i965: return the fourcc saved in __DRIimage when possible
[mesa.git] / src / mesa / drivers / dri / i965 / intel_screen.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <drm_fourcc.h>
27 #include <errno.h>
28 #include <time.h>
29 #include <unistd.h>
30 #include "main/context.h"
31 #include "main/framebuffer.h"
32 #include "main/renderbuffer.h"
33 #include "main/texobj.h"
34 #include "main/hash.h"
35 #include "main/fbobject.h"
36 #include "main/version.h"
37 #include "swrast/s_renderbuffer.h"
38 #include "util/ralloc.h"
39 #include "util/disk_cache.h"
40 #include "brw_defines.h"
41 #include "brw_state.h"
42 #include "compiler/nir/nir.h"
43
44 #include "utils.h"
45 #include "util/disk_cache.h"
46 #include "util/xmlpool.h"
47
48 #include "common/gen_defines.h"
49
50 static const __DRIconfigOptionsExtension brw_config_options = {
51 .base = { __DRI_CONFIG_OPTIONS, 1 },
52 .xml =
53 DRI_CONF_BEGIN
54 DRI_CONF_SECTION_PERFORMANCE
55 /* Options correspond to DRI_CONF_BO_REUSE_DISABLED,
56 * DRI_CONF_BO_REUSE_ALL
57 */
58 DRI_CONF_OPT_BEGIN_V(bo_reuse, enum, 1, "0:1")
59 DRI_CONF_DESC_BEGIN(en, "Buffer object reuse")
60 DRI_CONF_ENUM(0, "Disable buffer object reuse")
61 DRI_CONF_ENUM(1, "Enable reuse of all sizes of buffer objects")
62 DRI_CONF_DESC_END
63 DRI_CONF_OPT_END
64 DRI_CONF_MESA_NO_ERROR("false")
65 DRI_CONF_SECTION_END
66
67 DRI_CONF_SECTION_QUALITY
68 DRI_CONF_PRECISE_TRIG("false")
69
70 DRI_CONF_OPT_BEGIN(clamp_max_samples, int, -1)
71 DRI_CONF_DESC(en, "Clamp the value of GL_MAX_SAMPLES to the "
72 "given integer. If negative, then do not clamp.")
73 DRI_CONF_OPT_END
74 DRI_CONF_SECTION_END
75
76 DRI_CONF_SECTION_DEBUG
77 DRI_CONF_NO_RAST("false")
78 DRI_CONF_ALWAYS_FLUSH_BATCH("false")
79 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
80 DRI_CONF_DISABLE_THROTTLING("false")
81 DRI_CONF_FORCE_GLSL_EXTENSIONS_WARN("false")
82 DRI_CONF_FORCE_GLSL_VERSION(0)
83 DRI_CONF_DISABLE_GLSL_LINE_CONTINUATIONS("false")
84 DRI_CONF_DISABLE_BLEND_FUNC_EXTENDED("false")
85 DRI_CONF_DUAL_COLOR_BLEND_BY_LOCATION("false")
86 DRI_CONF_ALLOW_GLSL_EXTENSION_DIRECTIVE_MIDSHADER("false")
87 DRI_CONF_ALLOW_GLSL_BUILTIN_VARIABLE_REDECLARATION("false")
88 DRI_CONF_ALLOW_GLSL_CROSS_STAGE_INTERPOLATION_MISMATCH("false")
89 DRI_CONF_ALLOW_HIGHER_COMPAT_VERSION("false")
90 DRI_CONF_FORCE_GLSL_ABS_SQRT("false")
91
92 DRI_CONF_OPT_BEGIN_B(shader_precompile, "true")
93 DRI_CONF_DESC(en, "Perform code generation at shader link time.")
94 DRI_CONF_OPT_END
95 DRI_CONF_SECTION_END
96
97 DRI_CONF_SECTION_MISCELLANEOUS
98 DRI_CONF_GLSL_ZERO_INIT("false")
99 DRI_CONF_ALLOW_RGB10_CONFIGS("false")
100 DRI_CONF_SECTION_END
101 DRI_CONF_END
102 };
103
104 #include "intel_batchbuffer.h"
105 #include "intel_buffers.h"
106 #include "brw_bufmgr.h"
107 #include "intel_fbo.h"
108 #include "intel_mipmap_tree.h"
109 #include "intel_screen.h"
110 #include "intel_tex.h"
111 #include "intel_image.h"
112
113 #include "brw_context.h"
114
115 #include "i915_drm.h"
116
117 /**
118 * For debugging purposes, this returns a time in seconds.
119 */
120 double
121 get_time(void)
122 {
123 struct timespec tp;
124
125 clock_gettime(CLOCK_MONOTONIC, &tp);
126
127 return tp.tv_sec + tp.tv_nsec / 1000000000.0;
128 }
129
130 static const __DRItexBufferExtension intelTexBufferExtension = {
131 .base = { __DRI_TEX_BUFFER, 3 },
132
133 .setTexBuffer = intelSetTexBuffer,
134 .setTexBuffer2 = intelSetTexBuffer2,
135 .releaseTexBuffer = intelReleaseTexBuffer,
136 };
137
138 static void
139 intel_dri2_flush_with_flags(__DRIcontext *cPriv,
140 __DRIdrawable *dPriv,
141 unsigned flags,
142 enum __DRI2throttleReason reason)
143 {
144 struct brw_context *brw = cPriv->driverPrivate;
145
146 if (!brw)
147 return;
148
149 struct gl_context *ctx = &brw->ctx;
150
151 FLUSH_VERTICES(ctx, 0);
152
153 if (flags & __DRI2_FLUSH_DRAWABLE)
154 intel_resolve_for_dri2_flush(brw, dPriv);
155
156 if (reason == __DRI2_THROTTLE_SWAPBUFFER)
157 brw->need_swap_throttle = true;
158 if (reason == __DRI2_THROTTLE_FLUSHFRONT)
159 brw->need_flush_throttle = true;
160
161 intel_batchbuffer_flush(brw);
162 }
163
164 /**
165 * Provides compatibility with loaders that only support the older (version
166 * 1-3) flush interface.
167 *
168 * That includes libGL up to Mesa 9.0, and the X Server at least up to 1.13.
169 */
170 static void
171 intel_dri2_flush(__DRIdrawable *drawable)
172 {
173 intel_dri2_flush_with_flags(drawable->driContextPriv, drawable,
174 __DRI2_FLUSH_DRAWABLE,
175 __DRI2_THROTTLE_SWAPBUFFER);
176 }
177
178 static const struct __DRI2flushExtensionRec intelFlushExtension = {
179 .base = { __DRI2_FLUSH, 4 },
180
181 .flush = intel_dri2_flush,
182 .invalidate = dri2InvalidateDrawable,
183 .flush_with_flags = intel_dri2_flush_with_flags,
184 };
185
186 static const struct intel_image_format intel_image_formats[] = {
187 { __DRI_IMAGE_FOURCC_ARGB2101010, __DRI_IMAGE_COMPONENTS_RGBA, 1,
188 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB2101010, 4 } } },
189
190 { __DRI_IMAGE_FOURCC_XRGB2101010, __DRI_IMAGE_COMPONENTS_RGB, 1,
191 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB2101010, 4 } } },
192
193 { __DRI_IMAGE_FOURCC_ARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
194 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
195
196 { __DRI_IMAGE_FOURCC_ABGR8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
197 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
198
199 { __DRI_IMAGE_FOURCC_SARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
200 { { 0, 0, 0, __DRI_IMAGE_FORMAT_SARGB8, 4 } } },
201
202 { __DRI_IMAGE_FOURCC_XRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
203 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB8888, 4 }, } },
204
205 { __DRI_IMAGE_FOURCC_XBGR8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
206 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 }, } },
207
208 { __DRI_IMAGE_FOURCC_ARGB1555, __DRI_IMAGE_COMPONENTS_RGBA, 1,
209 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB1555, 2 } } },
210
211 { __DRI_IMAGE_FOURCC_RGB565, __DRI_IMAGE_COMPONENTS_RGB, 1,
212 { { 0, 0, 0, __DRI_IMAGE_FORMAT_RGB565, 2 } } },
213
214 { __DRI_IMAGE_FOURCC_R8, __DRI_IMAGE_COMPONENTS_R, 1,
215 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 }, } },
216
217 { __DRI_IMAGE_FOURCC_R16, __DRI_IMAGE_COMPONENTS_R, 1,
218 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 1 }, } },
219
220 { __DRI_IMAGE_FOURCC_GR88, __DRI_IMAGE_COMPONENTS_RG, 1,
221 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 }, } },
222
223 { __DRI_IMAGE_FOURCC_GR1616, __DRI_IMAGE_COMPONENTS_RG, 1,
224 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR1616, 2 }, } },
225
226 { __DRI_IMAGE_FOURCC_YUV410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
227 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
228 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
229 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
230
231 { __DRI_IMAGE_FOURCC_YUV411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
232 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
233 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
234 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
235
236 { __DRI_IMAGE_FOURCC_YUV420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
237 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
238 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
239 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
240
241 { __DRI_IMAGE_FOURCC_YUV422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
242 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
243 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
244 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
245
246 { __DRI_IMAGE_FOURCC_YUV444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
247 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
248 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
249 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
250
251 { __DRI_IMAGE_FOURCC_YVU410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
252 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
253 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
254 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
255
256 { __DRI_IMAGE_FOURCC_YVU411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
257 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
258 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
259 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
260
261 { __DRI_IMAGE_FOURCC_YVU420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
262 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
263 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
264 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
265
266 { __DRI_IMAGE_FOURCC_YVU422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
267 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
268 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
269 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
270
271 { __DRI_IMAGE_FOURCC_YVU444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
272 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
273 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
274 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
275
276 { __DRI_IMAGE_FOURCC_NV12, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
277 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
278 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR88, 2 } } },
279
280 { __DRI_IMAGE_FOURCC_NV16, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
281 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
282 { 1, 1, 0, __DRI_IMAGE_FORMAT_GR88, 2 } } },
283
284 /* For YUYV and UYVY buffers, we set up two overlapping DRI images
285 * and treat them as planar buffers in the compositors.
286 * Plane 0 is GR88 and samples YU or YV pairs and places Y into
287 * the R component, while plane 1 is ARGB/ABGR and samples YUYV/UYVY
288 * clusters and places pairs and places U into the G component and
289 * V into A. This lets the texture sampler interpolate the Y
290 * components correctly when sampling from plane 0, and interpolate
291 * U and V correctly when sampling from plane 1. */
292 { __DRI_IMAGE_FOURCC_YUYV, __DRI_IMAGE_COMPONENTS_Y_XUXV, 2,
293 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
294 { 0, 1, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
295 { __DRI_IMAGE_FOURCC_UYVY, __DRI_IMAGE_COMPONENTS_Y_UXVX, 2,
296 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
297 { 0, 1, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } }
298 };
299
300 static const struct {
301 uint64_t modifier;
302 unsigned since_gen;
303 } supported_modifiers[] = {
304 { .modifier = DRM_FORMAT_MOD_LINEAR , .since_gen = 1 },
305 { .modifier = I915_FORMAT_MOD_X_TILED , .since_gen = 1 },
306 { .modifier = I915_FORMAT_MOD_Y_TILED , .since_gen = 6 },
307 { .modifier = I915_FORMAT_MOD_Y_TILED_CCS , .since_gen = 9 },
308 };
309
310 static bool
311 modifier_is_supported(const struct gen_device_info *devinfo,
312 const struct intel_image_format *fmt, int dri_format,
313 uint64_t modifier)
314 {
315 const struct isl_drm_modifier_info *modinfo =
316 isl_drm_modifier_get_info(modifier);
317 int i;
318
319 /* ISL had better know about the modifier */
320 if (!modinfo)
321 return false;
322
323 if (modinfo->aux_usage == ISL_AUX_USAGE_CCS_E) {
324 /* If INTEL_DEBUG=norbc is set, don't support any CCS_E modifiers */
325 if (unlikely(INTEL_DEBUG & DEBUG_NO_RBC))
326 return false;
327
328 /* CCS_E is not supported for planar images */
329 if (fmt && fmt->nplanes > 1)
330 return false;
331
332 if (fmt) {
333 assert(dri_format == 0);
334 dri_format = fmt->planes[0].dri_format;
335 }
336
337 mesa_format format = driImageFormatToGLFormat(dri_format);
338 format = _mesa_get_srgb_format_linear(format);
339 if (!isl_format_supports_ccs_e(devinfo,
340 brw_isl_format_for_mesa_format(format)))
341 return false;
342 }
343
344 for (i = 0; i < ARRAY_SIZE(supported_modifiers); i++) {
345 if (supported_modifiers[i].modifier != modifier)
346 continue;
347
348 return supported_modifiers[i].since_gen <= devinfo->gen;
349 }
350
351 return false;
352 }
353
354 static uint64_t
355 tiling_to_modifier(uint32_t tiling)
356 {
357 static const uint64_t map[] = {
358 [I915_TILING_NONE] = DRM_FORMAT_MOD_LINEAR,
359 [I915_TILING_X] = I915_FORMAT_MOD_X_TILED,
360 [I915_TILING_Y] = I915_FORMAT_MOD_Y_TILED,
361 };
362
363 assert(tiling < ARRAY_SIZE(map));
364
365 return map[tiling];
366 }
367
368 static void
369 intel_image_warn_if_unaligned(__DRIimage *image, const char *func)
370 {
371 uint32_t tiling, swizzle;
372 brw_bo_get_tiling(image->bo, &tiling, &swizzle);
373
374 if (tiling != I915_TILING_NONE && (image->offset & 0xfff)) {
375 _mesa_warning(NULL, "%s: offset 0x%08x not on tile boundary",
376 func, image->offset);
377 }
378 }
379
380 static const struct intel_image_format *
381 intel_image_format_lookup(int fourcc)
382 {
383 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
384 if (intel_image_formats[i].fourcc == fourcc)
385 return &intel_image_formats[i];
386 }
387
388 return NULL;
389 }
390
391 static boolean
392 intel_image_get_fourcc(__DRIimage *image, int *fourcc)
393 {
394 if (image->planar_format) {
395 *fourcc = image->planar_format->fourcc;
396 return true;
397 }
398
399 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
400 if (intel_image_formats[i].planes[0].dri_format == image->dri_format) {
401 *fourcc = intel_image_formats[i].fourcc;
402 return true;
403 }
404 }
405 return false;
406 }
407
408 static __DRIimage *
409 intel_allocate_image(struct intel_screen *screen, int dri_format,
410 void *loaderPrivate)
411 {
412 __DRIimage *image;
413
414 image = calloc(1, sizeof *image);
415 if (image == NULL)
416 return NULL;
417
418 image->screen = screen;
419 image->dri_format = dri_format;
420 image->offset = 0;
421
422 image->format = driImageFormatToGLFormat(dri_format);
423 if (dri_format != __DRI_IMAGE_FORMAT_NONE &&
424 image->format == MESA_FORMAT_NONE) {
425 free(image);
426 return NULL;
427 }
428
429 image->internal_format = _mesa_get_format_base_format(image->format);
430 image->data = loaderPrivate;
431
432 return image;
433 }
434
435 /**
436 * Sets up a DRIImage structure to point to a slice out of a miptree.
