i915: Fix build break with empty unreachable()
[mesa.git] / src / mesa / drivers / dri / i965 / intel_screen.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <drm_fourcc.h>
27 #include <errno.h>
28 #include <time.h>
29 #include <unistd.h>
30 #include "main/context.h"
31 #include "main/framebuffer.h"
32 #include "main/renderbuffer.h"
33 #include "main/texobj.h"
34 #include "main/hash.h"
35 #include "main/fbobject.h"
36 #include "main/version.h"
37 #include "swrast/s_renderbuffer.h"
38 #include "util/ralloc.h"
39 #include "brw_defines.h"
40 #include "compiler/nir/nir.h"
41
42 #include "utils.h"
43 #include "xmlpool.h"
44
45 #ifndef DRM_FORMAT_MOD_INVALID
46 #define DRM_FORMAT_MOD_INVALID ((1ULL<<56) - 1)
47 #endif
48
49 #ifndef DRM_FORMAT_MOD_LINEAR
50 #define DRM_FORMAT_MOD_LINEAR 0
51 #endif
52
53 static const __DRIconfigOptionsExtension brw_config_options = {
54 .base = { __DRI_CONFIG_OPTIONS, 1 },
55 .xml =
56 DRI_CONF_BEGIN
57 DRI_CONF_SECTION_PERFORMANCE
58 DRI_CONF_VBLANK_MODE(DRI_CONF_VBLANK_ALWAYS_SYNC)
59 /* Options correspond to DRI_CONF_BO_REUSE_DISABLED,
60 * DRI_CONF_BO_REUSE_ALL
61 */
62 DRI_CONF_OPT_BEGIN_V(bo_reuse, enum, 1, "0:1")
63 DRI_CONF_DESC_BEGIN(en, "Buffer object reuse")
64 DRI_CONF_ENUM(0, "Disable buffer object reuse")
65 DRI_CONF_ENUM(1, "Enable reuse of all sizes of buffer objects")
66 DRI_CONF_DESC_END
67 DRI_CONF_OPT_END
68 DRI_CONF_SECTION_END
69
70 DRI_CONF_SECTION_QUALITY
71 DRI_CONF_FORCE_S3TC_ENABLE("false")
72
73 DRI_CONF_PRECISE_TRIG("false")
74
75 DRI_CONF_OPT_BEGIN(clamp_max_samples, int, -1)
76 DRI_CONF_DESC(en, "Clamp the value of GL_MAX_SAMPLES to the "
77 "given integer. If negative, then do not clamp.")
78 DRI_CONF_OPT_END
79 DRI_CONF_SECTION_END
80
81 DRI_CONF_SECTION_DEBUG
82 DRI_CONF_NO_RAST("false")
83 DRI_CONF_ALWAYS_FLUSH_BATCH("false")
84 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
85 DRI_CONF_DISABLE_THROTTLING("false")
86 DRI_CONF_FORCE_GLSL_EXTENSIONS_WARN("false")
87 DRI_CONF_FORCE_GLSL_VERSION(0)
88 DRI_CONF_DISABLE_GLSL_LINE_CONTINUATIONS("false")
89 DRI_CONF_DISABLE_BLEND_FUNC_EXTENDED("false")
90 DRI_CONF_DUAL_COLOR_BLEND_BY_LOCATION("false")
91 DRI_CONF_ALLOW_GLSL_EXTENSION_DIRECTIVE_MIDSHADER("false")
92 DRI_CONF_ALLOW_HIGHER_COMPAT_VERSION("false")
93 DRI_CONF_FORCE_GLSL_ABS_SQRT("false")
94
95 DRI_CONF_OPT_BEGIN_B(shader_precompile, "true")
96 DRI_CONF_DESC(en, "Perform code generation at shader link time.")
97 DRI_CONF_OPT_END
98 DRI_CONF_SECTION_END
99
100 DRI_CONF_SECTION_MISCELLANEOUS
101 DRI_CONF_GLSL_ZERO_INIT("false")
102 DRI_CONF_SECTION_END
103 DRI_CONF_END
104 };
105
106 #include "intel_batchbuffer.h"
107 #include "intel_buffers.h"
108 #include "brw_bufmgr.h"
109 #include "intel_fbo.h"
110 #include "intel_mipmap_tree.h"
111 #include "intel_screen.h"
112 #include "intel_tex.h"
113 #include "intel_image.h"
114
115 #include "brw_context.h"
116
117 #include "i915_drm.h"
118
119 /**
120 * For debugging purposes, this returns a time in seconds.
121 */
122 double
123 get_time(void)
124 {
125 struct timespec tp;
126
127 clock_gettime(CLOCK_MONOTONIC, &tp);
128
129 return tp.tv_sec + tp.tv_nsec / 1000000000.0;
130 }
131
132 static const __DRItexBufferExtension intelTexBufferExtension = {
133 .base = { __DRI_TEX_BUFFER, 3 },
134
135 .setTexBuffer = intelSetTexBuffer,
136 .setTexBuffer2 = intelSetTexBuffer2,
137 .releaseTexBuffer = NULL,
138 };
139
140 static void
141 intel_dri2_flush_with_flags(__DRIcontext *cPriv,
142 __DRIdrawable *dPriv,
143 unsigned flags,
144 enum __DRI2throttleReason reason)
145 {
146 struct brw_context *brw = cPriv->driverPrivate;
147
148 if (!brw)
149 return;
150
151 struct gl_context *ctx = &brw->ctx;
152
153 FLUSH_VERTICES(ctx, 0);
154
155 if (flags & __DRI2_FLUSH_DRAWABLE)
156 intel_resolve_for_dri2_flush(brw, dPriv);
157
158 if (reason == __DRI2_THROTTLE_SWAPBUFFER)
159 brw->need_swap_throttle = true;
160 if (reason == __DRI2_THROTTLE_FLUSHFRONT)
161 brw->need_flush_throttle = true;
162
163 intel_batchbuffer_flush(brw);
164 }
165
166 /**
167 * Provides compatibility with loaders that only support the older (version
168 * 1-3) flush interface.
169 *
170 * That includes libGL up to Mesa 9.0, and the X Server at least up to 1.13.
171 */
172 static void
173 intel_dri2_flush(__DRIdrawable *drawable)
174 {
175 intel_dri2_flush_with_flags(drawable->driContextPriv, drawable,
176 __DRI2_FLUSH_DRAWABLE,
177 __DRI2_THROTTLE_SWAPBUFFER);
178 }
179
180 static const struct __DRI2flushExtensionRec intelFlushExtension = {
181 .base = { __DRI2_FLUSH, 4 },
182
183 .flush = intel_dri2_flush,
184 .invalidate = dri2InvalidateDrawable,
185 .flush_with_flags = intel_dri2_flush_with_flags,
186 };
187
188 static struct intel_image_format intel_image_formats[] = {
189 { __DRI_IMAGE_FOURCC_ARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
190 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
191
192 { __DRI_IMAGE_FOURCC_ABGR8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
193 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
194
195 { __DRI_IMAGE_FOURCC_SARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
196 { { 0, 0, 0, __DRI_IMAGE_FORMAT_SARGB8, 4 } } },
197
198 { __DRI_IMAGE_FOURCC_XRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
199 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB8888, 4 }, } },
200
201 { __DRI_IMAGE_FOURCC_XBGR8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
202 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 }, } },
203
204 { __DRI_IMAGE_FOURCC_ARGB1555, __DRI_IMAGE_COMPONENTS_RGBA, 1,
205 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB1555, 2 } } },
206
207 { __DRI_IMAGE_FOURCC_RGB565, __DRI_IMAGE_COMPONENTS_RGB, 1,
208 { { 0, 0, 0, __DRI_IMAGE_FORMAT_RGB565, 2 } } },
209
210 { __DRI_IMAGE_FOURCC_R8, __DRI_IMAGE_COMPONENTS_R, 1,
211 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 }, } },
212
213 { __DRI_IMAGE_FOURCC_R16, __DRI_IMAGE_COMPONENTS_R, 1,
214 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 1 }, } },
215
216 { __DRI_IMAGE_FOURCC_GR88, __DRI_IMAGE_COMPONENTS_RG, 1,
217 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 }, } },
218
219 { __DRI_IMAGE_FOURCC_GR1616, __DRI_IMAGE_COMPONENTS_RG, 1,
220 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR1616, 2 }, } },
221
222 { __DRI_IMAGE_FOURCC_YUV410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
223 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
224 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
225 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
226
227 { __DRI_IMAGE_FOURCC_YUV411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
228 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
229 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
230 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
231
232 { __DRI_IMAGE_FOURCC_YUV420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
233 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
234 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
235 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
236
237 { __DRI_IMAGE_FOURCC_YUV422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
238 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
239 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
240 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
241
242 { __DRI_IMAGE_FOURCC_YUV444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
243 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
244 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
245 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
246
247 { __DRI_IMAGE_FOURCC_YVU410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
248 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
249 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
250 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
251
252 { __DRI_IMAGE_FOURCC_YVU411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
253 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
254 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
255 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
256
257 { __DRI_IMAGE_FOURCC_YVU420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
258 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
259 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
260 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
261
262 { __DRI_IMAGE_FOURCC_YVU422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
263 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
264 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
265 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
266
267 { __DRI_IMAGE_FOURCC_YVU444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
268 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
269 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
270 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
271
272 { __DRI_IMAGE_FOURCC_NV12, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
273 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
274 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR88, 2 } } },
275
276 { __DRI_IMAGE_FOURCC_NV16, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
277 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
278 { 1, 1, 0, __DRI_IMAGE_FORMAT_GR88, 2 } } },
279
280 /* For YUYV buffers, we set up two overlapping DRI images and treat
281 * them as planar buffers in the compositors. Plane 0 is GR88 and
282 * samples YU or YV pairs and places Y into the R component, while
283 * plane 1 is ARGB and samples YUYV clusters and places pairs and
