glapi / teximage: implement EGLImageTargetTexStorageEXT
[mesa.git] / src / mesa / main / arrayobj.c
1 /*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
5 * (C) Copyright IBM Corporation 2006
6 * Copyright (C) 2009 VMware, Inc. All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included
16 * in all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24 * OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28 /**
29 * \file arrayobj.c
30 *
31 * Implementation of Vertex Array Objects (VAOs), from OpenGL 3.1+ /
32 * the GL_ARB_vertex_array_object extension.
33 *
34 * \todo
35 * The code in this file borrows a lot from bufferobj.c. There's a certain
36 * amount of cruft left over from that origin that may be unnecessary.
37 *
38 * \author Ian Romanick <idr@us.ibm.com>
39 * \author Brian Paul
40 */
41
42
43 #include "glheader.h"
44 #include "hash.h"
45 #include "image.h"
46 #include "imports.h"
47 #include "context.h"
48 #include "bufferobj.h"
49 #include "arrayobj.h"
50 #include "macros.h"
51 #include "mtypes.h"
52 #include "state.h"
53 #include "varray.h"
54 #include "util/bitscan.h"
55 #include "util/u_atomic.h"
56 #include "util/u_math.h"
57
58
59 const GLubyte
60 _mesa_vao_attribute_map[ATTRIBUTE_MAP_MODE_MAX][VERT_ATTRIB_MAX] =
61 {
62 /* ATTRIBUTE_MAP_MODE_IDENTITY
63 *
64 * Grab vertex processing attribute VERT_ATTRIB_POS from
65 * the VAO attribute VERT_ATTRIB_POS, and grab vertex processing
66 * attribute VERT_ATTRIB_GENERIC0 from the VAO attribute
67 * VERT_ATTRIB_GENERIC0.
68 */
69 {
70 VERT_ATTRIB_POS, /* VERT_ATTRIB_POS */
71 VERT_ATTRIB_NORMAL, /* VERT_ATTRIB_NORMAL */
72 VERT_ATTRIB_COLOR0, /* VERT_ATTRIB_COLOR0 */
73 VERT_ATTRIB_COLOR1, /* VERT_ATTRIB_COLOR1 */
74 VERT_ATTRIB_FOG, /* VERT_ATTRIB_FOG */
75 VERT_ATTRIB_COLOR_INDEX, /* VERT_ATTRIB_COLOR_INDEX */
76 VERT_ATTRIB_EDGEFLAG, /* VERT_ATTRIB_EDGEFLAG */
77 VERT_ATTRIB_TEX0, /* VERT_ATTRIB_TEX0 */
78 VERT_ATTRIB_TEX1, /* VERT_ATTRIB_TEX1 */
79 VERT_ATTRIB_TEX2, /* VERT_ATTRIB_TEX2 */
80 VERT_ATTRIB_TEX3, /* VERT_ATTRIB_TEX3 */
81 VERT_ATTRIB_TEX4, /* VERT_ATTRIB_TEX4 */
82 VERT_ATTRIB_TEX5, /* VERT_ATTRIB_TEX5 */
83 VERT_ATTRIB_TEX6, /* VERT_ATTRIB_TEX6 */
84 VERT_ATTRIB_TEX7, /* VERT_ATTRIB_TEX7 */
85 VERT_ATTRIB_POINT_SIZE, /* VERT_ATTRIB_POINT_SIZE */
86 VERT_ATTRIB_GENERIC0, /* VERT_ATTRIB_GENERIC0 */
87 VERT_ATTRIB_GENERIC1, /* VERT_ATTRIB_GENERIC1 */
88 VERT_ATTRIB_GENERIC2, /* VERT_ATTRIB_GENERIC2 */
89 VERT_ATTRIB_GENERIC3, /* VERT_ATTRIB_GENERIC3 */
90 VERT_ATTRIB_GENERIC4, /* VERT_ATTRIB_GENERIC4 */
91 VERT_ATTRIB_GENERIC5, /* VERT_ATTRIB_GENERIC5 */
92 VERT_ATTRIB_GENERIC6, /* VERT_ATTRIB_GENERIC6 */
93 VERT_ATTRIB_GENERIC7, /* VERT_ATTRIB_GENERIC7 */
94 VERT_ATTRIB_GENERIC8, /* VERT_ATTRIB_GENERIC8 */
95 VERT_ATTRIB_GENERIC9, /* VERT_ATTRIB_GENERIC9 */
96 VERT_ATTRIB_GENERIC10, /* VERT_ATTRIB_GENERIC10 */
97 VERT_ATTRIB_GENERIC11, /* VERT_ATTRIB_GENERIC11 */
98 VERT_ATTRIB_GENERIC12, /* VERT_ATTRIB_GENERIC12 */
99 VERT_ATTRIB_GENERIC13, /* VERT_ATTRIB_GENERIC13 */
100 VERT_ATTRIB_GENERIC14, /* VERT_ATTRIB_GENERIC14 */
101 VERT_ATTRIB_GENERIC15 /* VERT_ATTRIB_GENERIC15 */
102 },
103
104 /* ATTRIBUTE_MAP_MODE_POSITION
105 *
106 * Grab vertex processing attribute VERT_ATTRIB_POS as well as
107 * vertex processing attribute VERT_ATTRIB_GENERIC0 from the
108 * VAO attribute VERT_ATTRIB_POS.
109 */
110 {
111 VERT_ATTRIB_POS, /* VERT_ATTRIB_POS */
112 VERT_ATTRIB_NORMAL, /* VERT_ATTRIB_NORMAL */
113 VERT_ATTRIB_COLOR0, /* VERT_ATTRIB_COLOR0 */
114 VERT_ATTRIB_COLOR1, /* VERT_ATTRIB_COLOR1 */
115 VERT_ATTRIB_FOG, /* VERT_ATTRIB_FOG */
116 VERT_ATTRIB_COLOR_INDEX, /* VERT_ATTRIB_COLOR_INDEX */
117 VERT_ATTRIB_EDGEFLAG, /* VERT_ATTRIB_EDGEFLAG */
118 VERT_ATTRIB_TEX0, /* VERT_ATTRIB_TEX0 */
119 VERT_ATTRIB_TEX1, /* VERT_ATTRIB_TEX1 */
120 VERT_ATTRIB_TEX2, /* VERT_ATTRIB_TEX2 */
121 VERT_ATTRIB_TEX3, /* VERT_ATTRIB_TEX3 */
122 VERT_ATTRIB_TEX4, /* VERT_ATTRIB_TEX4 */
123 VERT_ATTRIB_TEX5, /* VERT_ATTRIB_TEX5 */
124 VERT_ATTRIB_TEX6, /* VERT_ATTRIB_TEX6 */
125 VERT_ATTRIB_TEX7, /* VERT_ATTRIB_TEX7 */
126 VERT_ATTRIB_POINT_SIZE, /* VERT_ATTRIB_POINT_SIZE */
127 VERT_ATTRIB_POS, /* VERT_ATTRIB_GENERIC0 */
128 VERT_ATTRIB_GENERIC1, /* VERT_ATTRIB_GENERIC1 */
129 VERT_ATTRIB_GENERIC2, /* VERT_ATTRIB_GENERIC2 */
130 VERT_ATTRIB_GENERIC3, /* VERT_ATTRIB_GENERIC3 */
131 VERT_ATTRIB_GENERIC4, /* VERT_ATTRIB_GENERIC4 */
132 VERT_ATTRIB_GENERIC5, /* VERT_ATTRIB_GENERIC5 */
133 VERT_ATTRIB_GENERIC6, /* VERT_ATTRIB_GENERIC6 */
134 VERT_ATTRIB_GENERIC7, /* VERT_ATTRIB_GENERIC7 */
135 VERT_ATTRIB_GENERIC8, /* VERT_ATTRIB_GENERIC8 */
136 VERT_ATTRIB_GENERIC9, /* VERT_ATTRIB_GENERIC9 */
137 VERT_ATTRIB_GENERIC10, /* VERT_ATTRIB_GENERIC10 */
138 VERT_ATTRIB_GENERIC11, /* VERT_ATTRIB_GENERIC11 */
139 VERT_ATTRIB_GENERIC12, /* VERT_ATTRIB_GENERIC12 */
140 VERT_ATTRIB_GENERIC13, /* VERT_ATTRIB_GENERIC13 */
141 VERT_ATTRIB_GENERIC14, /* VERT_ATTRIB_GENERIC14 */
142 VERT_ATTRIB_GENERIC15 /* VERT_ATTRIB_GENERIC15 */
143 },
144
145 /* ATTRIBUTE_MAP_MODE_GENERIC0
146 *
147 * Grab vertex processing attribute VERT_ATTRIB_POS as well as
148 * vertex processing attribute VERT_ATTRIB_GENERIC0 from the
149 * VAO attribute VERT_ATTRIB_GENERIC0.
