Merge branch 'mesa_7_7_branch'
[mesa.git] / src / mesa / main / ffvertex_prog.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * \file ffvertex_prog.c
30 *
31 * Create a vertex program to execute the current fixed function T&L pipeline.
32 * \author Keith Whitwell
33 */
34
35
36 #include "main/glheader.h"
37 #include "main/mtypes.h"
38 #include "main/macros.h"
39 #include "main/enums.h"
40 #include "main/ffvertex_prog.h"
41 #include "shader/program.h"
42 #include "shader/prog_cache.h"
43 #include "shader/prog_instruction.h"
44 #include "shader/prog_parameter.h"
45 #include "shader/prog_print.h"
46 #include "shader/prog_statevars.h"
47
48
49 /** Max of number of lights and texture coord units */
50 #define NUM_UNITS MAX2(MAX_TEXTURE_COORD_UNITS, MAX_LIGHTS)
51
52 struct state_key {
53 unsigned light_color_material_mask:12;
54 unsigned light_global_enabled:1;
55 unsigned light_local_viewer:1;
56 unsigned light_twoside:1;
57 unsigned material_shininess_is_zero:1;
58 unsigned need_eye_coords:1;
59 unsigned normalize:1;
60 unsigned rescale_normals:1;
61
62 unsigned fog_source_is_depth:1;
63 unsigned separate_specular:1;
64 unsigned point_attenuated:1;
65 unsigned point_array:1;
66 unsigned texture_enabled_global:1;
67 unsigned fragprog_inputs_read:12;
68
69 unsigned varying_vp_inputs;
70
71 struct {
72 unsigned light_enabled:1;
73 unsigned light_eyepos3_is_zero:1;
74 unsigned light_spotcutoff_is_180:1;
75 unsigned light_attenuated:1;
76 unsigned texunit_really_enabled:1;
77 unsigned texmat_enabled:1;
78 unsigned texgen_enabled:4;
79 unsigned texgen_mode0:4;
80 unsigned texgen_mode1:4;
81 unsigned texgen_mode2:4;
82 unsigned texgen_mode3:4;
83 } unit[NUM_UNITS];
84 };
85
86
87 #define TXG_NONE 0
88 #define TXG_OBJ_LINEAR 1
89 #define TXG_EYE_LINEAR 2
90 #define TXG_SPHERE_MAP 3
91 #define TXG_REFLECTION_MAP 4
92 #define TXG_NORMAL_MAP 5
93
94 static GLuint translate_texgen( GLboolean enabled, GLenum mode )
95 {
96 if (!enabled)
97 return TXG_NONE;
98
99 switch (mode) {
100 case GL_OBJECT_LINEAR: return TXG_OBJ_LINEAR;
101 case GL_EYE_LINEAR: return TXG_EYE_LINEAR;
102 case GL_SPHERE_MAP: return TXG_SPHERE_MAP;
103 case GL_REFLECTION_MAP_NV: return TXG_REFLECTION_MAP;
104 case GL_NORMAL_MAP_NV: return TXG_NORMAL_MAP;
105 default: return TXG_NONE;
106 }
107 }
108
109
110
111 static GLboolean check_active_shininess( GLcontext *ctx,
112 const struct state_key *key,
113 GLuint side )
114 {
115 GLuint bit = 1 << (MAT_ATTRIB_FRONT_SHININESS + side);
116
117 if ((key->varying_vp_inputs & VERT_BIT_COLOR0) &&
118 (key->light_color_material_mask & bit))
119 return GL_TRUE;
120
121 if (key->varying_vp_inputs & (bit << 16))
122 return GL_TRUE;
123
124 if (ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SHININESS + side][0] != 0.0F)
125 return GL_TRUE;
126
127 return GL_FALSE;
128 }
129
130
131 static void make_state_key( GLcontext *ctx, struct state_key *key )
132 {
133 const struct gl_fragment_program *fp;
134 GLuint i;
135
136 memset(key, 0, sizeof(struct state_key));
137 fp = ctx->FragmentProgram._Current;
138
139 /* This now relies on texenvprogram.c being active:
140 */
141 assert(fp);
142
143 key->need_eye_coords = ctx->_NeedEyeCoords;
144
145 key->fragprog_inputs_read = fp->Base.InputsRead;