437 */
438 static void
439 intel_setup_image_from_mipmap_tree(struct brw_context *brw, __DRIimage *image,
440 struct intel_mipmap_tree *mt, GLuint level,
441 GLuint zoffset)
442 {
443 intel_miptree_make_shareable(brw, mt);
444
445 intel_miptree_check_level_layer(mt, level, zoffset);
446
447 image->width = minify(mt->surf.phys_level0_sa.width,
448 level - mt->first_level);
449 image->height = minify(mt->surf.phys_level0_sa.height,
450 level - mt->first_level);
451 image->pitch = mt->surf.row_pitch;
452
453 image->offset = intel_miptree_get_tile_offsets(mt, level, zoffset,
454 &image->tile_x,
455 &image->tile_y);
456
457 brw_bo_unreference(image->bo);
458 image->bo = mt->bo;
459 brw_bo_reference(mt->bo);
460 }
461
462 static __DRIimage *
463 intel_create_image_from_name(__DRIscreen *dri_screen,
464 int width, int height, int format,
465 int name, int pitch, void *loaderPrivate)
466 {
467 struct intel_screen *screen = dri_screen->driverPrivate;
468 __DRIimage *image;
469 int cpp;
470
471 image = intel_allocate_image(screen, format, loaderPrivate);
472 if (image == NULL)
473 return NULL;
474
475 if (image->format == MESA_FORMAT_NONE)
476 cpp = 1;
477 else
478 cpp = _mesa_get_format_bytes(image->format);
479
480 image->width = width;
481 image->height = height;
482 image->pitch = pitch * cpp;
483 image->bo = brw_bo_gem_create_from_name(screen->bufmgr, "image",
484 name);
485 if (!image->bo) {
486 free(image);
487 return NULL;
488 }
489 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
490
491 return image;
492 }
493
494 static __DRIimage *
495 intel_create_image_from_renderbuffer(__DRIcontext *context,
496 int renderbuffer, void *loaderPrivate)
497 {
498 __DRIimage *image;
499 struct brw_context *brw = context->driverPrivate;
500 struct gl_context *ctx = &brw->ctx;
501 struct gl_renderbuffer *rb;
502 struct intel_renderbuffer *irb;
503
504 rb = _mesa_lookup_renderbuffer(ctx, renderbuffer);
505 if (!rb) {
506 _mesa_error(ctx, GL_INVALID_OPERATION, "glRenderbufferExternalMESA");
507 return NULL;
508 }
509
510 irb = intel_renderbuffer(rb);
511 intel_miptree_make_shareable(brw, irb->mt);
512 image = calloc(1, sizeof *image);
513 if (image == NULL)
514 return NULL;
515
516 image->internal_format = rb->InternalFormat;
517 image->format = rb->Format;
518 image->modifier = tiling_to_modifier(
519 isl_tiling_to_i915_tiling(irb->mt->surf.tiling));
520 image->offset = 0;
521 image->data = loaderPrivate;
522 brw_bo_unreference(image->bo);
523 image->bo = irb->mt->bo;
524 brw_bo_reference(irb->mt->bo);
525 image->width = rb->Width;
526 image->height = rb->Height;
527 image->pitch = irb->mt->surf.row_pitch;
528 image->dri_format = driGLFormatToImageFormat(image->format);
529 image->has_depthstencil = irb->mt->stencil_mt? true : false;
530
531 rb->NeedsFinishRenderTexture = true;
532 return image;
533 }
534
535 static __DRIimage *
536 intel_create_image_from_texture(__DRIcontext *context, int target,
537 unsigned texture, int zoffset,
538 int level,
539 unsigned *error,
540 void *loaderPrivate)
541 {
542 __DRIimage *image;
543 struct brw_context *brw = context->driverPrivate;
544 struct gl_texture_object *obj;
545 struct intel_texture_object *iobj;
546 GLuint face = 0;
547
548 obj = _mesa_lookup_texture(&brw->ctx, texture);
549 if (!obj || obj->Target != target) {
550 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
551 return NULL;
552 }
553
554 if (target == GL_TEXTURE_CUBE_MAP)
555 face = zoffset;
556
557 _mesa_test_texobj_completeness(&brw->ctx, obj);
558 iobj = intel_texture_object(obj);
559 if (!obj->_BaseComplete || (level > 0 && !obj->_MipmapComplete)) {
560 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
561 return NULL;
562 }
563
564 if (level < obj->BaseLevel || level > obj->_MaxLevel) {
565 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
566 return NULL;
567 }
568
569 if (target == GL_TEXTURE_3D && obj->Image[face][level]->Depth < zoffset) {
570 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
571 return NULL;
572 }
573 image = calloc(1, sizeof *image);
574 if (image == NULL) {
575 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
576 return NULL;
577 }
578
579 image->internal_format = obj->Image[face][level]->InternalFormat;
580 image->format = obj->Image[face][level]->TexFormat;
581 image->modifier = tiling_to_modifier(
582 isl_tiling_to_i915_tiling(iobj->mt->surf.tiling));
583 image->data = loaderPrivate;
584 intel_setup_image_from_mipmap_tree(brw, image, iobj->mt, level, zoffset);
585 image->dri_format = driGLFormatToImageFormat(image->format);
586 image->has_depthstencil = iobj->mt->stencil_mt? true : false;
587 image->planar_format = iobj->planar_format;
588 if (image->dri_format == MESA_FORMAT_NONE) {
589 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
590 free(image);
591 return NULL;
592 }
593
594 *error = __DRI_IMAGE_ERROR_SUCCESS;
595 return image;
596 }
597
598 static void
599 intel_destroy_image(__DRIimage *image)
600 {
601 brw_bo_unreference(image->bo);
602 free(image);
603 }
604
605 enum modifier_priority {
606 MODIFIER_PRIORITY_INVALID = 0,
607 MODIFIER_PRIORITY_LINEAR,
608 MODIFIER_PRIORITY_X,
609 MODIFIER_PRIORITY_Y,
610 MODIFIER_PRIORITY_Y_CCS,
611 };
612
613 const uint64_t priority_to_modifier[] = {
614 [MODIFIER_PRIORITY_INVALID] = DRM_FORMAT_MOD_INVALID,
615 [MODIFIER_PRIORITY_LINEAR] = DRM_FORMAT_MOD_LINEAR,
616 [MODIFIER_PRIORITY_X] = I915_FORMAT_MOD_X_TILED,
617 [MODIFIER_PRIORITY_Y] = I915_FORMAT_MOD_Y_TILED,
618 [MODIFIER_PRIORITY_Y_CCS] = I915_FORMAT_MOD_Y_TILED_CCS,
619 };
620
621 static uint64_t
622 select_best_modifier(struct gen_device_info *devinfo,
623 int dri_format,
624 const uint64_t *modifiers,
625 const unsigned count)
626 {
627 enum modifier_priority prio = MODIFIER_PRIORITY_INVALID;
628
629 for (int i = 0; i < count; i++) {
630 if (!modifier_is_supported(devinfo, NULL, dri_format, modifiers[i]))
631 continue;
632
633 switch (modifiers[i]) {
634 case I915_FORMAT_MOD_Y_TILED_CCS:
635 prio = MAX2(prio, MODIFIER_PRIORITY_Y_CCS);
636 break;
637 case I915_FORMAT_MOD_Y_TILED:
638 prio = MAX2(prio, MODIFIER_PRIORITY_Y);
639 break;
640 case I915_FORMAT_MOD_X_TILED:
641 prio = MAX2(prio, MODIFIER_PRIORITY_X);
642 break;
643 case DRM_FORMAT_MOD_LINEAR:
644 prio = MAX2(prio, MODIFIER_PRIORITY_LINEAR);
645 break;
646 case DRM_FORMAT_MOD_INVALID:
647 default:
648 break;
649 }
650 }
651
652 return priority_to_modifier[prio];
653 }
654
655 static __DRIimage *
656 intel_create_image_common(__DRIscreen *dri_screen,
657 int width, int height, int format,
658 unsigned int use,
659 const uint64_t *modifiers,
660 unsigned count,
661 void *loaderPrivate)
662 {
663 __DRIimage *image;
664 struct intel_screen *screen = dri_screen->driverPrivate;
665 uint64_t modifier = DRM_FORMAT_MOD_INVALID;
666 bool ok;
667
668 /* Callers of this may specify a modifier, or a dri usage, but not both. The
669 * newer modifier interface deprecates the older usage flags newer modifier
670 * interface deprecates the older usage flags.
671 */
672 assert(!(use && count));
673
674 if (use & __DRI_IMAGE_USE_CURSOR) {
675 if (width != 64 || height != 64)
676 return NULL;
677 modifier = DRM_FORMAT_MOD_LINEAR;
678 }
679
680 if (use & __DRI_IMAGE_USE_LINEAR)
681 modifier = DRM_FORMAT_MOD_LINEAR;
682
683 if (modifier == DRM_FORMAT_MOD_INVALID) {
684 if (modifiers) {
685 /* User requested specific modifiers */
686 modifier = select_best_modifier(&screen->devinfo, format,
687 modifiers, count);
688 if (modifier == DRM_FORMAT_MOD_INVALID)
689 return NULL;
690 } else {
691 /* Historically, X-tiled was the default, and so lack of modifier means
692 * X-tiled.
693 */
694 modifier = I915_FORMAT_MOD_X_TILED;
695 }
696 }
697
698 image = intel_allocate_image(screen, format, loaderPrivate);
699 if (image == NULL)
700 return NULL;
701
702 const struct isl_drm_modifier_info *mod_info =
703 isl_drm_modifier_get_info(modifier);
704
705 struct isl_surf surf;
706 ok = isl_surf_init(&screen->isl_dev, &surf,
707 .dim = ISL_SURF_DIM_2D,
708 .format = brw_isl_format_for_mesa_format(image->format),
709 .width = width,
710 .height = height,
711 .depth = 1,
712 .levels = 1,
713 .array_len = 1,
714 .samples = 1,
715 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
716 ISL_SURF_USAGE_TEXTURE_BIT |
717 ISL_SURF_USAGE_STORAGE_BIT,
718 .tiling_flags = (1 << mod_info->tiling));
719 assert(ok);
720 if (!ok) {
721 free(image);
722 return NULL;
723 }
724
725 struct isl_surf aux_surf;
726 if (mod_info->aux_usage == ISL_AUX_USAGE_CCS_E) {
727 ok = isl_surf_get_ccs_surf(&screen->isl_dev, &surf, &aux_surf, 0);
728 if (!ok) {
729 free(image);
730 return NULL;
731 }
732 } else {
733 assert(mod_info->aux_usage == ISL_AUX_USAGE_NONE);
734 aux_surf.size = 0;
735 }
736
737 /* We request that the bufmgr zero the buffer for us for two reasons:
738 *
739 * 1) If a buffer gets re-used from the pool, we don't want to leak random
740 * garbage from our process to some other.
741 *
742 * 2) For images with CCS_E, we want to ensure that the CCS starts off in
743 * a valid state. A CCS value of 0 indicates that the given block is
744 * in the pass-through state which is what we want.