150 */
151 {
152 VERT_ATTRIB_GENERIC0, /* VERT_ATTRIB_POS */
153 VERT_ATTRIB_NORMAL, /* VERT_ATTRIB_NORMAL */
154 VERT_ATTRIB_COLOR0, /* VERT_ATTRIB_COLOR0 */
155 VERT_ATTRIB_COLOR1, /* VERT_ATTRIB_COLOR1 */
156 VERT_ATTRIB_FOG, /* VERT_ATTRIB_FOG */
157 VERT_ATTRIB_COLOR_INDEX, /* VERT_ATTRIB_COLOR_INDEX */
158 VERT_ATTRIB_EDGEFLAG, /* VERT_ATTRIB_EDGEFLAG */
159 VERT_ATTRIB_TEX0, /* VERT_ATTRIB_TEX0 */
160 VERT_ATTRIB_TEX1, /* VERT_ATTRIB_TEX1 */
161 VERT_ATTRIB_TEX2, /* VERT_ATTRIB_TEX2 */
162 VERT_ATTRIB_TEX3, /* VERT_ATTRIB_TEX3 */
163 VERT_ATTRIB_TEX4, /* VERT_ATTRIB_TEX4 */
164 VERT_ATTRIB_TEX5, /* VERT_ATTRIB_TEX5 */
165 VERT_ATTRIB_TEX6, /* VERT_ATTRIB_TEX6 */
166 VERT_ATTRIB_TEX7, /* VERT_ATTRIB_TEX7 */
167 VERT_ATTRIB_POINT_SIZE, /* VERT_ATTRIB_POINT_SIZE */
168 VERT_ATTRIB_GENERIC0, /* VERT_ATTRIB_GENERIC0 */
169 VERT_ATTRIB_GENERIC1, /* VERT_ATTRIB_GENERIC1 */
170 VERT_ATTRIB_GENERIC2, /* VERT_ATTRIB_GENERIC2 */
171 VERT_ATTRIB_GENERIC3, /* VERT_ATTRIB_GENERIC3 */
172 VERT_ATTRIB_GENERIC4, /* VERT_ATTRIB_GENERIC4 */
173 VERT_ATTRIB_GENERIC5, /* VERT_ATTRIB_GENERIC5 */
174 VERT_ATTRIB_GENERIC6, /* VERT_ATTRIB_GENERIC6 */
175 VERT_ATTRIB_GENERIC7, /* VERT_ATTRIB_GENERIC7 */
176 VERT_ATTRIB_GENERIC8, /* VERT_ATTRIB_GENERIC8 */
177 VERT_ATTRIB_GENERIC9, /* VERT_ATTRIB_GENERIC9 */
178 VERT_ATTRIB_GENERIC10, /* VERT_ATTRIB_GENERIC10 */
179 VERT_ATTRIB_GENERIC11, /* VERT_ATTRIB_GENERIC11 */
180 VERT_ATTRIB_GENERIC12, /* VERT_ATTRIB_GENERIC12 */
181 VERT_ATTRIB_GENERIC13, /* VERT_ATTRIB_GENERIC13 */
182 VERT_ATTRIB_GENERIC14, /* VERT_ATTRIB_GENERIC14 */
183 VERT_ATTRIB_GENERIC15 /* VERT_ATTRIB_GENERIC15 */
184 }
185 };
186
187
188 /**
189 * Look up the array object for the given ID.
190 *
191 * \returns
192 * Either a pointer to the array object with the specified ID or \c NULL for
193 * a non-existent ID. The spec defines ID 0 as being technically
194 * non-existent.
195 */
196
197 struct gl_vertex_array_object *
198 _mesa_lookup_vao(struct gl_context *ctx, GLuint id)
199 {
200 /* The ARB_direct_state_access specification says:
201 *
202 * "<vaobj> is [compatibility profile:
203 * zero, indicating the default vertex array object, or]
204 * the name of the vertex array object."
205 */
206 if (id == 0) {
207 if (ctx->API == API_OPENGL_COMPAT)
208 return ctx->Array.DefaultVAO;
209
210 return NULL;
211 } else {
212 struct gl_vertex_array_object *vao;
213
214 if (ctx->Array.LastLookedUpVAO &&
215 ctx->Array.LastLookedUpVAO->Name == id) {
216 vao = ctx->Array.LastLookedUpVAO;
217 } else {
218 vao = (struct gl_vertex_array_object *)
219 _mesa_HashLookupLocked(ctx->Array.Objects, id);
220
221 _mesa_reference_vao(ctx, &ctx->Array.LastLookedUpVAO, vao);
222 }
223
224 return vao;
225 }
226 }
227
228
229 /**
230 * Looks up the array object for the given ID.
231 *
232 * While _mesa_lookup_vao doesn't generate an error if the object does not
233 * exist, this function comes in two variants.
234 * If is_ext_dsa is false, this function generates a GL_INVALID_OPERATION
235 * error if the array object does not exist. It also returns the default
236 * array object when ctx is a compatibility profile context and id is zero.
237 * If is_ext_dsa is true, 0 is not a valid name. If the name exists but
238 * the object has never been bound, it is initialized.
239 */
240 struct gl_vertex_array_object *
241 _mesa_lookup_vao_err(struct gl_context *ctx, GLuint id,
242 bool is_ext_dsa, const char *caller)
243 {
244 /* The ARB_direct_state_access specification says:
245 *
246 * "<vaobj> is [compatibility profile:
247 * zero, indicating the default vertex array object, or]
248 * the name of the vertex array object."