146 key->varying_vp_inputs = ctx->varying_vp_inputs;
147
148 if (ctx->RenderMode == GL_FEEDBACK) {
149 /* make sure the vertprog emits color and tex0 */
150 key->fragprog_inputs_read |= (FRAG_BIT_COL0 | FRAG_BIT_TEX0);
151 }
152
153 key->separate_specular = (ctx->Light.Model.ColorControl ==
154 GL_SEPARATE_SPECULAR_COLOR);
155
156 if (ctx->Light.Enabled) {
157 key->light_global_enabled = 1;
158
159 if (ctx->Light.Model.LocalViewer)
160 key->light_local_viewer = 1;
161
162 if (ctx->Light.Model.TwoSide)
163 key->light_twoside = 1;
164
165 if (ctx->Light.ColorMaterialEnabled) {
166 key->light_color_material_mask = ctx->Light.ColorMaterialBitmask;
167 }
168
169 for (i = 0; i < MAX_LIGHTS; i++) {
170 struct gl_light *light = &ctx->Light.Light[i];
171
172 if (light->Enabled) {
173 key->unit[i].light_enabled = 1;
174
175 if (light->EyePosition[3] == 0.0)
176 key->unit[i].light_eyepos3_is_zero = 1;
177
178 if (light->SpotCutoff == 180.0)
179 key->unit[i].light_spotcutoff_is_180 = 1;
180
181 if (light->ConstantAttenuation != 1.0 ||
182 light->LinearAttenuation != 0.0 ||
183 light->QuadraticAttenuation != 0.0)
184 key->unit[i].light_attenuated = 1;
185 }
186 }
187
188 if (check_active_shininess(ctx, key, 0)) {
189 key->material_shininess_is_zero = 0;
190 }
191 else if (key->light_twoside &&
192 check_active_shininess(ctx, key, 1)) {
193 key->material_shininess_is_zero = 0;
194 }
195 else {
196 key->material_shininess_is_zero = 1;
197 }
198 }
199
200 if (ctx->Transform.Normalize)
201 key->normalize = 1;
202
203 if (ctx->Transform.RescaleNormals)
204 key->rescale_normals = 1;
205
206 if (ctx->Fog.FogCoordinateSource == GL_FRAGMENT_DEPTH_EXT)
207 key->fog_source_is_depth = 1;
208
209 if (ctx->Point._Attenuated)
210 key->point_attenuated = 1;
211
212 #if FEATURE_point_size_array
213 if (ctx->Array.ArrayObj->PointSize.Enabled)
214 key->point_array = 1;
215 #endif
216
217 if (ctx->Texture._TexGenEnabled ||
218 ctx->Texture._TexMatEnabled ||
219 ctx->Texture._EnabledUnits)
220 key->texture_enabled_global = 1;
221
222 for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
223 struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
224
225 if (texUnit->_ReallyEnabled)
226 key->unit[i].texunit_really_enabled = 1;
227
228 if (ctx->Texture._TexMatEnabled & ENABLE_TEXMAT(i))
229 key->unit[i].texmat_enabled = 1;
230
231 if (texUnit->TexGenEnabled) {
232 key->unit[i].texgen_enabled = 1;
233
234 key->unit[i].texgen_mode0 =
235 translate_texgen( texUnit->TexGenEnabled & (1<<0),
236 texUnit->GenS.Mode );
237 key->unit[i].texgen_mode1 =
238 translate_texgen( texUnit->TexGenEnabled & (1<<1),
239 texUnit->GenT.Mode );
240 key->unit[i].texgen_mode2 =
241 translate_texgen( texUnit->TexGenEnabled & (1<<2),
242 texUnit->GenR.Mode );
243 key->unit[i].texgen_mode3 =
244 translate_texgen( texUnit->TexGenEnabled & (1<<3),
245 texUnit->GenQ.Mode );
246 }
247 }
248 }
249
250
251
252 /* Very useful debugging tool - produces annotated listing of
253 * generated program with line/function references for each
254 * instruction back into this file:
255 */
256 #define DISASSEM 0
257
258
259 /* Use uregs to represent registers internally, translate to Mesa's
260 * expected formats on emit.