284 * places U into the G component and V into A. This lets the
285 * texture sampler interpolate the Y components correctly when
286 * sampling from plane 0, and interpolate U and V correctly when
287 * sampling from plane 1. */
288 { __DRI_IMAGE_FOURCC_YUYV, __DRI_IMAGE_COMPONENTS_Y_XUXV, 2,
289 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
290 { 0, 1, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } }
291 };
292
293 static const struct {
294 uint32_t tiling;
295 uint64_t modifier;
296 } tiling_modifier_map[] = {
297 { .tiling = I915_TILING_NONE, .modifier = DRM_FORMAT_MOD_LINEAR },
298 { .tiling = I915_TILING_X, .modifier = I915_FORMAT_MOD_X_TILED },
299 { .tiling = I915_TILING_Y, .modifier = I915_FORMAT_MOD_Y_TILED },
300 };
301
302 static uint32_t
303 modifier_to_tiling(uint64_t modifier)
304 {
305 int i;
306
307 for (i = 0; i < ARRAY_SIZE(tiling_modifier_map); i++) {
308 if (tiling_modifier_map[i].modifier == modifier)
309 return tiling_modifier_map[i].tiling;
310 }
311
312 unreachable("modifier_to_tiling should only receive known modifiers");
313 }
314
315 static uint64_t
316 tiling_to_modifier(uint32_t tiling)
317 {
318 int i;
319
320 for (i = 0; i < ARRAY_SIZE(tiling_modifier_map); i++) {
321 if (tiling_modifier_map[i].tiling == tiling)
322 return tiling_modifier_map[i].modifier;
323 }
324
325 unreachable("tiling_to_modifier received unknown tiling mode");
326 }
327
328 static void
329 intel_image_warn_if_unaligned(__DRIimage *image, const char *func)
330 {
331 uint32_t tiling, swizzle;
332 brw_bo_get_tiling(image->bo, &tiling, &swizzle);
333
334 if (tiling != I915_TILING_NONE && (image->offset & 0xfff)) {
335 _mesa_warning(NULL, "%s: offset 0x%08x not on tile boundary",
336 func, image->offset);
337 }
338 }
339
340 static struct intel_image_format *
341 intel_image_format_lookup(int fourcc)
342 {
343 struct intel_image_format *f = NULL;
344
345 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
346 if (intel_image_formats[i].fourcc == fourcc) {
347 f = &intel_image_formats[i];
348 break;
349 }
350 }
351
352 return f;
353 }
354
355 static boolean intel_lookup_fourcc(int dri_format, int *fourcc)
356 {
357 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
358 if (intel_image_formats[i].planes[0].dri_format == dri_format) {
359 *fourcc = intel_image_formats[i].fourcc;
360 return true;
361 }
362 }
363 return false;
364 }
365
366 static __DRIimage *
367 intel_allocate_image(struct intel_screen *screen, int dri_format,
368 void *loaderPrivate)
369 {
370 __DRIimage *image;
371
372 image = calloc(1, sizeof *image);
373 if (image == NULL)
374 return NULL;
375
376 image->screen = screen;
377 image->dri_format = dri_format;
378 image->offset = 0;
379
380 image->format = driImageFormatToGLFormat(dri_format);
381 if (dri_format != __DRI_IMAGE_FORMAT_NONE &&
382 image->format == MESA_FORMAT_NONE) {
383 free(image);
384 return NULL;
385 }
386
387 image->internal_format = _mesa_get_format_base_format(image->format);
388 image->data = loaderPrivate;
389
390 return image;
391 }
392
393 /**
394 * Sets up a DRIImage structure to point to a slice out of a miptree.
395 */
396 static void
397 intel_setup_image_from_mipmap_tree(struct brw_context *brw, __DRIimage *image,
398 struct intel_mipmap_tree *mt, GLuint level,
399 GLuint zoffset)
400 {
401 intel_miptree_make_shareable(brw, mt);
402
403 intel_miptree_check_level_layer(mt, level, zoffset);
404
405 image->width = minify(mt->physical_width0, level - mt->first_level);
406 image->height = minify(mt->physical_height0, level - mt->first_level);
407 image->pitch = mt->pitch;
408
409 image->offset = intel_miptree_get_tile_offsets(mt, level, zoffset,
410 &image->tile_x,
411 &image->tile_y);
412
413 brw_bo_unreference(image->bo);
414 image->bo = mt->bo;
415 brw_bo_reference(mt->bo);
416 }
417
418 static __DRIimage *
419 intel_create_image_from_name(__DRIscreen *dri_screen,
420 int width, int height, int format,
421 int name, int pitch, void *loaderPrivate)
422 {
423 struct intel_screen *screen = dri_screen->driverPrivate;
424 __DRIimage *image;
425 int cpp;
426
427 image = intel_allocate_image(screen, format, loaderPrivate);
428 if (image == NULL)
429 return NULL;
430
431 if (image->format == MESA_FORMAT_NONE)
432 cpp = 1;
433 else
434 cpp = _mesa_get_format_bytes(image->format);
435
436 image->width = width;
437 image->height = height;
438 image->pitch = pitch * cpp;
439 image->bo = brw_bo_gem_create_from_name(screen->bufmgr, "image",
440 name);
441 if (!image->bo) {
442 free(image);
443 return NULL;
444 }
445 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
446
447 return image;
448 }
449
450 static __DRIimage *
451 intel_create_image_from_renderbuffer(__DRIcontext *context,
452 int renderbuffer, void *loaderPrivate)
453 {
454 __DRIimage *image;
455 struct brw_context *brw = context->driverPrivate;
456 struct gl_context *ctx = &brw->ctx;
457 struct gl_renderbuffer *rb;
458 struct intel_renderbuffer *irb;
459
460 rb = _mesa_lookup_renderbuffer(ctx, renderbuffer);
461 if (!rb) {
462 _mesa_error(ctx, GL_INVALID_OPERATION, "glRenderbufferExternalMESA");
463 return NULL;
464 }
465
466 irb = intel_renderbuffer(rb);
467 intel_miptree_make_shareable(brw, irb->mt);
468 image = calloc(1, sizeof *image);
469 if (image == NULL)
470 return NULL;
471
472 image->internal_format = rb->InternalFormat;
473 image->format = rb->Format;
474 image->modifier = tiling_to_modifier(irb->mt->tiling);
475 image->offset = 0;
476 image->data = loaderPrivate;
477 brw_bo_unreference(image->bo);
478 image->bo = irb->mt->bo;
479 brw_bo_reference(irb->mt->bo);
480 image->width = rb->Width;
481 image->height = rb->Height;
482 image->pitch = irb->mt->pitch;
483 image->dri_format = driGLFormatToImageFormat(image->format);
484 image->has_depthstencil = irb->mt->stencil_mt? true : false;
485
486 rb->NeedsFinishRenderTexture = true;
487 return image;
488 }
489
490 static __DRIimage *
491 intel_create_image_from_texture(__DRIcontext *context, int target,
492 unsigned texture, int zoffset,
493 int level,
494 unsigned *error,
495 void *loaderPrivate)
496 {
497 __DRIimage *image;
498 struct brw_context *brw = context->driverPrivate;
499 struct gl_texture_object *obj;
500 struct intel_texture_object *iobj;
501 GLuint face = 0;
502
503 obj = _mesa_lookup_texture(&brw->ctx, texture);
504 if (!obj || obj->Target != target) {
505 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
506 return NULL;
507 }
508
509 if (target == GL_TEXTURE_CUBE_MAP)
510 face = zoffset;
511
512 _mesa_test_texobj_completeness(&brw->ctx, obj);
513 iobj = intel_texture_object(obj);
514 if (!obj->_BaseComplete || (level > 0 && !obj->_MipmapComplete)) {
515 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
516 return NULL;
517 }
518
519 if (level < obj->BaseLevel || level > obj->_MaxLevel) {
520 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
521 return NULL;
522 }
523
524 if (target == GL_TEXTURE_3D && obj->Image[face][level]->Depth < zoffset) {
525 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
526 return NULL;
527 }
528 image = calloc(1, sizeof *image);
529 if (image == NULL) {
530 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
531 return NULL;
532 }
533
534 image->internal_format = obj->Image[face][level]->InternalFormat;
535 image->format = obj->Image[face][level]->TexFormat;
536 image->modifier = tiling_to_modifier(iobj->mt->tiling);
537 image->data = loaderPrivate;
538 intel_setup_image_from_mipmap_tree(brw, image, iobj->mt, level, zoffset);
539 image->dri_format = driGLFormatToImageFormat(image->format);
540 image->has_depthstencil = iobj->mt->stencil_mt? true : false;
541 if (image->dri_format == MESA_FORMAT_NONE) {
542 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
543 free(image);
544 return NULL;
545 }
546
547 *error = __DRI_IMAGE_ERROR_SUCCESS;
548 return image;
549 }
550
551 static void
552 intel_destroy_image(__DRIimage *image)
553 {
554 brw_bo_unreference(image->bo);
555 free(image);
556 }
557
558 enum modifier_priority {
559 MODIFIER_PRIORITY_INVALID = 0,
560 MODIFIER_PRIORITY_LINEAR,
561 MODIFIER_PRIORITY_X,
562 MODIFIER_PRIORITY_Y,
563 };
564
565 const uint64_t priority_to_modifier[] = {
566 [MODIFIER_PRIORITY_INVALID] = DRM_FORMAT_MOD_INVALID,
567 [MODIFIER_PRIORITY_LINEAR] = DRM_FORMAT_MOD_LINEAR,
568 [MODIFIER_PRIORITY_X] = I915_FORMAT_MOD_X_TILED,
569 [MODIFIER_PRIORITY_Y] = I915_FORMAT_MOD_Y_TILED,
570 };
571
572 static uint64_t
573 select_best_modifier(struct gen_device_info *devinfo,
574 const uint64_t *modifiers,
575 const unsigned count)
576 {
577 enum modifier_priority prio = MODIFIER_PRIORITY_INVALID;
578
579 for (int i = 0; i < count; i++) {
580 switch (modifiers[i]) {
581 case I915_FORMAT_MOD_Y_TILED:
582 prio = MAX2(prio, MODIFIER_PRIORITY_Y);
583 break;
584 case I915_FORMAT_MOD_X_TILED:
585 prio = MAX2(prio, MODIFIER_PRIORITY_X);
586 break;
587 case DRM_FORMAT_MOD_LINEAR:
588 prio = MAX2(prio, MODIFIER_PRIORITY_LINEAR);
589 break;
590 case DRM_FORMAT_MOD_INVALID:
591 default:
592 break;
593 }
594 }
595
596 return priority_to_modifier[prio];
597 }
598
599 static __DRIimage *
600 intel_create_image_common(__DRIscreen *dri_screen,
601 int width, int height, int format,
602 unsigned int use,
603 const uint64_t *modifiers,
604 unsigned count,
605 void *loaderPrivate)
606 {
607 __DRIimage *image;
608 struct intel_screen *screen = dri_screen->driverPrivate;
609 uint32_t tiling;
610 int cpp;
611
612 /* Callers of this may specify a modifier, or a dri usage, but not both. The
613 * newer modifier interface deprecates the older usage flags newer modifier
614 * interface deprecates the older usage flags.
