glapi: Move assembly dispatchers back into glapi/.
[mesa.git] / src / mesa / glapi / gen / glX_server_table.py
1 #!/bin/env python
2
3 # (C) Copyright IBM Corporation 2005, 2006
4 # All Rights Reserved.
5 #
6 # Permission is hereby granted, free of charge, to any person obtaining a
7 # copy of this software and associated documentation files (the "Software"),
8 # to deal in the Software without restriction, including without limitation
9 # on the rights to use, copy, modify, merge, publish, distribute, sub
10 # license, and/or sell copies of the Software, and to permit persons to whom
11 # the Software is furnished to do so, subject to the following conditions:
12 #
13 # The above copyright notice and this permission notice (including the next
14 # paragraph) shall be included in all copies or substantial portions of the
15 # Software.
16 #
17 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 # FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
20 # IBM AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
23 # IN THE SOFTWARE.
24 #
25 # Authors:
26 # Ian Romanick <idr@us.ibm.com>
27
28 import gl_XML, glX_XML, glX_proto_common, license
29 import sys, getopt
30
31
32 def log2(value):
33 for i in range(0, 30):
34 p = 1 << i
35 if p >= value:
36 return i
37
38 return -1
39
40
41 def round_down_to_power_of_two(n):
42 """Returns the nearest power-of-two less than or equal to n."""
43
44 for i in range(30, 0, -1):
45 p = 1 << i
46 if p <= n:
47 return p
48
49 return -1
50
51
52 class function_table:
53 def __init__(self, name, do_size_check):
54 self.name_base = name
55 self.do_size_check = do_size_check
56
57
58 self.max_bits = 1
59 self.next_opcode_threshold = (1 << self.max_bits)
60 self.max_opcode = 0
61
62 self.functions = {}
63 self.lookup_table = []
64
65 # Minimum number of opcodes in a leaf node.
66 self.min_op_bits = 3
67 self.min_op_count = (1 << self.min_op_bits)
68 return
69
70
71 def append(self, opcode, func):
72 self.functions[opcode] = func
73
74 if opcode > self.max_opcode:
75 self.max_opcode = opcode
76
77 if opcode > self.next_opcode_threshold:
78 bits = log2(opcode)
79 if (1 << bits) <= opcode:
80 bits += 1
81
82 self.max_bits = bits
83 self.next_opcode_threshold = 1 << bits
84 return
85
86
87 def divide_group(self, min_opcode, total):
88 """Divide the group starting min_opcode into subgroups.
89 Returns a tuple containing the number of bits consumed by
90 the node, the list of the children's tuple, and the number
91 of entries in the final array used by this node and its
92 children, and the depth of the subtree rooted at the node."""
93
94 remaining_bits = self.max_bits - total
95 next_opcode = min_opcode + (1 << remaining_bits)
96 empty_children = 0
97
98 for M in range(0, remaining_bits):
99 op_count = 1 << (remaining_bits - M);
100 child_count = 1 << M;
101
102 empty_children = 0
103 full_children = 0
104 for i in range(min_opcode, next_opcode, op_count):
105 used = 0
106 empty = 0
107
108 for j in range(i, i + op_count):
109 if self.functions.has_key(j):
110 used += 1;
111 else:
112 empty += 1;
113
114
115 if empty == op_count:
116 empty_children += 1
117
118 if used == op_count:
119 full_children += 1
120
121 if (empty_children > 0) or (full_children == child_count) or (op_count <= self.min_op_count):
122 break
123
124
125 # If all the remaining bits are used by this node, as is the
126 # case when M is 0 or remaining_bits, the node is a leaf.
127
128 if (M == 0) or (M == remaining_bits):
129 return [remaining_bits, [], 0, 0]
130 else:
131 children = []
132 count = 1
133 depth = 1
134 all_children_are_nonempty_leaf_nodes = 1
135 for i in range(min_opcode, next_opcode, op_count):
136 n = self.divide_group(i, total + M)
137
138 if not (n[1] == [] and not self.is_empty_leaf(i, n[0])):
139 all_children_are_nonempty_leaf_nodes = 0
140
141 children.append(n)
142 count += n[2] + 1
143
144 if n[3] >= depth:
145 depth = n[3] + 1
146
147 # If all of the child nodes are non-empty leaf nodes, pull
148 # them up and make this node a leaf.