249 */
250 if (id == 0) {
251 if (is_ext_dsa || ctx->API == API_OPENGL_CORE) {
252 _mesa_error(ctx, GL_INVALID_OPERATION,
253 "%s(zero is not valid vaobj name%s)",
254 caller,
255 is_ext_dsa ? "" : " in a core profile context");
256 return NULL;
257 }
258
259 return ctx->Array.DefaultVAO;
260 } else {
261 struct gl_vertex_array_object *vao;
262
263 if (ctx->Array.LastLookedUpVAO &&
264 ctx->Array.LastLookedUpVAO->Name == id) {
265 vao = ctx->Array.LastLookedUpVAO;
266 } else {
267 vao = (struct gl_vertex_array_object *)
268 _mesa_HashLookupLocked(ctx->Array.Objects, id);
269
270 /* The ARB_direct_state_access specification says:
271 *
272 * "An INVALID_OPERATION error is generated if <vaobj> is not
273 * [compatibility profile: zero or] the name of an existing
274 * vertex array object."
275 */
276 if (!vao || (!is_ext_dsa && !vao->EverBound)) {
277 _mesa_error(ctx, GL_INVALID_OPERATION,
278 "%s(non-existent vaobj=%u)", caller, id);
279 return NULL;
280 }
281
282 /* The EXT_direct_state_access specification says:
283 *
284 * "If the vertex array object named by the vaobj parameter has not
285 * been previously bound but has been generated (without subsequent
286 * deletion) by GenVertexArrays, the GL first creates a new state
287 * vector in the same manner as when BindVertexArray creates a new
288 * vertex array object."
289 */
290 if (vao && is_ext_dsa && !vao->EverBound)
291 vao->EverBound = true;
292
293 _mesa_reference_vao(ctx, &ctx->Array.LastLookedUpVAO, vao);
294 }
295
296 return vao;
297 }
298 }
299
300
301 /**
302 * For all the vertex binding points in the array object, unbind any pointers
303 * to any buffer objects (VBOs).
304 * This is done just prior to array object destruction.
305 */
306 static void
307 unbind_array_object_vbos(struct gl_context *ctx, struct gl_vertex_array_object *obj)
308 {
309 GLuint i;
310
311 for (i = 0; i < ARRAY_SIZE(obj->BufferBinding); i++)
312 _mesa_reference_buffer_object(ctx, &obj->BufferBinding[i].BufferObj, NULL);
313 }
314
315
316 /**
317 * Allocate and initialize a new vertex array object.
318 */
319 struct gl_vertex_array_object *
320 _mesa_new_vao(struct gl_context *ctx, GLuint name)
321 {
322 struct gl_vertex_array_object *obj = CALLOC_STRUCT(gl_vertex_array_object);
323 if (obj)
324 _mesa_initialize_vao(ctx, obj, name);
325 return obj;
326 }
327
328
329 /**
330 * Delete an array object.
331 */
332 void
333 _mesa_delete_vao(struct gl_context *ctx, struct gl_vertex_array_object *obj)
334 {
335 unbind_array_object_vbos(ctx, obj);
336 _mesa_reference_buffer_object(ctx, &obj->IndexBufferObj, NULL);
337 free(obj->Label);
338 free(obj);
339 }
340
341
342 /**
343 * Set ptr to vao w/ reference counting.
344 * Note: this should only be called from the _mesa_reference_vao()
345 * inline function.
346 */
347 void
348 _mesa_reference_vao_(struct gl_context *ctx,
349 struct gl_vertex_array_object **ptr,
350 struct gl_vertex_array_object *vao)
351 {
352 assert(*ptr != vao);
353
354 if (*ptr) {
355 /* Unreference the old array object */
356 struct gl_vertex_array_object *oldObj = *ptr;
357
358 bool deleteFlag;
359 if (oldObj->SharedAndImmutable) {
360 deleteFlag = p_atomic_dec_zero(&oldObj->RefCount);
361 } else {
362 assert(oldObj->RefCount > 0);
363 oldObj->RefCount--;
364 deleteFlag = (oldObj->RefCount == 0);
365 }
366
367 if (deleteFlag)
368 _mesa_delete_vao(ctx, oldObj);
369
370 *ptr = NULL;
371 }
372 assert(!*ptr);
373
374 if (vao) {
375 /* reference new array object */
376 if (vao->SharedAndImmutable) {
377 p_atomic_inc(&vao->RefCount);
378 } else {
379 assert(vao->RefCount > 0);
380 vao->RefCount++;
381 }
382
383 *ptr = vao;
384 }
385 }
386
387
388 /**
389 * Initialize attributes of a vertex array within a vertex array object.
390 * \param vao the container vertex array object
391 * \param index which array in the VAO to initialize
392 * \param size number of components (1, 2, 3 or 4) per attribute
393 * \param type datatype of the attribute (GL_FLOAT, GL_INT, etc).
394 */
395 static void
396 init_array(struct gl_context *ctx,
397 struct gl_vertex_array_object *vao,
398 gl_vert_attrib index, GLint size, GLint type)
399 {
400 assert(index < ARRAY_SIZE(vao->VertexAttrib));
401 struct gl_array_attributes *array = &vao->VertexAttrib[index];
402 assert(index < ARRAY_SIZE(vao->BufferBinding));
403 struct gl_vertex_buffer_binding *binding = &vao->BufferBinding[index];
404
405 _mesa_set_vertex_format(&array->Format, size, type, GL_RGBA,
406 GL_FALSE, GL_FALSE, GL_FALSE);
407 array->Stride = 0;
408 array->Ptr = NULL;
409 array->RelativeOffset = 0;
410 ASSERT_BITFIELD_SIZE(struct gl_array_attributes, BufferBindingIndex,
411 VERT_ATTRIB_MAX - 1);
412 array->BufferBindingIndex = index;
413
414 binding->Offset = 0;
415 binding->Stride = array->Format._ElementSize;
416 binding->BufferObj = NULL;
417 binding->_BoundArrays = BITFIELD_BIT(index);
418
419 /* Vertex array buffers */
420 _mesa_reference_buffer_object(ctx, &binding->BufferObj,
421 ctx->Shared->NullBufferObj);
422 }
423
424
425 /**
426 * Initialize a gl_vertex_array_object's arrays.
427 */
428 void
429 _mesa_initialize_vao(struct gl_context *ctx,
430 struct gl_vertex_array_object *vao,
431 GLuint name)
432 {
433 GLuint i;
434
435 vao->Name = name;
436
437 vao->RefCount = 1;
438 vao->SharedAndImmutable = false;
439
440 /* Init the individual arrays */
441 for (i = 0; i < ARRAY_SIZE(vao->VertexAttrib); i++) {
442 switch (i) {
443 case VERT_ATTRIB_NORMAL:
444 init_array(ctx, vao, VERT_ATTRIB_NORMAL, 3, GL_FLOAT);
445 break;
446 case VERT_ATTRIB_COLOR1:
447 init_array(ctx, vao, VERT_ATTRIB_COLOR1, 3, GL_FLOAT);
448 break;
449 case VERT_ATTRIB_FOG:
450 init_array(ctx, vao, VERT_ATTRIB_FOG, 1, GL_FLOAT);
451 break;
452 case VERT_ATTRIB_COLOR_INDEX:
453 init_array(ctx, vao, VERT_ATTRIB_COLOR_INDEX, 1, GL_FLOAT);
454 break;
455 case VERT_ATTRIB_EDGEFLAG:
456 init_array(ctx, vao, VERT_ATTRIB_EDGEFLAG, 1, GL_UNSIGNED_BYTE);
457 break;
458 case VERT_ATTRIB_POINT_SIZE:
459 init_array(ctx, vao, VERT_ATTRIB_POINT_SIZE, 1, GL_FLOAT);
460 break;
461 default:
462 init_array(ctx, vao, i, 4, GL_FLOAT);
463 break;
464 }
465 }
466
467 vao->_AttributeMapMode = ATTRIBUTE_MAP_MODE_IDENTITY;
468
469 _mesa_reference_buffer_object(ctx, &vao->IndexBufferObj,
470 ctx->Shared->NullBufferObj);
471 }
472
473
474 /**
475 * Compute the offset range for the provided binding.
