 245054a1fe33c06ad233e0d58a27ec7b64db9284
2552 * Command parser finally gains secure batch promotion. On Haswell,
2553 * the hardware checker gets disabled, which finally allows it to do
2554 * privileged commands.
2555 *
2556 * I915_PARAM_CMD_PARSER_VERSION reports 3. Effective versions:
2557 * - Haswell: 3 (enabled) or 0 (disabled)
2558 * - Baytrail: 3 (enabled) or infinite (disabled)
2559 * - Ivybridge: 3 (enabled) or infinite (disabled)
2560 *
2561 * Unfortunately, detecting this point in time is tricky, because
2562 * no version bump happened when this important change occurred.
2563 * On Haswell, if we can write any register, then the kernel is at
2564 * least this new, and we can start trusting the version number.
2565 *
2566 * - v4.4: 2bbe6bbb0dc94fd4ce287bdac9e1bd184e23057b and
2567 * Command parser reaches version 4, allowing access to Haswell
2568 * atomic scratch and chicken3 registers. If version >= 4, we know
2569 * the kernel is new enough to support privileged features on all
2570 * hardware. However, the user might have disabled it...and the
2571 * kernel will still report version 4. So we still have to guess
2572 * and check.
2573 *
2574 * - v4.4: 7b9748cb513a6bef4af87b79f0da3ff7e8b56cd8
2575 * Command parser v5 whitelists indirect compute shader dispatch
2576 * registers, needed for OpenGL 4.3 and later.
2577 *
2578 * - v4.8:
2579 * Command parser v7 lets us use MI_MATH on Haswell.
2580 *
2581 * Additionally, the kernel begins reporting version 0 when
2582 * the command parser is disabled, allowing us to skip the
2583 * guess-and-check step on Haswell. Unfortunately, this also
2584 * means that we can no longer use it as an indicator of the
2585 * age of the kernel.
2586 */
2587 if (intel_get_param(screen, I915_PARAM_CMD_PARSER_VERSION,
2588 &screen->cmd_parser_version) < 0) {
2589 /* Command parser does not exist - getparam is unrecognized */
2590 screen->cmd_parser_version = 0;
2591 }
2592
2593 /* Kernel 4.13 retuired for exec object capture */
2594 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_CAPTURE)) {
2595 screen->kernel_features |= KERNEL_ALLOWS_EXEC_CAPTURE;
2596 }
2597
2598 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_BATCH_FIRST)) {
2599 screen->kernel_features |= KERNEL_ALLOWS_EXEC_BATCH_FIRST;
2600 }
2601
2602 if (!intel_detect_pipelined_so(screen)) {
2603 /* We can't do anything, so the effective version is 0. */
2604 screen->cmd_parser_version = 0;
2605 } else {
2606 screen->kernel_features |= KERNEL_ALLOWS_SOL_OFFSET_WRITES;
2607 }
2608
2609 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 2)
2610 screen->kernel_features |= KERNEL_ALLOWS_PREDICATE_WRITES;
2611
2612 /* Haswell requires command parser version 4 in order to have L3
2613 * atomic scratch1 and chicken3 bits
2614 */
2615 if (devinfo->is_haswell && screen->cmd_parser_version >= 4) {
2616 screen->kernel_features |=
2617 KERNEL_ALLOWS_HSW_SCRATCH1_AND_ROW_CHICKEN3;
2618 }
2619
2620 /* Haswell requires command parser version 6 in order to write to the
2621 * MI_MATH GPR registers, and version 7 in order to use
2622 * MI_LOAD_REGISTER_REG (which all users of MI_MATH use).
2623 */
2624 if (devinfo->gen >= 8 ||
2625 (devinfo->is_haswell && screen->cmd_parser_version >= 7)) {
2626 screen->kernel_features |= KERNEL_ALLOWS_MI_MATH_AND_LRR;
2627 }
2628
2629 /* Gen7 needs at least command parser version 5 to support compute */
2630 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 5)
2631 screen->kernel_features |= KERNEL_ALLOWS_COMPUTE_DISPATCH;
2632
2633 const char *force_msaa = getenv("INTEL_FORCE_MSAA");
2634 if (force_msaa) {
2635 screen->winsys_msaa_samples_override =
2636 intel_quantize_num_samples(screen, atoi(force_msaa));
2637 printf("Forcing winsys sample count to %d\n",
2638 screen->winsys_msaa_samples_override);
2639 } else {
2640 screen->winsys_msaa_samples_override = -1;
2641 }
2642
2643 set_max_gl_versions(screen);
2644
2645 /* Notification of GPU resets requires hardware contexts and a kernel new
2646 * enough to support DRM_IOCTL_I915_GET_RESET_STATS. If the ioctl is
2647 * supported, calling it with a context of 0 will either generate EPERM or
2648 * no error. If the ioctl is not supported, it always generate EINVAL.
2649 * Use this to determine whether to advertise the __DRI2_ROBUSTNESS
2650 * extension to the loader.
2651 *
2652 * Don't even try on pre-Gen6, since we don't attempt to use contexts there.
