i965: Drop MAP_READ from some write-only mappings
[mesa.git] / src / mesa / drivers / dri / i965 / intel_screen.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <drm_fourcc.h>
27 #include <errno.h>
28 #include <time.h>
29 #include <unistd.h>
30 #include "main/context.h"
31 #include "main/framebuffer.h"
32 #include "main/renderbuffer.h"
33 #include "main/texobj.h"
34 #include "main/hash.h"
35 #include "main/fbobject.h"
36 #include "main/version.h"
37 #include "swrast/s_renderbuffer.h"
38 #include "util/ralloc.h"
39 #include "brw_defines.h"
40 #include "compiler/nir/nir.h"
41
42 #include "utils.h"
43 #include "xmlpool.h"
44
45 #ifndef DRM_FORMAT_MOD_INVALID
46 #define DRM_FORMAT_MOD_INVALID ((1ULL<<56) - 1)
47 #endif
48
49 #ifndef DRM_FORMAT_MOD_LINEAR
50 #define DRM_FORMAT_MOD_LINEAR 0
51 #endif
52
53 static const __DRIconfigOptionsExtension brw_config_options = {
54 .base = { __DRI_CONFIG_OPTIONS, 1 },
55 .xml =
56 DRI_CONF_BEGIN
57 DRI_CONF_SECTION_PERFORMANCE
58 DRI_CONF_VBLANK_MODE(DRI_CONF_VBLANK_ALWAYS_SYNC)
59 /* Options correspond to DRI_CONF_BO_REUSE_DISABLED,
60 * DRI_CONF_BO_REUSE_ALL
61 */
62 DRI_CONF_OPT_BEGIN_V(bo_reuse, enum, 1, "0:1")
63 DRI_CONF_DESC_BEGIN(en, "Buffer object reuse")
64 DRI_CONF_ENUM(0, "Disable buffer object reuse")
65 DRI_CONF_ENUM(1, "Enable reuse of all sizes of buffer objects")
66 DRI_CONF_DESC_END
67 DRI_CONF_OPT_END
68 DRI_CONF_SECTION_END
69
70 DRI_CONF_SECTION_QUALITY
71 DRI_CONF_FORCE_S3TC_ENABLE("false")
72
73 DRI_CONF_PRECISE_TRIG("false")
74
75 DRI_CONF_OPT_BEGIN(clamp_max_samples, int, -1)
76 DRI_CONF_DESC(en, "Clamp the value of GL_MAX_SAMPLES to the "
77 "given integer. If negative, then do not clamp.")
78 DRI_CONF_OPT_END
79 DRI_CONF_SECTION_END
80
81 DRI_CONF_SECTION_DEBUG
82 DRI_CONF_NO_RAST("false")
83 DRI_CONF_ALWAYS_FLUSH_BATCH("false")
84 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
85 DRI_CONF_DISABLE_THROTTLING("false")
86 DRI_CONF_FORCE_GLSL_EXTENSIONS_WARN("false")
87 DRI_CONF_FORCE_GLSL_VERSION(0)
88 DRI_CONF_DISABLE_GLSL_LINE_CONTINUATIONS("false")
89 DRI_CONF_DISABLE_BLEND_FUNC_EXTENDED("false")
90 DRI_CONF_DUAL_COLOR_BLEND_BY_LOCATION("false")
91 DRI_CONF_ALLOW_GLSL_EXTENSION_DIRECTIVE_MIDSHADER("false")
92 DRI_CONF_ALLOW_GLSL_BUILTIN_VARIABLE_REDECLARATION("false")
93 DRI_CONF_ALLOW_HIGHER_COMPAT_VERSION("false")
94 DRI_CONF_FORCE_GLSL_ABS_SQRT("false")
95
96 DRI_CONF_OPT_BEGIN_B(shader_precompile, "true")
97 DRI_CONF_DESC(en, "Perform code generation at shader link time.")
98 DRI_CONF_OPT_END
99 DRI_CONF_SECTION_END
100
101 DRI_CONF_SECTION_MISCELLANEOUS
102 DRI_CONF_GLSL_ZERO_INIT("false")
103 DRI_CONF_SECTION_END
104 DRI_CONF_END
105 };
106
107 #include "intel_batchbuffer.h"
108 #include "intel_buffers.h"
109 #include "brw_bufmgr.h"
110 #include "intel_fbo.h"
111 #include "intel_mipmap_tree.h"
112 #include "intel_screen.h"
113 #include "intel_tex.h"
114 #include "intel_image.h"
115
116 #include "brw_context.h"
117
118 #include "i915_drm.h"
119
120 /**
121 * For debugging purposes, this returns a time in seconds.
122 */
123 double
124 get_time(void)
125 {
126 struct timespec tp;
127
128 clock_gettime(CLOCK_MONOTONIC, &tp);
129
130 return tp.tv_sec + tp.tv_nsec / 1000000000.0;
131 }
132
133 static const __DRItexBufferExtension intelTexBufferExtension = {
134 .base = { __DRI_TEX_BUFFER, 3 },
135
136 .setTexBuffer = intelSetTexBuffer,
137 .setTexBuffer2 = intelSetTexBuffer2,
138 .releaseTexBuffer = NULL,
139 };
140
141 static void
142 intel_dri2_flush_with_flags(__DRIcontext *cPriv,
143 __DRIdrawable *dPriv,
144 unsigned flags,
145 enum __DRI2throttleReason reason)
146 {
147 struct brw_context *brw = cPriv->driverPrivate;
148
149 if (!brw)
150 return;
151
152 struct gl_context *ctx = &brw->ctx;
153
154 FLUSH_VERTICES(ctx, 0);
155
156 if (flags & __DRI2_FLUSH_DRAWABLE)
157 intel_resolve_for_dri2_flush(brw, dPriv);
158
159 if (reason == __DRI2_THROTTLE_SWAPBUFFER)
160 brw->need_swap_throttle = true;
161 if (reason == __DRI2_THROTTLE_FLUSHFRONT)
162 brw->need_flush_throttle = true;
163
164 intel_batchbuffer_flush(brw);
165 }
166
167 /**
168 * Provides compatibility with loaders that only support the older (version
169 * 1-3) flush interface.
170 *
171 * That includes libGL up to Mesa 9.0, and the X Server at least up to 1.13.
172 */
173 static void
174 intel_dri2_flush(__DRIdrawable *drawable)
175 {
176 intel_dri2_flush_with_flags(drawable->driContextPriv, drawable,
177 __DRI2_FLUSH_DRAWABLE,
178 __DRI2_THROTTLE_SWAPBUFFER);
179 }
180
181 static const struct __DRI2flushExtensionRec intelFlushExtension = {
182 .base = { __DRI2_FLUSH, 4 },
183
184 .flush = intel_dri2_flush,
185 .invalidate = dri2InvalidateDrawable,
186 .flush_with_flags = intel_dri2_flush_with_flags,
187 };
188
189 static struct intel_image_format intel_image_formats[] = {
190 { __DRI_IMAGE_FOURCC_ARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
191 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
192
193 { __DRI_IMAGE_FOURCC_ABGR8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
194 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
195
196 { __DRI_IMAGE_FOURCC_SARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
197 { { 0, 0, 0, __DRI_IMAGE_FORMAT_SARGB8, 4 } } },
198
199 { __DRI_IMAGE_FOURCC_XRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
200 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB8888, 4 }, } },
201
202 { __DRI_IMAGE_FOURCC_XBGR8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
203 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 }, } },
204
205 { __DRI_IMAGE_FOURCC_ARGB1555, __DRI_IMAGE_COMPONENTS_RGBA, 1,
206 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB1555, 2 } } },
207
208 { __DRI_IMAGE_FOURCC_RGB565, __DRI_IMAGE_COMPONENTS_RGB, 1,
209 { { 0, 0, 0, __DRI_IMAGE_FORMAT_RGB565, 2 } } },
210
211 { __DRI_IMAGE_FOURCC_R8, __DRI_IMAGE_COMPONENTS_R, 1,
212 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 }, } },
213
214 { __DRI_IMAGE_FOURCC_R16, __DRI_IMAGE_COMPONENTS_R, 1,
215 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 1 }, } },
216
217 { __DRI_IMAGE_FOURCC_GR88, __DRI_IMAGE_COMPONENTS_RG, 1,
218 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 }, } },
219
220 { __DRI_IMAGE_FOURCC_GR1616, __DRI_IMAGE_COMPONENTS_RG, 1,
221 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR1616, 2 }, } },
222
223 { __DRI_IMAGE_FOURCC_YUV410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
224 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
225 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
226 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
227
228 { __DRI_IMAGE_FOURCC_YUV411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
229 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
230 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
231 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
232
233 { __DRI_IMAGE_FOURCC_YUV420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
234 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
235 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
236 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
237
238 { __DRI_IMAGE_FOURCC_YUV422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
239 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
240 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
241 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
242
243 { __DRI_IMAGE_FOURCC_YUV444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
244 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
245 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
246 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
247
248 { __DRI_IMAGE_FOURCC_YVU410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
249 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
250 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
251 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
252
253 { __DRI_IMAGE_FOURCC_YVU411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
254 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
255 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
256 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
257
258 { __DRI_IMAGE_FOURCC_YVU420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
259 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
260 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
261 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
262
263 { __DRI_IMAGE_FOURCC_YVU422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
264 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
265 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
266 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
267
268 { __DRI_IMAGE_FOURCC_YVU444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
269 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
270 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
271 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
272
273 { __DRI_IMAGE_FOURCC_NV12, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
274 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
275 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR88, 2 } } },
276
277 { __DRI_IMAGE_FOURCC_NV16, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
278 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
279 { 1, 1, 0, __DRI_IMAGE_FORMAT_GR88, 2 } } },
280
281 /* For YUYV buffers, we set up two overlapping DRI images and treat
282 * them as planar buffers in the compositors. Plane 0 is GR88 and
283 * samples YU or YV pairs and places Y into the R component, while
284 * plane 1 is ARGB and samples YUYV clusters and places pairs and