476 *
477 * This is a helper function for the below.
478 */
479 static void
480 compute_vbo_offset_range(const struct gl_vertex_array_object *vao,
481 const struct gl_vertex_buffer_binding *binding,
482 GLsizeiptr* min, GLsizeiptr* max)
483 {
484 /* The function is meant to work on VBO bindings */
485 assert(_mesa_is_bufferobj(binding->BufferObj));
486
487 /* Start with an inverted range of relative offsets. */
488 GLuint min_offset = ~(GLuint)0;
489 GLuint max_offset = 0;
490
491 /* We work on the unmapped originaly VAO array entries. */
492 GLbitfield mask = vao->Enabled & binding->_BoundArrays;
493 /* The binding should be active somehow, not to return inverted ranges */
494 assert(mask);
495 while (mask) {
496 const int i = u_bit_scan(&mask);
497 const GLuint off = vao->VertexAttrib[i].RelativeOffset;
498 min_offset = MIN2(off, min_offset);
499 max_offset = MAX2(off, max_offset);
500 }
501
502 *min = binding->Offset + (GLsizeiptr)min_offset;
503 *max = binding->Offset + (GLsizeiptr)max_offset;
504 }
505
506
507 /**
508 * Update the unique binding and pos/generic0 map tracking in the vao.
509 *
510 * The idea is to build up information in the vao so that a consuming
511 * backend can execute the following to set up buffer and vertex element
512 * information:
513 *
514 * const GLbitfield inputs_read = VERT_BIT_ALL; // backend vp inputs
515 *
516 * // Attribute data is in a VBO.
517 * GLbitfield vbomask = inputs_read & _mesa_draw_vbo_array_bits(ctx);
518 * while (vbomask) {
519 * // The attribute index to start pulling a binding
520 * const gl_vert_attrib i = ffs(vbomask) - 1;
521 * const struct gl_vertex_buffer_binding *const binding
522 * = _mesa_draw_buffer_binding(vao, i);
523 *
524 * <insert code to handle the vertex buffer object at binding>
525 *
526 * const GLbitfield boundmask = _mesa_draw_bound_attrib_bits(binding);
527 * GLbitfield attrmask = vbomask & boundmask;
528 * assert(attrmask);
529 * // Walk attributes belonging to the binding
530 * while (attrmask) {
531 * const gl_vert_attrib attr = u_bit_scan(&attrmask);
532 * const struct gl_array_attributes *const attrib
533 * = _mesa_draw_array_attrib(vao, attr);
534 *
535 * <insert code to handle the vertex element refering to the binding>
536 * }
537 * vbomask &= ~boundmask;
538 * }
539 *
540 * // Process user space buffers
541 * GLbitfield usermask = inputs_read & _mesa_draw_user_array_bits(ctx);
542 * while (usermask) {
543 * // The attribute index to start pulling a binding
544 * const gl_vert_attrib i = ffs(usermask) - 1;
545 * const struct gl_vertex_buffer_binding *const binding
546 * = _mesa_draw_buffer_binding(vao, i);
547 *
548 * <insert code to handle a set of interleaved user space arrays at binding>
549 *
550 * const GLbitfield boundmask = _mesa_draw_bound_attrib_bits(binding);
551 * GLbitfield attrmask = usermask & boundmask;
552 * assert(attrmask);
553 * // Walk interleaved attributes with a common stride and instance divisor
554 * while (attrmask) {
555 * const gl_vert_attrib attr = u_bit_scan(&attrmask);
556 * const struct gl_array_attributes *const attrib
557 * = _mesa_draw_array_attrib(vao, attr);
558 *
559 * <insert code to handle non vbo vertex arrays>
560 * }
561 * usermask &= ~boundmask;
562 * }
563 *
564 * // Process values that should have better been uniforms in the application
565 * GLbitfield curmask = inputs_read & _mesa_draw_current_bits(ctx);
566 * while (curmask) {
567 * const gl_vert_attrib attr = u_bit_scan(&curmask);
568 * const struct gl_array_attributes *const attrib
569 * = _mesa_draw_current_attrib(ctx, attr);
570 *
571 * <insert code to handle current values>
572 * }
573 *
574 *
575 * Note that the scan below must not incoporate any context state.
576 * The rationale is that once a VAO is finalized it should not
577 * be touched anymore. That means, do not incorporate the
578 * gl_context::Array._DrawVAOEnabledAttribs bitmask into this scan.
579 * A backend driver may further reduce the handled vertex processing
580 * inputs based on their vertex shader inputs. But scanning for
581 * collapsable binding points to reduce relocs is done based on the
582 * enabled arrays.
583 * Also VAOs may be shared between contexts due to their use in dlists
584 * thus no context state should bleed into the VAO.
585 */
586 void
587 _mesa_update_vao_derived_arrays(struct gl_context *ctx,
588 struct gl_vertex_array_object *vao)
589 {
590 /* Make sure we do not run into problems with shared objects */
591 assert(!vao->SharedAndImmutable || vao->NewArrays == 0);
592
593 /* Limit used for common binding scanning below. */
594 const GLsizeiptr MaxRelativeOffset =
595 ctx->Const.MaxVertexAttribRelativeOffset;
596
597 /* The gl_vertex_array_object::_AttributeMapMode denotes the way
598 * VERT_ATTRIB_{POS,GENERIC0} mapping is done.
599 *
600 * This mapping is used to map between the OpenGL api visible
601 * VERT_ATTRIB_* arrays to mesa driver arrayinputs or shader inputs.
602 * The mapping only depends on the enabled bits of the
603 * VERT_ATTRIB_{POS,GENERIC0} arrays and is tracked in the VAO.
604 *
605 * This map needs to be applied when finally translating to the bitmasks
606 * as consumed by the driver backends. The duplicate scanning is here
607 * can as well be done in the OpenGL API numbering without this map.
608 */
609 const gl_attribute_map_mode mode = vao->_AttributeMapMode;
610 /* Enabled array bits. */
611 const GLbitfield enabled = vao->Enabled;
612 /* VBO array bits. */
613 const GLbitfield vbos = vao->VertexAttribBufferMask;
614
615 /* Compute and store effectively enabled and mapped vbo arrays */
616 vao->_EffEnabledVBO = _mesa_vao_enable_to_vp_inputs(mode, enabled & vbos);
617 /* Walk those enabled arrays that have a real vbo attached */
618 GLbitfield mask = enabled;
619 while (mask) {
620 /* Do not use u_bit_scan as we can walk multiple attrib arrays at once */
621 const int i = ffs(mask) - 1;
622 /* The binding from the first to be processed attribute. */
623 const GLuint bindex = vao->VertexAttrib[i].BufferBindingIndex;
624 struct gl_vertex_buffer_binding *binding = &vao->BufferBinding[bindex];
625
626 /* The scan goes different for user space arrays than vbos */
627 if (_mesa_is_bufferobj(binding->BufferObj)) {
628 /* The bound arrays. */
629 const GLbitfield bound = enabled & binding->_BoundArrays;
630
631 /* Start this current effective binding with the actual bound arrays */
632 GLbitfield eff_bound_arrays = bound;
633
634 /*
635 * If there is nothing left to scan just update the effective binding
636 * information. If the VAO is already only using a single binding point
637 * we end up here. So the overhead of this scan for an application
638 * carefully preparing the VAO for draw is low.