615 */
616 assert(!(use && count));
617
618 uint64_t modifier = select_best_modifier(&screen->devinfo, modifiers, count);
619 if (modifier == DRM_FORMAT_MOD_INVALID) {
620 /* User requested specific modifiers, none of which work */
621 if (modifiers)
622 return NULL;
623
624 /* Historically, X-tiled was the default, and so lack of modifier means
625 * X-tiled.
626 */
627 tiling = I915_TILING_X;
628 } else {
629 /* select_best_modifier has found a modifier we support */
630 tiling = modifier_to_tiling(modifier);
631 }
632
633 if (use & __DRI_IMAGE_USE_CURSOR) {
634 if (width != 64 || height != 64)
635 return NULL;
636 tiling = I915_TILING_NONE;
637 }
638
639 if (use & __DRI_IMAGE_USE_LINEAR)
640 tiling = I915_TILING_NONE;
641
642 image = intel_allocate_image(screen, format, loaderPrivate);
643 if (image == NULL)
644 return NULL;
645
646 cpp = _mesa_get_format_bytes(image->format);
647 image->bo = brw_bo_alloc_tiled(screen->bufmgr, "image",
648 width, height, cpp, tiling,
649 &image->pitch, 0);
650 if (image->bo == NULL) {
651 free(image);
652 return NULL;
653 }
654 image->width = width;
655 image->height = height;
656 image->modifier = modifier;
657
658 return image;
659 }
660
661 static __DRIimage *
662 intel_create_image(__DRIscreen *dri_screen,
663 int width, int height, int format,
664 unsigned int use,
665 void *loaderPrivate)
666 {
667 return intel_create_image_common(dri_screen, width, height, format, use, NULL, 0,
668 loaderPrivate);
669 }
670
671 static __DRIimage *
672 intel_create_image_with_modifiers(__DRIscreen *dri_screen,
673 int width, int height, int format,
674 const uint64_t *modifiers,
675 const unsigned count,
676 void *loaderPrivate)
677 {
678 return intel_create_image_common(dri_screen, width, height, format, 0,
679 modifiers, count, loaderPrivate);
680 }
681
682 static GLboolean
683 intel_query_image(__DRIimage *image, int attrib, int *value)
684 {
685 switch (attrib) {
686 case __DRI_IMAGE_ATTRIB_STRIDE:
687 *value = image->pitch;
688 return true;
689 case __DRI_IMAGE_ATTRIB_HANDLE:
690 *value = image->bo->gem_handle;
691 return true;
692 case __DRI_IMAGE_ATTRIB_NAME:
693 return !brw_bo_flink(image->bo, (uint32_t *) value);
694 case __DRI_IMAGE_ATTRIB_FORMAT:
695 *value = image->dri_format;
696 return true;
697 case __DRI_IMAGE_ATTRIB_WIDTH:
698 *value = image->width;
699 return true;
700 case __DRI_IMAGE_ATTRIB_HEIGHT:
701 *value = image->height;
702 return true;
703 case __DRI_IMAGE_ATTRIB_COMPONENTS:
704 if (image->planar_format == NULL)
705 return false;
706 *value = image->planar_format->components;
707 return true;
708 case __DRI_IMAGE_ATTRIB_FD:
709 return !brw_bo_gem_export_to_prime(image->bo, value);
710 case __DRI_IMAGE_ATTRIB_FOURCC:
711 return intel_lookup_fourcc(image->dri_format, value);
712 case __DRI_IMAGE_ATTRIB_NUM_PLANES:
713 *value = 1;
714 return true;
715 case __DRI_IMAGE_ATTRIB_OFFSET:
716 *value = image->offset;
717 return true;
718 case __DRI_IMAGE_ATTRIB_MODIFIER_LOWER:
719 *value = (image->modifier & 0xffffffff);
720 return true;
721 case __DRI_IMAGE_ATTRIB_MODIFIER_UPPER:
722 *value = ((image->modifier >> 32) & 0xffffffff);
723 return true;
724
725 default:
726 return false;
727 }
728 }
729
730 static __DRIimage *
731 intel_dup_image(__DRIimage *orig_image, void *loaderPrivate)
732 {
733 __DRIimage *image;
734
735 image = calloc(1, sizeof *image);
736 if (image == NULL)
737 return NULL;
738
739 brw_bo_reference(orig_image->bo);
740 image->bo = orig_image->bo;
741 image->internal_format = orig_image->internal_format;
742 image->planar_format = orig_image->planar_format;
743 image->dri_format = orig_image->dri_format;
744 image->format = orig_image->format;
745 image->modifier = orig_image->modifier;
746 image->offset = orig_image->offset;
747 image->width = orig_image->width;
748 image->height = orig_image->height;
749 image->pitch = orig_image->pitch;
750 image->tile_x = orig_image->tile_x;
751 image->tile_y = orig_image->tile_y;
752 image->has_depthstencil = orig_image->has_depthstencil;
753 image->data = loaderPrivate;
754
755 memcpy(image->strides, orig_image->strides, sizeof(image->strides));
756 memcpy(image->offsets, orig_image->offsets, sizeof(image->offsets));
757
758 return image;
759 }
760
761 static GLboolean
762 intel_validate_usage(__DRIimage *image, unsigned int use)
763 {
764 if (use & __DRI_IMAGE_USE_CURSOR) {
765 if (image->width != 64 || image->height != 64)
766 return GL_FALSE;
767 }
768
769 return GL_TRUE;
770 }
771
772 static __DRIimage *
773 intel_create_image_from_names(__DRIscreen *dri_screen,
774 int width, int height, int fourcc,
775 int *names, int num_names,
776 int *strides, int *offsets,
777 void *loaderPrivate)
778 {
779 struct intel_image_format *f = NULL;
780 __DRIimage *image;
781 int i, index;
782
783 if (dri_screen == NULL || names == NULL || num_names != 1)
784 return NULL;
785
786 f = intel_image_format_lookup(fourcc);
787 if (f == NULL)
788 return NULL;
789
790 image = intel_create_image_from_name(dri_screen, width, height,
791 __DRI_IMAGE_FORMAT_NONE,
792 names[0], strides[0],
793 loaderPrivate);
794
795 if (image == NULL)
796 return NULL;
797
798 image->planar_format = f;
799 for (i = 0; i < f->nplanes; i++) {
800 index = f->planes[i].buffer_index;
801 image->offsets[index] = offsets[index];
802 image->strides[index] = strides[index];
803 }
804
805 return image;
806 }
807
808 static __DRIimage *
809 intel_create_image_from_fds(__DRIscreen *dri_screen,
810 int width, int height, int fourcc,
811 int *fds, int num_fds, int *strides, int *offsets,
812 void *loaderPrivate)
813 {
814 struct intel_screen *screen = dri_screen->driverPrivate;
815 struct intel_image_format *f;
816 __DRIimage *image;
817 int i, index;
818
819 if (fds == NULL || num_fds < 1)
820 return NULL;
821
822 /* We only support all planes from the same bo */
823 for (i = 0; i < num_fds; i++)
824 if (fds[0] != fds[i])
825 return NULL;
826
827 f = intel_image_format_lookup(fourcc);
828 if (f == NULL)
829 return NULL;
830
831 if (f->nplanes == 1)
832 image = intel_allocate_image(screen, f->planes[0].dri_format,
833 loaderPrivate);
834 else
835 image = intel_allocate_image(screen, __DRI_IMAGE_FORMAT_NONE,
836 loaderPrivate);
837
838 if (image == NULL)
839 return NULL;
840
841 image->width = width;
842 image->height = height;
843 image->pitch = strides[0];
844
845 image->planar_format = f;
846 int size = 0;
847 for (i = 0; i < f->nplanes; i++) {
848 index = f->planes[i].buffer_index;
849 image->offsets[index] = offsets[index];
850 image->strides[index] = strides[index];
851
852 const int plane_height = height >> f->planes[i].height_shift;
853 const int end = offsets[index] + plane_height * strides[index];
854 if (size < end)
855 size = end;
856 }
857
858 image->bo = brw_bo_gem_create_from_prime(screen->bufmgr,
859 fds[0], size);
860 if (image->bo == NULL) {
861 free(image);
862 return NULL;
863 }
864 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
865
866 if (f->nplanes == 1) {
867 image->offset = image->offsets[0];
868 intel_image_warn_if_unaligned(image, __func__);
869 }
870
871 return image;
872 }
873
874 static __DRIimage *
875 intel_create_image_from_dma_bufs(__DRIscreen *dri_screen,
876 int width, int height, int fourcc,
877 int *fds, int num_fds,
878 int *strides, int *offsets,
879 enum __DRIYUVColorSpace yuv_color_space,
880 enum __DRISampleRange sample_range,
881 enum __DRIChromaSiting horizontal_siting,
882 enum __DRIChromaSiting vertical_siting,
883 unsigned *error,
884 void *loaderPrivate)
885 {
886 __DRIimage *image;
887 struct intel_image_format *f = intel_image_format_lookup(fourcc);
888
889 if (!f) {
890 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
891 return NULL;
892 }
893
894 image = intel_create_image_from_fds(dri_screen, width, height, fourcc, fds,
895 num_fds, strides, offsets,
896 loaderPrivate);
897
898 /*
899 * Invalid parameters and any inconsistencies between are assumed to be
900 * checked by the caller. Therefore besides unsupported formats one can fail
901 * only in allocation.