285 * places U into the G component and V into A. This lets the
286 * texture sampler interpolate the Y components correctly when
287 * sampling from plane 0, and interpolate U and V correctly when
288 * sampling from plane 1. */
289 { __DRI_IMAGE_FOURCC_YUYV, __DRI_IMAGE_COMPONENTS_Y_XUXV, 2,
290 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
291 { 0, 1, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } }
292 };
293
294 static const struct {
295 uint32_t tiling;
296 uint64_t modifier;
297 } tiling_modifier_map[] = {
298 { .tiling = I915_TILING_NONE, .modifier = DRM_FORMAT_MOD_LINEAR },
299 { .tiling = I915_TILING_X, .modifier = I915_FORMAT_MOD_X_TILED },
300 { .tiling = I915_TILING_Y, .modifier = I915_FORMAT_MOD_Y_TILED },
301 };
302
303 static uint32_t
304 modifier_to_tiling(uint64_t modifier)
305 {
306 int i;
307
308 for (i = 0; i < ARRAY_SIZE(tiling_modifier_map); i++) {
309 if (tiling_modifier_map[i].modifier == modifier)
310 return tiling_modifier_map[i].tiling;
311 }
312
313 unreachable("modifier_to_tiling should only receive known modifiers");
314 }
315
316 static uint64_t
317 tiling_to_modifier(uint32_t tiling)
318 {
319 int i;
320
321 for (i = 0; i < ARRAY_SIZE(tiling_modifier_map); i++) {
322 if (tiling_modifier_map[i].tiling == tiling)
323 return tiling_modifier_map[i].modifier;
324 }
325
326 unreachable("tiling_to_modifier received unknown tiling mode");
327 }
328
329 static void
330 intel_image_warn_if_unaligned(__DRIimage *image, const char *func)
331 {
332 uint32_t tiling, swizzle;
333 brw_bo_get_tiling(image->bo, &tiling, &swizzle);
334
335 if (tiling != I915_TILING_NONE && (image->offset & 0xfff)) {
336 _mesa_warning(NULL, "%s: offset 0x%08x not on tile boundary",
337 func, image->offset);
338 }
339 }
340
341 static struct intel_image_format *
342 intel_image_format_lookup(int fourcc)
343 {
344 struct intel_image_format *f = NULL;
345
346 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
347 if (intel_image_formats[i].fourcc == fourcc) {
348 f = &intel_image_formats[i];
349 break;
350 }
351 }
352
353 return f;
354 }
355
356 static boolean intel_lookup_fourcc(int dri_format, int *fourcc)
357 {
358 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
359 if (intel_image_formats[i].planes[0].dri_format == dri_format) {
360 *fourcc = intel_image_formats[i].fourcc;
361 return true;
362 }
363 }
364 return false;
365 }
366
367 static __DRIimage *
368 intel_allocate_image(struct intel_screen *screen, int dri_format,
369 void *loaderPrivate)
370 {
371 __DRIimage *image;
372
373 image = calloc(1, sizeof *image);
374 if (image == NULL)
375 return NULL;
376
377 image->screen = screen;
378 image->dri_format = dri_format;
379 image->offset = 0;
380
381 image->format = driImageFormatToGLFormat(dri_format);
382 if (dri_format != __DRI_IMAGE_FORMAT_NONE &&
383 image->format == MESA_FORMAT_NONE) {
384 free(image);
385 return NULL;
386 }
387
388 image->internal_format = _mesa_get_format_base_format(image->format);
389 image->data = loaderPrivate;
390
391 return image;
392 }
393
394 /**
395 * Sets up a DRIImage structure to point to a slice out of a miptree.
396 */
397 static void
398 intel_setup_image_from_mipmap_tree(struct brw_context *brw, __DRIimage *image,
399 struct intel_mipmap_tree *mt, GLuint level,
400 GLuint zoffset)
401 {
402 intel_miptree_make_shareable(brw, mt);
403
404 intel_miptree_check_level_layer(mt, level, zoffset);
405
406 image->width = minify(mt->physical_width0, level - mt->first_level);
407 image->height = minify(mt->physical_height0, level - mt->first_level);
408 image->pitch = mt->pitch;
409
410 image->offset = intel_miptree_get_tile_offsets(mt, level, zoffset,
411 &image->tile_x,
412 &image->tile_y);
413
414 brw_bo_unreference(image->bo);
415 image->bo = mt->bo;
416 brw_bo_reference(mt->bo);
417 }
418
419 static __DRIimage *
420 intel_create_image_from_name(__DRIscreen *dri_screen,
421 int width, int height, int format,
422 int name, int pitch, void *loaderPrivate)
423 {
424 struct intel_screen *screen = dri_screen->driverPrivate;
425 __DRIimage *image;
426 int cpp;
427
428 image = intel_allocate_image(screen, format, loaderPrivate);
429 if (image == NULL)
430 return NULL;
431
432 if (image->format == MESA_FORMAT_NONE)
433 cpp = 1;
434 else
435 cpp = _mesa_get_format_bytes(image->format);
436
437 image->width = width;
438 image->height = height;
439 image->pitch = pitch * cpp;
440 image->bo = brw_bo_gem_create_from_name(screen->bufmgr, "image",
441 name);
442 if (!image->bo) {
443 free(image);
444 return NULL;
445 }
446 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
447
448 return image;
449 }
450
451 static __DRIimage *
452 intel_create_image_from_renderbuffer(__DRIcontext *context,
453 int renderbuffer, void *loaderPrivate)
454 {
455 __DRIimage *image;
456 struct brw_context *brw = context->driverPrivate;
457 struct gl_context *ctx = &brw->ctx;
458 struct gl_renderbuffer *rb;
459 struct intel_renderbuffer *irb;
460
461 rb = _mesa_lookup_renderbuffer(ctx, renderbuffer);
462 if (!rb) {
463 _mesa_error(ctx, GL_INVALID_OPERATION, "glRenderbufferExternalMESA");
464 return NULL;
465 }
466
467 irb = intel_renderbuffer(rb);
468 intel_miptree_make_shareable(brw, irb->mt);
469 image = calloc(1, sizeof *image);
470 if (image == NULL)
471 return NULL;
472
473 image->internal_format = rb->InternalFormat;
474 image->format = rb->Format;
475 image->modifier = tiling_to_modifier(irb->mt->tiling);
476 image->offset = 0;
477 image->data = loaderPrivate;
478 brw_bo_unreference(image->bo);
479 image->bo = irb->mt->bo;
480 brw_bo_reference(irb->mt->bo);
481 image->width = rb->Width;
482 image->height = rb->Height;
483 image->pitch = irb->mt->pitch;
484 image->dri_format = driGLFormatToImageFormat(image->format);
485 image->has_depthstencil = irb->mt->stencil_mt? true : false;
486
487 rb->NeedsFinishRenderTexture = true;
488 return image;
489 }
490
491 static __DRIimage *
492 intel_create_image_from_texture(__DRIcontext *context, int target,
493 unsigned texture, int zoffset,
494 int level,
495 unsigned *error,
496 void *loaderPrivate)
497 {
498 __DRIimage *image;
499 struct brw_context *brw = context->driverPrivate;
500 struct gl_texture_object *obj;
501 struct intel_texture_object *iobj;
502 GLuint face = 0;
503
504 obj = _mesa_lookup_texture(&brw->ctx, texture);
505 if (!obj || obj->Target != target) {
506 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
507 return NULL;
508 }
509
510 if (target == GL_TEXTURE_CUBE_MAP)
511 face = zoffset;
512
513 _mesa_test_texobj_completeness(&brw->ctx, obj);
514 iobj = intel_texture_object(obj);
515 if (!obj->_BaseComplete || (level > 0 && !obj->_MipmapComplete)) {
516 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
517 return NULL;
518 }
519
520 if (level < obj->BaseLevel || level > obj->_MaxLevel) {
521 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
522 return NULL;
523 }
524
525 if (target == GL_TEXTURE_3D && obj->Image[face][level]->Depth < zoffset) {
526 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
527 return NULL;
528 }
529 image = calloc(1, sizeof *image);
530 if (image == NULL) {
531 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
532 return NULL;
533 }
534
535 image->internal_format = obj->Image[face][level]->InternalFormat;
536 image->format = obj->Image[face][level]->TexFormat;
537 image->modifier = tiling_to_modifier(iobj->mt->tiling);
538 image->data = loaderPrivate;
539 intel_setup_image_from_mipmap_tree(brw, image, iobj->mt, level, zoffset);
540 image->dri_format = driGLFormatToImageFormat(image->format);
541 image->has_depthstencil = iobj->mt->stencil_mt? true : false;
542 if (image->dri_format == MESA_FORMAT_NONE) {
543 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
544 free(image);
545 return NULL;
546 }
547
548 *error = __DRI_IMAGE_ERROR_SUCCESS;
549 return image;
550 }
551
552 static void
553 intel_destroy_image(__DRIimage *image)
554 {
555 brw_bo_unreference(image->bo);
556 free(image);
557 }
558
559 enum modifier_priority {
560 MODIFIER_PRIORITY_INVALID = 0,
561 MODIFIER_PRIORITY_LINEAR,
562 MODIFIER_PRIORITY_X,
563 MODIFIER_PRIORITY_Y,
564 };
565
566 const uint64_t priority_to_modifier[] = {
567 [MODIFIER_PRIORITY_INVALID] = DRM_FORMAT_MOD_INVALID,
568 [MODIFIER_PRIORITY_LINEAR] = DRM_FORMAT_MOD_LINEAR,
569 [MODIFIER_PRIORITY_X] = I915_FORMAT_MOD_X_TILED,
570 [MODIFIER_PRIORITY_Y] = I915_FORMAT_MOD_Y_TILED,
571 };
572
573 static uint64_t
574 select_best_modifier(struct gen_device_info *devinfo,
575 const uint64_t *modifiers,
576 const unsigned count)
577 {
578 enum modifier_priority prio = MODIFIER_PRIORITY_INVALID;
579
580 for (int i = 0; i < count; i++) {
581 switch (modifiers[i]) {
582 case I915_FORMAT_MOD_Y_TILED:
583 prio = MAX2(prio, MODIFIER_PRIORITY_Y);
584 break;
585 case I915_FORMAT_MOD_X_TILED:
586 prio = MAX2(prio, MODIFIER_PRIORITY_X);
587 break;
588 case DRM_FORMAT_MOD_LINEAR:
589 prio = MAX2(prio, MODIFIER_PRIORITY_LINEAR);
590 break;
591 case DRM_FORMAT_MOD_INVALID:
592 default:
593 break;
594 }
595 }
596
597 return priority_to_modifier[prio];
598 }
599
600 static __DRIimage *
601 intel_create_image_common(__DRIscreen *dri_screen,
602 int width, int height, int format,
603 unsigned int use,
604 const uint64_t *modifiers,
605 unsigned count,
606 void *loaderPrivate)
607 {
608 __DRIimage *image;
609 struct intel_screen *screen = dri_screen->driverPrivate;
610 uint32_t tiling;
611 int cpp;
612
613 /* Callers of this may specify a modifier, or a dri usage, but not both. The
614 * newer modifier interface deprecates the older usage flags newer modifier
615 * interface deprecates the older usage flags.