745 */
746 image->bo = brw_bo_alloc_tiled(screen->bufmgr, "image",
747 surf.size + aux_surf.size,
748 isl_tiling_to_i915_tiling(mod_info->tiling),
749 surf.row_pitch, BO_ALLOC_ZEROED);
750 if (image->bo == NULL) {
751 free(image);
752 return NULL;
753 }
754 image->width = width;
755 image->height = height;
756 image->pitch = surf.row_pitch;
757 image->modifier = modifier;
758
759 if (aux_surf.size) {
760 image->aux_offset = surf.size;
761 image->aux_pitch = aux_surf.row_pitch;
762 image->aux_size = aux_surf.size;
763 }
764
765 return image;
766 }
767
768 static __DRIimage *
769 intel_create_image(__DRIscreen *dri_screen,
770 int width, int height, int format,
771 unsigned int use,
772 void *loaderPrivate)
773 {
774 return intel_create_image_common(dri_screen, width, height, format, use, NULL, 0,
775 loaderPrivate);
776 }
777
778 static void *
779 intel_map_image(__DRIcontext *context, __DRIimage *image,
780 int x0, int y0, int width, int height,
781 unsigned int flags, int *stride, void **map_info)
782 {
783 struct brw_context *brw = NULL;
784 struct brw_bo *bo = NULL;
785 void *raw_data = NULL;
786 GLuint pix_w = 1;
787 GLuint pix_h = 1;
788 GLint pix_bytes = 1;
789
790 if (!context || !image || !stride || !map_info || *map_info)
791 return NULL;
792
793 if (x0 < 0 || x0 >= image->width || width > image->width - x0)
794 return NULL;
795
796 if (y0 < 0 || y0 >= image->height || height > image->height - y0)
797 return NULL;
798
799 if (flags & MAP_INTERNAL_MASK)
800 return NULL;
801
802 brw = context->driverPrivate;
803 bo = image->bo;
804
805 assert(brw);
806 assert(bo);
807
808 /* DRI flags and GL_MAP.*_BIT flags are the same, so just pass them on. */
809 raw_data = brw_bo_map(brw, bo, flags);
810 if (!raw_data)
811 return NULL;
812
813 _mesa_get_format_block_size(image->format, &pix_w, &pix_h);
814 pix_bytes = _mesa_get_format_bytes(image->format);
815
816 assert(pix_w);
817 assert(pix_h);
818 assert(pix_bytes > 0);
819
820 raw_data += (x0 / pix_w) * pix_bytes + (y0 / pix_h) * image->pitch;
821
822 brw_bo_reference(bo);
823
824 *stride = image->pitch;
825 *map_info = bo;
826
827 return raw_data;
828 }
829
830 static void
831 intel_unmap_image(__DRIcontext *context, __DRIimage *image, void *map_info)
832 {
833 struct brw_bo *bo = map_info;
834
835 brw_bo_unmap(bo);
836 brw_bo_unreference(bo);
837 }
838
839 static __DRIimage *
840 intel_create_image_with_modifiers(__DRIscreen *dri_screen,
841 int width, int height, int format,
842 const uint64_t *modifiers,
843 const unsigned count,
844 void *loaderPrivate)
845 {
846 return intel_create_image_common(dri_screen, width, height, format, 0,
847 modifiers, count, loaderPrivate);
848 }
849
850 static GLboolean
851 intel_query_image(__DRIimage *image, int attrib, int *value)
852 {
853 switch (attrib) {
854 case __DRI_IMAGE_ATTRIB_STRIDE:
855 *value = image->pitch;
856 return true;
857 case __DRI_IMAGE_ATTRIB_HANDLE:
858 *value = brw_bo_export_gem_handle(image->bo);
859 return true;
860 case __DRI_IMAGE_ATTRIB_NAME:
861 return !brw_bo_flink(image->bo, (uint32_t *) value);
862 case __DRI_IMAGE_ATTRIB_FORMAT:
863 *value = image->dri_format;
864 return true;
865 case __DRI_IMAGE_ATTRIB_WIDTH:
866 *value = image->width;
867 return true;
868 case __DRI_IMAGE_ATTRIB_HEIGHT:
869 *value = image->height;
870 return true;
871 case __DRI_IMAGE_ATTRIB_COMPONENTS:
872 if (image->planar_format == NULL)
873 return false;
874 *value = image->planar_format->components;
875 return true;
876 case __DRI_IMAGE_ATTRIB_FD:
877 return !brw_bo_gem_export_to_prime(image->bo, value);
878 case __DRI_IMAGE_ATTRIB_FOURCC:
879 return intel_image_get_fourcc(image, value);
880 case __DRI_IMAGE_ATTRIB_NUM_PLANES:
881 if (isl_drm_modifier_has_aux(image->modifier)) {
882 assert(!image->planar_format || image->planar_format->nplanes == 1);
883 *value = 2;
884 } else if (image->planar_format) {
885 *value = image->planar_format->nplanes;
886 } else {
887 *value = 1;
888 }
889 return true;
890 case __DRI_IMAGE_ATTRIB_OFFSET:
891 *value = image->offset;
892 return true;
893 case __DRI_IMAGE_ATTRIB_MODIFIER_LOWER:
894 *value = (image->modifier & 0xffffffff);
895 return true;
896 case __DRI_IMAGE_ATTRIB_MODIFIER_UPPER:
897 *value = ((image->modifier >> 32) & 0xffffffff);
898 return true;
899
900 default:
901 return false;
902 }
903 }
904
905 static GLboolean
906 intel_query_format_modifier_attribs(__DRIscreen *dri_screen,
907 uint32_t fourcc, uint64_t modifier,
908 int attrib, uint64_t *value)
909 {
910 struct intel_screen *screen = dri_screen->driverPrivate;
911 const struct intel_image_format *f = intel_image_format_lookup(fourcc);
912
913 if (!modifier_is_supported(&screen->devinfo, f, 0, modifier))
914 return false;
915
916 switch (attrib) {
917 case __DRI_IMAGE_FORMAT_MODIFIER_ATTRIB_PLANE_COUNT:
918 *value = isl_drm_modifier_has_aux(modifier) ? 2 : f->nplanes;
919 return true;
920
921 default:
922 return false;
923 }
924 }
925
926 static __DRIimage *
927 intel_dup_image(__DRIimage *orig_image, void *loaderPrivate)
928 {
929 __DRIimage *image;
930
931 image = calloc(1, sizeof *image);
932 if (image == NULL)
933 return NULL;
934
935 brw_bo_reference(orig_image->bo);
936 image->bo = orig_image->bo;
937 image->internal_format = orig_image->internal_format;
938 image->planar_format = orig_image->planar_format;
939 image->dri_format = orig_image->dri_format;
940 image->format = orig_image->format;
941 image->modifier = orig_image->modifier;
942 image->offset = orig_image->offset;
943 image->width = orig_image->width;
944 image->height = orig_image->height;
945 image->pitch = orig_image->pitch;
946 image->tile_x = orig_image->tile_x;
947 image->tile_y = orig_image->tile_y;
948 image->has_depthstencil = orig_image->has_depthstencil;
949 image->data = loaderPrivate;
950 image->dma_buf_imported = orig_image->dma_buf_imported;
951 image->aux_offset = orig_image->aux_offset;
952 image->aux_pitch = orig_image->aux_pitch;
953
954 memcpy(image->strides, orig_image->strides, sizeof(image->strides));
955 memcpy(image->offsets, orig_image->offsets, sizeof(image->offsets));
956
957 return image;
958 }
959
960 static GLboolean
961 intel_validate_usage(__DRIimage *image, unsigned int use)
962 {
963 if (use & __DRI_IMAGE_USE_CURSOR) {
964 if (image->width != 64 || image->height != 64)
965 return GL_FALSE;
966 }
967
968 return GL_TRUE;
969 }
970
971 static __DRIimage *
972 intel_create_image_from_names(__DRIscreen *dri_screen,
973 int width, int height, int fourcc,
974 int *names, int num_names,
975 int *strides, int *offsets,
976 void *loaderPrivate)
977 {
978 const struct intel_image_format *f = NULL;
979 __DRIimage *image;
980 int i, index;
981
982 if (dri_screen == NULL || names == NULL || num_names != 1)
983 return NULL;
984
985 f = intel_image_format_lookup(fourcc);
986 if (f == NULL)
987 return NULL;
988
989 image = intel_create_image_from_name(dri_screen, width, height,
990 __DRI_IMAGE_FORMAT_NONE,
991 names[0], strides[0],
992 loaderPrivate);
993
994 if (image == NULL)
995 return NULL;
996
997 image->planar_format = f;
998 for (i = 0; i < f->nplanes; i++) {
999 index = f->planes[i].buffer_index;
1000 image->offsets[index] = offsets[index];
1001 image->strides[index] = strides[index];
1002 }
1003
1004 return image;
1005 }
1006
1007 static __DRIimage *
1008 intel_create_image_from_fds_common(__DRIscreen *dri_screen,
1009 int width, int height, int fourcc,
1010 uint64_t modifier, int *fds, int num_fds,
1011 int *strides, int *offsets,
1012 void *loaderPrivate)
1013 {
1014 struct intel_screen *screen = dri_screen->driverPrivate;
1015 const struct intel_image_format *f;
1016 __DRIimage *image;
1017 int i, index;
1018 bool ok;
1019
1020 if (fds == NULL || num_fds < 1)
1021 return NULL;
1022
1023 f = intel_image_format_lookup(fourcc);
1024 if (f == NULL)
1025 return NULL;
1026
1027 if (modifier != DRM_FORMAT_MOD_INVALID &&
1028 !modifier_is_supported(&screen->devinfo, f, 0, modifier))
1029 return NULL;
1030
1031 if (f->nplanes == 1)
1032 image = intel_allocate_image(screen, f->planes[0].dri_format,
1033 loaderPrivate);
1034 else
1035 image = intel_allocate_image(screen, __DRI_IMAGE_FORMAT_NONE,
1036 loaderPrivate);
1037
1038 if (image == NULL)
1039 return NULL;
1040
1041 image->width = width;
1042 image->height = height;
1043 image->pitch = strides[0];
1044
1045 image->planar_format = f;
1046
1047 if (modifier != DRM_FORMAT_MOD_INVALID) {
1048 const struct isl_drm_modifier_info *mod_info =
1049 isl_drm_modifier_get_info(modifier);
1050 uint32_t tiling = isl_tiling_to_i915_tiling(mod_info->tiling);
1051 image->bo = brw_bo_gem_create_from_prime_tiled(screen->bufmgr, fds[0],
1052 tiling, strides[0]);
1053 } else {
1054 image->bo = brw_bo_gem_create_from_prime(screen->bufmgr, fds[0]);
1055 }
1056
1057 if (image->bo == NULL) {
1058 free(image);
1059 return NULL;
1060 }
1061
1062 /* We only support all planes from the same bo.
1063 * brw_bo_gem_create_from_prime() should return the same pointer for all
1064 * fds received here */
1065 for (i = 1; i < num_fds; i++) {
1066 struct brw_bo *aux = brw_bo_gem_create_from_prime(screen->bufmgr, fds[i]);
1067 brw_bo_unreference(aux);
1068 if (aux != image->bo) {
1069 brw_bo_unreference(image->bo);
1070 free(image);
1071 return NULL;
1072 }
1073 }
1074
1075 if (modifier != DRM_FORMAT_MOD_INVALID)
1076 image->modifier = modifier;
1077 else
1078 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
1079
1080 const struct isl_drm_modifier_info *mod_info =
1081 isl_drm_modifier_get_info(image->modifier);
1082
1083 int size = 0;
1084 struct isl_surf surf;
1085 for (i = 0; i < f->nplanes; i++) {
1086 index = f->planes[i].buffer_index;
1087 image->offsets[index] = offsets[index];
1088 image->strides[index] = strides[index];
1089
1090 mesa_format format = driImageFormatToGLFormat(f->planes[i].dri_format);
1091
1092 ok = isl_surf_init(&screen->isl_dev, &surf,
1093 .dim = ISL_SURF_DIM_2D,
1094 .format = brw_isl_format_for_mesa_format(format),
1095 .width = image->width >> f->planes[i].width_shift,
1096 .height = image->height >> f->planes[i].height_shift,
1097 .depth = 1,
1098 .levels = 1,
1099 .array_len = 1,
1100 .samples = 1,
1101 .row_pitch = strides[index],
1102 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
1103 ISL_SURF_USAGE_TEXTURE_BIT |
1104 ISL_SURF_USAGE_STORAGE_BIT,
1105 .tiling_flags = (1 << mod_info->tiling));
1106 if (!ok) {
1107 brw_bo_unreference(image->bo);
1108 free(image);
1109 return NULL;
1110 }
1111
1112 const int end = offsets[index] + surf.size;
1113 if (size < end)
1114 size = end;
1115 }
1116
1117 if (mod_info->aux_usage == ISL_AUX_USAGE_CCS_E) {
1118 /* Even though we initialize surf in the loop above, we know that
1119 * anything with CCS_E will have exactly one plane so surf is properly
1120 * initialized when we get here.