149
150 if all_children_are_nonempty_leaf_nodes:
151 return [remaining_bits, [], 0, 0]
152 else:
153 return [M, children, count, depth]
154
155
156 def is_empty_leaf(self, base_opcode, M):
157 for op in range(base_opcode, base_opcode + (1 << M)):
158 if self.functions.has_key(op):
159 return 0
160 break
161
162 return 1
163
164
165 def dump_tree(self, node, base_opcode, remaining_bits, base_entry, depth):
166 M = node[0]
167 children = node[1]
168 child_M = remaining_bits - M
169
170
171 # This actually an error condition.
172 if children == []:
173 return
174
175 print ' /* [%u] -> opcode range [%u, %u], node depth %u */' % (base_entry, base_opcode, base_opcode + (1 << remaining_bits), depth)
176 print ' %u,' % (M)
177
178 base_entry += (1 << M) + 1
179
180 child_index = base_entry
181 child_base_opcode = base_opcode
182 for child in children:
183 if child[1] == []:
184 if self.is_empty_leaf(child_base_opcode, child_M):
185 print ' EMPTY_LEAF,'
186 else:
187 # Emit the index of the next dispatch
188 # function. Then add all the
189 # dispatch functions for this leaf
190 # node to the dispatch function
191 # lookup table.
192
193 print ' LEAF(%u),' % (len(self.lookup_table))
194
195 for op in range(child_base_opcode, child_base_opcode + (1 << child_M)):
196 if self.functions.has_key(op):
197 func = self.functions[op]
198 size = func.command_fixed_length()
199
200 if func.glx_rop != 0:
201 size += 4
202
203 size = ((size + 3) & ~3)
204
205 if func.has_variable_size_request():
206 size_name = "__glX%sReqSize" % (func.name)
207 else:
208 size_name = ""
209
210 if func.glx_vendorpriv == op:
211 func_name = func.glx_vendorpriv_names[0]
212 else:
213 func_name = func.name
214
215 temp = [op, "__glXDisp_%s" % (func_name), "__glXDispSwap_%s" % (func_name), size, size_name]
216 else:
217 temp = [op, "NULL", "NULL", 0, ""]
218
219 self.lookup_table.append(temp)
220 else:
221 print ' %u,' % (child_index)
222 child_index += child[2]
223
224 child_base_opcode += 1 << child_M
225
226 print ''
227
228 child_index = base_entry
229 for child in children:
230 if child[1] != []:
231 self.dump_tree(child, base_opcode, remaining_bits - M, child_index, depth + 1)
232 child_index += child[2]
233
234 base_opcode += 1 << (remaining_bits - M)
235
236
237 def Print(self):
238 # Each dispatch table consists of two data structures.
239 #
240 # The first structure is an N-way tree where the opcode for
241 # the function is the key. Each node switches on a range of
242 # bits from the opcode. M bits are extracted from the opcde
243 # and are used as an index to select one of the N, where
244 # N = 2^M, children.
245 #
246 # The tree is stored as a flat array. The first value is the
247 # number of bits, M, used by the node. For inner nodes, the
248 # following 2^M values are indexes into the array for the
249 # child nodes. For leaf nodes, the followign 2^M values are
250 # indexes into the second data structure.
251 #
252 # If an inner node's child index is 0, the child is an empty
253 # leaf node. That is, none of the opcodes selectable from
254 # that child exist. Since most of the possible opcode space
255 # is unused, this allows compact data storage.
256 #
257 # The second data structure is an array of pairs of function
258 # pointers. Each function contains a pointer to a protocol
259 # decode function and a pointer to a byte-swapped protocol
260 # decode function. Elements in this array are selected by the
261 # leaf nodes of the first data structure.
262 #
263 # As the tree is traversed, an accumulator is kept. This
264 # accumulator counts the bits of the opcode consumed by the
265 # traversal. When accumulator + M = B, where B is the
266 # maximum number of bits in an opcode, the traversal has
267 # reached a leaf node. The traversal starts with the most
268 # significant bits and works down to the least significant
269 # bits.
270 #
271 # Creation of the tree is the most complicated part. At
272 # each node the elements are divided into groups of 2^M
273 # elements. The value of M selected is the smallest possible
274 # value where all of the groups are either empty or full, or
275 # the groups are a preset minimum size. If all the children
276 # of a node are non-empty leaf nodes, the children are merged
277 # to create a single leaf node that replaces the parent.