616 */
617 assert(!(use && count));
618
619 uint64_t modifier = select_best_modifier(&screen->devinfo, modifiers, count);
620 if (modifier == DRM_FORMAT_MOD_INVALID) {
621 /* User requested specific modifiers, none of which work */
622 if (modifiers)
623 return NULL;
624
625 /* Historically, X-tiled was the default, and so lack of modifier means
626 * X-tiled.
627 */
628 tiling = I915_TILING_X;
629 } else {
630 /* select_best_modifier has found a modifier we support */
631 tiling = modifier_to_tiling(modifier);
632 }
633
634 if (use & __DRI_IMAGE_USE_CURSOR) {
635 if (width != 64 || height != 64)
636 return NULL;
637 tiling = I915_TILING_NONE;
638 }
639
640 if (use & __DRI_IMAGE_USE_LINEAR)
641 tiling = I915_TILING_NONE;
642
643 image = intel_allocate_image(screen, format, loaderPrivate);
644 if (image == NULL)
645 return NULL;
646
647 cpp = _mesa_get_format_bytes(image->format);
648 image->bo = brw_bo_alloc_tiled(screen->bufmgr, "image",
649 width, height, cpp, tiling,
650 &image->pitch, 0);
651 if (image->bo == NULL) {
652 free(image);
653 return NULL;
654 }
655 image->width = width;
656 image->height = height;
657 image->modifier = modifier;
658
659 return image;
660 }
661
662 static __DRIimage *
663 intel_create_image(__DRIscreen *dri_screen,
664 int width, int height, int format,
665 unsigned int use,
666 void *loaderPrivate)
667 {
668 return intel_create_image_common(dri_screen, width, height, format, use, NULL, 0,
669 loaderPrivate);
670 }
671
672 static __DRIimage *
673 intel_create_image_with_modifiers(__DRIscreen *dri_screen,
674 int width, int height, int format,
675 const uint64_t *modifiers,
676 const unsigned count,
677 void *loaderPrivate)
678 {
679 return intel_create_image_common(dri_screen, width, height, format, 0,
680 modifiers, count, loaderPrivate);
681 }
682
683 static GLboolean
684 intel_query_image(__DRIimage *image, int attrib, int *value)
685 {
686 switch (attrib) {
687 case __DRI_IMAGE_ATTRIB_STRIDE:
688 *value = image->pitch;
689 return true;
690 case __DRI_IMAGE_ATTRIB_HANDLE:
691 *value = image->bo->gem_handle;
692 return true;
693 case __DRI_IMAGE_ATTRIB_NAME:
694 return !brw_bo_flink(image->bo, (uint32_t *) value);
695 case __DRI_IMAGE_ATTRIB_FORMAT:
696 *value = image->dri_format;
697 return true;
698 case __DRI_IMAGE_ATTRIB_WIDTH:
699 *value = image->width;
700 return true;
701 case __DRI_IMAGE_ATTRIB_HEIGHT:
702 *value = image->height;
703 return true;
704 case __DRI_IMAGE_ATTRIB_COMPONENTS:
705 if (image->planar_format == NULL)
706 return false;
707 *value = image->planar_format->components;
708 return true;
709 case __DRI_IMAGE_ATTRIB_FD:
710 return !brw_bo_gem_export_to_prime(image->bo, value);
711 case __DRI_IMAGE_ATTRIB_FOURCC:
712 return intel_lookup_fourcc(image->dri_format, value);
713 case __DRI_IMAGE_ATTRIB_NUM_PLANES:
714 *value = 1;
715 return true;
716 case __DRI_IMAGE_ATTRIB_OFFSET:
717 *value = image->offset;
718 return true;
719 case __DRI_IMAGE_ATTRIB_MODIFIER_LOWER:
720 *value = (image->modifier & 0xffffffff);
721 return true;
722 case __DRI_IMAGE_ATTRIB_MODIFIER_UPPER:
723 *value = ((image->modifier >> 32) & 0xffffffff);
724 return true;
725
726 default:
727 return false;
728 }
729 }
730
731 static __DRIimage *
732 intel_dup_image(__DRIimage *orig_image, void *loaderPrivate)
733 {
734 __DRIimage *image;
735
736 image = calloc(1, sizeof *image);
737 if (image == NULL)
738 return NULL;
739
740 brw_bo_reference(orig_image->bo);
741 image->bo = orig_image->bo;
742 image->internal_format = orig_image->internal_format;
743 image->planar_format = orig_image->planar_format;
744 image->dri_format = orig_image->dri_format;
745 image->format = orig_image->format;
746 image->modifier = orig_image->modifier;
747 image->offset = orig_image->offset;
748 image->width = orig_image->width;
749 image->height = orig_image->height;
750 image->pitch = orig_image->pitch;
751 image->tile_x = orig_image->tile_x;
752 image->tile_y = orig_image->tile_y;
753 image->has_depthstencil = orig_image->has_depthstencil;
754 image->data = loaderPrivate;
755
756 memcpy(image->strides, orig_image->strides, sizeof(image->strides));
757 memcpy(image->offsets, orig_image->offsets, sizeof(image->offsets));
758
759 return image;
760 }
761
762 static GLboolean
763 intel_validate_usage(__DRIimage *image, unsigned int use)
764 {
765 if (use & __DRI_IMAGE_USE_CURSOR) {
766 if (image->width != 64 || image->height != 64)
767 return GL_FALSE;
768 }
769
770 return GL_TRUE;
771 }
772
773 static __DRIimage *
774 intel_create_image_from_names(__DRIscreen *dri_screen,
775 int width, int height, int fourcc,
776 int *names, int num_names,
777 int *strides, int *offsets,
778 void *loaderPrivate)
779 {
780 struct intel_image_format *f = NULL;
781 __DRIimage *image;
782 int i, index;
783
784 if (dri_screen == NULL || names == NULL || num_names != 1)
785 return NULL;
786
787 f = intel_image_format_lookup(fourcc);
788 if (f == NULL)
789 return NULL;
790
791 image = intel_create_image_from_name(dri_screen, width, height,
792 __DRI_IMAGE_FORMAT_NONE,
793 names[0], strides[0],
794 loaderPrivate);
795
796 if (image == NULL)
797 return NULL;
798
799 image->planar_format = f;
800 for (i = 0; i < f->nplanes; i++) {
801 index = f->planes[i].buffer_index;
802 image->offsets[index] = offsets[index];
803 image->strides[index] = strides[index];
804 }
805
806 return image;
807 }
808
809 static __DRIimage *
810 intel_create_image_from_fds(__DRIscreen *dri_screen,
811 int width, int height, int fourcc,
812 int *fds, int num_fds, int *strides, int *offsets,
813 void *loaderPrivate)
814 {
815 struct intel_screen *screen = dri_screen->driverPrivate;
816 struct intel_image_format *f;
817 __DRIimage *image;
818 int i, index;
819
820 if (fds == NULL || num_fds < 1)
821 return NULL;
822
823 /* We only support all planes from the same bo */
824 for (i = 0; i < num_fds; i++)
825 if (fds[0] != fds[i])
826 return NULL;
827
828 f = intel_image_format_lookup(fourcc);
829 if (f == NULL)
830 return NULL;
831
832 if (f->nplanes == 1)
833 image = intel_allocate_image(screen, f->planes[0].dri_format,
834 loaderPrivate);
835 else
836 image = intel_allocate_image(screen, __DRI_IMAGE_FORMAT_NONE,
837 loaderPrivate);
838
839 if (image == NULL)
840 return NULL;
841
842 image->width = width;
843 image->height = height;
844 image->pitch = strides[0];
845
846 image->planar_format = f;
847 int size = 0;
848 for (i = 0; i < f->nplanes; i++) {
849 index = f->planes[i].buffer_index;
850 image->offsets[index] = offsets[index];
851 image->strides[index] = strides[index];
852
853 const int plane_height = height >> f->planes[i].height_shift;
854 const int end = offsets[index] + plane_height * strides[index];
855 if (size < end)
856 size = end;
857 }
858
859 image->bo = brw_bo_gem_create_from_prime(screen->bufmgr,
860 fds[0], size);
861 if (image->bo == NULL) {
862 free(image);
863 return NULL;
864 }
865 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
866
867 if (f->nplanes == 1) {
868 image->offset = image->offsets[0];
869 intel_image_warn_if_unaligned(image, __func__);
870 }
871
872 return image;
873 }
874
875 static __DRIimage *
876 intel_create_image_from_dma_bufs(__DRIscreen *dri_screen,
877 int width, int height, int fourcc,
878 int *fds, int num_fds,
879 int *strides, int *offsets,
880 enum __DRIYUVColorSpace yuv_color_space,
881 enum __DRISampleRange sample_range,
882 enum __DRIChromaSiting horizontal_siting,
883 enum __DRIChromaSiting vertical_siting,
884 unsigned *error,
885 void *loaderPrivate)
886 {
887 __DRIimage *image;
888 struct intel_image_format *f = intel_image_format_lookup(fourcc);
889
890 if (!f) {
891 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
892 return NULL;
893 }
894
895 image = intel_create_image_from_fds(dri_screen, width, height, fourcc, fds,
896 num_fds, strides, offsets,
897 loaderPrivate);
898
899 /*
900 * Invalid parameters and any inconsistencies between are assumed to be
901 * checked by the caller. Therefore besides unsupported formats one can fail
902 * only in allocation.