1121 */
1122 assert(f->nplanes == 1);
1123
1124 image->aux_offset = offsets[1];
1125 image->aux_pitch = strides[1];
1126
1127 /* Scanout hardware requires that the CCS be placed after the main
1128 * surface in memory. We consider any CCS that is placed any earlier in
1129 * memory to be invalid and reject it.
1130 *
1131 * At some point in the future, this restriction may be relaxed if the
1132 * hardware becomes less strict but we may need a new modifier for that.
1133 */
1134 assert(size > 0);
1135 if (image->aux_offset < size) {
1136 brw_bo_unreference(image->bo);
1137 free(image);
1138 return NULL;
1139 }
1140
1141 struct isl_surf aux_surf;
1142 ok = isl_surf_get_ccs_surf(&screen->isl_dev, &surf, &aux_surf,
1143 image->aux_pitch);
1144 if (!ok) {
1145 brw_bo_unreference(image->bo);
1146 free(image);
1147 return NULL;
1148 }
1149
1150 image->aux_size = aux_surf.size;
1151
1152 const int end = image->aux_offset + aux_surf.size;
1153 if (size < end)
1154 size = end;
1155 } else {
1156 assert(mod_info->aux_usage == ISL_AUX_USAGE_NONE);
1157 }
1158
1159 /* Check that the requested image actually fits within the BO. 'size'
1160 * is already relative to the offsets, so we don't need to add that. */
1161 if (image->bo->size == 0) {
1162 image->bo->size = size;
1163 } else if (size > image->bo->size) {
1164 brw_bo_unreference(image->bo);
1165 free(image);
1166 return NULL;
1167 }
1168
1169 if (f->nplanes == 1) {
1170 image->offset = image->offsets[0];
1171 intel_image_warn_if_unaligned(image, __func__);
1172 }
1173
1174 return image;
1175 }
1176
1177 static __DRIimage *
1178 intel_create_image_from_fds(__DRIscreen *dri_screen,
1179 int width, int height, int fourcc,
1180 int *fds, int num_fds, int *strides, int *offsets,
1181 void *loaderPrivate)
1182 {
1183 return intel_create_image_from_fds_common(dri_screen, width, height, fourcc,
1184 DRM_FORMAT_MOD_INVALID,
1185 fds, num_fds, strides, offsets,
1186 loaderPrivate);
1187 }
1188
1189 static __DRIimage *
1190 intel_create_image_from_dma_bufs2(__DRIscreen *dri_screen,
1191 int width, int height,
1192 int fourcc, uint64_t modifier,
1193 int *fds, int num_fds,
1194 int *strides, int *offsets,
1195 enum __DRIYUVColorSpace yuv_color_space,
1196 enum __DRISampleRange sample_range,
1197 enum __DRIChromaSiting horizontal_siting,
1198 enum __DRIChromaSiting vertical_siting,
1199 unsigned *error,
1200 void *loaderPrivate)
1201 {
1202 __DRIimage *image;
1203 const struct intel_image_format *f = intel_image_format_lookup(fourcc);
1204
1205 if (!f) {
1206 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
1207 return NULL;
1208 }
1209
1210 image = intel_create_image_from_fds_common(dri_screen, width, height,
1211 fourcc, modifier,
1212 fds, num_fds, strides, offsets,
1213 loaderPrivate);
1214
1215 /*
1216 * Invalid parameters and any inconsistencies between are assumed to be
1217 * checked by the caller. Therefore besides unsupported formats one can fail
1218 * only in allocation.
1219 */
1220 if (!image) {
1221 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
1222 return NULL;
1223 }
1224
1225 image->dma_buf_imported = true;
1226 image->yuv_color_space = yuv_color_space;
1227 image->sample_range = sample_range;
1228 image->horizontal_siting = horizontal_siting;
1229 image->vertical_siting = vertical_siting;
1230
1231 *error = __DRI_IMAGE_ERROR_SUCCESS;
1232 return image;
1233 }
1234
1235 static __DRIimage *
1236 intel_create_image_from_dma_bufs(__DRIscreen *dri_screen,
1237 int width, int height, int fourcc,
1238 int *fds, int num_fds,
1239 int *strides, int *offsets,
1240 enum __DRIYUVColorSpace yuv_color_space,
1241 enum __DRISampleRange sample_range,
1242 enum __DRIChromaSiting horizontal_siting,
1243 enum __DRIChromaSiting vertical_siting,
1244 unsigned *error,
1245 void *loaderPrivate)
1246 {
1247 return intel_create_image_from_dma_bufs2(dri_screen, width, height,
1248 fourcc, DRM_FORMAT_MOD_INVALID,
1249 fds, num_fds, strides, offsets,
1250 yuv_color_space,
1251 sample_range,
1252 horizontal_siting,
1253 vertical_siting,
1254 error,
1255 loaderPrivate);
1256 }
1257
1258 static GLboolean
1259 intel_query_dma_buf_formats(__DRIscreen *screen, int max,
1260 int *formats, int *count)
1261 {
1262 int i, j = 0;
1263
1264 if (max == 0) {
1265 *count = ARRAY_SIZE(intel_image_formats) - 1; /* not SARGB */
1266 return true;
1267 }
1268
1269 for (i = 0; i < (ARRAY_SIZE(intel_image_formats)) && j < max; i++) {
1270 if (intel_image_formats[i].fourcc == __DRI_IMAGE_FOURCC_SARGB8888)
1271 continue;
1272 formats[j++] = intel_image_formats[i].fourcc;
1273 }
1274
1275 *count = j;
1276 return true;
1277 }
1278
1279 static GLboolean
1280 intel_query_dma_buf_modifiers(__DRIscreen *_screen, int fourcc, int max,
1281 uint64_t *modifiers,
1282 unsigned int *external_only,
1283 int *count)
1284 {
1285 struct intel_screen *screen = _screen->driverPrivate;
1286 const struct intel_image_format *f;
1287 int num_mods = 0, i;
1288
1289 f = intel_image_format_lookup(fourcc);
1290 if (f == NULL)
1291 return false;
1292
1293 for (i = 0; i < ARRAY_SIZE(supported_modifiers); i++) {
1294 uint64_t modifier = supported_modifiers[i].modifier;
1295 if (!modifier_is_supported(&screen->devinfo, f, 0, modifier))
1296 continue;
1297
1298 num_mods++;
1299 if (max == 0)
1300 continue;
1301
1302 modifiers[num_mods - 1] = modifier;
1303 if (num_mods >= max)
1304 break;
1305 }
1306
1307 if (external_only != NULL) {
1308 for (i = 0; i < num_mods && i < max; i++) {
1309 if (f->components == __DRI_IMAGE_COMPONENTS_Y_U_V ||
1310 f->components == __DRI_IMAGE_COMPONENTS_Y_UV ||
1311 f->components == __DRI_IMAGE_COMPONENTS_Y_XUXV) {
1312 external_only[i] = GL_TRUE;
1313 }
1314 else {
1315 external_only[i] = GL_FALSE;
1316 }
1317 }
1318 }
1319
1320 *count = num_mods;
1321 return true;
1322 }
1323
1324 static __DRIimage *
1325 intel_from_planar(__DRIimage *parent, int plane, void *loaderPrivate)
1326 {
1327 int width, height, offset, stride, size, dri_format;
1328 __DRIimage *image;
1329
1330 if (parent == NULL)
1331 return NULL;
1332
1333 width = parent->width;
1334 height = parent->height;
1335
1336 const struct intel_image_format *f = parent->planar_format;
1337
1338 if (f && plane < f->nplanes) {
1339 /* Use the planar format definition. */
1340 width >>= f->planes[plane].width_shift;
1341 height >>= f->planes[plane].height_shift;
1342 dri_format = f->planes[plane].dri_format;
1343 int index = f->planes[plane].buffer_index;
1344 offset = parent->offsets[index];
1345 stride = parent->strides[index];
1346 size = height * stride;
1347 } else if (plane == 0) {
1348 /* The only plane of a non-planar image: copy the parent definition
1349 * directly. */
1350 dri_format = parent->dri_format;
1351 offset = parent->offset;
1352 stride = parent->pitch;
1353 size = height * stride;
1354 } else if (plane == 1 && parent->modifier != DRM_FORMAT_MOD_INVALID &&
1355 isl_drm_modifier_has_aux(parent->modifier)) {
1356 /* Auxiliary plane */
1357 dri_format = parent->dri_format;
1358 offset = parent->aux_offset;
1359 stride = parent->aux_pitch;
1360 size = parent->aux_size;
1361 } else {
1362 return NULL;
1363 }
1364
1365 if (offset + size > parent->bo->size) {
1366 _mesa_warning(NULL, "intel_from_planar: subimage out of bounds");
1367 return NULL;
1368 }
1369
1370 image = intel_allocate_image(parent->screen, dri_format, loaderPrivate);
1371 if (image == NULL)
1372 return NULL;
1373
1374 image->bo = parent->bo;
1375 brw_bo_reference(parent->bo);
1376 image->modifier = parent->modifier;
1377
1378 image->width = width;
1379 image->height = height;
1380 image->pitch = stride;
1381 image->offset = offset;
1382
1383 intel_image_warn_if_unaligned(image, __func__);
1384
1385 return image;
1386 }
1387
1388 static const __DRIimageExtension intelImageExtension = {
1389 .base = { __DRI_IMAGE, 16 },
1390
1391 .createImageFromName = intel_create_image_from_name,
1392 .createImageFromRenderbuffer = intel_create_image_from_renderbuffer,
1393 .destroyImage = intel_destroy_image,
1394 .createImage = intel_create_image,
1395 .queryImage = intel_query_image,
1396 .dupImage = intel_dup_image,
1397 .validateUsage = intel_validate_usage,
1398 .createImageFromNames = intel_create_image_from_names,
1399 .fromPlanar = intel_from_planar,
1400 .createImageFromTexture = intel_create_image_from_texture,
1401 .createImageFromFds = intel_create_image_from_fds,
1402 .createImageFromDmaBufs = intel_create_image_from_dma_bufs,
1403 .blitImage = NULL,
1404 .getCapabilities = NULL,
1405 .mapImage = intel_map_image,
1406 .unmapImage = intel_unmap_image,
1407 .createImageWithModifiers = intel_create_image_with_modifiers,
1408 .createImageFromDmaBufs2 = intel_create_image_from_dma_bufs2,
1409 .queryDmaBufFormats = intel_query_dma_buf_formats,
1410 .queryDmaBufModifiers = intel_query_dma_buf_modifiers,
1411 .queryDmaBufFormatModifierAttribs = intel_query_format_modifier_attribs,
1412 };
1413
1414 static uint64_t
1415 get_aperture_size(int fd)
1416 {
1417 struct drm_i915_gem_get_aperture aperture;
1418
1419 if (drmIoctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture) != 0)
1420 return 0;
1421
1422 return aperture.aper_size;
1423 }
1424
1425 static int
1426 brw_query_renderer_integer(__DRIscreen *dri_screen,
1427 int param, unsigned int *value)
1428 {
1429 const struct intel_screen *const screen =
1430 (struct intel_screen *) dri_screen->driverPrivate;
1431
1432 switch (param) {
1433 case __DRI2_RENDERER_VENDOR_ID:
1434 value[0] = 0x8086;
1435 return 0;
1436 case __DRI2_RENDERER_DEVICE_ID:
1437 value[0] = screen->deviceID;
1438 return 0;
1439 case __DRI2_RENDERER_ACCELERATED:
1440 value[0] = 1;
1441 return 0;
1442 case __DRI2_RENDERER_VIDEO_MEMORY: {
1443 /* Once a batch uses more than 75% of the maximum mappable size, we
1444 * assume that there's some fragmentation, and we start doing extra
1445 * flushing, etc. That's the big cliff apps will care about.