902 */
903 if (!image) {
904 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
905 return NULL;
906 }
907
908 image->dma_buf_imported = true;
909 image->yuv_color_space = yuv_color_space;
910 image->sample_range = sample_range;
911 image->horizontal_siting = horizontal_siting;
912 image->vertical_siting = vertical_siting;
913
914 *error = __DRI_IMAGE_ERROR_SUCCESS;
915 return image;
916 }
917
918 static __DRIimage *
919 intel_from_planar(__DRIimage *parent, int plane, void *loaderPrivate)
920 {
921 int width, height, offset, stride, dri_format, index;
922 struct intel_image_format *f;
923 __DRIimage *image;
924
925 if (parent == NULL || parent->planar_format == NULL)
926 return NULL;
927
928 f = parent->planar_format;
929
930 if (plane >= f->nplanes)
931 return NULL;
932
933 width = parent->width >> f->planes[plane].width_shift;
934 height = parent->height >> f->planes[plane].height_shift;
935 dri_format = f->planes[plane].dri_format;
936 index = f->planes[plane].buffer_index;
937 offset = parent->offsets[index];
938 stride = parent->strides[index];
939
940 image = intel_allocate_image(parent->screen, dri_format, loaderPrivate);
941 if (image == NULL)
942 return NULL;
943
944 if (offset + height * stride > parent->bo->size) {
945 _mesa_warning(NULL, "intel_create_sub_image: subimage out of bounds");
946 free(image);
947 return NULL;
948 }
949
950 image->bo = parent->bo;
951 brw_bo_reference(parent->bo);
952 image->modifier = parent->modifier;
953
954 image->width = width;
955 image->height = height;
956 image->pitch = stride;
957 image->offset = offset;
958
959 intel_image_warn_if_unaligned(image, __func__);
960
961 return image;
962 }
963
964 static const __DRIimageExtension intelImageExtension = {
965 .base = { __DRI_IMAGE, 14 },
966
967 .createImageFromName = intel_create_image_from_name,
968 .createImageFromRenderbuffer = intel_create_image_from_renderbuffer,
969 .destroyImage = intel_destroy_image,
970 .createImage = intel_create_image,
971 .queryImage = intel_query_image,
972 .dupImage = intel_dup_image,
973 .validateUsage = intel_validate_usage,
974 .createImageFromNames = intel_create_image_from_names,
975 .fromPlanar = intel_from_planar,
976 .createImageFromTexture = intel_create_image_from_texture,
977 .createImageFromFds = intel_create_image_from_fds,
978 .createImageFromDmaBufs = intel_create_image_from_dma_bufs,
979 .blitImage = NULL,
980 .getCapabilities = NULL,
981 .mapImage = NULL,
982 .unmapImage = NULL,
983 .createImageWithModifiers = intel_create_image_with_modifiers,
984 };
985
986 static uint64_t
987 get_aperture_size(int fd)
988 {
989 struct drm_i915_gem_get_aperture aperture;
990
991 if (drmIoctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture) != 0)
992 return 0;
993
994 return aperture.aper_size;
995 }
996
997 static int
998 brw_query_renderer_integer(__DRIscreen *dri_screen,
999 int param, unsigned int *value)
1000 {
1001 const struct intel_screen *const screen =
1002 (struct intel_screen *) dri_screen->driverPrivate;
1003
1004 switch (param) {
1005 case __DRI2_RENDERER_VENDOR_ID:
1006 value[0] = 0x8086;
1007 return 0;
1008 case __DRI2_RENDERER_DEVICE_ID:
1009 value[0] = screen->deviceID;
1010 return 0;
1011 case __DRI2_RENDERER_ACCELERATED:
1012 value[0] = 1;
1013 return 0;
1014 case __DRI2_RENDERER_VIDEO_MEMORY: {
1015 /* Once a batch uses more than 75% of the maximum mappable size, we
1016 * assume that there's some fragmentation, and we start doing extra
1017 * flushing, etc. That's the big cliff apps will care about.
1018 */
1019 const unsigned gpu_mappable_megabytes =
1020 screen->aperture_threshold / (1024 * 1024);
1021
1022 const long system_memory_pages = sysconf(_SC_PHYS_PAGES);
1023 const long system_page_size = sysconf(_SC_PAGE_SIZE);
1024
1025 if (system_memory_pages <= 0 || system_page_size <= 0)
1026 return -1;
1027
1028 const uint64_t system_memory_bytes = (uint64_t) system_memory_pages
1029 * (uint64_t) system_page_size;
1030
1031 const unsigned system_memory_megabytes =
1032 (unsigned) (system_memory_bytes / (1024 * 1024));
1033
1034 value[0] = MIN2(system_memory_megabytes, gpu_mappable_megabytes);
1035 return 0;
1036 }
1037 case __DRI2_RENDERER_UNIFIED_MEMORY_ARCHITECTURE:
1038 value[0] = 1;
1039 return 0;
1040 case __DRI2_RENDERER_HAS_TEXTURE_3D:
1041 value[0] = 1;
1042 return 0;
1043 default:
1044 return driQueryRendererIntegerCommon(dri_screen, param, value);
1045 }
1046
1047 return -1;
1048 }
1049
1050 static int
1051 brw_query_renderer_string(__DRIscreen *dri_screen,
1052 int param, const char **value)
1053 {
1054 const struct intel_screen *screen =
1055 (struct intel_screen *) dri_screen->driverPrivate;
1056
1057 switch (param) {
1058 case __DRI2_RENDERER_VENDOR_ID:
1059 value[0] = brw_vendor_string;
1060 return 0;
1061 case __DRI2_RENDERER_DEVICE_ID:
1062 value[0] = brw_get_renderer_string(screen);
1063 return 0;
1064 default:
1065 break;
1066 }
1067
1068 return -1;
1069 }
1070
1071 static const __DRI2rendererQueryExtension intelRendererQueryExtension = {
1072 .base = { __DRI2_RENDERER_QUERY, 1 },
1073
1074 .queryInteger = brw_query_renderer_integer,
1075 .queryString = brw_query_renderer_string
1076 };
1077
1078 static const __DRIrobustnessExtension dri2Robustness = {
1079 .base = { __DRI2_ROBUSTNESS, 1 }
1080 };
1081
1082 static const __DRIextension *screenExtensions[] = {
1083 &intelTexBufferExtension.base,
1084 &intelFenceExtension.base,
1085 &intelFlushExtension.base,
1086 &intelImageExtension.base,
1087 &intelRendererQueryExtension.base,
1088 &dri2ConfigQueryExtension.base,
1089 NULL
1090 };
1091
1092 static const __DRIextension *intelRobustScreenExtensions[] = {
1093 &intelTexBufferExtension.base,
1094 &intelFenceExtension.base,
1095 &intelFlushExtension.base,
1096 &intelImageExtension.base,
1097 &intelRendererQueryExtension.base,
1098 &dri2ConfigQueryExtension.base,
1099 &dri2Robustness.base,
1100 NULL
1101 };
1102
1103 static int
1104 intel_get_param(struct intel_screen *screen, int param, int *value)
1105 {
1106 int ret = 0;
1107 struct drm_i915_getparam gp;
1108
1109 memset(&gp, 0, sizeof(gp));
1110 gp.param = param;
1111 gp.value = value;
1112
1113 if (drmIoctl(screen->driScrnPriv->fd, DRM_IOCTL_I915_GETPARAM, &gp) == -1) {
1114 ret = -errno;
1115 if (ret != -EINVAL)
1116 _mesa_warning(NULL, "drm_i915_getparam: %d", ret);
1117 }
1118
1119 return ret;
1120 }
1121
1122 static bool
1123 intel_get_boolean(struct intel_screen *screen, int param)
1124 {
1125 int value = 0;
1126 return (intel_get_param(screen, param, &value) == 0) && value;
1127 }
1128
1129 static int
1130 intel_get_integer(struct intel_screen *screen, int param)
1131 {
1132 int value = -1;
1133
1134 if (intel_get_param(screen, param, &value) == 0)
1135 return value;
1136
1137 return -1;
1138 }
1139
1140 static void
1141 intelDestroyScreen(__DRIscreen * sPriv)
1142 {
1143 struct intel_screen *screen = sPriv->driverPrivate;
1144
1145 brw_bufmgr_destroy(screen->bufmgr);
1146 driDestroyOptionInfo(&screen->optionCache);
1147
1148 ralloc_free(screen);
1149 sPriv->driverPrivate = NULL;
1150 }
1151
1152
1153 /**
1154 * This is called when we need to set up GL rendering to a new X window.