903 */
904 if (!image) {
905 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
906 return NULL;
907 }
908
909 image->dma_buf_imported = true;
910 image->yuv_color_space = yuv_color_space;
911 image->sample_range = sample_range;
912 image->horizontal_siting = horizontal_siting;
913 image->vertical_siting = vertical_siting;
914
915 *error = __DRI_IMAGE_ERROR_SUCCESS;
916 return image;
917 }
918
919 static __DRIimage *
920 intel_from_planar(__DRIimage *parent, int plane, void *loaderPrivate)
921 {
922 int width, height, offset, stride, dri_format, index;
923 struct intel_image_format *f;
924 __DRIimage *image;
925
926 if (parent == NULL || parent->planar_format == NULL)
927 return NULL;
928
929 f = parent->planar_format;
930
931 if (plane >= f->nplanes)
932 return NULL;
933
934 width = parent->width >> f->planes[plane].width_shift;
935 height = parent->height >> f->planes[plane].height_shift;
936 dri_format = f->planes[plane].dri_format;
937 index = f->planes[plane].buffer_index;
938 offset = parent->offsets[index];
939 stride = parent->strides[index];
940
941 image = intel_allocate_image(parent->screen, dri_format, loaderPrivate);
942 if (image == NULL)
943 return NULL;
944
945 if (offset + height * stride > parent->bo->size) {
946 _mesa_warning(NULL, "intel_create_sub_image: subimage out of bounds");
947 free(image);
948 return NULL;
949 }
950
951 image->bo = parent->bo;
952 brw_bo_reference(parent->bo);
953 image->modifier = parent->modifier;
954
955 image->width = width;
956 image->height = height;
957 image->pitch = stride;
958 image->offset = offset;
959
960 intel_image_warn_if_unaligned(image, __func__);
961
962 return image;
963 }
964
965 static const __DRIimageExtension intelImageExtension = {
966 .base = { __DRI_IMAGE, 14 },
967
968 .createImageFromName = intel_create_image_from_name,
969 .createImageFromRenderbuffer = intel_create_image_from_renderbuffer,
970 .destroyImage = intel_destroy_image,
971 .createImage = intel_create_image,
972 .queryImage = intel_query_image,
973 .dupImage = intel_dup_image,
974 .validateUsage = intel_validate_usage,
975 .createImageFromNames = intel_create_image_from_names,
976 .fromPlanar = intel_from_planar,
977 .createImageFromTexture = intel_create_image_from_texture,
978 .createImageFromFds = intel_create_image_from_fds,
979 .createImageFromDmaBufs = intel_create_image_from_dma_bufs,
980 .blitImage = NULL,
981 .getCapabilities = NULL,
982 .mapImage = NULL,
983 .unmapImage = NULL,
984 .createImageWithModifiers = intel_create_image_with_modifiers,
985 };
986
987 static uint64_t
988 get_aperture_size(int fd)
989 {
990 struct drm_i915_gem_get_aperture aperture;
991
992 if (drmIoctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture) != 0)
993 return 0;
994
995 return aperture.aper_size;
996 }
997
998 static int
999 brw_query_renderer_integer(__DRIscreen *dri_screen,
1000 int param, unsigned int *value)
1001 {
1002 const struct intel_screen *const screen =
1003 (struct intel_screen *) dri_screen->driverPrivate;
1004
1005 switch (param) {
1006 case __DRI2_RENDERER_VENDOR_ID:
1007 value[0] = 0x8086;
1008 return 0;
1009 case __DRI2_RENDERER_DEVICE_ID:
1010 value[0] = screen->deviceID;
1011 return 0;
1012 case __DRI2_RENDERER_ACCELERATED:
1013 value[0] = 1;
1014 return 0;
1015 case __DRI2_RENDERER_VIDEO_MEMORY: {
1016 /* Once a batch uses more than 75% of the maximum mappable size, we
1017 * assume that there's some fragmentation, and we start doing extra
1018 * flushing, etc. That's the big cliff apps will care about.
1019 */
1020 const unsigned gpu_mappable_megabytes =
1021 screen->aperture_threshold / (1024 * 1024);
1022
1023 const long system_memory_pages = sysconf(_SC_PHYS_PAGES);
1024 const long system_page_size = sysconf(_SC_PAGE_SIZE);
1025
1026 if (system_memory_pages <= 0 || system_page_size <= 0)
1027 return -1;
1028
1029 const uint64_t system_memory_bytes = (uint64_t) system_memory_pages
1030 * (uint64_t) system_page_size;
1031
1032 const unsigned system_memory_megabytes =
1033 (unsigned) (system_memory_bytes / (1024 * 1024));
1034
1035 value[0] = MIN2(system_memory_megabytes, gpu_mappable_megabytes);
1036 return 0;
1037 }
1038 case __DRI2_RENDERER_UNIFIED_MEMORY_ARCHITECTURE:
1039 value[0] = 1;
1040 return 0;
1041 case __DRI2_RENDERER_HAS_TEXTURE_3D:
1042 value[0] = 1;
1043 return 0;
1044 default:
1045 return driQueryRendererIntegerCommon(dri_screen, param, value);
1046 }
1047
1048 return -1;
1049 }
1050
1051 static int
1052 brw_query_renderer_string(__DRIscreen *dri_screen,
1053 int param, const char **value)
1054 {
1055 const struct intel_screen *screen =
1056 (struct intel_screen *) dri_screen->driverPrivate;
1057
1058 switch (param) {
1059 case __DRI2_RENDERER_VENDOR_ID:
1060 value[0] = brw_vendor_string;
1061 return 0;
1062 case __DRI2_RENDERER_DEVICE_ID:
1063 value[0] = brw_get_renderer_string(screen);
1064 return 0;
1065 default:
1066 break;
1067 }
1068
1069 return -1;
1070 }
1071
1072 static const __DRI2rendererQueryExtension intelRendererQueryExtension = {
1073 .base = { __DRI2_RENDERER_QUERY, 1 },
1074
1075 .queryInteger = brw_query_renderer_integer,
1076 .queryString = brw_query_renderer_string
1077 };
1078
1079 static const __DRIrobustnessExtension dri2Robustness = {
1080 .base = { __DRI2_ROBUSTNESS, 1 }
1081 };
1082
1083 static const __DRIextension *screenExtensions[] = {
1084 &intelTexBufferExtension.base,
1085 &intelFenceExtension.base,
1086 &intelFlushExtension.base,
1087 &intelImageExtension.base,
1088 &intelRendererQueryExtension.base,
1089 &dri2ConfigQueryExtension.base,
1090 NULL
1091 };
1092
1093 static const __DRIextension *intelRobustScreenExtensions[] = {
1094 &intelTexBufferExtension.base,
1095 &intelFenceExtension.base,
1096 &intelFlushExtension.base,
1097 &intelImageExtension.base,
1098 &intelRendererQueryExtension.base,
1099 &dri2ConfigQueryExtension.base,
1100 &dri2Robustness.base,
1101 NULL
1102 };
1103
1104 static int
1105 intel_get_param(struct intel_screen *screen, int param, int *value)
1106 {
1107 int ret = 0;
1108 struct drm_i915_getparam gp;
1109
1110 memset(&gp, 0, sizeof(gp));
1111 gp.param = param;
1112 gp.value = value;
1113
1114 if (drmIoctl(screen->driScrnPriv->fd, DRM_IOCTL_I915_GETPARAM, &gp) == -1) {
1115 ret = -errno;
1116 if (ret != -EINVAL)
1117 _mesa_warning(NULL, "drm_i915_getparam: %d", ret);
1118 }
1119
1120 return ret;
1121 }
1122
1123 static bool
1124 intel_get_boolean(struct intel_screen *screen, int param)
1125 {
1126 int value = 0;
1127 return (intel_get_param(screen, param, &value) == 0) && value;
1128 }
1129
1130 static int
1131 intel_get_integer(struct intel_screen *screen, int param)
1132 {
1133 int value = -1;
1134
1135 if (intel_get_param(screen, param, &value) == 0)
1136 return value;
1137
1138 return -1;
1139 }
1140
1141 static void
1142 intelDestroyScreen(__DRIscreen * sPriv)
1143 {
1144 struct intel_screen *screen = sPriv->driverPrivate;
1145
1146 brw_bufmgr_destroy(screen->bufmgr);
1147 driDestroyOptionInfo(&screen->optionCache);
1148
1149 ralloc_free(screen);
1150 sPriv->driverPrivate = NULL;
1151 }
1152
1153
1154 /**
1155 * Create a gl_framebuffer and attach it to __DRIdrawable::driverPrivate.
1156 *
1157 *_This implements driDriverAPI::createNewDrawable, which the DRI layer calls
1158 * when creating a EGLSurface, GLXDrawable, or GLXPixmap. Despite the name,
1159 * this does not allocate GPU memory.