2653 */
2654 if (devinfo->gen >= 6) {
2655 struct drm_i915_reset_stats stats;
2656 memset(&stats, 0, sizeof(stats));
2657
2658 const int ret = drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats);
2659
2660 screen->has_context_reset_notification =
2661 (ret != -1 || errno != EINVAL);
2662 }
2663
2664 dri_screen->extensions = !screen->has_context_reset_notification
2665 ? screenExtensions : intelRobustScreenExtensions;
2666
2667 screen->compiler = brw_compiler_create(screen, devinfo);
2668 screen->compiler->shader_debug_log = shader_debug_log_mesa;
2669 screen->compiler->shader_perf_log = shader_perf_log_mesa;
2670 screen->compiler->constant_buffer_0_is_relative = true;
2671 screen->compiler->supports_pull_constants = true;
2672
2673 screen->has_exec_fence =
2674 intel_get_boolean(screen, I915_PARAM_HAS_EXEC_FENCE);
2675
2676 intel_screen_init_surface_formats(screen);
2677
2678 if (INTEL_DEBUG & (DEBUG_BATCH | DEBUG_SUBMIT)) {
2679 unsigned int caps = intel_get_integer(screen, I915_PARAM_HAS_SCHEDULER);
2680 if (caps) {
2681 fprintf(stderr, "Kernel scheduler detected: %08x\n", caps);
2682 if (caps & I915_SCHEDULER_CAP_PRIORITY)
2683 fprintf(stderr, " - User priority sorting enabled\n");
2684 if (caps & I915_SCHEDULER_CAP_PREEMPTION)
2685 fprintf(stderr, " - Preemption enabled\n");
2686 }
2687 }
2688
2689 brw_disk_cache_init(screen);
2690
2691 return (const __DRIconfig**) intel_screen_make_configs(dri_screen);
2692 }
2693
2694 struct intel_buffer {
2695 __DRIbuffer base;
2696 struct brw_bo *bo;
2697 };
2698
2699 static __DRIbuffer *
2700 intelAllocateBuffer(__DRIscreen *dri_screen,
2701 unsigned attachment, unsigned format,
2702 int width, int height)
2703 {
2704 struct intel_buffer *intelBuffer;
2705 struct intel_screen *screen = dri_screen->driverPrivate;
2706
2707 assert(attachment == __DRI_BUFFER_FRONT_LEFT ||
2708 attachment == __DRI_BUFFER_BACK_LEFT);
2709
2710 intelBuffer = calloc(1, sizeof *intelBuffer);
2711 if (intelBuffer == NULL)
2712 return NULL;
2713
2714 /* The front and back buffers are color buffers, which are X tiled. GEN9+
2715 * supports Y tiled and compressed buffers, but there is no way to plumb that
2716 * through to here. */
2717 uint32_t pitch;
2718 int cpp = format / 8;
2719 intelBuffer->bo = brw_bo_alloc_tiled_2d(screen->bufmgr,
2720 "intelAllocateBuffer",
2721 width,
2722 height,
2723 cpp,
2724 I915_TILING_X, &pitch,
2725 BO_ALLOC_BUSY);
2726
2727 if (intelBuffer->bo == NULL) {
2728 free(intelBuffer);
2729 return NULL;
2730 }
2731
2732 brw_bo_flink(intelBuffer->bo, &intelBuffer->base.name);
2733
2734 intelBuffer->base.attachment = attachment;
2735 intelBuffer->base.cpp = cpp;
2736 intelBuffer->base.pitch = pitch;
2737
2738 return &intelBuffer->base;
2739 }
2740
2741 static void
2742 intelReleaseBuffer(__DRIscreen *dri_screen, __DRIbuffer *buffer)
2743 {
2744 struct intel_buffer *intelBuffer = (struct intel_buffer *) buffer;
2745
2746 brw_bo_unreference(intelBuffer->bo);
2747 free(intelBuffer);
2748 }
2749
2750 static const struct __DriverAPIRec brw_driver_api = {
2751 .InitScreen = intelInitScreen2,
2752 .DestroyScreen = intelDestroyScreen,
2753 .CreateContext = brwCreateContext,
2754 .DestroyContext = intelDestroyContext,
2755 .CreateBuffer = intelCreateBuffer,
2756 .DestroyBuffer = intelDestroyBuffer,
2757 .MakeCurrent = intelMakeCurrent,
2758 .UnbindContext = intelUnbindContext,
2759 .AllocateBuffer = intelAllocateBuffer,
2760 .ReleaseBuffer = intelReleaseBuffer
2761 };
2762
2763 static const struct __DRIDriverVtableExtensionRec brw_vtable = {
2764 .base = { __DRI_DRIVER_VTABLE, 1 },
2765 .vtable = &brw_driver_api,
2766 };
2767
2768 static const __DRIextension *brw_driver_extensions[] = {
2769 &driCoreExtension.base,
2770 &driImageDriverExtension.base,
2771 &driDRI2Extension.base,
2772 &brw_vtable.base,
2773 &brw_config_options.base,
2774 NULL
2775 };
2776
2777 PUBLIC const __DRIextension **__driDriverGetExtensions_i965(void)
2778 {
2779 globalDriverAPI = &brw_driver_api;
2780
2781 return brw_driver_extensions;
2782 }