278
279 tree = self.divide_group(0, 0)
280
281 print '/*****************************************************************/'
282 print '/* tree depth = %u */' % (tree[3])
283 print 'static const int_fast16_t %s_dispatch_tree[%u] = {' % (self.name_base, tree[2])
284 self.dump_tree(tree, 0, self.max_bits, 0, 1)
285 print '};\n'
286
287 # After dumping the tree, dump the function lookup table.
288
289 print 'static const void *%s_function_table[%u][2] = {' % (self.name_base, len(self.lookup_table))
290 index = 0
291 for func in self.lookup_table:
292 opcode = func[0]
293 name = func[1]
294 name_swap = func[2]
295
296 print ' /* [% 3u] = %5u */ {%s, %s},' % (index, opcode, name, name_swap)
297
298 index += 1
299
300 print '};\n'
301
302 if self.do_size_check:
303 var_table = []
304
305 print 'static const int_fast16_t %s_size_table[%u][2] = {' % (self.name_base, len(self.lookup_table))
306 index = 0
307 var_table = []
308 for func in self.lookup_table:
309 opcode = func[0]
310 fixed = func[3]
311 var = func[4]
312
313 if var != "":
314 var_offset = "%2u" % (len(var_table))
315 var_table.append(var)
316 else:
317 var_offset = "~0"
318
319 print ' /* [%3u] = %5u */ {%3u, %s},' % (index, opcode, fixed, var_offset)
320 index += 1
321
322
323 print '};\n'
324
325
326 print 'static const gl_proto_size_func %s_size_func_table[%u] = {' % (self.name_base, len(var_table))
327 for func in var_table:
328 print ' %s,' % (func)
329
330 print '};\n'
331
332
333 print 'const struct __glXDispatchInfo %s_dispatch_info = {' % (self.name_base)
334 print ' %u,' % (self.max_bits)
335 print ' %s_dispatch_tree,' % (self.name_base)
336 print ' %s_function_table,' % (self.name_base)
337 if self.do_size_check:
338 print ' %s_size_table,' % (self.name_base)
339 print ' %s_size_func_table' % (self.name_base)
340 else:
341 print ' NULL,'
342 print ' NULL'
343 print '};\n'
344 return
345
346
347 class PrintGlxDispatchTables(glX_proto_common.glx_print_proto):
348 def __init__(self):
349 gl_XML.gl_print_base.__init__(self)
350 self.name = "glX_server_table.py (from Mesa)"
351 self.license = license.bsd_license_template % ( "(C) Copyright IBM Corporation 2005, 2006", "IBM")
352
353 self.rop_functions = function_table("Render", 1)
354 self.sop_functions = function_table("Single", 0)
355 self.vop_functions = function_table("VendorPriv", 0)
356 return
357
358
359 def printRealHeader(self):
360 print '#include <inttypes.h>'
361 print '#include "glxserver.h"'
362 print '#include "glxext.h"'
363 print '#include "indirect_dispatch.h"'
364 print '#include "indirect_reqsize.h"'
365 print '#include "g_disptab.h"'
366 print '#include "indirect_table.h"'
367 print ''
368 return
369
370
371 def printBody(self, api):
372 for f in api.functionIterateAll():
373 if not f.ignore and f.vectorequiv == None:
374 if f.glx_rop != 0:
375 self.rop_functions.append(f.glx_rop, f)
376 if f.glx_sop != 0:
377 self.sop_functions.append(f.glx_sop, f)
378 if f.glx_vendorpriv != 0:
379 self.vop_functions.append(f.glx_vendorpriv, f)
380
381 self.sop_functions.Print()
382 self.rop_functions.Print()
383 self.vop_functions.Print()
384 return
385
386
387 if __name__ == '__main__':
388 file_name = "gl_API.xml"
389
390 try:
391 (args, trail) = getopt.getopt(sys.argv[1:], "f:m")
392 except Exception,e:
393 show_usage()
394
395 mode = "table_c"
396 for (arg,val) in args:
397 if arg == "-f":
398 file_name = val
399 elif arg == "-m":
400 mode = val
401
402 if mode == "table_c":
403 printer = PrintGlxDispatchTables()
404 else:
405 show_usage()
406
407
408 api = gl_XML.parse_GL_API( file_name, glX_XML.glx_item_factory() )
409
410
411 printer.Print( api )