1160 */
1161 static GLboolean
1162 intelCreateBuffer(__DRIscreen *dri_screen,
1163 __DRIdrawable * driDrawPriv,
1164 const struct gl_config * mesaVis, GLboolean isPixmap)
1165 {
1166 struct intel_renderbuffer *rb;
1167 struct intel_screen *screen = (struct intel_screen *)
1168 dri_screen->driverPrivate;
1169 mesa_format rgbFormat;
1170 unsigned num_samples =
1171 intel_quantize_num_samples(screen, mesaVis->samples);
1172
1173 if (isPixmap)
1174 return false;
1175
1176 struct gl_framebuffer *fb = CALLOC_STRUCT(gl_framebuffer);
1177 if (!fb)
1178 return false;
1179
1180 _mesa_initialize_window_framebuffer(fb, mesaVis);
1181
1182 if (screen->winsys_msaa_samples_override != -1) {
1183 num_samples = screen->winsys_msaa_samples_override;
1184 fb->Visual.samples = num_samples;
1185 }
1186
1187 if (mesaVis->redBits == 5) {
1188 rgbFormat = mesaVis->redMask == 0x1f ? MESA_FORMAT_R5G6B5_UNORM
1189 : MESA_FORMAT_B5G6R5_UNORM;
1190 } else if (mesaVis->sRGBCapable) {
1191 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1192 : MESA_FORMAT_B8G8R8A8_SRGB;
1193 } else if (mesaVis->alphaBits == 0) {
1194 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8X8_UNORM
1195 : MESA_FORMAT_B8G8R8X8_UNORM;
1196 } else {
1197 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1198 : MESA_FORMAT_B8G8R8A8_SRGB;
1199 fb->Visual.sRGBCapable = true;
1200 }
1201
1202 /* setup the hardware-based renderbuffers */
1203 rb = intel_create_winsys_renderbuffer(rgbFormat, num_samples);
1204 _mesa_attach_and_own_rb(fb, BUFFER_FRONT_LEFT, &rb->Base.Base);
1205
1206 if (mesaVis->doubleBufferMode) {
1207 rb = intel_create_winsys_renderbuffer(rgbFormat, num_samples);
1208 _mesa_attach_and_own_rb(fb, BUFFER_BACK_LEFT, &rb->Base.Base);
1209 }
1210
1211 /*
1212 * Assert here that the gl_config has an expected depth/stencil bit
1213 * combination: one of d24/s8, d16/s0, d0/s0. (See intelInitScreen2(),
1214 * which constructs the advertised configs.)
1215 */
1216 if (mesaVis->depthBits == 24) {
1217 assert(mesaVis->stencilBits == 8);
1218
1219 if (screen->devinfo.has_hiz_and_separate_stencil) {
1220 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z24_UNORM_X8_UINT,
1221 num_samples);
1222 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1223 rb = intel_create_private_renderbuffer(MESA_FORMAT_S_UINT8,
1224 num_samples);
1225 _mesa_attach_and_own_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1226 } else {
1227 /*
1228 * Use combined depth/stencil. Note that the renderbuffer is
1229 * attached to two attachment points.
1230 */
1231 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z24_UNORM_S8_UINT,
1232 num_samples);
1233 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1234 _mesa_attach_and_reference_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1235 }
1236 }
1237 else if (mesaVis->depthBits == 16) {
1238 assert(mesaVis->stencilBits == 0);
1239 rb = intel_create_private_renderbuffer(MESA_FORMAT_Z_UNORM16,
1240 num_samples);
1241 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1242 }
1243 else {
1244 assert(mesaVis->depthBits == 0);
1245 assert(mesaVis->stencilBits == 0);
1246 }
1247
1248 /* now add any/all software-based renderbuffers we may need */
1249 _swrast_add_soft_renderbuffers(fb,
1250 false, /* never sw color */
1251 false, /* never sw depth */
1252 false, /* never sw stencil */
1253 mesaVis->accumRedBits > 0,
1254 false, /* never sw alpha */
1255 false /* never sw aux */ );
1256 driDrawPriv->driverPrivate = fb;
1257
1258 return true;
1259 }
1260
1261 static void
1262 intelDestroyBuffer(__DRIdrawable * driDrawPriv)
1263 {
1264 struct gl_framebuffer *fb = driDrawPriv->driverPrivate;
1265
1266 _mesa_reference_framebuffer(&fb, NULL);
1267 }
1268
1269 static void
1270 intel_detect_sseu(struct intel_screen *screen)
1271 {
1272 assert(screen->devinfo.gen >= 8);
1273 int ret;
1274
1275 screen->subslice_total = -1;
1276 screen->eu_total = -1;
1277
1278 ret = intel_get_param(screen, I915_PARAM_SUBSLICE_TOTAL,
1279 &screen->subslice_total);
1280 if (ret < 0 && ret != -EINVAL)
1281 goto err_out;
1282
1283 ret = intel_get_param(screen,
1284 I915_PARAM_EU_TOTAL, &screen->eu_total);
1285 if (ret < 0 && ret != -EINVAL)
1286 goto err_out;
1287
1288 /* Without this information, we cannot get the right Braswell brandstrings,
1289 * and we have to use conservative numbers for GPGPU on many platforms, but
1290 * otherwise, things will just work.
1291 */
1292 if (screen->subslice_total < 1 || screen->eu_total < 1)
1293 _mesa_warning(NULL,
1294 "Kernel 4.1 required to properly query GPU properties.\n");
1295
1296 return;
1297
1298 err_out:
1299 screen->subslice_total = -1;
1300 screen->eu_total = -1;
1301 _mesa_warning(NULL, "Failed to query GPU properties (%s).\n", strerror(-ret));
1302 }
1303
1304 static bool
1305 intel_init_bufmgr(struct intel_screen *screen)
1306 {
1307 __DRIscreen *dri_screen = screen->driScrnPriv;
1308
1309 if (getenv("INTEL_NO_HW") != NULL)
1310 screen->no_hw = true;
1311
1312 screen->bufmgr = brw_bufmgr_init(&screen->devinfo, dri_screen->fd, BATCH_SZ);
1313 if (screen->bufmgr == NULL) {
1314 fprintf(stderr, "[%s:%u] Error initializing buffer manager.\n",
1315 __func__, __LINE__);
1316 return false;
1317 }
1318
1319 if (!intel_get_boolean(screen, I915_PARAM_HAS_WAIT_TIMEOUT)) {
1320 fprintf(stderr, "[%s: %u] Kernel 3.6 required.\n", __func__, __LINE__);
1321 return false;
1322 }
1323
1324 return true;
1325 }
1326
1327 static bool
1328 intel_detect_swizzling(struct intel_screen *screen)
1329 {
1330 struct brw_bo *buffer;
1331 unsigned flags = 0;
1332 uint32_t aligned_pitch;
1333 uint32_t tiling = I915_TILING_X;
1334 uint32_t swizzle_mode = 0;
1335
1336 buffer = brw_bo_alloc_tiled(screen->bufmgr, "swizzle test",
1337 64, 64, 4, tiling, &aligned_pitch, flags);
1338 if (buffer == NULL)
1339 return false;
1340
1341 brw_bo_get_tiling(buffer, &tiling, &swizzle_mode);
1342 brw_bo_unreference(buffer);
1343
1344 if (swizzle_mode == I915_BIT_6_SWIZZLE_NONE)
1345 return false;
1346 else
1347 return true;
1348 }
1349
1350 static int
1351 intel_detect_timestamp(struct intel_screen *screen)
1352 {
1353 uint64_t dummy = 0, last = 0;
1354 int upper, lower, loops;
1355
1356 /* On 64bit systems, some old kernels trigger a hw bug resulting in the
1357 * TIMESTAMP register being shifted and the low 32bits always zero.
1358 *
1359 * More recent kernels offer an interface to read the full 36bits
1360 * everywhere.
1361 */
1362 if (brw_reg_read(screen->bufmgr, TIMESTAMP | 1, &dummy) == 0)
1363 return 3;
1364
1365 /* Determine if we have a 32bit or 64bit kernel by inspecting the
1366 * upper 32bits for a rapidly changing timestamp.
1367 */
1368 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &last))
1369 return 0;
1370
1371 upper = lower = 0;
1372 for (loops = 0; loops < 10; loops++) {
1373 /* The TIMESTAMP should change every 80ns, so several round trips
1374 * through the kernel should be enough to advance it.
1375 */
1376 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &dummy))
1377 return 0;
1378
1379 upper += (dummy >> 32) != (last >> 32);
1380 if (upper > 1) /* beware 32bit counter overflow */
1381 return 2; /* upper dword holds the low 32bits of the timestamp */
1382
1383 lower += (dummy & 0xffffffff) != (last & 0xffffffff);
1384 if (lower > 1)
1385 return 1; /* timestamp is unshifted */
1386
1387 last = dummy;
1388 }
1389
1390 /* No advancement? No timestamp! */
1391 return 0;
1392 }
1393
1394 /**
1395 * Test if we can use MI_LOAD_REGISTER_MEM from an untrusted batchbuffer.
1396 *
1397 * Some combinations of hardware and kernel versions allow this feature,
1398 * while others don't. Instead of trying to enumerate every case, just
1399 * try and write a register and see if works.
1400 */
1401 static bool
1402 intel_detect_pipelined_register(struct intel_screen *screen,
1403 int reg, uint32_t expected_value, bool reset)
1404 {
1405 if (screen->no_hw)
1406 return false;
1407
1408 struct brw_bo *results, *bo;
1409 uint32_t *batch;
1410 uint32_t offset = 0;
1411 void *map;
1412 bool success = false;
1413
1414 /* Create a zero'ed temporary buffer for reading our results */
1415 results = brw_bo_alloc(screen->bufmgr, "registers", 4096, 0);
1416 if (results == NULL)
1417 goto err;
1418
1419 bo = brw_bo_alloc(screen->bufmgr, "batchbuffer", 4096, 0);
1420 if (bo == NULL)
1421 goto err_results;
1422
1423 map = brw_bo_map_cpu(NULL, bo, MAP_WRITE);
1424 if (!map)
1425 goto err_batch;
1426
1427 batch = map;
1428
1429 /* Write the register. */
1430 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1431 *batch++ = reg;
1432 *batch++ = expected_value;
1433
1434 /* Save the register's value back to the buffer. */
1435 *batch++ = MI_STORE_REGISTER_MEM | (3 - 2);
1436 *batch++ = reg;
1437 struct drm_i915_gem_relocation_entry reloc = {
1438 .offset = (char *) batch - (char *) map,
1439 .delta = offset * sizeof(uint32_t),
1440 .target_handle = results->gem_handle,
1441 .read_domains = I915_GEM_DOMAIN_INSTRUCTION,
1442 .write_domain = I915_GEM_DOMAIN_INSTRUCTION,
1443 };
1444 *batch++ = reloc.presumed_offset + reloc.delta;
1445
1446 /* And afterwards clear the register */
1447 if (reset) {
1448 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1449 *batch++ = reg;
1450 *batch++ = 0;
1451 }
1452
1453 *batch++ = MI_BATCH_BUFFER_END;
1454
1455 struct drm_i915_gem_exec_object2 exec_objects[2] = {
1456 {
1457 .handle = results->gem_handle,
1458 },
1459 {
1460 .handle = bo->gem_handle,
1461 .relocation_count = 1,
1462 .relocs_ptr = (uintptr_t) &reloc,
1463 }
1464 };
1465
1466 struct drm_i915_gem_execbuffer2 execbuf = {
1467 .buffers_ptr = (uintptr_t) exec_objects,
1468 .buffer_count = 2,
1469 .batch_len = ALIGN((char *) batch - (char *) map, 8),
1470 .flags = I915_EXEC_RENDER,
1471 };
1472
1473 /* Don't bother with error checking - if the execbuf fails, the
1474 * value won't be written and we'll just report that there's no access.