261 *
262 * NOTE: These are passed by value extensively in this file rather
263 * than as usual by pointer reference. If this disturbs you, try
264 * remembering they are just 32bits in size.
265 *
266 * GCC is smart enough to deal with these dword-sized structures in
267 * much the same way as if I had defined them as dwords and was using
268 * macros to access and set the fields. This is much nicer and easier
269 * to evolve.
270 */
271 struct ureg {
272 GLuint file:4;
273 GLint idx:9; /* relative addressing may be negative */
274 /* sizeof(idx) should == sizeof(prog_src_reg::Index) */
275 GLuint negate:1;
276 GLuint swz:12;
277 GLuint pad:6;
278 };
279
280
281 struct tnl_program {
282 const struct state_key *state;
283 struct gl_vertex_program *program;
284 GLint max_inst; /** number of instructions allocated for program */
285 GLboolean mvp_with_dp4;
286
287 GLuint temp_in_use;
288 GLuint temp_reserved;
289
290 struct ureg eye_position;
291 struct ureg eye_position_z;
292 struct ureg eye_position_normalized;
293 struct ureg transformed_normal;
294 struct ureg identity;
295
296 GLuint materials;
297 GLuint color_materials;
298 };
299
300
301 static const struct ureg undef = {
302 PROGRAM_UNDEFINED,
303 0,
304 0,
305 0,
306 0
307 };
308
309 /* Local shorthand:
310 */
311 #define X SWIZZLE_X
312 #define Y SWIZZLE_Y
313 #define Z SWIZZLE_Z
314 #define W SWIZZLE_W
315
316
317 /* Construct a ureg:
318 */
319 static struct ureg make_ureg(GLuint file, GLint idx)
320 {
321 struct ureg reg;
322 reg.file = file;
323 reg.idx = idx;
324 reg.negate = 0;
325 reg.swz = SWIZZLE_NOOP;
326 reg.pad = 0;
327 return reg;
328 }
329
330
331
332 static struct ureg negate( struct ureg reg )
333 {
334 reg.negate ^= 1;
335 return reg;
336 }
337
338
339 static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
340 {
341 reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
342 GET_SWZ(reg.swz, y),
343 GET_SWZ(reg.swz, z),
344 GET_SWZ(reg.swz, w));
345 return reg;
346 }
347
348
349 static struct ureg swizzle1( struct ureg reg, int x )
350 {
351 return swizzle(reg, x, x, x, x);
352 }
353
354
355 static struct ureg get_temp( struct tnl_program *p )
356 {
357 int bit = _mesa_ffs( ~p->temp_in_use );
358 if (!bit) {
359 _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
360 exit(1);
361 }
362
363 if ((GLuint) bit > p->program->Base.NumTemporaries)
364 p->program->Base.NumTemporaries = bit;
365
366 p->temp_in_use |= 1<<(bit-1);
367 return make_ureg(PROGRAM_TEMPORARY, bit-1);
368 }
369
370
371 static struct ureg reserve_temp( struct tnl_program *p )
372 {
373 struct ureg temp = get_temp( p );
374 p->temp_reserved |= 1<<temp.idx;
375 return temp;
376 }
377
378
379 static void release_temp( struct tnl_program *p, struct ureg reg )
380 {
381 if (reg.file == PROGRAM_TEMPORARY) {
382 p->temp_in_use &= ~(1<<reg.idx);
383 p->temp_in_use |= p->temp_reserved; /* can't release reserved temps */
384 }
385 }
386
387 static void release_temps( struct tnl_program *p )
388 {
389 p->temp_in_use = p->temp_reserved;
390 }
391
392
393 static struct ureg register_param5(struct tnl_program *p,
394 GLint s0,
395 GLint s1,