639 */
640
641 GLbitfield scanmask = mask & vbos & ~bound;
642 /* Is there something left to scan? */
643 if (scanmask == 0) {
644 /* Just update the back reference from the attrib to the binding and
645 * the effective offset.
646 */
647 GLbitfield attrmask = eff_bound_arrays;
648 while (attrmask) {
649 const int j = u_bit_scan(&attrmask);
650 struct gl_array_attributes *attrib2 = &vao->VertexAttrib[j];
651
652 /* Update the index into the common binding point and offset */
653 attrib2->_EffBufferBindingIndex = bindex;
654 attrib2->_EffRelativeOffset = attrib2->RelativeOffset;
655 assert(attrib2->_EffRelativeOffset <= MaxRelativeOffset);
656 }
657 /* Finally this is the set of effectively bound arrays with the
658 * original binding offset.
659 */
660 binding->_EffOffset = binding->Offset;
661 /* The bound arrays past the VERT_ATTRIB_{POS,GENERIC0} mapping. */
662 binding->_EffBoundArrays =
663 _mesa_vao_enable_to_vp_inputs(mode, eff_bound_arrays);
664
665 } else {
666 /* In the VBO case, scan for attribute/binding
667 * combinations with relative bindings in the range of
668 * [0, ctx->Const.MaxVertexAttribRelativeOffset].
669 * Note that this does also go beyond just interleaved arrays
670 * as long as they use the same VBO, binding parameters and the
671 * offsets stay within bounds that the backend still can handle.
672 */
673
674 GLsizeiptr min_offset, max_offset;
675 compute_vbo_offset_range(vao, binding, &min_offset, &max_offset);
676 assert(max_offset <= min_offset + MaxRelativeOffset);
677
678 /* Now scan. */
679 while (scanmask) {
680 /* Do not use u_bit_scan as we can walk multiple
681 * attrib arrays at once
682 */
683 const int j = ffs(scanmask) - 1;
684 const struct gl_array_attributes *attrib2 =
685 &vao->VertexAttrib[j];
686 const struct gl_vertex_buffer_binding *binding2 =
687 &vao->BufferBinding[attrib2->BufferBindingIndex];
688
689 /* Remove those attrib bits from the mask that are bound to the
690 * same effective binding point.
691 */
692 const GLbitfield bound2 = enabled & binding2->_BoundArrays;
693 scanmask &= ~bound2;
694
695 /* Check if we have an identical binding */
696 if (binding->Stride != binding2->Stride)
697 continue;
698 if (binding->InstanceDivisor != binding2->InstanceDivisor)
699 continue;
700 if (binding->BufferObj != binding2->BufferObj)
701 continue;
702 /* Check if we can fold both bindings into a common binding */
703 GLsizeiptr min_offset2, max_offset2;
704 compute_vbo_offset_range(vao, binding2,
705 &min_offset2, &max_offset2);
706 /* If the relative offset is within the limits ... */
707 if (min_offset + MaxRelativeOffset < max_offset2)
708 continue;
709 if (min_offset2 + MaxRelativeOffset < max_offset)
710 continue;
711 /* ... add this array to the effective binding */
712 eff_bound_arrays |= bound2;
713 min_offset = MIN2(min_offset, min_offset2);
714 max_offset = MAX2(max_offset, max_offset2);
715 assert(max_offset <= min_offset + MaxRelativeOffset);
716 }
717
718 /* Update the back reference from the attrib to the binding */
719 GLbitfield attrmask = eff_bound_arrays;
720 while (attrmask) {
721 const int j = u_bit_scan(&attrmask);
722 struct gl_array_attributes *attrib2 = &vao->VertexAttrib[j];
723 const struct gl_vertex_buffer_binding *binding2 =
724 &vao->BufferBinding[attrib2->BufferBindingIndex];
725
726 /* Update the index into the common binding point and offset */
727 attrib2->_EffBufferBindingIndex = bindex;
728 attrib2->_EffRelativeOffset =
729 binding2->Offset + attrib2->RelativeOffset - min_offset;
730 assert(attrib2->_EffRelativeOffset <= MaxRelativeOffset);
731 }
732 /* Finally this is the set of effectively bound arrays */
733 binding->_EffOffset = min_offset;
734 /* The bound arrays past the VERT_ATTRIB_{POS,GENERIC0} mapping. */
735 binding->_EffBoundArrays =
736 _mesa_vao_enable_to_vp_inputs(mode, eff_bound_arrays);
737 }
738
739 /* Mark all the effective bound arrays as processed. */
740 mask &= ~eff_bound_arrays;
741
742 } else {
743 /* Scanning of common bindings for user space arrays.
744 */
745
746 const struct gl_array_attributes *attrib = &vao->VertexAttrib[i];
747 const GLbitfield bound = VERT_BIT(i);
748
749 /* Note that user space array pointers can only happen using a one
750 * to one binding point to array mapping.
751 * The OpenGL 4.x/ARB_vertex_attrib_binding api does not support
752 * user space arrays collected at multiple binding points.
753 * The only provider of user space interleaved arrays with a single
754 * binding point is the mesa internal vbo module. But that one
755 * provides a perfect interleaved set of arrays.
756 *
757 * If this would not be true we would potentially get attribute arrays
758 * with user space pointers that may not lie within the
759 * MaxRelativeOffset range but still attached to a single binding.
760 * Then we would need to store the effective attribute and binding
761 * grouping information in a seperate array beside
762 * gl_array_attributes/gl_vertex_buffer_binding.
763 */
764 assert(util_bitcount(binding->_BoundArrays & vao->Enabled) == 1
765 || (vao->Enabled & ~binding->_BoundArrays) == 0);
766
767 /* Start this current effective binding with the array */
768 GLbitfield eff_bound_arrays = bound;
769
770 const GLubyte *ptr = attrib->Ptr;
771 unsigned vertex_end = attrib->Format._ElementSize;
772
773 /* Walk other user space arrays and see which are interleaved
774 * using the same binding parameters.