1475 */
1476 __DRIscreen *dri_screen = screen->driScrnPriv;
1477 drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf);
1478
1479 /* Check whether the value got written. */
1480 void *results_map = brw_bo_map_cpu(NULL, results, MAP_READ);
1481 if (results_map) {
1482 success = *((uint32_t *)results_map + offset) == expected_value;
1483 brw_bo_unmap(results);
1484 }
1485
1486 err_batch:
1487 brw_bo_unreference(bo);
1488 err_results:
1489 brw_bo_unreference(results);
1490 err:
1491 return success;
1492 }
1493
1494 static bool
1495 intel_detect_pipelined_so(struct intel_screen *screen)
1496 {
1497 const struct gen_device_info *devinfo = &screen->devinfo;
1498
1499 /* Supposedly, Broadwell just works. */
1500 if (devinfo->gen >= 8)
1501 return true;
1502
1503 if (devinfo->gen <= 6)
1504 return false;
1505
1506 /* See the big explanation about command parser versions below */
1507 if (screen->cmd_parser_version >= (devinfo->is_haswell ? 7 : 2))
1508 return true;
1509
1510 /* We use SO_WRITE_OFFSET0 since you're supposed to write it (unlike the
1511 * statistics registers), and we already reset it to zero before using it.
1512 */
1513 return intel_detect_pipelined_register(screen,
1514 GEN7_SO_WRITE_OFFSET(0),
1515 0x1337d0d0,
1516 false);
1517 }
1518
1519 /**
1520 * Return array of MSAA modes supported by the hardware. The array is
1521 * zero-terminated and sorted in decreasing order.
1522 */
1523 const int*
1524 intel_supported_msaa_modes(const struct intel_screen *screen)
1525 {
1526 static const int gen9_modes[] = {16, 8, 4, 2, 0, -1};
1527 static const int gen8_modes[] = {8, 4, 2, 0, -1};
1528 static const int gen7_modes[] = {8, 4, 0, -1};
1529 static const int gen6_modes[] = {4, 0, -1};
1530 static const int gen4_modes[] = {0, -1};
1531
1532 if (screen->devinfo.gen >= 9) {
1533 return gen9_modes;
1534 } else if (screen->devinfo.gen >= 8) {
1535 return gen8_modes;
1536 } else if (screen->devinfo.gen >= 7) {
1537 return gen7_modes;
1538 } else if (screen->devinfo.gen == 6) {
1539 return gen6_modes;
1540 } else {
1541 return gen4_modes;
1542 }
1543 }
1544
1545 static __DRIconfig**
1546 intel_screen_make_configs(__DRIscreen *dri_screen)
1547 {
1548 static const mesa_format formats[] = {
1549 MESA_FORMAT_B5G6R5_UNORM,
1550 MESA_FORMAT_B8G8R8A8_UNORM,
1551 MESA_FORMAT_B8G8R8X8_UNORM
1552 };
1553
1554 /* GLX_SWAP_COPY_OML is not supported due to page flipping. */
1555 static const GLenum back_buffer_modes[] = {
1556 GLX_SWAP_UNDEFINED_OML, GLX_NONE,
1557 };
1558
1559 static const uint8_t singlesample_samples[1] = {0};
1560 static const uint8_t multisample_samples[2] = {4, 8};
1561
1562 struct intel_screen *screen = dri_screen->driverPrivate;
1563 const struct gen_device_info *devinfo = &screen->devinfo;
1564 uint8_t depth_bits[4], stencil_bits[4];
1565 __DRIconfig **configs = NULL;
1566
1567 /* Generate singlesample configs without accumulation buffer. */
1568 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1569 __DRIconfig **new_configs;
1570 int num_depth_stencil_bits = 2;
1571
1572 /* Starting with DRI2 protocol version 1.1 we can request a depth/stencil
1573 * buffer that has a different number of bits per pixel than the color
1574 * buffer, gen >= 6 supports this.
1575 */
1576 depth_bits[0] = 0;
1577 stencil_bits[0] = 0;
1578
1579 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1580 depth_bits[1] = 16;
1581 stencil_bits[1] = 0;
1582 if (devinfo->gen >= 6) {
1583 depth_bits[2] = 24;
1584 stencil_bits[2] = 8;
1585 num_depth_stencil_bits = 3;
1586 }
1587 } else {
1588 depth_bits[1] = 24;
1589 stencil_bits[1] = 8;
1590 }
1591
1592 new_configs = driCreateConfigs(formats[i],
1593 depth_bits,
1594 stencil_bits,
1595 num_depth_stencil_bits,
1596 back_buffer_modes, 2,
1597 singlesample_samples, 1,
1598 false, false);
1599 configs = driConcatConfigs(configs, new_configs);
1600 }
1601
1602 /* Generate the minimum possible set of configs that include an
1603 * accumulation buffer.
1604 */
1605 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1606 __DRIconfig **new_configs;
1607
1608 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1609 depth_bits[0] = 16;
1610 stencil_bits[0] = 0;
1611 } else {
1612 depth_bits[0] = 24;
1613 stencil_bits[0] = 8;
1614 }
1615
1616 new_configs = driCreateConfigs(formats[i],
1617 depth_bits, stencil_bits, 1,
1618 back_buffer_modes, 1,
1619 singlesample_samples, 1,
1620 true, false);
1621 configs = driConcatConfigs(configs, new_configs);
1622 }
1623
1624 /* Generate multisample configs.
1625 *
1626 * This loop breaks early, and hence is a no-op, on gen < 6.
1627 *
1628 * Multisample configs must follow the singlesample configs in order to
1629 * work around an X server bug present in 1.12. The X server chooses to
1630 * associate the first listed RGBA888-Z24S8 config, regardless of its
1631 * sample count, with the 32-bit depth visual used for compositing.
1632 *
1633 * Only doublebuffer configs with GLX_SWAP_UNDEFINED_OML behavior are
1634 * supported. Singlebuffer configs are not supported because no one wants
1635 * them.
1636 */
1637 for (unsigned i = 0; i < ARRAY_SIZE(formats); i++) {
1638 if (devinfo->gen < 6)
1639 break;
1640
1641 __DRIconfig **new_configs;
1642 const int num_depth_stencil_bits = 2;
1643 int num_msaa_modes = 0;
1644
1645 depth_bits[0] = 0;
1646 stencil_bits[0] = 0;
1647
1648 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
1649 depth_bits[1] = 16;
1650 stencil_bits[1] = 0;
1651 } else {
1652 depth_bits[1] = 24;
1653 stencil_bits[1] = 8;
1654 }
1655
1656 if (devinfo->gen >= 7)
1657 num_msaa_modes = 2;
1658 else if (devinfo->gen == 6)
1659 num_msaa_modes = 1;
1660
1661 new_configs = driCreateConfigs(formats[i],
1662 depth_bits,
1663 stencil_bits,
1664 num_depth_stencil_bits,
1665 back_buffer_modes, 1,
1666 multisample_samples,
1667 num_msaa_modes,
1668 false, false);
1669 configs = driConcatConfigs(configs, new_configs);
1670 }
1671
1672 if (configs == NULL) {
1673 fprintf(stderr, "[%s:%u] Error creating FBConfig!\n", __func__,
1674 __LINE__);
1675 return NULL;
1676 }
1677
1678 return configs;
1679 }
1680
1681 static void
1682 set_max_gl_versions(struct intel_screen *screen)
1683 {
1684 __DRIscreen *dri_screen = screen->driScrnPriv;
1685 const bool has_astc = screen->devinfo.gen >= 9;
1686
1687 switch (screen->devinfo.gen) {
1688 case 9:
1689 case 8:
1690 dri_screen->max_gl_core_version = 45;
1691 dri_screen->max_gl_compat_version = 30;
1692 dri_screen->max_gl_es1_version = 11;
1693 dri_screen->max_gl_es2_version = has_astc ? 32 : 31;
1694 break;
1695 case 7:
1696 dri_screen->max_gl_core_version = 33;
1697 if (can_do_pipelined_register_writes(screen)) {
1698 dri_screen->max_gl_core_version = 42;
1699 if (screen->devinfo.is_haswell && can_do_compute_dispatch(screen))
1700 dri_screen->max_gl_core_version = 43;
1701 if (screen->devinfo.is_haswell && can_do_mi_math_and_lrr(screen))
1702 dri_screen->max_gl_core_version = 45;
1703 }
1704 dri_screen->max_gl_compat_version = 30;
1705 dri_screen->max_gl_es1_version = 11;
1706 dri_screen->max_gl_es2_version = screen->devinfo.is_haswell ? 31 : 30;
1707 break;
1708 case 6:
1709 dri_screen->max_gl_core_version = 33;
1710 dri_screen->max_gl_compat_version = 30;
1711 dri_screen->max_gl_es1_version = 11;
1712 dri_screen->max_gl_es2_version = 30;
1713 break;
1714 case 5:
1715 case 4:
1716 dri_screen->max_gl_core_version = 0;
1717 dri_screen->max_gl_compat_version = 21;
1718 dri_screen->max_gl_es1_version = 11;
1719 dri_screen->max_gl_es2_version = 20;
1720 break;
1721 default:
1722 unreachable("unrecognized intel_screen::gen");
1723 }
1724 }
1725
1726 /**
1727 * Return the revision (generally the revid field of the PCI header) of the
1728 * graphics device.