396 GLint s2,
397 GLint s3,
398 GLint s4)
399 {
400 gl_state_index tokens[STATE_LENGTH];
401 GLint idx;
402 tokens[0] = s0;
403 tokens[1] = s1;
404 tokens[2] = s2;
405 tokens[3] = s3;
406 tokens[4] = s4;
407 idx = _mesa_add_state_reference( p->program->Base.Parameters, tokens );
408 return make_ureg(PROGRAM_STATE_VAR, idx);
409 }
410
411
412 #define register_param1(p,s0) register_param5(p,s0,0,0,0,0)
413 #define register_param2(p,s0,s1) register_param5(p,s0,s1,0,0,0)
414 #define register_param3(p,s0,s1,s2) register_param5(p,s0,s1,s2,0,0)
415 #define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0)
416
417
418
419 /**
420 * \param input one of VERT_ATTRIB_x tokens.
421 */
422 static struct ureg register_input( struct tnl_program *p, GLuint input )
423 {
424 assert(input < 32);
425
426 if (p->state->varying_vp_inputs & (1<<input)) {
427 p->program->Base.InputsRead |= (1<<input);
428 return make_ureg(PROGRAM_INPUT, input);
429 }
430 else {
431 return register_param3( p, STATE_INTERNAL, STATE_CURRENT_ATTRIB, input );
432 }
433 }
434
435
436 /**
437 * \param input one of VERT_RESULT_x tokens.
438 */
439 static struct ureg register_output( struct tnl_program *p, GLuint output )
440 {
441 p->program->Base.OutputsWritten |= BITFIELD64_BIT(output);
442 return make_ureg(PROGRAM_OUTPUT, output);
443 }
444
445
446 static struct ureg register_const4f( struct tnl_program *p,
447 GLfloat s0,
448 GLfloat s1,
449 GLfloat s2,
450 GLfloat s3)
451 {
452 GLfloat values[4];
453 GLint idx;
454 GLuint swizzle;
455 values[0] = s0;
456 values[1] = s1;
457 values[2] = s2;
458 values[3] = s3;
459 idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values, 4,
460 &swizzle );
461 ASSERT(swizzle == SWIZZLE_NOOP);
462 return make_ureg(PROGRAM_CONSTANT, idx);
463 }
464
465 #define register_const1f(p, s0) register_const4f(p, s0, 0, 0, 1)
466 #define register_scalar_const(p, s0) register_const4f(p, s0, s0, s0, s0)
467 #define register_const2f(p, s0, s1) register_const4f(p, s0, s1, 0, 1)
468 #define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
469
470 static GLboolean is_undef( struct ureg reg )
471 {
472 return reg.file == PROGRAM_UNDEFINED;
473 }
474
475
476 static struct ureg get_identity_param( struct tnl_program *p )
477 {
478 if (is_undef(p->identity))
479 p->identity = register_const4f(p, 0,0,0,1);
480
481 return p->identity;
482 }
483
484 static void register_matrix_param5( struct tnl_program *p,
485 GLint s0, /* modelview, projection, etc */
486 GLint s1, /* texture matrix number */
487 GLint s2, /* first row */
488 GLint s3, /* last row */
489 GLint s4, /* inverse, transpose, etc */
490 struct ureg *matrix )
491 {
492 GLint i;
493
494 /* This is a bit sad as the support is there to pull the whole
495 * matrix out in one go:
496 */
497 for (i = 0; i <= s3 - s2; i++)
498 matrix[i] = register_param5( p, s0, s1, i, i, s4 );
499 }
500
501
502 static void emit_arg( struct prog_src_register *src,
503 struct ureg reg )
504 {
505 src->File = reg.file;
506 src->Index = reg.idx;
507 src->Swizzle = reg.swz;
508 src->Negate = reg.negate ? NEGATE_XYZW : NEGATE_NONE;
509 src->Abs = 0;
510 src->RelAddr = 0;