1446 */
1447 const unsigned gpu_mappable_megabytes =
1448 screen->aperture_threshold / (1024 * 1024);
1449
1450 const long system_memory_pages = sysconf(_SC_PHYS_PAGES);
1451 const long system_page_size = sysconf(_SC_PAGE_SIZE);
1452
1453 if (system_memory_pages <= 0 || system_page_size <= 0)
1454 return -1;
1455
1456 const uint64_t system_memory_bytes = (uint64_t) system_memory_pages
1457 * (uint64_t) system_page_size;
1458
1459 const unsigned system_memory_megabytes =
1460 (unsigned) (system_memory_bytes / (1024 * 1024));
1461
1462 value[0] = MIN2(system_memory_megabytes, gpu_mappable_megabytes);
1463 return 0;
1464 }
1465 case __DRI2_RENDERER_UNIFIED_MEMORY_ARCHITECTURE:
1466 value[0] = 1;
1467 return 0;
1468 case __DRI2_RENDERER_HAS_TEXTURE_3D:
1469 value[0] = 1;
1470 return 0;
1471 case __DRI2_RENDERER_HAS_CONTEXT_PRIORITY:
1472 value[0] = 0;
1473 if (brw_hw_context_set_priority(screen->bufmgr,
1474 0, GEN_CONTEXT_HIGH_PRIORITY) == 0)
1475 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_HIGH;
1476 if (brw_hw_context_set_priority(screen->bufmgr,
1477 0, GEN_CONTEXT_LOW_PRIORITY) == 0)
1478 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_LOW;
1479 /* reset to default last, just in case */
1480 if (brw_hw_context_set_priority(screen->bufmgr,
1481 0, GEN_CONTEXT_MEDIUM_PRIORITY) == 0)
1482 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_MEDIUM;
1483 return 0;
1484 case __DRI2_RENDERER_HAS_FRAMEBUFFER_SRGB:
1485 value[0] = 1;
1486 return 0;
1487 default:
1488 return driQueryRendererIntegerCommon(dri_screen, param, value);
1489 }
1490
1491 return -1;
1492 }
1493
1494 static int
1495 brw_query_renderer_string(__DRIscreen *dri_screen,
1496 int param, const char **value)
1497 {
1498 const struct intel_screen *screen =
1499 (struct intel_screen *) dri_screen->driverPrivate;
1500
1501 switch (param) {
1502 case __DRI2_RENDERER_VENDOR_ID:
1503 value[0] = brw_vendor_string;
1504 return 0;
1505 case __DRI2_RENDERER_DEVICE_ID:
1506 value[0] = brw_get_renderer_string(screen);
1507 return 0;
1508 default:
1509 break;
1510 }
1511
1512 return -1;
1513 }
1514
1515 static void
1516 brw_set_cache_funcs(__DRIscreen *dri_screen,
1517 __DRIblobCacheSet set, __DRIblobCacheGet get)
1518 {
1519 const struct intel_screen *const screen =
1520 (struct intel_screen *) dri_screen->driverPrivate;
1521
1522 if (!screen->disk_cache)
1523 return;
1524
1525 disk_cache_set_callbacks(screen->disk_cache, set, get);
1526 }
1527
1528 static const __DRI2rendererQueryExtension intelRendererQueryExtension = {
1529 .base = { __DRI2_RENDERER_QUERY, 1 },
1530
1531 .queryInteger = brw_query_renderer_integer,
1532 .queryString = brw_query_renderer_string
1533 };
1534
1535 static const __DRIrobustnessExtension dri2Robustness = {
1536 .base = { __DRI2_ROBUSTNESS, 1 }
1537 };
1538
1539 static const __DRI2blobExtension intelBlobExtension = {
1540 .base = { __DRI2_BLOB, 1 },
1541 .set_cache_funcs = brw_set_cache_funcs
1542 };
1543
1544 static const __DRIextension *screenExtensions[] = {
1545 &intelTexBufferExtension.base,
1546 &intelFenceExtension.base,
1547 &intelFlushExtension.base,
1548 &intelImageExtension.base,
1549 &intelRendererQueryExtension.base,
1550 &dri2ConfigQueryExtension.base,
1551 &dri2NoErrorExtension.base,
1552 &intelBlobExtension.base,
1553 NULL
1554 };
1555
1556 static const __DRIextension *intelRobustScreenExtensions[] = {
1557 &intelTexBufferExtension.base,
1558 &intelFenceExtension.base,
1559 &intelFlushExtension.base,
1560 &intelImageExtension.base,
1561 &intelRendererQueryExtension.base,
1562 &dri2ConfigQueryExtension.base,
1563 &dri2Robustness.base,
1564 &dri2NoErrorExtension.base,
1565 &intelBlobExtension.base,
1566 NULL
1567 };
1568
1569 static int
1570 intel_get_param(struct intel_screen *screen, int param, int *value)
1571 {
1572 int ret = 0;
1573 struct drm_i915_getparam gp;
1574
1575 memset(&gp, 0, sizeof(gp));
1576 gp.param = param;
1577 gp.value = value;
1578
1579 if (drmIoctl(screen->driScrnPriv->fd, DRM_IOCTL_I915_GETPARAM, &gp) == -1) {
1580 ret = -errno;
1581 if (ret != -EINVAL)
1582 _mesa_warning(NULL, "drm_i915_getparam: %d", ret);
1583 }
1584
1585 return ret;
1586 }
1587
1588 static bool
1589 intel_get_boolean(struct intel_screen *screen, int param)
1590 {
1591 int value = 0;
1592 return (intel_get_param(screen, param, &value) == 0) && value;
1593 }
1594
1595 static int
1596 intel_get_integer(struct intel_screen *screen, int param)
1597 {
1598 int value = -1;
1599
1600 if (intel_get_param(screen, param, &value) == 0)
1601 return value;
1602
1603 return -1;
1604 }
1605
1606 static void
1607 intelDestroyScreen(__DRIscreen * sPriv)
1608 {
1609 struct intel_screen *screen = sPriv->driverPrivate;
1610
1611 brw_bufmgr_destroy(screen->bufmgr);
1612 driDestroyOptionInfo(&screen->optionCache);
1613
1614 disk_cache_destroy(screen->disk_cache);
1615
1616 ralloc_free(screen);
1617 sPriv->driverPrivate = NULL;
1618 }
1619
1620
1621 /**
1622 * Create a gl_framebuffer and attach it to __DRIdrawable::driverPrivate.
1623 *
1624 *_This implements driDriverAPI::createNewDrawable, which the DRI layer calls
1625 * when creating a EGLSurface, GLXDrawable, or GLXPixmap. Despite the name,
1626 * this does not allocate GPU memory.
1627 */
1628 static GLboolean
1629 intelCreateBuffer(__DRIscreen *dri_screen,
1630 __DRIdrawable * driDrawPriv,
1631 const struct gl_config * mesaVis, GLboolean isPixmap)
1632 {
1633 struct intel_renderbuffer *rb;
1634 struct intel_screen *screen = (struct intel_screen *)
1635 dri_screen->driverPrivate;
1636 mesa_format rgbFormat;
1637 unsigned num_samples =
1638 intel_quantize_num_samples(screen, mesaVis->samples);
1639
1640 if (isPixmap)
1641 return false;
1642
1643 struct gl_framebuffer *fb = CALLOC_STRUCT(gl_framebuffer);
1644 if (!fb)
1645 return false;
1646
1647 _mesa_initialize_window_framebuffer(fb, mesaVis);
1648
1649 if (screen->winsys_msaa_samples_override != -1) {
1650 num_samples = screen->winsys_msaa_samples_override;
1651 fb->Visual.samples = num_samples;
1652 }
1653
1654 if (mesaVis->redBits == 10 && mesaVis->alphaBits > 0) {
1655 rgbFormat = mesaVis->redMask == 0x3ff00000 ? MESA_FORMAT_B10G10R10A2_UNORM
1656 : MESA_FORMAT_R10G10B10A2_UNORM;
1657 } else if (mesaVis->redBits == 10) {
1658 rgbFormat = mesaVis->redMask == 0x3ff00000 ? MESA_FORMAT_B10G10R10X2_UNORM
1659 : MESA_FORMAT_R10G10B10X2_UNORM;
1660 } else if (mesaVis->redBits == 5) {
1661 rgbFormat = mesaVis->redMask == 0x1f ? MESA_FORMAT_R5G6B5_UNORM
1662 : MESA_FORMAT_B5G6R5_UNORM;
1663 } else if (mesaVis->sRGBCapable) {
1664 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1665 : MESA_FORMAT_B8G8R8A8_SRGB;
1666 } else if (mesaVis->alphaBits == 0) {
1667 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8X8_UNORM
1668 : MESA_FORMAT_B8G8R8X8_UNORM;
1669 } else {
1670 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1671 : MESA_FORMAT_B8G8R8A8_SRGB;
1672 fb->Visual.sRGBCapable = true;
1673 }
1674
1675 /* mesaVis->sRGBCapable was set, user is asking for sRGB */
1676 bool srgb_cap_set = mesaVis->redBits >= 8 && mesaVis->sRGBCapable;
1677
1678 /* setup the hardware-based renderbuffers */
1679 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1680 _mesa_attach_and_own_rb(fb, BUFFER_FRONT_LEFT, &rb->Base.Base);
1681 rb->need_srgb = srgb_cap_set;
1682
1683 if (mesaVis->doubleBufferMode) {
1684 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1685 _mesa_attach_and_own_rb(fb, BUFFER_BACK_LEFT, &rb->Base.Base);
1686 rb->need_srgb = srgb_cap_set;
1687 }
1688
1689 /*
1690 * Assert here that the gl_config has an expected depth/stencil bit
1691 * combination: one of d24/s8, d16/s0, d0/s0. (See intelInitScreen2(),
1692 * which constructs the advertised configs.)
1693 */
1694 if (mesaVis->depthBits == 24) {
1695 assert(mesaVis->stencilBits == 8);
1696
1697 if (screen->devinfo.has_hiz_and_separate_stencil) {
1698 rb = intel_create_private_renderbuffer(screen,
1699 MESA_FORMAT_Z24_UNORM_X8_UINT,
1700 num_samples);
1701 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1702 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_S_UINT8,
1703 num_samples);
1704 _mesa_attach_and_own_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1705 } else {
1706 /*
1707 * Use combined depth/stencil. Note that the renderbuffer is
1708 * attached to two attachment points.
1709 */
1710 rb = intel_create_private_renderbuffer(screen,
1711 MESA_FORMAT_Z24_UNORM_S8_UINT,
1712 num_samples);
1713 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1714 _mesa_attach_and_reference_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1715 }
1716 }
1717 else if (mesaVis->depthBits == 16) {
1718 assert(mesaVis->stencilBits == 0);
1719 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_Z_UNORM16,
1720 num_samples);
1721 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1722 }
1723 else {
1724 assert(mesaVis->depthBits == 0);
1725 assert(mesaVis->stencilBits == 0);
1726 }
1727
1728 /* now add any/all software-based renderbuffers we may need */
1729 _swrast_add_soft_renderbuffers(fb,
1730 false, /* never sw color */
1731 false, /* never sw depth */
1732 false, /* never sw stencil */
1733 mesaVis->accumRedBits > 0,
1734 false, /* never sw alpha */
1735 false /* never sw aux */ );
1736 driDrawPriv->driverPrivate = fb;
1737
1738 return true;
1739 }
1740
1741 static void
1742 intelDestroyBuffer(__DRIdrawable * driDrawPriv)
1743 {
1744 struct gl_framebuffer *fb = driDrawPriv->driverPrivate;
1745
1746 _mesa_reference_framebuffer(&fb, NULL);
1747 }
1748
1749 static void
1750 intel_cs_timestamp_frequency(struct intel_screen *screen)
1751 {
1752 /* We shouldn't need to update gen_device_info.timestamp_frequency prior to
1753 * gen10, PCI-id is enough to figure it out.
1754 */
1755 assert(screen->devinfo.gen >= 10);
1756
1757 int ret, freq;
1758
1759 ret = intel_get_param(screen, I915_PARAM_CS_TIMESTAMP_FREQUENCY,
1760 &freq);
1761 if (ret < 0) {
1762 _mesa_warning(NULL,
1763 "Kernel 4.15 required to read the CS timestamp frequency.\n");
1764 return;
1765 }
1766
1767 screen->devinfo.timestamp_frequency = freq;
1768 }
1769
1770 static void
1771 intel_detect_sseu(struct intel_screen *screen)
1772 {
1773 assert(screen->devinfo.gen >= 8);
1774 int ret;
1775
1776 screen->subslice_total = -1;
1777 screen->eu_total = -1;
1778
1779 ret = intel_get_param(screen, I915_PARAM_SUBSLICE_TOTAL,
1780 &screen->subslice_total);
1781 if (ret < 0 && ret != -EINVAL)
1782 goto err_out;
1783
1784 ret = intel_get_param(screen,
1785 I915_PARAM_EU_TOTAL, &screen->eu_total);
1786 if (ret < 0 && ret != -EINVAL)
1787 goto err_out;
1788
1789 /* Without this information, we cannot get the right Braswell brandstrings,
1790 * and we have to use conservative numbers for GPGPU on many platforms, but
1791 * otherwise, things will just work.