1155 */
1156 static GLboolean
1157 intelCreateBuffer(__DRIscreen *dri_screen,
1158 __DRIdrawable * driDrawPriv,
1159 const struct gl_config * mesaVis, GLboolean isPixmap)
1160 {
1161 struct intel_renderbuffer *rb;
1162 struct intel_screen *screen = (struct intel_screen *)
1163 dri_screen->driverPrivate;
1164 mesa_format rgbFormat;
1165 unsigned num_samples =
1166 intel_quantize_num_samples(screen, mesaVis->samples);
1167 struct gl_framebuffer *fb;
1168
1169 if (isPixmap)
1170 return false;
1171
1172 fb = CALLOC_STRUCT(gl_framebuffer);
1173 if (!fb)
1174 return false;
1175
1176 _mesa_initialize_window_framebuffer(fb, mesaVis);
1177
1178 if (screen->winsys_msaa_samples_override != -1) {
1179 num_samples = screen->winsys_msaa_samples_override;
1180 fb->Visual.samples = num_samples;
1181 }
1182
1183 if (mesaVis->redBits == 5) {
1184 rgbFormat = mesaVis->redMask == 0x1f ? MESA_FORMAT_R5G6B5_UNORM
1185 : MESA_FORMAT_B5G6R5_UNORM;
1186 } else if (mesaVis->sRGBCapable) {
1187 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1188 : MESA_FORMAT_B8G8R8A8_SRGB;
1189 } else if (mesaVis->alphaBits == 0) {
1190 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8X8_UNORM
1191 : MESA_FORMAT_B8G8R8X8_UNORM;
1192 } else {
1193 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1194 : MESA_FORMAT_B8G8R8A8_SRGB;
1195 fb->Visual.sRGBCapable = true;
1196 }
1197
1198 /* setup the hardware-based renderbuffers */
1199 rb = intel_create_renderbuffer(rgbFormat, num_samples);
1200 _mesa_attach_and_own_rb(fb, BUFFER_FRONT_LEFT, &rb->Base.Base);
1201
1202 if (mesaVis->doubleBufferMode) {
1203 rb = intel_create_renderbuffer(rgbFormat, num_samples);
1204 _mesa_attach_and_own_rb(fb, BUFFER_BACK_LEFT, &rb->Base.Base);
1205 }
1206
1207 /*
1208 * Assert here that the gl_config has an expected depth/stencil bit
1209 * combination: one of d24/s8, d16/s0, d0/s0. (See intelInitScreen2(),
1210 * which constructs the advertised configs.)
1211 */
1212 if (mesaVis->depthBits == 24) {
1213 assert(mesaVis->stencilBits == 8);
1214
1215 if (screen->devinfo.has_hiz_and_separate_stencil) {
1216 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z24_UNORM_X8_UINT,
1217 num_samples);
1218 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1219 rb = intel_create_private_renderbuffer(MESA_FORMAT_S_UINT8,
1220 num_samples);
1221 _mesa_attach_and_own_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1222 } else {
1223 /*
1224 * Use combined depth/stencil. Note that the renderbuffer is
1225 * attached to two attachment points.
1226 */
1227 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z24_UNORM_S8_UINT,
1228 num_samples);
1229 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1230 _mesa_attach_and_reference_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1231 }
1232 }
1233 else if (mesaVis->depthBits == 16) {
1234 assert(mesaVis->stencilBits == 0);
1235 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z_UNORM16,
1236 num_samples);
1237 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1238 }
1239 else {
1240 assert(mesaVis->depthBits == 0);
1241 assert(mesaVis->stencilBits == 0);
1242 }
1243
1244 /* now add any/all software-based renderbuffers we may need */
1245 _swrast_add_soft_renderbuffers(fb,
1246 false, /* never sw color */
1247 false, /* never sw depth */
1248 false, /* never sw stencil */
1249 mesaVis->accumRedBits > 0,
1250 false, /* never sw alpha */
1251 false /* never sw aux */ );
1252 driDrawPriv->driverPrivate = fb;
1253
1254 return true;
1255 }
1256
1257 static void
1258 intelDestroyBuffer(__DRIdrawable * driDrawPriv)
1259 {
1260 struct gl_framebuffer *fb = driDrawPriv->driverPrivate;
1261
1262 _mesa_reference_framebuffer(&fb, NULL);
1263 }
1264
1265 static void
1266 intel_detect_sseu(struct intel_screen *screen)
1267 {
1268 assert(screen->devinfo.gen >= 8);
1269 int ret;
1270
1271 screen->subslice_total = -1;
1272 screen->eu_total = -1;
1273
1274 ret = intel_get_param(screen, I915_PARAM_SUBSLICE_TOTAL,
1275 &screen->subslice_total);
1276 if (ret < 0 && ret != -EINVAL)
1277 goto err_out;
1278
1279 ret = intel_get_param(screen,
1280 I915_PARAM_EU_TOTAL, &screen->eu_total);
1281 if (ret < 0 && ret != -EINVAL)
1282 goto err_out;
1283
1284 /* Without this information, we cannot get the right Braswell brandstrings,
1285 * and we have to use conservative numbers for GPGPU on many platforms, but
1286 * otherwise, things will just work.
1287 */
1288 if (screen->subslice_total < 1 || screen->eu_total < 1)
1289 _mesa_warning(NULL,
1290 "Kernel 4.1 required to properly query GPU properties.\n");
1291
1292 return;
1293
1294 err_out:
1295 screen->subslice_total = -1;
1296 screen->eu_total = -1;
1297 _mesa_warning(NULL, "Failed to query GPU properties (%s).\n", strerror(-ret));
1298 }
1299
1300 static bool
1301 intel_init_bufmgr(struct intel_screen *screen)
1302 {
1303 __DRIscreen *dri_screen = screen->driScrnPriv;
1304
1305 if (getenv("INTEL_NO_HW") != NULL)
1306 screen->no_hw = true;
1307
1308 screen->bufmgr = brw_bufmgr_init(&screen->devinfo, dri_screen->fd, BATCH_SZ);
1309 if (screen->bufmgr == NULL) {
1310 fprintf(stderr, "[%s:%u] Error initializing buffer manager.\n",
1311 __func__, __LINE__);
1312 return false;
1313 }
1314
1315 if (!intel_get_boolean(screen, I915_PARAM_HAS_WAIT_TIMEOUT)) {
1316 fprintf(stderr, "[%s: %u] Kernel 3.6 required.\n", __func__, __LINE__);
1317 return false;
1318 }
1319
1320 return true;
1321 }
1322
1323 static bool
1324 intel_detect_swizzling(struct intel_screen *screen)
1325 {
1326 struct brw_bo *buffer;
1327 unsigned flags = 0;
1328 uint32_t aligned_pitch;
1329 uint32_t tiling = I915_TILING_X;
1330 uint32_t swizzle_mode = 0;
1331
1332 buffer = brw_bo_alloc_tiled(screen->bufmgr, "swizzle test",
1333 64, 64, 4, tiling, &aligned_pitch, flags);
1334 if (buffer == NULL)
1335 return false;
1336
1337 brw_bo_get_tiling(buffer, &tiling, &swizzle_mode);
1338 brw_bo_unreference(buffer);
1339
1340 if (swizzle_mode == I915_BIT_6_SWIZZLE_NONE)
1341 return false;
1342 else
1343 return true;
1344 }
1345
1346 static int
1347 intel_detect_timestamp(struct intel_screen *screen)
1348 {
1349 uint64_t dummy = 0, last = 0;
1350 int upper, lower, loops;
1351
1352 /* On 64bit systems, some old kernels trigger a hw bug resulting in the
1353 * TIMESTAMP register being shifted and the low 32bits always zero.
1354 *
1355 * More recent kernels offer an interface to read the full 36bits
1356 * everywhere.
1357 */
1358 if (brw_reg_read(screen->bufmgr, TIMESTAMP | 1, &dummy) == 0)
1359 return 3;
1360
1361 /* Determine if we have a 32bit or 64bit kernel by inspecting the
1362 * upper 32bits for a rapidly changing timestamp.
1363 */
1364 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &last))
1365 return 0;
1366
1367 upper = lower = 0;
1368 for (loops = 0; loops < 10; loops++) {
1369 /* The TIMESTAMP should change every 80ns, so several round trips
1370 * through the kernel should be enough to advance it.
1371 */
1372 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &dummy))
1373 return 0;
1374
1375 upper += (dummy >> 32) != (last >> 32);
1376 if (upper > 1) /* beware 32bit counter overflow */
1377 return 2; /* upper dword holds the low 32bits of the timestamp */
1378
1379 lower += (dummy & 0xffffffff) != (last & 0xffffffff);
1380 if (lower > 1)
1381 return 1; /* timestamp is unshifted */
1382
1383 last = dummy;
1384 }
1385
1386 /* No advancement? No timestamp! */
1387 return 0;
1388 }
1389
1390 /**
1391 * Test if we can use MI_LOAD_REGISTER_MEM from an untrusted batchbuffer.
1392 *
1393 * Some combinations of hardware and kernel versions allow this feature,
1394 * while others don't. Instead of trying to enumerate every case, just
1395 * try and write a register and see if works.
1396 */
1397 static bool
1398 intel_detect_pipelined_register(struct intel_screen *screen,
1399 int reg, uint32_t expected_value, bool reset)
1400 {
1401 if (screen->no_hw)
1402 return false;
1403
1404 struct brw_bo *results, *bo;
1405 uint32_t *batch;
1406 uint32_t offset = 0;
1407 bool success = false;
1408
1409 /* Create a zero'ed temporary buffer for reading our results */
1410 results = brw_bo_alloc(screen->bufmgr, "registers", 4096, 0);
1411 if (results == NULL)
1412 goto err;
1413
1414 bo = brw_bo_alloc(screen->bufmgr, "batchbuffer", 4096, 0);
1415 if (bo == NULL)
1416 goto err_results;
1417
1418 if (brw_bo_map(NULL, bo, 1))
1419 goto err_batch;
1420
1421 batch = bo->virtual;
1422
1423 /* Write the register. */
1424 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1425 *batch++ = reg;
1426 *batch++ = expected_value;
1427
1428 /* Save the register's value back to the buffer. */
1429 *batch++ = MI_STORE_REGISTER_MEM | (3 - 2);
1430 *batch++ = reg;
1431 struct drm_i915_gem_relocation_entry reloc = {
1432 .offset = (char *) batch - (char *) bo->virtual,
1433 .delta = offset * sizeof(uint32_t),
1434 .target_handle = results->gem_handle,
1435 .read_domains = I915_GEM_DOMAIN_INSTRUCTION,
1436 .write_domain = I915_GEM_DOMAIN_INSTRUCTION,
1437 };
1438 *batch++ = reloc.presumed_offset + reloc.delta;
1439
1440 /* And afterwards clear the register */
1441 if (reset) {
1442 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1443 *batch++ = reg;
1444 *batch++ = 0;
1445 }
1446
1447 *batch++ = MI_BATCH_BUFFER_END;
1448
1449 struct drm_i915_gem_exec_object2 exec_objects[2] = {
1450 {
1451 .handle = results->gem_handle,
1452 },
1453 {
1454 .handle = bo->gem_handle,
1455 .relocation_count = 1,
1456 .relocs_ptr = (uintptr_t) &reloc,
1457 }
1458 };
1459
1460 struct drm_i915_gem_execbuffer2 execbuf = {
1461 .buffers_ptr = (uintptr_t) exec_objects,
1462 .buffer_count = 2,
1463 .batch_len = ALIGN((char *) batch - (char *) bo->virtual, 8),
1464 .flags = I915_EXEC_RENDER,
1465 };
1466
1467 /* Don't bother with error checking - if the execbuf fails, the
1468 * value won't be written and we'll just report that there's no access.