511 /* Check that bitfield sizes aren't exceeded */
512 ASSERT(src->Index == reg.idx);
513 }
514
515
516 static void emit_dst( struct prog_dst_register *dst,
517 struct ureg reg, GLuint mask )
518 {
519 dst->File = reg.file;
520 dst->Index = reg.idx;
521 /* allow zero as a shorthand for xyzw */
522 dst->WriteMask = mask ? mask : WRITEMASK_XYZW;
523 dst->CondMask = COND_TR; /* always pass cond test */
524 dst->CondSwizzle = SWIZZLE_NOOP;
525 dst->CondSrc = 0;
526 /* Check that bitfield sizes aren't exceeded */
527 ASSERT(dst->Index == reg.idx);
528 }
529
530
531 static void debug_insn( struct prog_instruction *inst, const char *fn,
532 GLuint line )
533 {
534 if (DISASSEM) {
535 static const char *last_fn;
536
537 if (fn != last_fn) {
538 last_fn = fn;
539 _mesa_printf("%s:\n", fn);
540 }
541
542 _mesa_printf("%d:\t", line);
543 _mesa_print_instruction(inst);
544 }
545 }
546
547
548 static void emit_op3fn(struct tnl_program *p,
549 enum prog_opcode op,
550 struct ureg dest,
551 GLuint mask,
552 struct ureg src0,
553 struct ureg src1,
554 struct ureg src2,
555 const char *fn,
556 GLuint line)
557 {
558 GLuint nr;
559 struct prog_instruction *inst;
560
561 assert((GLint) p->program->Base.NumInstructions <= p->max_inst);
562
563 if (p->program->Base.NumInstructions == p->max_inst) {
564 /* need to extend the program's instruction array */
565 struct prog_instruction *newInst;
566
567 /* double the size */
568 p->max_inst *= 2;
569
570 newInst = _mesa_alloc_instructions(p->max_inst);
571 if (!newInst) {
572 _mesa_error(NULL, GL_OUT_OF_MEMORY, "vertex program build");
573 return;
574 }
575
576 _mesa_copy_instructions(newInst,
577 p->program->Base.Instructions,
578 p->program->Base.NumInstructions);
579
580 _mesa_free_instructions(p->program->Base.Instructions,
581 p->program->Base.NumInstructions);
582
583 p->program->Base.Instructions = newInst;
584 }
585
586 nr = p->program->Base.NumInstructions++;
587
588 inst = &p->program->Base.Instructions[nr];
589 inst->Opcode = (enum prog_opcode) op;
590 inst->Data = 0;
591
592 emit_arg( &inst->SrcReg[0], src0 );
593 emit_arg( &inst->SrcReg[1], src1 );
594 emit_arg( &inst->SrcReg[2], src2 );
595
596 emit_dst( &inst->DstReg, dest, mask );
597
598 debug_insn(inst, fn, line);
599 }
600
601
602 #define emit_op3(p, op, dst, mask, src0, src1, src2) \
603 emit_op3fn(p, op, dst, mask, src0, src1, src2, __FUNCTION__, __LINE__)
604
605 #define emit_op2(p, op, dst, mask, src0, src1) \
606 emit_op3fn(p, op, dst, mask, src0, src1, undef, __FUNCTION__, __LINE__)
607
608 #define emit_op1(p, op, dst, mask, src0) \
609 emit_op3fn(p, op, dst, mask, src0, undef, undef, __FUNCTION__, __LINE__)
610
611
612 static struct ureg make_temp( struct tnl_program *p, struct ureg reg )
613 {
614 if (reg.file == PROGRAM_TEMPORARY &&
615 !(p->temp_reserved & (1<<reg.idx)))
616 return reg;
617 else {
618 struct ureg temp = get_temp(p);
619 emit_op1(p, OPCODE_MOV, temp, 0, reg);
620 return temp;
621 }
622 }
623
624
625 /* Currently no tracking performed of input/output/register size or
626 * active elements. Could be used to reduce these operations, as
627 * could the matrix type.