1792 */
1793 if (screen->subslice_total < 1 || screen->eu_total < 1)
1794 _mesa_warning(NULL,
1795 "Kernel 4.1 required to properly query GPU properties.\n");
1796
1797 return;
1798
1799 err_out:
1800 screen->subslice_total = -1;
1801 screen->eu_total = -1;
1802 _mesa_warning(NULL, "Failed to query GPU properties (%s).\n", strerror(-ret));
1803 }
1804
1805 static bool
1806 intel_init_bufmgr(struct intel_screen *screen)
1807 {
1808 __DRIscreen *dri_screen = screen->driScrnPriv;
1809
1810 if (getenv("INTEL_NO_HW") != NULL)
1811 screen->no_hw = true;
1812
1813 screen->bufmgr = brw_bufmgr_init(&screen->devinfo, dri_screen->fd);
1814 if (screen->bufmgr == NULL) {
1815 fprintf(stderr, "[%s:%u] Error initializing buffer manager.\n",
1816 __func__, __LINE__);
1817 return false;
1818 }
1819
1820 if (!intel_get_boolean(screen, I915_PARAM_HAS_EXEC_NO_RELOC)) {
1821 fprintf(stderr, "[%s: %u] Kernel 3.9 required.\n", __func__, __LINE__);
1822 return false;
1823 }
1824
1825 return true;
1826 }
1827
1828 static bool
1829 intel_detect_swizzling(struct intel_screen *screen)
1830 {
1831 struct brw_bo *buffer;
1832 unsigned flags = 0;
1833 uint32_t aligned_pitch;
1834 uint32_t tiling = I915_TILING_X;
1835 uint32_t swizzle_mode = 0;
1836
1837 buffer = brw_bo_alloc_tiled_2d(screen->bufmgr, "swizzle test",
1838 64, 64, 4, tiling, &aligned_pitch, flags);
1839 if (buffer == NULL)
1840 return false;
1841
1842 brw_bo_get_tiling(buffer, &tiling, &swizzle_mode);
1843 brw_bo_unreference(buffer);
1844
1845 if (swizzle_mode == I915_BIT_6_SWIZZLE_NONE)
1846 return false;
1847 else
1848 return true;
1849 }
1850
1851 static int
1852 intel_detect_timestamp(struct intel_screen *screen)
1853 {
1854 uint64_t dummy = 0, last = 0;
1855 int upper, lower, loops;
1856
1857 /* On 64bit systems, some old kernels trigger a hw bug resulting in the
1858 * TIMESTAMP register being shifted and the low 32bits always zero.
1859 *
1860 * More recent kernels offer an interface to read the full 36bits
1861 * everywhere.
1862 */
1863 if (brw_reg_read(screen->bufmgr, TIMESTAMP | 1, &dummy) == 0)
1864 return 3;
1865
1866 /* Determine if we have a 32bit or 64bit kernel by inspecting the
1867 * upper 32bits for a rapidly changing timestamp.
1868 */
1869 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &last))
1870 return 0;
1871
1872 upper = lower = 0;
1873 for (loops = 0; loops < 10; loops++) {
1874 /* The TIMESTAMP should change every 80ns, so several round trips
1875 * through the kernel should be enough to advance it.
1876 */
1877 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &dummy))
1878 return 0;
1879
1880 upper += (dummy >> 32) != (last >> 32);
1881 if (upper > 1) /* beware 32bit counter overflow */
1882 return 2; /* upper dword holds the low 32bits of the timestamp */
1883
1884 lower += (dummy & 0xffffffff) != (last & 0xffffffff);
1885 if (lower > 1)
1886 return 1; /* timestamp is unshifted */
1887
1888 last = dummy;
1889 }
1890
1891 /* No advancement? No timestamp! */
1892 return 0;
1893 }
1894
1895 /**
1896 * Test if we can use MI_LOAD_REGISTER_MEM from an untrusted batchbuffer.
1897 *
1898 * Some combinations of hardware and kernel versions allow this feature,
1899 * while others don't. Instead of trying to enumerate every case, just
1900 * try and write a register and see if works.
1901 */
1902 static bool
1903 intel_detect_pipelined_register(struct intel_screen *screen,
1904 int reg, uint32_t expected_value, bool reset)
1905 {
1906 if (screen->no_hw)
1907 return false;
1908
1909 struct brw_bo *results, *bo;
1910 uint32_t *batch;
1911 uint32_t offset = 0;
1912 void *map;
1913 bool success = false;
1914
1915 /* Create a zero'ed temporary buffer for reading our results */
1916 results = brw_bo_alloc(screen->bufmgr, "registers", 4096);
1917 if (results == NULL)
1918 goto err;
1919
1920 bo = brw_bo_alloc(screen->bufmgr, "batchbuffer", 4096);
1921 if (bo == NULL)
1922 goto err_results;
1923
1924 map = brw_bo_map(NULL, bo, MAP_WRITE);
1925 if (!map)
1926 goto err_batch;
1927
1928 batch = map;
1929
1930 /* Write the register. */
1931 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1932 *batch++ = reg;
1933 *batch++ = expected_value;
1934
1935 /* Save the register's value back to the buffer. */
1936 *batch++ = MI_STORE_REGISTER_MEM | (3 - 2);
1937 *batch++ = reg;
1938 struct drm_i915_gem_relocation_entry reloc = {
1939 .offset = (char *) batch - (char *) map,
1940 .delta = offset * sizeof(uint32_t),
1941 .target_handle = results->gem_handle,
1942 .read_domains = I915_GEM_DOMAIN_INSTRUCTION,
1943 .write_domain = I915_GEM_DOMAIN_INSTRUCTION,
1944 };
1945 *batch++ = reloc.presumed_offset + reloc.delta;
1946
1947 /* And afterwards clear the register */
1948 if (reset) {
1949 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1950 *batch++ = reg;
1951 *batch++ = 0;
1952 }
1953
1954 *batch++ = MI_BATCH_BUFFER_END;
1955
1956 struct drm_i915_gem_exec_object2 exec_objects[2] = {
1957 {
1958 .handle = results->gem_handle,
1959 },
1960 {
1961 .handle = bo->gem_handle,
1962 .relocation_count = 1,
1963 .relocs_ptr = (uintptr_t) &reloc,
1964 }
1965 };
1966
1967 struct drm_i915_gem_execbuffer2 execbuf = {
1968 .buffers_ptr = (uintptr_t) exec_objects,
1969 .buffer_count = 2,
1970 .batch_len = ALIGN((char *) batch - (char *) map, 8),
1971 .flags = I915_EXEC_RENDER,
1972 };
1973
1974 /* Don't bother with error checking - if the execbuf fails, the
1975 * value won't be written and we'll just report that there's no access.
1976 */
1977 __DRIscreen *dri_screen = screen->driScrnPriv;
1978 drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf);
1979
1980 /* Check whether the value got written. */
1981 void *results_map = brw_bo_map(NULL, results, MAP_READ);
1982 if (results_map) {
1983 success = *((uint32_t *)results_map + offset) == expected_value;
1984 brw_bo_unmap(results);
1985 }
1986
1987 err_batch:
1988 brw_bo_unreference(bo);
1989 err_results:
1990 brw_bo_unreference(results);
1991 err:
1992 return success;
1993 }
1994
1995 static bool
1996 intel_detect_pipelined_so(struct intel_screen *screen)
1997 {
1998 const struct gen_device_info *devinfo = &screen->devinfo;
1999
2000 /* Supposedly, Broadwell just works. */
2001 if (devinfo->gen >= 8)
2002 return true;
2003
2004 if (devinfo->gen <= 6)
2005 return false;
2006
2007 /* See the big explanation about command parser versions below */
2008 if (screen->cmd_parser_version >= (devinfo->is_haswell ? 7 : 2))
2009 return true;
2010
2011 /* We use SO_WRITE_OFFSET0 since you're supposed to write it (unlike the
2012 * statistics registers), and we already reset it to zero before using it.
2013 */
2014 return intel_detect_pipelined_register(screen,
2015 GEN7_SO_WRITE_OFFSET(0),
2016 0x1337d0d0,
2017 false);
2018 }
2019
2020 /**
2021 * Return array of MSAA modes supported by the hardware. The array is
2022 * zero-terminated and sorted in decreasing order.
2023 */
2024 const int*
2025 intel_supported_msaa_modes(const struct intel_screen *screen)
2026 {
2027 static const int gen9_modes[] = {16, 8, 4, 2, 0, -1};
2028 static const int gen8_modes[] = {8, 4, 2, 0, -1};
2029 static const int gen7_modes[] = {8, 4, 0, -1};
2030 static const int gen6_modes[] = {4, 0, -1};
2031 static const int gen4_modes[] = {0, -1};
2032
2033 if (screen->devinfo.gen >= 9) {
2034 return gen9_modes;
2035 } else if (screen->devinfo.gen >= 8) {
2036 return gen8_modes;
2037 } else if (screen->devinfo.gen >= 7) {
2038 return gen7_modes;
2039 } else if (screen->devinfo.gen == 6) {
2040 return gen6_modes;
2041 } else {
2042 return gen4_modes;
2043 }
2044 }
2045
2046 static unsigned
2047 intel_loader_get_cap(const __DRIscreen *dri_screen, enum dri_loader_cap cap)
2048 {
2049 if (dri_screen->dri2.loader && dri_screen->dri2.loader->base.version >= 4 &&
2050 dri_screen->dri2.loader->getCapability)
2051 return dri_screen->dri2.loader->getCapability(dri_screen->loaderPrivate, cap);
2052
2053 if (dri_screen->image.loader && dri_screen->image.loader->base.version >= 2 &&
2054 dri_screen->image.loader->getCapability)
2055 return dri_screen->image.loader->getCapability(dri_screen->loaderPrivate, cap);
2056
2057 return 0;
2058 }
2059
2060 static __DRIconfig**
2061 intel_screen_make_configs(__DRIscreen *dri_screen)
2062 {
2063 static const mesa_format formats[] = {
2064 MESA_FORMAT_B5G6R5_UNORM,
2065 MESA_FORMAT_B8G8R8A8_UNORM,
2066 MESA_FORMAT_B8G8R8X8_UNORM,
2067
2068 MESA_FORMAT_B8G8R8A8_SRGB,
2069
2070 /* For 10 bpc, 30 bit depth framebuffers. */
2071 MESA_FORMAT_B10G10R10A2_UNORM,
2072 MESA_FORMAT_B10G10R10X2_UNORM,
2073
2074 /* The 32-bit RGBA format must not precede the 32-bit BGRA format.
2075 * Likewise for RGBX and BGRX. Otherwise, the GLX client and the GLX
2076 * server may disagree on which format the GLXFBConfig represents,
2077 * resulting in swapped color channels.
2078 *
2079 * The problem, as of 2017-05-30:
2080 * When matching a GLXFBConfig to a __DRIconfig, GLX ignores the channel
2081 * order and chooses the first __DRIconfig with the expected channel
2082 * sizes. Specifically, GLX compares the GLXFBConfig's and __DRIconfig's
2083 * __DRI_ATTRIB_{CHANNEL}_SIZE but ignores __DRI_ATTRIB_{CHANNEL}_MASK.
2084 *
2085 * EGL does not suffer from this problem. It correctly compares the
2086 * channel masks when matching EGLConfig to __DRIconfig.
2087 */
2088
2089 /* Required by Android, for HAL_PIXEL_FORMAT_RGBA_8888. */
2090 MESA_FORMAT_R8G8B8A8_UNORM,
2091
2092 /* Required by Android, for HAL_PIXEL_FORMAT_RGBX_8888. */
2093 MESA_FORMAT_R8G8B8X8_UNORM,
2094 };
2095
2096 /* GLX_SWAP_COPY_OML is not supported due to page flipping. */
2097 static const GLenum back_buffer_modes[] = {
2098 __DRI_ATTRIB_SWAP_UNDEFINED, __DRI_ATTRIB_SWAP_NONE
2099 };
2100
2101 static const uint8_t singlesample_samples[1] = {0};
2102
2103 struct intel_screen *screen = dri_screen->driverPrivate;
2104 const struct gen_device_info *devinfo = &screen->devinfo;
2105 uint8_t depth_bits[4], stencil_bits[4];
2106 __DRIconfig **configs = NULL;
2107
2108 /* Expose only BGRA ordering if the loader doesn't support RGBA ordering. */
2109 unsigned num_formats;
2110 if (intel_loader_get_cap(dri_screen, DRI_LOADER_CAP_RGBA_ORDERING))
2111 num_formats = ARRAY_SIZE(formats);
2112 else
2113 num_formats = ARRAY_SIZE(formats) - 2; /* all - RGBA_ORDERING formats */
2114
2115 /* Shall we expose 10 bpc formats? */
2116 bool allow_rgb10_configs = driQueryOptionb(&screen->optionCache,
2117 "allow_rgb10_configs");
2118
2119 /* Generate singlesample configs without accumulation buffer. */
2120 for (unsigned i = 0; i < num_formats; i++) {
2121 __DRIconfig **new_configs;
2122 int num_depth_stencil_bits = 2;
2123
2124 if (!allow_rgb10_configs &&
2125 (formats[i] == MESA_FORMAT_B10G10R10A2_UNORM ||
2126 formats[i] == MESA_FORMAT_B10G10R10X2_UNORM))
2127 continue;
2128
2129 /* Starting with DRI2 protocol version 1.1 we can request a depth/stencil
2130 * buffer that has a different number of bits per pixel than the color
2131 * buffer, gen >= 6 supports this.
2132 */
2133 depth_bits[0] = 0;
2134 stencil_bits[0] = 0;
2135
2136 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2137 depth_bits[1] = 16;
2138 stencil_bits[1] = 0;
2139 if (devinfo->gen >= 6) {
2140 depth_bits[2] = 24;
2141 stencil_bits[2] = 8;
2142 num_depth_stencil_bits = 3;
2143 }
2144 } else {
2145 depth_bits[1] = 24;
2146 stencil_bits[1] = 8;
2147 }
2148
2149 new_configs = driCreateConfigs(formats[i],
2150 depth_bits,
2151 stencil_bits,
2152 num_depth_stencil_bits,
2153 back_buffer_modes, 2,
2154 singlesample_samples, 1,
2155 false, false);
2156 configs = driConcatConfigs(configs, new_configs);
2157 }
2158
2159 /* Generate the minimum possible set of configs that include an
2160 * accumulation buffer.