1469 */
1470 __DRIscreen *dri_screen = screen->driScrnPriv;
1471 drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf);
1472
1473 /* Check whether the value got written. */
1474 if (brw_bo_map(NULL, results, false) == 0) {
1475 success = *((uint32_t *)results->virtual + offset) == expected_value;
1476 brw_bo_unmap(results);
1477 }
1478
1479 err_batch:
1480 brw_bo_unreference(bo);
1481 err_results:
1482 brw_bo_unreference(results);
1483 err:
1484 return success;
1485 }
1486
1487 static bool
1488 intel_detect_pipelined_so(struct intel_screen *screen)
1489 {
1490 const struct gen_device_info *devinfo = &screen->devinfo;
1491
1492 /* Supposedly, Broadwell just works. */
1493 if (devinfo->gen >= 8)
1494 return true;
1495
1496 if (devinfo->gen <= 6)
1497 return false;
1498
1499 /* See the big explanation about command parser versions below */
1500 if (screen->cmd_parser_version >= (devinfo->is_haswell ? 7 : 2))
1501 return true;
1502
1503 /* We use SO_WRITE_OFFSET0 since you're supposed to write it (unlike the
1504 * statistics registers), and we already reset it to zero before using it.
1505 */
1506 return intel_detect_pipelined_register(screen,
1507 GEN7_SO_WRITE_OFFSET(0),
1508 0x1337d0d0,
1509 false);
1510 }
1511
1512 /**
1513 * Return array of MSAA modes supported by the hardware. The array is
1514 * zero-terminated and sorted in decreasing order.
1515 */
1516 const int*
1517 intel_supported_msaa_modes(const struct intel_screen *screen)
1518 {
1519 static const int gen9_modes[] = {16, 8, 4, 2, 0, -1};
1520 static const int gen8_modes[] = {8, 4, 2, 0, -1};
1521 static const int gen7_modes[] = {8, 4, 0, -1};
1522 static const int gen6_modes[] = {4, 0, -1};
1523 static const int gen4_modes[] = {0, -1};
1524
1525 if (screen->devinfo.gen >= 9) {
1526 return gen9_modes;
1527 } else if (screen->devinfo.gen >= 8) {
1528 return gen8_modes;
1529 } else if (screen->devinfo.gen >= 7) {
1530 return gen7_modes;
1531 } else if (screen->devinfo.gen == 6) {
1532 return gen6_modes;
1533 } else {
1534 return gen4_modes;
1535 }
1536 }
1537
1538 static __DRIconfig**
1539 intel_screen_make_configs(__DRIscreen *dri_screen)
1540 {
1541 static const mesa_format formats[] = {
1542 MESA_FORMAT_B5G6R5_UNORM,
1543 MESA_FORMAT_B8G8R8A8_UNORM,
1544 MESA_FORMAT_B8G8R8X8_UNORM
1545 };
1546
1547 /* GLX_SWAP_COPY_OML is not supported due to page flipping. */
1548 static const GLenum back_buffer_modes[] = {
1549 GLX_SWAP_UNDEFINED_OML, GLX_NONE,
1550 };
1551
1552 static const uint8_t singlesample_samples[1] = {0};
1553 static const uint8_t multisample_samples[2] = {4, 8};
1554
1555 struct intel_screen *screen = dri_screen->driverPrivate;
1556 const struct gen_device_info *devinfo = &screen->devinfo;
1557 uint8_t depth_bits[4], stencil_bits[4];
1558 __DRIconfig **configs = NULL;
1559
1560 /* Generate singlesample configs without accumulation buffer. */
1561 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1562 __DRIconfig **new_configs;
1563 int num_depth_stencil_bits = 2;
1564
1565 /* Starting with DRI2 protocol version 1.1 we can request a depth/stencil
1566 * buffer that has a different number of bits per pixel than the color
1567 * buffer, gen >= 6 supports this.
1568 */
1569 depth_bits[0] = 0;
1570 stencil_bits[0] = 0;
1571
1572 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1573 depth_bits[1] = 16;
1574 stencil_bits[1] = 0;
1575 if (devinfo->gen >= 6) {
1576 depth_bits[2] = 24;
1577 stencil_bits[2] = 8;
1578 num_depth_stencil_bits = 3;
1579 }
1580 } else {
1581 depth_bits[1] = 24;
1582 stencil_bits[1] = 8;
1583 }
1584
1585 new_configs = driCreateConfigs(formats[i],
1586 depth_bits,
1587 stencil_bits,
1588 num_depth_stencil_bits,
1589 back_buffer_modes, 2,
1590 singlesample_samples, 1,
1591 false, false);
1592 configs = driConcatConfigs(configs, new_configs);
1593 }
1594
1595 /* Generate the minimum possible set of configs that include an
1596 * accumulation buffer.
1597 */
1598 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1599 __DRIconfig **new_configs;
1600
1601 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1602 depth_bits[0] = 16;
1603 stencil_bits[0] = 0;
1604 } else {
1605 depth_bits[0] = 24;
1606 stencil_bits[0] = 8;
1607 }
1608
1609 new_configs = driCreateConfigs(formats[i],
1610 depth_bits, stencil_bits, 1,
1611 back_buffer_modes, 1,
1612 singlesample_samples, 1,
1613 true, false);
1614 configs = driConcatConfigs(configs, new_configs);
1615 }
1616
1617 /* Generate multisample configs.
1618 *
1619 * This loop breaks early, and hence is a no-op, on gen < 6.
1620 *
1621 * Multisample configs must follow the singlesample configs in order to
1622 * work around an X server bug present in 1.12. The X server chooses to
1623 * associate the first listed RGBA888-Z24S8 config, regardless of its
1624 * sample count, with the 32-bit depth visual used for compositing.
1625 *
1626 * Only doublebuffer configs with GLX_SWAP_UNDEFINED_OML behavior are
1627 * supported. Singlebuffer configs are not supported because no one wants
1628 * them.
1629 */
1630 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1631 if (devinfo->gen < 6)
1632 break;
1633
1634 __DRIconfig **new_configs;
1635 const int num_depth_stencil_bits = 2;
1636 int num_msaa_modes = 0;
1637
1638 depth_bits[0] = 0;
1639 stencil_bits[0] = 0;
1640
1641 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1642 depth_bits[1] = 16;
1643 stencil_bits[1] = 0;
1644 } else {
1645 depth_bits[1] = 24;
1646 stencil_bits[1] = 8;
1647 }
1648
1649 if (devinfo->gen >= 7)
1650 num_msaa_modes = 2;
1651 else if (devinfo->gen == 6)
1652 num_msaa_modes = 1;
1653
1654 new_configs = driCreateConfigs(formats[i],
1655 depth_bits,
1656 stencil_bits,
1657 num_depth_stencil_bits,
1658 back_buffer_modes, 1,
1659 multisample_samples,
1660 num_msaa_modes,
1661 false, false);
1662 configs = driConcatConfigs(configs, new_configs);
1663 }
1664
1665 if (configs == NULL) {
1666 fprintf(stderr, "[%s:%u] Error creating FBConfig!\n", __func__,
1667 __LINE__);
1668 return NULL;
1669 }
1670
1671 return configs;
1672 }
1673
1674 static void
1675 set_max_gl_versions(struct intel_screen *screen)
1676 {
1677 __DRIscreen *dri_screen = screen->driScrnPriv;
1678 const bool has_astc = screen->devinfo.gen >= 9;
1679
1680 switch (screen->devinfo.gen) {
1681 case 9:
1682 case 8:
1683 dri_screen->max_gl_core_version = 45;
1684 dri_screen->max_gl_compat_version = 30;
1685 dri_screen->max_gl_es1_version = 11;
1686 dri_screen->max_gl_es2_version = has_astc ? 32 : 31;
1687 break;
1688 case 7:
1689 dri_screen->max_gl_core_version = 33;
1690 if (can_do_pipelined_register_writes(screen)) {
1691 dri_screen->max_gl_core_version = 42;
1692 if (screen->devinfo.is_haswell && can_do_compute_dispatch(screen))
1693 dri_screen->max_gl_core_version = 43;
1694 if (screen->devinfo.is_haswell && can_do_mi_math_and_lrr(screen))
1695 dri_screen->max_gl_core_version = 45;
1696 }
1697 dri_screen->max_gl_compat_version = 30;
1698 dri_screen->max_gl_es1_version = 11;
1699 dri_screen->max_gl_es2_version = screen->devinfo.is_haswell ? 31 : 30;
1700 break;
1701 case 6:
1702 dri_screen->max_gl_core_version = 33;
1703 dri_screen->max_gl_compat_version = 30;
1704 dri_screen->max_gl_es1_version = 11;
1705 dri_screen->max_gl_es2_version = 30;
1706 break;
1707 case 5:
1708 case 4:
1709 dri_screen->max_gl_core_version = 0;
1710 dri_screen->max_gl_compat_version = 21;
1711 dri_screen->max_gl_es1_version = 11;
1712 dri_screen->max_gl_es2_version = 20;
1713 break;
1714 default:
1715 unreachable("unrecognized intel_screen::gen");
1716 }
1717 }
1718
1719 /**
1720 * Return the revision (generally the revid field of the PCI header) of the
1721 * graphics device.