628 */
629 static void emit_matrix_transform_vec4( struct tnl_program *p,
630 struct ureg dest,
631 const struct ureg *mat,
632 struct ureg src)
633 {
634 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_X, src, mat[0]);
635 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Y, src, mat[1]);
636 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Z, src, mat[2]);
637 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_W, src, mat[3]);
638 }
639
640
641 /* This version is much easier to implement if writemasks are not
642 * supported natively on the target or (like SSE), the target doesn't
643 * have a clean/obvious dotproduct implementation.
644 */
645 static void emit_transpose_matrix_transform_vec4( struct tnl_program *p,
646 struct ureg dest,
647 const struct ureg *mat,
648 struct ureg src)
649 {
650 struct ureg tmp;
651
652 if (dest.file != PROGRAM_TEMPORARY)
653 tmp = get_temp(p);
654 else
655 tmp = dest;
656
657 emit_op2(p, OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]);
658 emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp);
659 emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp);
660 emit_op3(p, OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp);
661
662 if (dest.file != PROGRAM_TEMPORARY)
663 release_temp(p, tmp);
664 }
665
666
667 static void emit_matrix_transform_vec3( struct tnl_program *p,
668 struct ureg dest,
669 const struct ureg *mat,
670 struct ureg src)
671 {
672 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_X, src, mat[0]);
673 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Y, src, mat[1]);
674 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Z, src, mat[2]);
675 }
676
677
678 static void emit_normalize_vec3( struct tnl_program *p,
679 struct ureg dest,
680 struct ureg src )
681 {
682 #if 0
683 /* XXX use this when drivers are ready for NRM3 */
684 emit_op1(p, OPCODE_NRM3, dest, WRITEMASK_XYZ, src);
685 #else
686 struct ureg tmp = get_temp(p);
687 emit_op2(p, OPCODE_DP3, tmp, WRITEMASK_X, src, src);
688 emit_op1(p, OPCODE_RSQ, tmp, WRITEMASK_X, tmp);
689 emit_op2(p, OPCODE_MUL, dest, 0, src, swizzle1(tmp, X));
690 release_temp(p, tmp);
691 #endif
692 }
693
694
695 static void emit_passthrough( struct tnl_program *p,
696 GLuint input,
697 GLuint output )
698 {
699 struct ureg out = register_output(p, output);
700 emit_op1(p, OPCODE_MOV, out, 0, register_input(p, input));
701 }
702
703
704 static struct ureg get_eye_position( struct tnl_program *p )
705 {
706 if (is_undef(p->eye_position)) {
707 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
708 struct ureg modelview[4];
709
710 p->eye_position = reserve_temp(p);
711
712 if (p->mvp_with_dp4) {
713 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
714 0, modelview );
715
716 emit_matrix_transform_vec4(p, p->eye_position, modelview, pos);
717 }
718 else {
719 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
720 STATE_MATRIX_TRANSPOSE, modelview );
721
722 emit_transpose_matrix_transform_vec4(p, p->eye_position, modelview, pos);
723 }
724 }
725
726 return p->eye_position;
727 }
728
729
730 static struct ureg get_eye_position_z( struct tnl_program *p )
731 {
732 if (!is_undef(p->eye_position))
733 return swizzle1(p->eye_position, Z);
734
735 if (is_undef(p->eye_position_z)) {
736 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
737 struct ureg modelview[4];
738
739 p->eye_position_z = reserve_temp(p);
740
741 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
742 0, modelview );