1729 *
1730 * XXX: This function is useful to keep around even if it is not currently in
1731 * use. It is necessary for new platforms and revision specific workarounds or
1732 * features. Please don't remove it so that we know it at least continues to
1733 * build.
1734 */
1735 static __attribute__((__unused__)) int
1736 brw_get_revision(int fd)
1737 {
1738 struct drm_i915_getparam gp;
1739 int revision;
1740 int ret;
1741
1742 memset(&gp, 0, sizeof(gp));
1743 gp.param = I915_PARAM_REVISION;
1744 gp.value = &revision;
1745
1746 ret = drmCommandWriteRead(fd, DRM_I915_GETPARAM, &gp, sizeof(gp));
1747 if (ret)
1748 revision = -1;
1749
1750 return revision;
1751 }
1752
1753 static void
1754 shader_debug_log_mesa(void *data, const char *fmt, ...)
1755 {
1756 struct brw_context *brw = (struct brw_context *)data;
1757 va_list args;
1758
1759 va_start(args, fmt);
1760 GLuint msg_id = 0;
1761 _mesa_gl_vdebug(&brw->ctx, &msg_id,
1762 MESA_DEBUG_SOURCE_SHADER_COMPILER,
1763 MESA_DEBUG_TYPE_OTHER,
1764 MESA_DEBUG_SEVERITY_NOTIFICATION, fmt, args);
1765 va_end(args);
1766 }
1767
1768 static void
1769 shader_perf_log_mesa(void *data, const char *fmt, ...)
1770 {
1771 struct brw_context *brw = (struct brw_context *)data;
1772
1773 va_list args;
1774 va_start(args, fmt);
1775
1776 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
1777 va_list args_copy;
1778 va_copy(args_copy, args);
1779 vfprintf(stderr, fmt, args_copy);
1780 va_end(args_copy);
1781 }
1782
1783 if (brw->perf_debug) {
1784 GLuint msg_id = 0;
1785 _mesa_gl_vdebug(&brw->ctx, &msg_id,
1786 MESA_DEBUG_SOURCE_SHADER_COMPILER,
1787 MESA_DEBUG_TYPE_PERFORMANCE,
1788 MESA_DEBUG_SEVERITY_MEDIUM, fmt, args);
1789 }
1790 va_end(args);
1791 }
1792
1793 static int
1794 parse_devid_override(const char *devid_override)
1795 {
1796 static const struct {
1797 const char *name;
1798 int pci_id;
1799 } name_map[] = {
1800 { "brw", 0x2a02 },
1801 { "g4x", 0x2a42 },
1802 { "ilk", 0x0042 },
1803 { "snb", 0x0126 },
1804 { "ivb", 0x016a },
1805 { "hsw", 0x0d2e },
1806 { "byt", 0x0f33 },
1807 { "bdw", 0x162e },
1808 { "skl", 0x1912 },
1809 { "kbl", 0x5912 },
1810 };
1811
1812 for (unsigned i = 0; i < ARRAY_SIZE(name_map); i++) {
1813 if (!strcmp(name_map[i].name, devid_override))
1814 return name_map[i].pci_id;
1815 }
1816
1817 return strtod(devid_override, NULL);
1818 }
1819
1820 /**
1821 * Get the PCI ID for the device. This can be overridden by setting the
1822 * INTEL_DEVID_OVERRIDE environment variable to the desired ID.
1823 *
1824 * Returns -1 on ioctl failure.
1825 */
1826 static int
1827 get_pci_device_id(struct intel_screen *screen)
1828 {
1829 if (geteuid() == getuid()) {
1830 char *devid_override = getenv("INTEL_DEVID_OVERRIDE");
1831 if (devid_override) {
1832 screen->no_hw = true;
1833 return parse_devid_override(devid_override);
1834 }
1835 }
1836
1837 return intel_get_integer(screen, I915_PARAM_CHIPSET_ID);
1838 }
1839
1840 /**
1841 * This is the driver specific part of the createNewScreen entry point.
1842 * Called when using DRI2.
1843 *
1844 * \return the struct gl_config supported by this driver
1845 */
1846 static const
1847 __DRIconfig **intelInitScreen2(__DRIscreen *dri_screen)
1848 {
1849 struct intel_screen *screen;
1850
1851 if (dri_screen->image.loader) {
1852 } else if (dri_screen->dri2.loader->base.version <= 2 ||
1853 dri_screen->dri2.loader->getBuffersWithFormat == NULL) {
1854 fprintf(stderr,
1855 "\nERROR! DRI2 loader with getBuffersWithFormat() "
1856 "support required\n");
1857 return NULL;
1858 }
1859
1860 /* Allocate the private area */
1861 screen = rzalloc(NULL, struct intel_screen);
1862 if (!screen) {
1863 fprintf(stderr, "\nERROR! Allocating private area failed\n");
1864 return NULL;
1865 }
1866 /* parse information in __driConfigOptions */
1867 driParseOptionInfo(&screen->optionCache, brw_config_options.xml);
1868
1869 screen->driScrnPriv = dri_screen;
1870 dri_screen->driverPrivate = (void *) screen;
1871
1872 screen->deviceID = get_pci_device_id(screen);
1873
1874 if (!gen_get_device_info(screen->deviceID, &screen->devinfo))
1875 return NULL;
1876
1877 if (!intel_init_bufmgr(screen))
1878 return NULL;
1879
1880 const struct gen_device_info *devinfo = &screen->devinfo;
1881
1882 brw_process_intel_debug_variable();
1883
1884 if ((INTEL_DEBUG & DEBUG_SHADER_TIME) && devinfo->gen < 7) {
1885 fprintf(stderr,
1886 "shader_time debugging requires gen7 (Ivybridge) or better.\n");
1887 INTEL_DEBUG &= ~DEBUG_SHADER_TIME;
1888 }
1889
1890 if (intel_get_integer(screen, I915_PARAM_MMAP_GTT_VERSION) >= 1) {
1891 /* Theorectically unlimited! At least for individual objects...
1892 *
1893 * Currently the entire (global) address space for all GTT maps is
1894 * limited to 64bits. That is all objects on the system that are
1895 * setup for GTT mmapping must fit within 64bits. An attempt to use
1896 * one that exceeds the limit with fail in brw_bo_map_gtt().
1897 *
1898 * Long before we hit that limit, we will be practically limited by
1899 * that any single object must fit in physical memory (RAM). The upper
1900 * limit on the CPU's address space is currently 48bits (Skylake), of
1901 * which only 39bits can be physical memory. (The GPU itself also has
1902 * a 48bit addressable virtual space.) We can fit over 32 million
1903 * objects of the current maximum allocable size before running out
1904 * of mmap space.
1905 */
1906 screen->max_gtt_map_object_size = UINT64_MAX;
1907 } else {
1908 /* Estimate the size of the mappable aperture into the GTT. There's an
1909 * ioctl to get the whole GTT size, but not one to get the mappable subset.
1910 * It turns out it's basically always 256MB, though some ancient hardware
1911 * was smaller.
1912 */
1913 uint32_t gtt_size = 256 * 1024 * 1024;
1914
1915 /* We don't want to map two objects such that a memcpy between them would
1916 * just fault one mapping in and then the other over and over forever. So
1917 * we would need to divide the GTT size by 2. Additionally, some GTT is
1918 * taken up by things like the framebuffer and the ringbuffer and such, so
1919 * be more conservative.
1920 */
1921 screen->max_gtt_map_object_size = gtt_size / 4;
1922 }
1923
1924 screen->aperture_threshold = get_aperture_size(dri_screen->fd) * 3 / 4;
1925
1926 screen->hw_has_swizzling = intel_detect_swizzling(screen);
1927 screen->hw_has_timestamp = intel_detect_timestamp(screen);
1928
1929 /* GENs prior to 8 do not support EU/Subslice info */
1930 if (devinfo->gen >= 8) {
1931 intel_detect_sseu(screen);
1932 } else if (devinfo->gen == 7) {
1933 screen->subslice_total = 1 << (devinfo->gt - 1);
1934 }
1935
1936 /* Gen7-7.5 kernel requirements / command parser saga:
1937 *
1938 * - pre-v3.16:
1939 * Haswell and Baytrail cannot use any privileged batchbuffer features.
1940 *
1941 * Ivybridge has aliasing PPGTT on by default, which accidentally marks
1942 * all batches secure, allowing them to use any feature with no checking.
1943 * This is effectively equivalent to a command parser version of
1944 * \infinity - everything is possible.
1945 *
1946 * The command parser does not exist, and querying the version will
1947 * return -EINVAL.
1948 *
1949 * - v3.16:
1950 * The kernel enables the command parser by default, for systems with
1951 * aliasing PPGTT enabled (Ivybridge and Haswell). However, the
1952 * hardware checker is still enabled, so Haswell and Baytrail cannot
1953 * do anything.
1954 *
1955 * Ivybridge goes from "everything is possible" to "only what the
1956 * command parser allows" (if the user boots with i915.cmd_parser=0,
1957 * then everything is possible again). We can only safely use features
1958 * allowed by the supported command parser version.
1959 *
1960 * Annoyingly, I915_PARAM_CMD_PARSER_VERSION reports the static version
1961 * implemented by the kernel, even if it's turned off. So, checking
1962 * for version > 0 does not mean that you can write registers. We have
1963 * to try it and see. The version does, however, indicate the age of
1964 * the kernel.
1965 *
1966 * Instead of matching the hardware checker's behavior of converting
1967 * privileged commands to MI_NOOP, it makes execbuf2 start returning
1968 * -EINVAL, making it dangerous to try and use privileged features.
1969 *
1970 * Effective command parser versions:
1971 * - Haswell: 0 (reporting 1, writes don't work)
1972 * - Baytrail: 0 (reporting 1, writes don't work)
1973 * - Ivybridge: 1 (enabled) or infinite (disabled)
1974 *
1975 * - v3.17:
1976 * Baytrail aliasing PPGTT is enabled, making it like Ivybridge:
1977 * effectively version 1 (enabled) or infinite (disabled).
1978 *
1979 * - v3.19: f1f55cc0556031c8ee3fe99dae7251e78b9b653b
1980 * Command parser v2 supports predicate writes.