1722 *
1723 * XXX: This function is useful to keep around even if it is not currently in
1724 * use. It is necessary for new platforms and revision specific workarounds or
1725 * features. Please don't remove it so that we know it at least continues to
1726 * build.
1727 */
1728 static __attribute__((__unused__)) int
1729 brw_get_revision(int fd)
1730 {
1731 struct drm_i915_getparam gp;
1732 int revision;
1733 int ret;
1734
1735 memset(&gp, 0, sizeof(gp));
1736 gp.param = I915_PARAM_REVISION;
1737 gp.value = &revision;
1738
1739 ret = drmCommandWriteRead(fd, DRM_I915_GETPARAM, &gp, sizeof(gp));
1740 if (ret)
1741 revision = -1;
1742
1743 return revision;
1744 }
1745
1746 static void
1747 shader_debug_log_mesa(void *data, const char *fmt, ...)
1748 {
1749 struct brw_context *brw = (struct brw_context *)data;
1750 va_list args;
1751
1752 va_start(args, fmt);
1753 GLuint msg_id = 0;
1754 _mesa_gl_vdebug(&brw->ctx, &msg_id,
1755 MESA_DEBUG_SOURCE_SHADER_COMPILER,
1756 MESA_DEBUG_TYPE_OTHER,
1757 MESA_DEBUG_SEVERITY_NOTIFICATION, fmt, args);
1758 va_end(args);
1759 }
1760
1761 static void
1762 shader_perf_log_mesa(void *data, const char *fmt, ...)
1763 {
1764 struct brw_context *brw = (struct brw_context *)data;
1765
1766 va_list args;
1767 va_start(args, fmt);
1768
1769 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
1770 va_list args_copy;
1771 va_copy(args_copy, args);
1772 vfprintf(stderr, fmt, args_copy);
1773 va_end(args_copy);
1774 }
1775
1776 if (brw->perf_debug) {
1777 GLuint msg_id = 0;
1778 _mesa_gl_vdebug(&brw->ctx, &msg_id,
1779 MESA_DEBUG_SOURCE_SHADER_COMPILER,
1780 MESA_DEBUG_TYPE_PERFORMANCE,
1781 MESA_DEBUG_SEVERITY_MEDIUM, fmt, args);
1782 }
1783 va_end(args);
1784 }
1785
1786 static int
1787 parse_devid_override(const char *devid_override)
1788 {
1789 static const struct {
1790 const char *name;
1791 int pci_id;
1792 } name_map[] = {
1793 { "brw", 0x2a02 },
1794 { "g4x", 0x2a42 },
1795 { "ilk", 0x0042 },
1796 { "snb", 0x0126 },
1797 { "ivb", 0x016a },
1798 { "hsw", 0x0d2e },
1799 { "byt", 0x0f33 },
1800 { "bdw", 0x162e },
1801 { "skl", 0x1912 },
1802 { "kbl", 0x5912 },
1803 };
1804
1805 for (unsigned i = 0; i < ARRAY_SIZE(name_map); i++) {
1806 if (!strcmp(name_map[i].name, devid_override))
1807 return name_map[i].pci_id;
1808 }
1809
1810 return strtod(devid_override, NULL);
1811 }
1812
1813 /**
1814 * Get the PCI ID for the device. This can be overridden by setting the
1815 * INTEL_DEVID_OVERRIDE environment variable to the desired ID.
1816 *
1817 * Returns -1 on ioctl failure.
1818 */
1819 static int
1820 get_pci_device_id(struct intel_screen *screen)
1821 {
1822 if (geteuid() == getuid()) {
1823 char *devid_override = getenv("INTEL_DEVID_OVERRIDE");
1824 if (devid_override) {
1825 screen->no_hw = true;
1826 return parse_devid_override(devid_override);
1827 }
1828 }
1829
1830 return intel_get_integer(screen, I915_PARAM_CHIPSET_ID);
1831 }
1832
1833 /**
1834 * This is the driver specific part of the createNewScreen entry point.
1835 * Called when using DRI2.
1836 *
1837 * \return the struct gl_config supported by this driver
1838 */
1839 static const
1840 __DRIconfig **intelInitScreen2(__DRIscreen *dri_screen)
1841 {
1842 struct intel_screen *screen;
1843
1844 if (dri_screen->image.loader) {
1845 } else if (dri_screen->dri2.loader->base.version <= 2 ||
1846 dri_screen->dri2.loader->getBuffersWithFormat == NULL) {
1847 fprintf(stderr,
1848 "\nERROR! DRI2 loader with getBuffersWithFormat() "
1849 "support required\n");
1850 return NULL;
1851 }
1852
1853 /* Allocate the private area */
1854 screen = rzalloc(NULL, struct intel_screen);
1855 if (!screen) {
1856 fprintf(stderr, "\nERROR! Allocating private area failed\n");
1857 return NULL;
1858 }
1859 /* parse information in __driConfigOptions */
1860 driParseOptionInfo(&screen->optionCache, brw_config_options.xml);
1861
1862 screen->driScrnPriv = dri_screen;
1863 dri_screen->driverPrivate = (void *) screen;
1864
1865 screen->deviceID = get_pci_device_id(screen);
1866
1867 if (!gen_get_device_info(screen->deviceID, &screen->devinfo))
1868 return NULL;
1869
1870 if (!intel_init_bufmgr(screen))
1871 return NULL;
1872
1873 const struct gen_device_info *devinfo = &screen->devinfo;
1874
1875 brw_process_intel_debug_variable();
1876
1877 if ((INTEL_DEBUG & DEBUG_SHADER_TIME) && devinfo->gen < 7) {
1878 fprintf(stderr,
1879 "shader_time debugging requires gen7 (Ivybridge) or better.\n");
1880 INTEL_DEBUG &= ~DEBUG_SHADER_TIME;
1881 }
1882
1883 if (intel_get_integer(screen, I915_PARAM_MMAP_GTT_VERSION) >= 1) {
1884 /* Theorectically unlimited! At least for individual objects...
1885 *
1886 * Currently the entire (global) address space for all GTT maps is
1887 * limited to 64bits. That is all objects on the system that are
1888 * setup for GTT mmapping must fit within 64bits. An attempt to use
1889 * one that exceeds the limit with fail in brw_bo_map_gtt().
1890 *
1891 * Long before we hit that limit, we will be practically limited by
1892 * that any single object must fit in physical memory (RAM). The upper
1893 * limit on the CPU's address space is currently 48bits (Skylake), of
1894 * which only 39bits can be physical memory. (The GPU itself also has
1895 * a 48bit addressable virtual space.) We can fit over 32 million
1896 * objects of the current maximum allocable size before running out
1897 * of mmap space.
1898 */
1899 screen->max_gtt_map_object_size = UINT64_MAX;
1900 } else {
1901 /* Estimate the size of the mappable aperture into the GTT. There's an
1902 * ioctl to get the whole GTT size, but not one to get the mappable subset.
1903 * It turns out it's basically always 256MB, though some ancient hardware
1904 * was smaller.
1905 */
1906 uint32_t gtt_size = 256 * 1024 * 1024;
1907
1908 /* We don't want to map two objects such that a memcpy between them would
1909 * just fault one mapping in and then the other over and over forever. So
1910 * we would need to divide the GTT size by 2. Additionally, some GTT is
1911 * taken up by things like the framebuffer and the ringbuffer and such, so
1912 * be more conservative.
1913 */
1914 screen->max_gtt_map_object_size = gtt_size / 4;
1915 }
1916
1917 screen->aperture_threshold = get_aperture_size(dri_screen->fd) * 3 / 4;
1918
1919 screen->hw_has_swizzling = intel_detect_swizzling(screen);
1920 screen->hw_has_timestamp = intel_detect_timestamp(screen);
1921
1922 /* GENs prior to 8 do not support EU/Subslice info */
1923 if (devinfo->gen >= 8) {
1924 intel_detect_sseu(screen);
1925 } else if (devinfo->gen == 7) {
1926 screen->subslice_total = 1 << (devinfo->gt - 1);
1927 }
1928
1929 /* Gen7-7.5 kernel requirements / command parser saga:
1930 *
1931 * - pre-v3.16:
1932 * Haswell and Baytrail cannot use any privileged batchbuffer features.
1933 *
1934 * Ivybridge has aliasing PPGTT on by default, which accidentally marks
1935 * all batches secure, allowing them to use any feature with no checking.
1936 * This is effectively equivalent to a command parser version of
1937 * \infinity - everything is possible.
1938 *
1939 * The command parser does not exist, and querying the version will
1940 * return -EINVAL.
1941 *
1942 * - v3.16:
1943 * The kernel enables the command parser by default, for systems with
1944 * aliasing PPGTT enabled (Ivybridge and Haswell). However, the
1945 * hardware checker is still enabled, so Haswell and Baytrail cannot
1946 * do anything.
1947 *
1948 * Ivybridge goes from "everything is possible" to "only what the
1949 * command parser allows" (if the user boots with i915.cmd_parser=0,
1950 * then everything is possible again). We can only safely use features
1951 * allowed by the supported command parser version.
1952 *
1953 * Annoyingly, I915_PARAM_CMD_PARSER_VERSION reports the static version
1954 * implemented by the kernel, even if it's turned off. So, checking
1955 * for version > 0 does not mean that you can write registers. We have
1956 * to try it and see. The version does, however, indicate the age of
1957 * the kernel.
1958 *
1959 * Instead of matching the hardware checker's behavior of converting
1960 * privileged commands to MI_NOOP, it makes execbuf2 start returning
1961 * -EINVAL, making it dangerous to try and use privileged features.
1962 *
1963 * Effective command parser versions:
1964 * - Haswell: 0 (reporting 1, writes don't work)
1965 * - Baytrail: 0 (reporting 1, writes don't work)
1966 * - Ivybridge: 1 (enabled) or infinite (disabled)
1967 *
1968 * - v3.17:
1969 * Baytrail aliasing PPGTT is enabled, making it like Ivybridge:
1970 * effectively version 1 (enabled) or infinite (disabled).