743
744 emit_op2(p, OPCODE_DP4, p->eye_position_z, 0, pos, modelview[2]);
745 }
746
747 return p->eye_position_z;
748 }
749
750
751 static struct ureg get_eye_position_normalized( struct tnl_program *p )
752 {
753 if (is_undef(p->eye_position_normalized)) {
754 struct ureg eye = get_eye_position(p);
755 p->eye_position_normalized = reserve_temp(p);
756 emit_normalize_vec3(p, p->eye_position_normalized, eye);
757 }
758
759 return p->eye_position_normalized;
760 }
761
762
763 static struct ureg get_transformed_normal( struct tnl_program *p )
764 {
765 if (is_undef(p->transformed_normal) &&
766 !p->state->need_eye_coords &&
767 !p->state->normalize &&
768 !(p->state->need_eye_coords == p->state->rescale_normals))
769 {
770 p->transformed_normal = register_input(p, VERT_ATTRIB_NORMAL );
771 }
772 else if (is_undef(p->transformed_normal))
773 {
774 struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL );
775 struct ureg mvinv[3];
776 struct ureg transformed_normal = reserve_temp(p);
777
778 if (p->state->need_eye_coords) {
779 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 2,
780 STATE_MATRIX_INVTRANS, mvinv );
781
782 /* Transform to eye space:
783 */
784 emit_matrix_transform_vec3( p, transformed_normal, mvinv, normal );
785 normal = transformed_normal;
786 }
787
788 /* Normalize/Rescale:
789 */
790 if (p->state->normalize) {
791 emit_normalize_vec3( p, transformed_normal, normal );
792 normal = transformed_normal;
793 }
794 else if (p->state->need_eye_coords == p->state->rescale_normals) {
795 /* This is already adjusted for eye/non-eye rendering:
796 */
797 struct ureg rescale = register_param2(p, STATE_INTERNAL,
798 STATE_NORMAL_SCALE);
799
800 emit_op2( p, OPCODE_MUL, transformed_normal, 0, normal, rescale );
801 normal = transformed_normal;
802 }
803
804 assert(normal.file == PROGRAM_TEMPORARY);
805 p->transformed_normal = normal;
806 }
807
808 return p->transformed_normal;
809 }
810
811
812 static void build_hpos( struct tnl_program *p )
813 {
814 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
815 struct ureg hpos = register_output( p, VERT_RESULT_HPOS );
816 struct ureg mvp[4];
817
818 if (p->mvp_with_dp4) {
819 register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
820 0, mvp );
821 emit_matrix_transform_vec4( p, hpos, mvp, pos );
822 }
823 else {
824 register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
825 STATE_MATRIX_TRANSPOSE, mvp );
826 emit_transpose_matrix_transform_vec4( p, hpos, mvp, pos );
827 }
828 }
829
830
831 static GLuint material_attrib( GLuint side, GLuint property )
832 {
833 return (property - STATE_AMBIENT) * 2 + side;
834 }
835
836
837 /**
838 * Get a bitmask of which material values vary on a per-vertex basis.
839 */
840 static void set_material_flags( struct tnl_program *p )
841 {
842 p->color_materials = 0;
843 p->materials = 0;
844
845 if (p->state->varying_vp_inputs & VERT_BIT_COLOR0) {
846 p->materials =
847 p->color_materials = p->state->light_color_material_mask;
848 }
849
850 p->materials |= (p->state->varying_vp_inputs >> 16);
851 }
852
853
854 static struct ureg get_material( struct tnl_program *p, GLuint side,
855 GLuint property )
856 {
857 GLuint attrib = material_attrib(side, property);
858
859 if (p->color_materials & (1<<attrib))
860 return register_input(p, VERT_ATTRIB_COLOR0);
861 else if (p->materials & (1<<attrib)) {
862 /* Put material values in the GENERIC slots -- they are not used
863 * for anything in fixed function mode.