1981 *
1982 * - Haswell: 0 (reporting 1, writes don't work)
1983 * - Baytrail: 2 (enabled) or infinite (disabled)
1984 * - Ivybridge: 2 (enabled) or infinite (disabled)
1985 *
1986 * So version >= 2 is enough to know that Ivybridge and Baytrail
1987 * will work. Haswell still can't do anything.
1988 *
1989 * - v4.0: Version 3 happened. Largely not relevant.
1990 *
1991 * - v4.1: 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
1992 * L3 config registers are properly saved and restored as part
1993 * of the hardware context. We can approximately detect this point
1994 * in time by checking if I915_PARAM_REVISION is recognized - it
1995 * landed in a later commit, but in the same release cycle.
1996 *
1997 * - v4.2: 245054a1fe33c06ad233e0d58a27ec7b64db9284
1998 * Command parser finally gains secure batch promotion. On Haswell,
1999 * the hardware checker gets disabled, which finally allows it to do
2000 * privileged commands.
2001 *
2002 * I915_PARAM_CMD_PARSER_VERSION reports 3. Effective versions:
2003 * - Haswell: 3 (enabled) or 0 (disabled)
2004 * - Baytrail: 3 (enabled) or infinite (disabled)
2005 * - Ivybridge: 3 (enabled) or infinite (disabled)
2006 *
2007 * Unfortunately, detecting this point in time is tricky, because
2008 * no version bump happened when this important change occurred.
2009 * On Haswell, if we can write any register, then the kernel is at
2010 * least this new, and we can start trusting the version number.
2011 *
2012 * - v4.4: 2bbe6bbb0dc94fd4ce287bdac9e1bd184e23057b and
2013 * Command parser reaches version 4, allowing access to Haswell
2014 * atomic scratch and chicken3 registers. If version >= 4, we know
2015 * the kernel is new enough to support privileged features on all
2016 * hardware. However, the user might have disabled it...and the
2017 * kernel will still report version 4. So we still have to guess
2018 * and check.
2019 *
2020 * - v4.4: 7b9748cb513a6bef4af87b79f0da3ff7e8b56cd8
2021 * Command parser v5 whitelists indirect compute shader dispatch
2022 * registers, needed for OpenGL 4.3 and later.
2023 *
2024 * - v4.8:
2025 * Command parser v7 lets us use MI_MATH on Haswell.
2026 *
2027 * Additionally, the kernel begins reporting version 0 when
2028 * the command parser is disabled, allowing us to skip the
2029 * guess-and-check step on Haswell. Unfortunately, this also
2030 * means that we can no longer use it as an indicator of the
2031 * age of the kernel.
2032 */
2033 if (intel_get_param(screen, I915_PARAM_CMD_PARSER_VERSION,
2034 &screen->cmd_parser_version) < 0) {
2035 /* Command parser does not exist - getparam is unrecognized */
2036 screen->cmd_parser_version = 0;
2037 }
2038
2039 /* Kernel 4.13 retuired for exec object capture */
2040 #ifndef I915_PARAM_HAS_EXEC_CAPTURE
2041 #define I915_PARAM_HAS_EXEC_CAPTURE 45
2042 #endif
2043 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_CAPTURE)) {
2044 screen->kernel_features |= KERNEL_ALLOWS_EXEC_CAPTURE;
2045 }
2046
2047 if (!intel_detect_pipelined_so(screen)) {
2048 /* We can't do anything, so the effective version is 0. */
2049 screen->cmd_parser_version = 0;
2050 } else {
2051 screen->kernel_features |= KERNEL_ALLOWS_SOL_OFFSET_WRITES;
2052 }
2053
2054 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 2)
2055 screen->kernel_features |= KERNEL_ALLOWS_PREDICATE_WRITES;
2056
2057 /* Haswell requires command parser version 4 in order to have L3
2058 * atomic scratch1 and chicken3 bits
2059 */
2060 if (devinfo->is_haswell && screen->cmd_parser_version >= 4) {
2061 screen->kernel_features |=
2062 KERNEL_ALLOWS_HSW_SCRATCH1_AND_ROW_CHICKEN3;
2063 }
2064
2065 /* Haswell requires command parser version 6 in order to write to the
2066 * MI_MATH GPR registers, and version 7 in order to use
2067 * MI_LOAD_REGISTER_REG (which all users of MI_MATH use).
2068 */
2069 if (devinfo->gen >= 8 ||
2070 (devinfo->is_haswell && screen->cmd_parser_version >= 7)) {
2071 screen->kernel_features |= KERNEL_ALLOWS_MI_MATH_AND_LRR;
2072 }
2073
2074 /* Gen7 needs at least command parser version 5 to support compute */
2075 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 5)
2076 screen->kernel_features |= KERNEL_ALLOWS_COMPUTE_DISPATCH;
2077
2078 const char *force_msaa = getenv("INTEL_FORCE_MSAA");
2079 if (force_msaa) {
2080 screen->winsys_msaa_samples_override =
2081 intel_quantize_num_samples(screen, atoi(force_msaa));
2082 printf("Forcing winsys sample count to %d\n",
2083 screen->winsys_msaa_samples_override);
2084 } else {
2085 screen->winsys_msaa_samples_override = -1;
2086 }
2087
2088 set_max_gl_versions(screen);
2089
2090 /* Notification of GPU resets requires hardware contexts and a kernel new
2091 * enough to support DRM_IOCTL_I915_GET_RESET_STATS. If the ioctl is
2092 * supported, calling it with a context of 0 will either generate EPERM or
2093 * no error. If the ioctl is not supported, it always generate EINVAL.
2094 * Use this to determine whether to advertise the __DRI2_ROBUSTNESS
2095 * extension to the loader.
2096 *
2097 * Don't even try on pre-Gen6, since we don't attempt to use contexts there.
2098 */
2099 if (devinfo->gen >= 6) {
2100 struct drm_i915_reset_stats stats;
2101 memset(&stats, 0, sizeof(stats));
2102
2103 const int ret = drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats);
2104
2105 screen->has_context_reset_notification =
2106 (ret != -1 || errno != EINVAL);
2107 }
2108
2109 dri_screen->extensions = !screen->has_context_reset_notification
2110 ? screenExtensions : intelRobustScreenExtensions;
2111
2112 screen->compiler = brw_compiler_create(screen, devinfo);
2113 screen->compiler->shader_debug_log = shader_debug_log_mesa;
2114 screen->compiler->shader_perf_log = shader_perf_log_mesa;
2115 screen->program_id = 1;
2116
2117 screen->has_exec_fence =
2118 intel_get_boolean(screen, I915_PARAM_HAS_EXEC_FENCE);
2119
2120 return (const __DRIconfig**) intel_screen_make_configs(dri_screen);
2121 }
2122
2123 struct intel_buffer {
2124 __DRIbuffer base;
2125 struct brw_bo *bo;
2126 };
2127
2128 static __DRIbuffer *
2129 intelAllocateBuffer(__DRIscreen *dri_screen,
2130 unsigned attachment, unsigned format,
2131 int width, int height)
2132 {
2133 struct intel_buffer *intelBuffer;
2134 struct intel_screen *screen = dri_screen->driverPrivate;
2135
2136 assert(attachment == __DRI_BUFFER_FRONT_LEFT ||
2137 attachment == __DRI_BUFFER_BACK_LEFT);
2138
2139 intelBuffer = calloc(1, sizeof *intelBuffer);
2140 if (intelBuffer == NULL)
2141 return NULL;
2142
2143 /* The front and back buffers are color buffers, which are X tiled. GEN9+
2144 * supports Y tiled and compressed buffers, but there is no way to plumb that
2145 * through to here. */
2146 uint32_t pitch;
2147 int cpp = format / 8;
2148 intelBuffer->bo = brw_bo_alloc_tiled(screen->bufmgr,
2149 "intelAllocateBuffer",
2150 width,
2151 height,
2152 cpp,
2153 I915_TILING_X, &pitch,
2154 BO_ALLOC_FOR_RENDER);
2155
2156 if (intelBuffer->bo == NULL) {
2157 free(intelBuffer);
2158 return NULL;
2159 }
2160
2161 brw_bo_flink(intelBuffer->bo, &intelBuffer->base.name);
2162
2163 intelBuffer->base.attachment = attachment;
2164 intelBuffer->base.cpp = cpp;
2165 intelBuffer->base.pitch = pitch;
2166
2167 return &intelBuffer->base;
2168 }
2169
2170 static void
2171 intelReleaseBuffer(__DRIscreen *dri_screen, __DRIbuffer *buffer)
2172 {
2173 struct intel_buffer *intelBuffer = (struct intel_buffer *) buffer;
2174
2175 brw_bo_unreference(intelBuffer->bo);
2176 free(intelBuffer);
2177 }
2178
2179 static const struct __DriverAPIRec brw_driver_api = {
2180 .InitScreen = intelInitScreen2,
2181 .DestroyScreen = intelDestroyScreen,
2182 .CreateContext = brwCreateContext,
2183 .DestroyContext = intelDestroyContext,
2184 .CreateBuffer = intelCreateBuffer,
2185 .DestroyBuffer = intelDestroyBuffer,
2186 .MakeCurrent = intelMakeCurrent,
2187 .UnbindContext = intelUnbindContext,
2188 .AllocateBuffer = intelAllocateBuffer,
2189 .ReleaseBuffer = intelReleaseBuffer
2190 };
2191
2192 static const struct __DRIDriverVtableExtensionRec brw_vtable = {
2193 .base = { __DRI_DRIVER_VTABLE, 1 },
2194 .vtable = &brw_driver_api,
2195 };
2196
2197 static const __DRIextension *brw_driver_extensions[] = {
2198 &driCoreExtension.base,
2199 &driImageDriverExtension.base,
2200 &driDRI2Extension.base,
2201 &brw_vtable.base,
2202 &brw_config_options.base,
2203 NULL
2204 };
2205
2206 PUBLIC const __DRIextension **__driDriverGetExtensions_i965(void)
2207 {
2208 globalDriverAPI = &brw_driver_api;
2209
2210 return brw_driver_extensions;
2211 }