1971 *
1972 * - v3.19: f1f55cc0556031c8ee3fe99dae7251e78b9b653b
1973 * Command parser v2 supports predicate writes.
1974 *
1975 * - Haswell: 0 (reporting 1, writes don't work)
1976 * - Baytrail: 2 (enabled) or infinite (disabled)
1977 * - Ivybridge: 2 (enabled) or infinite (disabled)
1978 *
1979 * So version >= 2 is enough to know that Ivybridge and Baytrail
1980 * will work. Haswell still can't do anything.
1981 *
1982 * - v4.0: Version 3 happened. Largely not relevant.
1983 *
1984 * - v4.1: 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
1985 * L3 config registers are properly saved and restored as part
1986 * of the hardware context. We can approximately detect this point
1987 * in time by checking if I915_PARAM_REVISION is recognized - it
1988 * landed in a later commit, but in the same release cycle.
1989 *
1990 * - v4.2: 245054a1fe33c06ad233e0d58a27ec7b64db9284
1991 * Command parser finally gains secure batch promotion. On Haswell,
1992 * the hardware checker gets disabled, which finally allows it to do
1993 * privileged commands.
1994 *
1995 * I915_PARAM_CMD_PARSER_VERSION reports 3. Effective versions:
1996 * - Haswell: 3 (enabled) or 0 (disabled)
1997 * - Baytrail: 3 (enabled) or infinite (disabled)
1998 * - Ivybridge: 3 (enabled) or infinite (disabled)
1999 *
2000 * Unfortunately, detecting this point in time is tricky, because
2001 * no version bump happened when this important change occurred.
2002 * On Haswell, if we can write any register, then the kernel is at
2003 * least this new, and we can start trusting the version number.
2004 *
2005 * - v4.4: 2bbe6bbb0dc94fd4ce287bdac9e1bd184e23057b and
2006 * Command parser reaches version 4, allowing access to Haswell
2007 * atomic scratch and chicken3 registers. If version >= 4, we know
2008 * the kernel is new enough to support privileged features on all
2009 * hardware. However, the user might have disabled it...and the
2010 * kernel will still report version 4. So we still have to guess
2011 * and check.
2012 *
2013 * - v4.4: 7b9748cb513a6bef4af87b79f0da3ff7e8b56cd8
2014 * Command parser v5 whitelists indirect compute shader dispatch
2015 * registers, needed for OpenGL 4.3 and later.
2016 *
2017 * - v4.8:
2018 * Command parser v7 lets us use MI_MATH on Haswell.
2019 *
2020 * Additionally, the kernel begins reporting version 0 when
2021 * the command parser is disabled, allowing us to skip the
2022 * guess-and-check step on Haswell. Unfortunately, this also
2023 * means that we can no longer use it as an indicator of the
2024 * age of the kernel.
2025 */
2026 if (intel_get_param(screen, I915_PARAM_CMD_PARSER_VERSION,
2027 &screen->cmd_parser_version) < 0) {
2028 /* Command parser does not exist - getparam is unrecognized */
2029 screen->cmd_parser_version = 0;
2030 }
2031
2032 if (!intel_detect_pipelined_so(screen)) {
2033 /* We can't do anything, so the effective version is 0. */
2034 screen->cmd_parser_version = 0;
2035 } else {
2036 screen->kernel_features |= KERNEL_ALLOWS_SOL_OFFSET_WRITES;
2037 }
2038
2039 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 2)
2040 screen->kernel_features |= KERNEL_ALLOWS_PREDICATE_WRITES;
2041
2042 /* Haswell requires command parser version 4 in order to have L3
2043 * atomic scratch1 and chicken3 bits
2044 */
2045 if (devinfo->is_haswell && screen->cmd_parser_version >= 4) {
2046 screen->kernel_features |=
2047 KERNEL_ALLOWS_HSW_SCRATCH1_AND_ROW_CHICKEN3;
2048 }
2049
2050 /* Haswell requires command parser version 6 in order to write to the
2051 * MI_MATH GPR registers, and version 7 in order to use
2052 * MI_LOAD_REGISTER_REG (which all users of MI_MATH use).
2053 */
2054 if (devinfo->gen >= 8 ||
2055 (devinfo->is_haswell && screen->cmd_parser_version >= 7)) {
2056 screen->kernel_features |= KERNEL_ALLOWS_MI_MATH_AND_LRR;
2057 }
2058
2059 /* Gen7 needs at least command parser version 5 to support compute */
2060 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 5)
2061 screen->kernel_features |= KERNEL_ALLOWS_COMPUTE_DISPATCH;
2062
2063 const char *force_msaa = getenv("INTEL_FORCE_MSAA");
2064 if (force_msaa) {
2065 screen->winsys_msaa_samples_override =
2066 intel_quantize_num_samples(screen, atoi(force_msaa));
2067 printf("Forcing winsys sample count to %d\n",
2068 screen->winsys_msaa_samples_override);
2069 } else {
2070 screen->winsys_msaa_samples_override = -1;
2071 }
2072
2073 set_max_gl_versions(screen);
2074
2075 /* Notification of GPU resets requires hardware contexts and a kernel new
2076 * enough to support DRM_IOCTL_I915_GET_RESET_STATS. If the ioctl is
2077 * supported, calling it with a context of 0 will either generate EPERM or
2078 * no error. If the ioctl is not supported, it always generate EINVAL.
2079 * Use this to determine whether to advertise the __DRI2_ROBUSTNESS
2080 * extension to the loader.
2081 *
2082 * Don't even try on pre-Gen6, since we don't attempt to use contexts there.
2083 */
2084 if (devinfo->gen >= 6) {
2085 struct drm_i915_reset_stats stats;
2086 memset(&stats, 0, sizeof(stats));
2087
2088 const int ret = drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats);
2089
2090 screen->has_context_reset_notification =
2091 (ret != -1 || errno != EINVAL);
2092 }
2093
2094 dri_screen->extensions = !screen->has_context_reset_notification
2095 ? screenExtensions : intelRobustScreenExtensions;
2096
2097 screen->compiler = brw_compiler_create(screen, devinfo);
2098 screen->compiler->shader_debug_log = shader_debug_log_mesa;
2099 screen->compiler->shader_perf_log = shader_perf_log_mesa;
2100 screen->program_id = 1;
2101
2102 screen->has_exec_fence =
2103 intel_get_boolean(screen, I915_PARAM_HAS_EXEC_FENCE);
2104
2105 return (const __DRIconfig**) intel_screen_make_configs(dri_screen);
2106 }
2107
2108 struct intel_buffer {
2109 __DRIbuffer base;
2110 struct brw_bo *bo;
2111 };
2112
2113 static __DRIbuffer *
2114 intelAllocateBuffer(__DRIscreen *dri_screen,
2115 unsigned attachment, unsigned format,
2116 int width, int height)
2117 {
2118 struct intel_buffer *intelBuffer;
2119 struct intel_screen *screen = dri_screen->driverPrivate;
2120
2121 assert(attachment == __DRI_BUFFER_FRONT_LEFT ||
2122 attachment == __DRI_BUFFER_BACK_LEFT);
2123
2124 intelBuffer = calloc(1, sizeof *intelBuffer);
2125 if (intelBuffer == NULL)
2126 return NULL;
2127
2128 /* The front and back buffers are color buffers, which are X tiled. GEN9+
2129 * supports Y tiled and compressed buffers, but there is no way to plumb that
2130 * through to here. */
2131 uint32_t pitch;
2132 int cpp = format / 8;
2133 intelBuffer->bo = brw_bo_alloc_tiled(screen->bufmgr,
2134 "intelAllocateBuffer",
2135 width,
2136 height,
2137 cpp,
2138 I915_TILING_X, &pitch,
2139 BO_ALLOC_FOR_RENDER);
2140
2141 if (intelBuffer->bo == NULL) {
2142 free(intelBuffer);
2143 return NULL;
2144 }
2145
2146 brw_bo_flink(intelBuffer->bo, &intelBuffer->base.name);
2147
2148 intelBuffer->base.attachment = attachment;
2149 intelBuffer->base.cpp = cpp;
2150 intelBuffer->base.pitch = pitch;
2151
2152 return &intelBuffer->base;
2153 }
2154
2155 static void
2156 intelReleaseBuffer(__DRIscreen *dri_screen, __DRIbuffer *buffer)
2157 {
2158 struct intel_buffer *intelBuffer = (struct intel_buffer *) buffer;
2159
2160 brw_bo_unreference(intelBuffer->bo);
2161 free(intelBuffer);
2162 }
2163
2164 static const struct __DriverAPIRec brw_driver_api = {
2165 .InitScreen = intelInitScreen2,
2166 .DestroyScreen = intelDestroyScreen,
2167 .CreateContext = brwCreateContext,
2168 .DestroyContext = intelDestroyContext,
2169 .CreateBuffer = intelCreateBuffer,
2170 .DestroyBuffer = intelDestroyBuffer,
2171 .MakeCurrent = intelMakeCurrent,
2172 .UnbindContext = intelUnbindContext,
2173 .AllocateBuffer = intelAllocateBuffer,
2174 .ReleaseBuffer = intelReleaseBuffer
2175 };
2176
2177 static const struct __DRIDriverVtableExtensionRec brw_vtable = {
2178 .base = { __DRI_DRIVER_VTABLE, 1 },
2179 .vtable = &brw_driver_api,
2180 };
2181
2182 static const __DRIextension *brw_driver_extensions[] = {
2183 &driCoreExtension.base,
2184 &driImageDriverExtension.base,
2185 &driDRI2Extension.base,
2186 &brw_vtable.base,
2187 &brw_config_options.base,
2188 NULL
2189 };
2190
2191 PUBLIC const __DRIextension **__driDriverGetExtensions_i965(void)
2192 {
2193 globalDriverAPI = &brw_driver_api;
2194
2195 return brw_driver_extensions;
2196 }