2161 */
2162 for (unsigned i = 0; i < num_formats; i++) {
2163 __DRIconfig **new_configs;
2164
2165 if (!allow_rgb10_configs &&
2166 (formats[i] == MESA_FORMAT_B10G10R10A2_UNORM ||
2167 formats[i] == MESA_FORMAT_B10G10R10X2_UNORM))
2168 continue;
2169
2170 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2171 depth_bits[0] = 16;
2172 stencil_bits[0] = 0;
2173 } else {
2174 depth_bits[0] = 24;
2175 stencil_bits[0] = 8;
2176 }
2177
2178 new_configs = driCreateConfigs(formats[i],
2179 depth_bits, stencil_bits, 1,
2180 back_buffer_modes, 1,
2181 singlesample_samples, 1,
2182 true, false);
2183 configs = driConcatConfigs(configs, new_configs);
2184 }
2185
2186 /* Generate multisample configs.
2187 *
2188 * This loop breaks early, and hence is a no-op, on gen < 6.
2189 *
2190 * Multisample configs must follow the singlesample configs in order to
2191 * work around an X server bug present in 1.12. The X server chooses to
2192 * associate the first listed RGBA888-Z24S8 config, regardless of its
2193 * sample count, with the 32-bit depth visual used for compositing.
2194 *
2195 * Only doublebuffer configs with GLX_SWAP_UNDEFINED_OML behavior are
2196 * supported. Singlebuffer configs are not supported because no one wants
2197 * them.
2198 */
2199 for (unsigned i = 0; i < num_formats; i++) {
2200 if (devinfo->gen < 6)
2201 break;
2202
2203 if (!allow_rgb10_configs &&
2204 (formats[i] == MESA_FORMAT_B10G10R10A2_UNORM ||
2205 formats[i] == MESA_FORMAT_B10G10R10X2_UNORM))
2206 continue;
2207
2208 __DRIconfig **new_configs;
2209 const int num_depth_stencil_bits = 2;
2210 int num_msaa_modes = 0;
2211 const uint8_t *multisample_samples = NULL;
2212
2213 depth_bits[0] = 0;
2214 stencil_bits[0] = 0;
2215
2216 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2217 depth_bits[1] = 16;
2218 stencil_bits[1] = 0;
2219 } else {
2220 depth_bits[1] = 24;
2221 stencil_bits[1] = 8;
2222 }
2223
2224 if (devinfo->gen >= 9) {
2225 static const uint8_t multisample_samples_gen9[] = {2, 4, 8, 16};
2226 multisample_samples = multisample_samples_gen9;
2227 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen9);
2228 } else if (devinfo->gen == 8) {
2229 static const uint8_t multisample_samples_gen8[] = {2, 4, 8};
2230 multisample_samples = multisample_samples_gen8;
2231 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen8);
2232 } else if (devinfo->gen == 7) {
2233 static const uint8_t multisample_samples_gen7[] = {4, 8};
2234 multisample_samples = multisample_samples_gen7;
2235 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen7);
2236 } else if (devinfo->gen == 6) {
2237 static const uint8_t multisample_samples_gen6[] = {4};
2238 multisample_samples = multisample_samples_gen6;
2239 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen6);
2240 }
2241
2242 new_configs = driCreateConfigs(formats[i],
2243 depth_bits,
2244 stencil_bits,
2245 num_depth_stencil_bits,
2246 back_buffer_modes, 1,
2247 multisample_samples,
2248 num_msaa_modes,
2249 false, false);
2250 configs = driConcatConfigs(configs, new_configs);
2251 }
2252
2253 if (configs == NULL) {
2254 fprintf(stderr, "[%s:%u] Error creating FBConfig!\n", __func__,
2255 __LINE__);
2256 return NULL;
2257 }
2258
2259 return configs;
2260 }
2261
2262 static void
2263 set_max_gl_versions(struct intel_screen *screen)
2264 {
2265 __DRIscreen *dri_screen = screen->driScrnPriv;
2266 const bool has_astc = screen->devinfo.gen >= 9;
2267
2268 switch (screen->devinfo.gen) {
2269 case 11:
2270 case 10:
2271 case 9:
2272 case 8:
2273 dri_screen->max_gl_core_version = 45;
2274 dri_screen->max_gl_compat_version = 30;
2275 dri_screen->max_gl_es1_version = 11;
2276 dri_screen->max_gl_es2_version = has_astc ? 32 : 31;
2277 break;
2278 case 7:
2279 dri_screen->max_gl_core_version = 33;
2280 if (can_do_pipelined_register_writes(screen)) {
2281 dri_screen->max_gl_core_version = 42;
2282 if (screen->devinfo.is_haswell && can_do_compute_dispatch(screen))
2283 dri_screen->max_gl_core_version = 43;
2284 if (screen->devinfo.is_haswell && can_do_mi_math_and_lrr(screen))
2285 dri_screen->max_gl_core_version = 45;
2286 }
2287 dri_screen->max_gl_compat_version = 30;
2288 dri_screen->max_gl_es1_version = 11;
2289 dri_screen->max_gl_es2_version = screen->devinfo.is_haswell ? 31 : 30;
2290 break;
2291 case 6:
2292 dri_screen->max_gl_core_version = 33;
2293 dri_screen->max_gl_compat_version = 30;
2294 dri_screen->max_gl_es1_version = 11;
2295 dri_screen->max_gl_es2_version = 30;
2296 break;
2297 case 5:
2298 case 4:
2299 dri_screen->max_gl_core_version = 0;
2300 dri_screen->max_gl_compat_version = 21;
2301 dri_screen->max_gl_es1_version = 11;
2302 dri_screen->max_gl_es2_version = 20;
2303 break;
2304 default:
2305 unreachable("unrecognized intel_screen::gen");
2306 }
2307 }
2308
2309 /**
2310 * Return the revision (generally the revid field of the PCI header) of the
2311 * graphics device.
2312 */
2313 int
2314 intel_device_get_revision(int fd)
2315 {
2316 struct drm_i915_getparam gp;
2317 int revision;
2318 int ret;
2319
2320 memset(&gp, 0, sizeof(gp));
2321 gp.param = I915_PARAM_REVISION;
2322 gp.value = &revision;
2323
2324 ret = drmCommandWriteRead(fd, DRM_I915_GETPARAM, &gp, sizeof(gp));
2325 if (ret)
2326 revision = -1;
2327
2328 return revision;
2329 }
2330
2331 static void
2332 shader_debug_log_mesa(void *data, const char *fmt, ...)
2333 {
2334 struct brw_context *brw = (struct brw_context *)data;
2335 va_list args;
2336
2337 va_start(args, fmt);
2338 GLuint msg_id = 0;
2339 _mesa_gl_vdebug(&brw->ctx, &msg_id,
2340 MESA_DEBUG_SOURCE_SHADER_COMPILER,
2341 MESA_DEBUG_TYPE_OTHER,
2342 MESA_DEBUG_SEVERITY_NOTIFICATION, fmt, args);
2343 va_end(args);
2344 }
2345
2346 static void
2347 shader_perf_log_mesa(void *data, const char *fmt, ...)
2348 {
2349 struct brw_context *brw = (struct brw_context *)data;
2350
2351 va_list args;
2352 va_start(args, fmt);
2353
2354 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
2355 va_list args_copy;
2356 va_copy(args_copy, args);
2357 vfprintf(stderr, fmt, args_copy);
2358 va_end(args_copy);
2359 }
2360
2361 if (brw->perf_debug) {
2362 GLuint msg_id = 0;
2363 _mesa_gl_vdebug(&brw->ctx, &msg_id,
2364 MESA_DEBUG_SOURCE_SHADER_COMPILER,
2365 MESA_DEBUG_TYPE_PERFORMANCE,
2366 MESA_DEBUG_SEVERITY_MEDIUM, fmt, args);
2367 }
2368 va_end(args);
2369 }
2370
2371 /**
2372 * This is the driver specific part of the createNewScreen entry point.
2373 * Called when using DRI2.
2374 *
2375 * \return the struct gl_config supported by this driver
2376 */
2377 static const
2378 __DRIconfig **intelInitScreen2(__DRIscreen *dri_screen)
2379 {
2380 struct intel_screen *screen;
2381
2382 if (dri_screen->image.loader) {
2383 } else if (dri_screen->dri2.loader->base.version <= 2 ||
2384 dri_screen->dri2.loader->getBuffersWithFormat == NULL) {
2385 fprintf(stderr,
2386 "\nERROR! DRI2 loader with getBuffersWithFormat() "
2387 "support required\n");
2388 return NULL;
2389 }
2390
2391 /* Allocate the private area */
2392 screen = rzalloc(NULL, struct intel_screen);
2393 if (!screen) {
2394 fprintf(stderr, "\nERROR! Allocating private area failed\n");
2395 return NULL;
2396 }
2397 /* parse information in __driConfigOptions */
2398 driOptionCache options;
2399 memset(&options, 0, sizeof(options));
2400
2401 driParseOptionInfo(&options, brw_config_options.xml);
2402 driParseConfigFiles(&screen->optionCache, &options, dri_screen->myNum, "i965");
2403 driDestroyOptionCache(&options);
2404
2405 screen->driScrnPriv = dri_screen;
2406 dri_screen->driverPrivate = (void *) screen;
2407
2408 screen->deviceID = gen_get_pci_device_id_override();
2409 if (screen->deviceID < 0)
2410 screen->deviceID = intel_get_integer(screen, I915_PARAM_CHIPSET_ID);
2411 else
2412 screen->no_hw = true;
2413
2414 if (!gen_get_device_info(screen->deviceID, &screen->devinfo))
2415 return NULL;
2416
2417 if (!intel_init_bufmgr(screen))
2418 return NULL;
2419
2420 const struct gen_device_info *devinfo = &screen->devinfo;
2421
2422 brw_process_intel_debug_variable();
2423
2424 if ((INTEL_DEBUG & DEBUG_SHADER_TIME) && devinfo->gen < 7) {
2425 fprintf(stderr,
2426 "shader_time debugging requires gen7 (Ivybridge) or better.\n");
2427 INTEL_DEBUG &= ~DEBUG_SHADER_TIME;
2428 }
2429
2430 if (intel_get_integer(screen, I915_PARAM_MMAP_GTT_VERSION) >= 1) {
2431 /* Theorectically unlimited! At least for individual objects...
2432 *
2433 * Currently the entire (global) address space for all GTT maps is
2434 * limited to 64bits. That is all objects on the system that are
2435 * setup for GTT mmapping must fit within 64bits. An attempt to use
2436 * one that exceeds the limit with fail in brw_bo_map_gtt().
2437 *
2438 * Long before we hit that limit, we will be practically limited by
2439 * that any single object must fit in physical memory (RAM). The upper
2440 * limit on the CPU's address space is currently 48bits (Skylake), of
2441 * which only 39bits can be physical memory. (The GPU itself also has
2442 * a 48bit addressable virtual space.) We can fit over 32 million
2443 * objects of the current maximum allocable size before running out
2444 * of mmap space.
2445 */
2446 screen->max_gtt_map_object_size = UINT64_MAX;
2447 } else {
2448 /* Estimate the size of the mappable aperture into the GTT. There's an
2449 * ioctl to get the whole GTT size, but not one to get the mappable subset.
2450 * It turns out it's basically always 256MB, though some ancient hardware
2451 * was smaller.
2452 */
2453 uint32_t gtt_size = 256 * 1024 * 1024;
2454
2455 /* We don't want to map two objects such that a memcpy between them would
2456 * just fault one mapping in and then the other over and over forever. So
2457 * we would need to divide the GTT size by 2. Additionally, some GTT is
2458 * taken up by things like the framebuffer and the ringbuffer and such, so
2459 * be more conservative.
2460 */
2461 screen->max_gtt_map_object_size = gtt_size / 4;
2462 }
2463
2464 screen->aperture_threshold = get_aperture_size(dri_screen->fd) * 3 / 4;
2465
2466 screen->hw_has_swizzling = intel_detect_swizzling(screen);
2467 screen->hw_has_timestamp = intel_detect_timestamp(screen);
2468
2469 isl_device_init(&screen->isl_dev, &screen->devinfo,
2470 screen->hw_has_swizzling);
2471
2472 if (devinfo->gen >= 10)
2473 intel_cs_timestamp_frequency(screen);
2474
2475 /* GENs prior to 8 do not support EU/Subslice info */
2476 if (devinfo->gen >= 8) {
2477 intel_detect_sseu(screen);
2478 } else if (devinfo->gen == 7) {
2479 screen->subslice_total = 1 << (devinfo->gt - 1);
2480 }
2481
2482 /* Gen7-7.5 kernel requirements / command parser saga:
2483 *
2484 * - pre-v3.16:
2485 * Haswell and Baytrail cannot use any privileged batchbuffer features.
2486 *
2487 * Ivybridge has aliasing PPGTT on by default, which accidentally marks
2488 * all batches secure, allowing them to use any feature with no checking.
2489 * This is effectively equivalent to a command parser version of
2490 * \infinity - everything is possible.