775 */
776 GLbitfield scanmask = mask & ~vbos & ~bound;
777 while (scanmask) {
778 const int j = u_bit_scan(&scanmask);
779 const struct gl_array_attributes *attrib2 = &vao->VertexAttrib[j];
780 const struct gl_vertex_buffer_binding *binding2 =
781 &vao->BufferBinding[attrib2->BufferBindingIndex];
782
783 /* See the comment at the same assert above. */
784 assert(util_bitcount(binding2->_BoundArrays & vao->Enabled) == 1
785 || (vao->Enabled & ~binding->_BoundArrays) == 0);
786
787 /* Check if we have an identical binding */
788 if (binding->Stride != binding2->Stride)
789 continue;
790 if (binding->InstanceDivisor != binding2->InstanceDivisor)
791 continue;
792 if (ptr <= attrib2->Ptr) {
793 if (ptr + binding->Stride < attrib2->Ptr +
794 attrib2->Format._ElementSize)
795 continue;
796 unsigned end = attrib2->Ptr + attrib2->Format._ElementSize - ptr;
797 vertex_end = MAX2(vertex_end, end);
798 } else {
799 if (attrib2->Ptr + binding->Stride < ptr + vertex_end)
800 continue;
801 vertex_end += (GLsizei)(ptr - attrib2->Ptr);
802 ptr = attrib2->Ptr;
803 }
804
805 /* User space buffer object */
806 assert(!_mesa_is_bufferobj(binding2->BufferObj));
807
808 eff_bound_arrays |= VERT_BIT(j);
809 }
810
811 /* Update the back reference from the attrib to the binding */
812 GLbitfield attrmask = eff_bound_arrays;
813 while (attrmask) {
814 const int j = u_bit_scan(&attrmask);
815 struct gl_array_attributes *attrib2 = &vao->VertexAttrib[j];
816
817 /* Update the index into the common binding point and the offset */
818 attrib2->_EffBufferBindingIndex = bindex;
819 attrib2->_EffRelativeOffset = attrib2->Ptr - ptr;
820 assert(attrib2->_EffRelativeOffset <= binding->Stride);
821 }
822 /* Finally this is the set of effectively bound arrays */
823 binding->_EffOffset = (GLintptr)ptr;
824 /* The bound arrays past the VERT_ATTRIB_{POS,GENERIC0} mapping. */
825 binding->_EffBoundArrays =
826 _mesa_vao_enable_to_vp_inputs(mode, eff_bound_arrays);
827
828 /* Mark all the effective bound arrays as processed. */
829 mask &= ~eff_bound_arrays;
830 }
831 }
832
833 #ifndef NDEBUG
834 /* Make sure the above code works as expected. */
835 for (gl_vert_attrib attr = 0; attr < VERT_ATTRIB_MAX; ++attr) {
836 /* Query the original api defined attrib/binding information ... */
837 const unsigned char *const map =_mesa_vao_attribute_map[mode];
838 if (vao->Enabled & VERT_BIT(map[attr])) {
839 const struct gl_array_attributes *attrib =
840 &vao->VertexAttrib[map[attr]];
841 const struct gl_vertex_buffer_binding *binding =
842 &vao->BufferBinding[attrib->BufferBindingIndex];
843 /* ... and compare that with the computed attrib/binding */
844 const struct gl_vertex_buffer_binding *binding2 =
845 &vao->BufferBinding[attrib->_EffBufferBindingIndex];
846 assert(binding->Stride == binding2->Stride);
847 assert(binding->InstanceDivisor == binding2->InstanceDivisor);
848 assert(binding->BufferObj == binding2->BufferObj);
849 if (_mesa_is_bufferobj(binding->BufferObj)) {
850 assert(attrib->_EffRelativeOffset <= MaxRelativeOffset);
851 assert(binding->Offset + attrib->RelativeOffset ==
852 binding2->_EffOffset + attrib->_EffRelativeOffset);
853 } else {
854 assert(attrib->_EffRelativeOffset < binding->Stride);
855 assert((GLintptr)attrib->Ptr ==
856 binding2->_EffOffset + attrib->_EffRelativeOffset);
857 }
858 }
859 }
860 #endif
861 }
862
863
864 void
865 _mesa_set_vao_immutable(struct gl_context *ctx,
866 struct gl_vertex_array_object *vao)
867 {
868 _mesa_update_vao_derived_arrays(ctx, vao);
869 vao->NewArrays = 0;
870 vao->SharedAndImmutable = true;
871 }
872
873
874 bool
875 _mesa_all_varyings_in_vbos(const struct gl_vertex_array_object *vao)
876 {
877 /* Walk those enabled arrays that have the default vbo attached */
878 GLbitfield mask = vao->Enabled & ~vao->VertexAttribBufferMask;
879
880 while (mask) {
881 /* Do not use u_bit_scan64 as we can walk multiple
882 * attrib arrays at once
883 */
884 const int i = ffs(mask) - 1;
885 const struct gl_array_attributes *attrib_array =
886 &vao->VertexAttrib[i];
887 const struct gl_vertex_buffer_binding *buffer_binding =
888 &vao->BufferBinding[attrib_array->BufferBindingIndex];
889
890 /* We have already masked out vao->VertexAttribBufferMask */
891 assert(!_mesa_is_bufferobj(buffer_binding->BufferObj));
892
893 /* Bail out once we find the first non vbo with a non zero stride */
894 if (buffer_binding->Stride != 0)
895 return false;
896
897 /* Note that we cannot use the xor variant since the _BoundArray mask
898 * may contain array attributes that are bound but not enabled.
899 */
900 mask &= ~buffer_binding->_BoundArrays;
901 }
902
903 return true;
904 }
905
906 bool
907 _mesa_all_buffers_are_unmapped(const struct gl_vertex_array_object *vao)
908 {
909 /* Walk the enabled arrays that have a vbo attached */
910 GLbitfield mask = vao->Enabled & vao->VertexAttribBufferMask;
911
912 while (mask) {
913 const int i = ffs(mask) - 1;
914 const struct gl_array_attributes *attrib_array =
915 &vao->VertexAttrib[i];
916 const struct gl_vertex_buffer_binding *buffer_binding =
917 &vao->BufferBinding[attrib_array->BufferBindingIndex];
918
919 /* We have already masked with vao->VertexAttribBufferMask */
920 assert(_mesa_is_bufferobj(buffer_binding->BufferObj));
921
922 /* Bail out once we find the first disallowed mapping */
923 if (_mesa_check_disallowed_mapping(buffer_binding->BufferObj))
924 return false;
925
926 /* We have handled everything that is bound to this buffer_binding. */
927 mask &= ~buffer_binding->_BoundArrays;
928 }
929
930 return true;
931 }
932
933
934 /**
935 * Map buffer objects used in attribute arrays.
936 */
937 void
938 _mesa_vao_map_arrays(struct gl_context *ctx, struct gl_vertex_array_object *vao,
939 GLbitfield access)
940 {
941 GLbitfield mask = vao->Enabled & vao->VertexAttribBufferMask;
942 while (mask) {
943 /* Do not use u_bit_scan as we can walk multiple attrib arrays at once */
944 const gl_vert_attrib attr = ffs(mask) - 1;
945 const GLubyte bindex = vao->VertexAttrib[attr].BufferBindingIndex;
946 struct gl_vertex_buffer_binding *binding = &vao->BufferBinding[bindex];
947 mask &= ~binding->_BoundArrays;
948
949 struct gl_buffer_object *bo = binding->BufferObj;
950 assert(_mesa_is_bufferobj(bo));
951 if (_mesa_bufferobj_mapped(bo, MAP_INTERNAL))
952 continue;
953
954 ctx->Driver.MapBufferRange(ctx, 0, bo->Size, access, bo, MAP_INTERNAL);
955 }
956 }
957
958
959 /**
960 * Map buffer objects used in the vao, attribute arrays and index buffer.
961 */
962 void
963 _mesa_vao_map(struct gl_context *ctx, struct gl_vertex_array_object *vao,
964 GLbitfield access)
965 {
966 struct gl_buffer_object *bo = vao->IndexBufferObj;
967
968 /* map the index buffer, if there is one, and not already mapped */
969 if (_mesa_is_bufferobj(bo) && !_mesa_bufferobj_mapped(bo, MAP_INTERNAL))
970 ctx->Driver.MapBufferRange(ctx, 0, bo->Size, access, bo, MAP_INTERNAL);
971
972 _mesa_vao_map_arrays(ctx, vao, access);
973 }
974
975
976 /**
977 * Unmap buffer objects used in attribute arrays.