2491 *
2492 * The command parser does not exist, and querying the version will
2493 * return -EINVAL.
2494 *
2495 * - v3.16:
2496 * The kernel enables the command parser by default, for systems with
2497 * aliasing PPGTT enabled (Ivybridge and Haswell). However, the
2498 * hardware checker is still enabled, so Haswell and Baytrail cannot
2499 * do anything.
2500 *
2501 * Ivybridge goes from "everything is possible" to "only what the
2502 * command parser allows" (if the user boots with i915.cmd_parser=0,
2503 * then everything is possible again). We can only safely use features
2504 * allowed by the supported command parser version.
2505 *
2506 * Annoyingly, I915_PARAM_CMD_PARSER_VERSION reports the static version
2507 * implemented by the kernel, even if it's turned off. So, checking
2508 * for version > 0 does not mean that you can write registers. We have
2509 * to try it and see. The version does, however, indicate the age of
2510 * the kernel.
2511 *
2512 * Instead of matching the hardware checker's behavior of converting
2513 * privileged commands to MI_NOOP, it makes execbuf2 start returning
2514 * -EINVAL, making it dangerous to try and use privileged features.
2515 *
2516 * Effective command parser versions:
2517 * - Haswell: 0 (reporting 1, writes don't work)
2518 * - Baytrail: 0 (reporting 1, writes don't work)
2519 * - Ivybridge: 1 (enabled) or infinite (disabled)
2520 *
2521 * - v3.17:
2522 * Baytrail aliasing PPGTT is enabled, making it like Ivybridge:
2523 * effectively version 1 (enabled) or infinite (disabled).
2524 *
2525 * - v3.19: f1f55cc0556031c8ee3fe99dae7251e78b9b653b
2526 * Command parser v2 supports predicate writes.
2527 *
2528 * - Haswell: 0 (reporting 1, writes don't work)
2529 * - Baytrail: 2 (enabled) or infinite (disabled)
2530 * - Ivybridge: 2 (enabled) or infinite (disabled)
2531 *
2532 * So version >= 2 is enough to know that Ivybridge and Baytrail
2533 * will work. Haswell still can't do anything.
2534 *
2535 * - v4.0: Version 3 happened. Largely not relevant.
2536 *
2537 * - v4.1: 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
2538 * L3 config registers are properly saved and restored as part
2539 * of the hardware context. We can approximately detect this point
2540 * in time by checking if I915_PARAM_REVISION is recognized - it
2541 * landed in a later commit, but in the same release cycle.
2542 *
2543 * - v4.2: 245054a1fe33c06ad233e0d58a27ec7b64db9284
2544 * Command parser finally gains secure batch promotion. On Haswell,
2545 * the hardware checker gets disabled, which finally allows it to do
2546 * privileged commands.
2547 *
2548 * I915_PARAM_CMD_PARSER_VERSION reports 3. Effective versions:
2549 * - Haswell: 3 (enabled) or 0 (disabled)
2550 * - Baytrail: 3 (enabled) or infinite (disabled)
2551 * - Ivybridge: 3 (enabled) or infinite (disabled)
2552 *
2553 * Unfortunately, detecting this point in time is tricky, because
2554 * no version bump happened when this important change occurred.
2555 * On Haswell, if we can write any register, then the kernel is at
2556 * least this new, and we can start trusting the version number.
2557 *
2558 * - v4.4: 2bbe6bbb0dc94fd4ce287bdac9e1bd184e23057b and
2559 * Command parser reaches version 4, allowing access to Haswell
2560 * atomic scratch and chicken3 registers. If version >= 4, we know
2561 * the kernel is new enough to support privileged features on all
2562 * hardware. However, the user might have disabled it...and the
2563 * kernel will still report version 4. So we still have to guess
2564 * and check.
2565 *
2566 * - v4.4: 7b9748cb513a6bef4af87b79f0da3ff7e8b56cd8
2567 * Command parser v5 whitelists indirect compute shader dispatch
2568 * registers, needed for OpenGL 4.3 and later.
2569 *
2570 * - v4.8:
2571 * Command parser v7 lets us use MI_MATH on Haswell.
2572 *
2573 * Additionally, the kernel begins reporting version 0 when
2574 * the command parser is disabled, allowing us to skip the
2575 * guess-and-check step on Haswell. Unfortunately, this also
2576 * means that we can no longer use it as an indicator of the
2577 * age of the kernel.
2578 */
2579 if (intel_get_param(screen, I915_PARAM_CMD_PARSER_VERSION,
2580 &screen->cmd_parser_version) < 0) {
2581 /* Command parser does not exist - getparam is unrecognized */
2582 screen->cmd_parser_version = 0;
2583 }
2584
2585 /* Kernel 4.13 retuired for exec object capture */
2586 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_CAPTURE)) {
2587 screen->kernel_features |= KERNEL_ALLOWS_EXEC_CAPTURE;
2588 }
2589
2590 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_BATCH_FIRST)) {
2591 screen->kernel_features |= KERNEL_ALLOWS_EXEC_BATCH_FIRST;
2592 }
2593
2594 if (!intel_detect_pipelined_so(screen)) {
2595 /* We can't do anything, so the effective version is 0. */
2596 screen->cmd_parser_version = 0;
2597 } else {
2598 screen->kernel_features |= KERNEL_ALLOWS_SOL_OFFSET_WRITES;
2599 }
2600
2601 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 2)
2602 screen->kernel_features |= KERNEL_ALLOWS_PREDICATE_WRITES;
2603
2604 /* Haswell requires command parser version 4 in order to have L3
2605 * atomic scratch1 and chicken3 bits
2606 */
2607 if (devinfo->is_haswell && screen->cmd_parser_version >= 4) {
2608 screen->kernel_features |=
2609 KERNEL_ALLOWS_HSW_SCRATCH1_AND_ROW_CHICKEN3;
2610 }
2611
2612 /* Haswell requires command parser version 6 in order to write to the
2613 * MI_MATH GPR registers, and version 7 in order to use
2614 * MI_LOAD_REGISTER_REG (which all users of MI_MATH use).
2615 */
2616 if (devinfo->gen >= 8 ||
2617 (devinfo->is_haswell && screen->cmd_parser_version >= 7)) {
2618 screen->kernel_features |= KERNEL_ALLOWS_MI_MATH_AND_LRR;
2619 }
2620
2621 /* Gen7 needs at least command parser version 5 to support compute */
2622 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 5)
2623 screen->kernel_features |= KERNEL_ALLOWS_COMPUTE_DISPATCH;
2624
2625 if (intel_get_boolean(screen, I915_PARAM_HAS_CONTEXT_ISOLATION))
2626 screen->kernel_features |= KERNEL_ALLOWS_CONTEXT_ISOLATION;
2627
2628 const char *force_msaa = getenv("INTEL_FORCE_MSAA");
2629 if (force_msaa) {
2630 screen->winsys_msaa_samples_override =
2631 intel_quantize_num_samples(screen, atoi(force_msaa));
2632 printf("Forcing winsys sample count to %d\n",
2633 screen->winsys_msaa_samples_override);
2634 } else {
2635 screen->winsys_msaa_samples_override = -1;
2636 }
2637
2638 set_max_gl_versions(screen);
2639
2640 /* Notification of GPU resets requires hardware contexts and a kernel new
2641 * enough to support DRM_IOCTL_I915_GET_RESET_STATS. If the ioctl is
2642 * supported, calling it with a context of 0 will either generate EPERM or
2643 * no error. If the ioctl is not supported, it always generate EINVAL.
2644 * Use this to determine whether to advertise the __DRI2_ROBUSTNESS
2645 * extension to the loader.
2646 *
2647 * Don't even try on pre-Gen6, since we don't attempt to use contexts there.
2648 */
2649 if (devinfo->gen >= 6) {
2650 struct drm_i915_reset_stats stats;
2651 memset(&stats, 0, sizeof(stats));
2652
2653 const int ret = drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats);
2654
2655 screen->has_context_reset_notification =
2656 (ret != -1 || errno != EINVAL);
2657 }
2658
2659 dri_screen->extensions = !screen->has_context_reset_notification
2660 ? screenExtensions : intelRobustScreenExtensions;
2661
2662 screen->compiler = brw_compiler_create(screen, devinfo);
2663 screen->compiler->shader_debug_log = shader_debug_log_mesa;
2664 screen->compiler->shader_perf_log = shader_perf_log_mesa;
2665
2666 /* Changing the meaning of constant buffer pointers from a dynamic state
2667 * offset to an absolute address is only safe if the kernel isolates other
2668 * contexts from our changes.
2669 */
2670 screen->compiler->constant_buffer_0_is_relative = devinfo->gen < 8 ||
2671 !(screen->kernel_features & KERNEL_ALLOWS_CONTEXT_ISOLATION);
2672
2673 screen->compiler->supports_pull_constants = true;
2674
2675 screen->has_exec_fence =
2676 intel_get_boolean(screen, I915_PARAM_HAS_EXEC_FENCE);
2677
2678 intel_screen_init_surface_formats(screen);
2679
2680 if (INTEL_DEBUG & (DEBUG_BATCH | DEBUG_SUBMIT)) {
2681 unsigned int caps = intel_get_integer(screen, I915_PARAM_HAS_SCHEDULER);
2682 if (caps) {
2683 fprintf(stderr, "Kernel scheduler detected: %08x\n", caps);
2684 if (caps & I915_SCHEDULER_CAP_PRIORITY)
2685 fprintf(stderr, " - User priority sorting enabled\n");
2686 if (caps & I915_SCHEDULER_CAP_PREEMPTION)
2687 fprintf(stderr, " - Preemption enabled\n");
2688 }
2689 }
2690
2691 brw_disk_cache_init(screen);
2692
2693 return (const __DRIconfig**) intel_screen_make_configs(dri_screen);
2694 }
2695
2696 struct intel_buffer {
2697 __DRIbuffer base;
2698 struct brw_bo *bo;
2699 };
2700
2701 static __DRIbuffer *
2702 intelAllocateBuffer(__DRIscreen *dri_screen,
2703 unsigned attachment, unsigned format,
2704 int width, int height)
2705 {
2706 struct intel_buffer *intelBuffer;
2707 struct intel_screen *screen = dri_screen->driverPrivate;
2708
2709 assert(attachment == __DRI_BUFFER_FRONT_LEFT ||
2710 attachment == __DRI_BUFFER_BACK_LEFT);
2711
2712 intelBuffer = calloc(1, sizeof *intelBuffer);
2713 if (intelBuffer == NULL)
2714 return NULL;
2715
2716 /* The front and back buffers are color buffers, which are X tiled. GEN9+
2717 * supports Y tiled and compressed buffers, but there is no way to plumb that
2718 * through to here. */
2719 uint32_t pitch;
2720 int cpp = format / 8;
2721 intelBuffer->bo = brw_bo_alloc_tiled_2d(screen->bufmgr,
2722 "intelAllocateBuffer",
2723 width,
2724 height,
2725 cpp,
2726 I915_TILING_X, &pitch,
2727 BO_ALLOC_BUSY);
2728
2729 if (intelBuffer->bo == NULL) {
2730 free(intelBuffer);
2731 return NULL;
2732 }
2733
2734 brw_bo_flink(intelBuffer->bo, &intelBuffer->base.name);
2735
2736 intelBuffer->base.attachment = attachment;
2737 intelBuffer->base.cpp = cpp;
2738 intelBuffer->base.pitch = pitch;
2739
2740 return &intelBuffer->base;
2741 }
2742
2743 static void
2744 intelReleaseBuffer(__DRIscreen *dri_screen, __DRIbuffer *buffer)
2745 {
2746 struct intel_buffer *intelBuffer = (struct intel_buffer *) buffer;
2747
2748 brw_bo_unreference(intelBuffer->bo);
2749 free(intelBuffer);
2750 }
2751
2752 static const struct __DriverAPIRec brw_driver_api = {
2753 .InitScreen = intelInitScreen2,
2754 .DestroyScreen = intelDestroyScreen,
2755 .CreateContext = brwCreateContext,
2756 .DestroyContext = intelDestroyContext,
2757 .CreateBuffer = intelCreateBuffer,
2758 .DestroyBuffer = intelDestroyBuffer,
2759 .MakeCurrent = intelMakeCurrent,
2760 .UnbindContext = intelUnbindContext,
2761 .AllocateBuffer = intelAllocateBuffer,
2762 .ReleaseBuffer = intelReleaseBuffer
2763 };
2764
2765 static const struct __DRIDriverVtableExtensionRec brw_vtable = {
2766 .base = { __DRI_DRIVER_VTABLE, 1 },
2767 .vtable = &brw_driver_api,
2768 };
2769
2770 static const __DRIextension *brw_driver_extensions[] = {
2771 &driCoreExtension.base,
2772 &driImageDriverExtension.base,
2773 &driDRI2Extension.base,
2774 &brw_vtable.base,
2775 &brw_config_options.base,
2776 NULL
2777 };
2778
2779 PUBLIC const __DRIextension **__driDriverGetExtensions_i965(void)
2780 {
2781 globalDriverAPI = &brw_driver_api;
2782
2783 return brw_driver_extensions;
2784 }