978 */
979 void
980 _mesa_vao_unmap_arrays(struct gl_context *ctx,
981 struct gl_vertex_array_object *vao)
982 {
983 GLbitfield mask = vao->Enabled & vao->VertexAttribBufferMask;
984 while (mask) {
985 /* Do not use u_bit_scan as we can walk multiple attrib arrays at once */
986 const gl_vert_attrib attr = ffs(mask) - 1;
987 const GLubyte bindex = vao->VertexAttrib[attr].BufferBindingIndex;
988 struct gl_vertex_buffer_binding *binding = &vao->BufferBinding[bindex];
989 mask &= ~binding->_BoundArrays;
990
991 struct gl_buffer_object *bo = binding->BufferObj;
992 assert(_mesa_is_bufferobj(bo));
993 if (!_mesa_bufferobj_mapped(bo, MAP_INTERNAL))
994 continue;
995
996 ctx->Driver.UnmapBuffer(ctx, bo, MAP_INTERNAL);
997 }
998 }
999
1000
1001 /**
1002 * Unmap buffer objects used in the vao, attribute arrays and index buffer.
1003 */
1004 void
1005 _mesa_vao_unmap(struct gl_context *ctx, struct gl_vertex_array_object *vao)
1006 {
1007 struct gl_buffer_object *bo = vao->IndexBufferObj;
1008
1009 /* unmap the index buffer, if there is one, and still mapped */
1010 if (_mesa_is_bufferobj(bo) && _mesa_bufferobj_mapped(bo, MAP_INTERNAL))
1011 ctx->Driver.UnmapBuffer(ctx, bo, MAP_INTERNAL);
1012
1013 _mesa_vao_unmap_arrays(ctx, vao);
1014 }
1015
1016
1017 /**********************************************************************/
1018 /* API Functions */
1019 /**********************************************************************/
1020
1021
1022 /**
1023 * ARB version of glBindVertexArray()
1024 */
1025 static ALWAYS_INLINE void
1026 bind_vertex_array(struct gl_context *ctx, GLuint id, bool no_error)
1027 {
1028 struct gl_vertex_array_object *const oldObj = ctx->Array.VAO;
1029 struct gl_vertex_array_object *newObj = NULL;
1030
1031 assert(oldObj != NULL);
1032
1033 if (oldObj->Name == id)
1034 return; /* rebinding the same array object- no change */
1035
1036 /*
1037 * Get pointer to new array object (newObj)
1038 */
1039 if (id == 0) {
1040 /* The spec says there is no array object named 0, but we use
1041 * one internally because it simplifies things.
1042 */
1043 newObj = ctx->Array.DefaultVAO;
1044 }
1045 else {
1046 /* non-default array object */
1047 newObj = _mesa_lookup_vao(ctx, id);
1048 if (!no_error && !newObj) {
1049 _mesa_error(ctx, GL_INVALID_OPERATION,
1050 "glBindVertexArray(non-gen name)");
1051 return;
1052 }
1053
1054 newObj->EverBound = GL_TRUE;
1055 }
1056
1057 /* The _DrawArrays pointer is pointing at the VAO being unbound and
1058 * that VAO may be in the process of being deleted. If it's not going
1059 * to be deleted, this will have no effect, because the pointer needs
1060 * to be updated by the VBO module anyway.
1061 *
1062 * Before the VBO module can update the pointer, we have to set it
1063 * to NULL for drivers not to set up arrays which are not bound,
1064 * or to prevent a crash if the VAO being unbound is going to be
1065 * deleted.
1066 */
1067 _mesa_set_draw_vao(ctx, ctx->Array._EmptyVAO, 0);
1068
1069 _mesa_reference_vao(ctx, &ctx->Array.VAO, newObj);
1070 }
1071
1072
1073 void GLAPIENTRY
1074 _mesa_BindVertexArray_no_error(GLuint id)
1075 {
1076 GET_CURRENT_CONTEXT(ctx);
1077 bind_vertex_array(ctx, id, true);
1078 }
1079
1080
1081 void GLAPIENTRY
1082 _mesa_BindVertexArray(GLuint id)
1083 {
1084 GET_CURRENT_CONTEXT(ctx);
1085 bind_vertex_array(ctx, id, false);
1086 }
1087
1088
1089 /**
1090 * Delete a set of array objects.
1091 *
1092 * \param n Number of array objects to delete.
1093 * \param ids Array of \c n array object IDs.
1094 */
1095 static void
1096 delete_vertex_arrays(struct gl_context *ctx, GLsizei n, const GLuint *ids)
1097 {
1098 GLsizei i;
1099
1100 for (i = 0; i < n; i++) {
1101 /* IDs equal to 0 should be silently ignored. */
1102 if (!ids[i])
1103 continue;
1104
1105 struct gl_vertex_array_object *obj = _mesa_lookup_vao(ctx, ids[i]);
1106
1107 if (obj) {
1108 assert(obj->Name == ids[i]);
1109
1110 /* If the array object is currently bound, the spec says "the binding
1111 * for that object reverts to zero and the default vertex array
1112 * becomes current."
1113 */
1114 if (obj == ctx->Array.VAO)
1115 _mesa_BindVertexArray_no_error(0);
1116
1117 /* The ID is immediately freed for re-use */
1118 _mesa_HashRemoveLocked(ctx->Array.Objects, obj->Name);
1119
1120 if (ctx->Array.LastLookedUpVAO == obj)
1121 _mesa_reference_vao(ctx, &ctx->Array.LastLookedUpVAO, NULL);
1122 if (ctx->Array._DrawVAO == obj)
1123 _mesa_set_draw_vao(ctx, ctx->Array._EmptyVAO, 0);
1124
1125 /* Unreference the array object.
1126 * If refcount hits zero, the object will be deleted.
1127 */
1128 _mesa_reference_vao(ctx, &obj, NULL);
1129 }
1130 }
1131 }
1132
1133
1134 void GLAPIENTRY
1135 _mesa_DeleteVertexArrays_no_error(GLsizei n, const GLuint *ids)
1136 {
1137 GET_CURRENT_CONTEXT(ctx);
1138 delete_vertex_arrays(ctx, n, ids);
1139 }
1140
1141
1142 void GLAPIENTRY
1143 _mesa_DeleteVertexArrays(GLsizei n, const GLuint *ids)
1144 {
1145 GET_CURRENT_CONTEXT(ctx);
1146
1147 if (n < 0) {
1148 _mesa_error(ctx, GL_INVALID_VALUE, "glDeleteVertexArray(n)");
1149 return;
1150 }
1151
1152 delete_vertex_arrays(ctx, n, ids);
1153 }
1154
1155
1156 /**
1157 * Generate a set of unique array object IDs and store them in \c arrays.
1158 * Helper for _mesa_GenVertexArrays() and _mesa_CreateVertexArrays()
1159 * below.
1160 *
1161 * \param n Number of IDs to generate.
1162 * \param arrays Array of \c n locations to store the IDs.
1163 * \param create Indicates that the objects should also be created.
1164 * \param func The name of the GL entry point.
1165 */
1166 static void
1167 gen_vertex_arrays(struct gl_context *ctx, GLsizei n, GLuint *arrays,
1168 bool create, const char *func)
1169 {
1170 GLuint first;
1171 GLint i;
1172
1173 if (!arrays)
1174 return;
1175
1176 first = _mesa_HashFindFreeKeyBlock(ctx->Array.Objects, n);
1177
1178 /* For the sake of simplicity we create the array objects in both
1179 * the Gen* and Create* cases. The only difference is the value of
1180 * EverBound, which is set to true in the Create* case.
1181 */
1182 for (i = 0; i < n; i++) {
1183 struct gl_vertex_array_object *obj;
1184 GLuint name = first + i;
1185
1186 obj = _mesa_new_vao(ctx, name);
1187 if (!obj) {
1188 _mesa_error(ctx, GL_OUT_OF_MEMORY, "%s", func);
1189 return;
1190 }
1191 obj->EverBound = create;
1192 _mesa_HashInsertLocked(ctx->Array.Objects, obj->Name, obj);
1193 arrays[i] = first + i;
1194 }
1195 }
1196
1197
1198 static void
1199 gen_vertex_arrays_err(struct gl_context *ctx, GLsizei n, GLuint *arrays,
1200 bool create, const char *func)
1201 {
1202 if (n < 0) {
1203 _mesa_error(ctx, GL_INVALID_VALUE, "%s(n < 0)", func);
1204 return;
1205 }
1206
1207 gen_vertex_arrays(ctx, n, arrays, create, func);
1208 }
1209
1210
1211 /**
1212 * ARB version of glGenVertexArrays()
1213 * All arrays will be required to live in VBOs.
1214 */
1215 void GLAPIENTRY
1216 _mesa_GenVertexArrays_no_error(GLsizei n, GLuint *arrays)
1217 {
1218 GET_CURRENT_CONTEXT(ctx);
1219 gen_vertex_arrays(ctx, n, arrays, false, "glGenVertexArrays");
1220 }
1221
1222
1223 void GLAPIENTRY
1224 _mesa_GenVertexArrays(GLsizei n, GLuint *arrays)
1225 {
1226 GET_CURRENT_CONTEXT(ctx);
1227 gen_vertex_arrays_err(ctx, n, arrays, false, "glGenVertexArrays");
1228 }
1229
1230
1231 /**
1232 * ARB_direct_state_access
1233 * Generates ID's and creates the array objects.
1234 */
1235 void GLAPIENTRY
1236 _mesa_CreateVertexArrays_no_error(GLsizei n, GLuint *arrays)
1237 {
1238 GET_CURRENT_CONTEXT(ctx);
1239 gen_vertex_arrays(ctx, n, arrays, true, "glCreateVertexArrays");
1240 }
1241
1242
1243 void GLAPIENTRY
1244 _mesa_CreateVertexArrays(GLsizei n, GLuint *arrays)
1245 {
1246 GET_CURRENT_CONTEXT(ctx);
1247 gen_vertex_arrays_err(ctx, n, arrays, true, "glCreateVertexArrays");
1248 }
1249
1250
1251 /**
1252 * Determine if ID is the name of an array object.
1253 *
1254 * \param id ID of the potential array object.
1255 * \return \c GL_TRUE if \c id is the name of a array object,
1256 * \c GL_FALSE otherwise.
1257 */
1258 GLboolean GLAPIENTRY
1259 _mesa_IsVertexArray( GLuint id )
1260 {
1261 struct gl_vertex_array_object * obj;
1262 GET_CURRENT_CONTEXT(ctx);
1263 ASSERT_OUTSIDE_BEGIN_END_WITH_RETVAL(ctx, GL_FALSE);
1264
1265 obj = _mesa_lookup_vao(ctx, id);
1266
1267 return obj != NULL && obj->EverBound;
1268 }
1269
1270
1271 /**
1272 * Sets the element array buffer binding of a vertex array object.
1273 *
1274 * This is the ARB_direct_state_access equivalent of
1275 * glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, buffer).
1276 */
1277 static ALWAYS_INLINE void
1278 vertex_array_element_buffer(struct gl_context *ctx, GLuint vaobj, GLuint buffer,
1279 bool no_error)
1280 {
1281 struct gl_vertex_array_object *vao;
1282 struct gl_buffer_object *bufObj;
1283
1284 ASSERT_OUTSIDE_BEGIN_END(ctx);
1285
1286 if (!no_error) {
1287 /* The GL_ARB_direct_state_access specification says:
1288 *
1289 * "An INVALID_OPERATION error is generated by
1290 * VertexArrayElementBuffer if <vaobj> is not [compatibility profile:
1291 * zero or] the name of an existing vertex array object."
1292 */
1293 vao =_mesa_lookup_vao_err(ctx, vaobj, false, "glVertexArrayElementBuffer");
1294 if (!vao)
1295 return;
1296 } else {
1297 vao = _mesa_lookup_vao(ctx, vaobj);
1298 }
1299
1300 if (buffer != 0) {
1301 if (!no_error) {
1302 /* The GL_ARB_direct_state_access specification says:
1303 *
1304 * "An INVALID_OPERATION error is generated if <buffer> is not zero
1305 * or the name of an existing buffer object."
1306 */
1307 bufObj = _mesa_lookup_bufferobj_err(ctx, buffer,
1308 "glVertexArrayElementBuffer");
1309 } else {
1310 bufObj = _mesa_lookup_bufferobj(ctx, buffer);
1311 }
1312 } else {
1313 bufObj = ctx->Shared->NullBufferObj;
1314 }
1315
1316 if (bufObj) {
1317 bufObj->UsageHistory |= USAGE_ELEMENT_ARRAY_BUFFER;
1318 _mesa_reference_buffer_object(ctx, &vao->IndexBufferObj, bufObj);
1319 }
1320 }
1321
1322
1323 void GLAPIENTRY
1324 _mesa_VertexArrayElementBuffer_no_error(GLuint vaobj, GLuint buffer)
1325 {
1326 GET_CURRENT_CONTEXT(ctx);
1327 vertex_array_element_buffer(ctx, vaobj, buffer, true);
1328 }
1329
1330
1331 void GLAPIENTRY
1332 _mesa_VertexArrayElementBuffer(GLuint vaobj, GLuint buffer)
1333 {
1334 GET_CURRENT_CONTEXT(ctx);
1335 vertex_array_element_buffer(ctx, vaobj, buffer, false);
1336 }
1337
1338
1339 void GLAPIENTRY
1340 _mesa_GetVertexArrayiv(GLuint vaobj, GLenum pname, GLint *param)
1341 {
1342 GET_CURRENT_CONTEXT(ctx);
1343 struct gl_vertex_array_object *vao;
1344
1345 ASSERT_OUTSIDE_BEGIN_END(ctx);
1346
1347 /* The GL_ARB_direct_state_access specification says:
1348 *
1349 * "An INVALID_OPERATION error is generated if <vaobj> is not
1350 * [compatibility profile: zero or] the name of an existing
1351 * vertex array object."
1352 */
1353 vao = _mesa_lookup_vao_err(ctx, vaobj, false, "glGetVertexArrayiv");
1354 if (!vao)
1355 return;
1356
1357 /* The GL_ARB_direct_state_access specification says:
1358 *
1359 * "An INVALID_ENUM error is generated if <pname> is not
1360 * ELEMENT_ARRAY_BUFFER_BINDING."
1361 */
1362 if (pname != GL_ELEMENT_ARRAY_BUFFER_BINDING) {
1363 _mesa_error(ctx, GL_INVALID_ENUM,
1364 "glGetVertexArrayiv(pname != "
1365 "GL_ELEMENT_ARRAY_BUFFER_BINDING)");
1366 return;
1367 }
1368
1369 param[0] = vao->IndexBufferObj->Name;
1370 }