864 */
865 return register_input( p, attrib + VERT_ATTRIB_GENERIC0 );
866 }
867 else
868 return register_param3( p, STATE_MATERIAL, side, property );
869 }
870
871 #define SCENE_COLOR_BITS(side) (( MAT_BIT_FRONT_EMISSION | \
872 MAT_BIT_FRONT_AMBIENT | \
873 MAT_BIT_FRONT_DIFFUSE) << (side))
874
875
876 /**
877 * Either return a precalculated constant value or emit code to
878 * calculate these values dynamically in the case where material calls
879 * are present between begin/end pairs.
880 *
881 * Probably want to shift this to the program compilation phase - if
882 * we always emitted the calculation here, a smart compiler could
883 * detect that it was constant (given a certain set of inputs), and
884 * lift it out of the main loop. That way the programs created here
885 * would be independent of the vertex_buffer details.
886 */
887 static struct ureg get_scenecolor( struct tnl_program *p, GLuint side )
888 {
889 if (p->materials & SCENE_COLOR_BITS(side)) {
890 struct ureg lm_ambient = register_param1(p, STATE_LIGHTMODEL_AMBIENT);
891 struct ureg material_emission = get_material(p, side, STATE_EMISSION);
892 struct ureg material_ambient = get_material(p, side, STATE_AMBIENT);
893 struct ureg material_diffuse = get_material(p, side, STATE_DIFFUSE);
894 struct ureg tmp = make_temp(p, material_diffuse);
895 emit_op3(p, OPCODE_MAD, tmp, WRITEMASK_XYZ, lm_ambient,
896 material_ambient, material_emission);
897 return tmp;
898 }
899 else
900 return register_param2( p, STATE_LIGHTMODEL_SCENECOLOR, side );
901 }
902
903
904 static struct ureg get_lightprod( struct tnl_program *p, GLuint light,
905 GLuint side, GLuint property )
906 {
907 GLuint attrib = material_attrib(side, property);
908 if (p->materials & (1<<attrib)) {
909 struct ureg light_value =
910 register_param3(p, STATE_LIGHT, light, property);
911 struct ureg material_value = get_material(p, side, property);
912 struct ureg tmp = get_temp(p);
913 emit_op2(p, OPCODE_MUL, tmp, 0, light_value, material_value);
914 return tmp;
915 }
916 else
917 return register_param4(p, STATE_LIGHTPROD, light, side, property);
918 }
919
920
921 static struct ureg calculate_light_attenuation( struct tnl_program *p,
922 GLuint i,
923 struct ureg VPpli,
924 struct ureg dist )
925 {
926 struct ureg attenuation = register_param3(p, STATE_LIGHT, i,
927 STATE_ATTENUATION);
928 struct ureg att = get_temp(p);
929
930 /* Calculate spot attenuation:
931 */
932 if (!p->state->unit[i].light_spotcutoff_is_180) {
933 struct ureg spot_dir_norm = register_param3(p, STATE_INTERNAL,
934 STATE_LIGHT_SPOT_DIR_NORMALIZED, i);
935 struct ureg spot = get_temp(p);
936 struct ureg slt = get_temp(p);
937
938 emit_op2(p, OPCODE_DP3, spot, 0, negate(VPpli), spot_dir_norm);
939 emit_op2(p, OPCODE_SLT, slt, 0, swizzle1(spot_dir_norm,W), spot);
940 emit_op2(p, OPCODE_POW, spot, 0, spot, swizzle1(attenuation, W));
941 emit_op2(p, OPCODE_MUL, att, 0, slt, spot);
942
943 release_temp(p, spot);
944 release_temp(p, slt);
945 }
946
947 /* Calculate distance attenuation:
948 */
949 if (p->state->unit[i].light_attenuated) {
950 /* 1/d,d,d,1/d */
951 emit_op1(p, OPCODE_RCP, dist, WRITEMASK_YZ, dist);
952 /* 1,d,d*d,1/d */
953 emit_op2(p, OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y));
954 /* 1/dist-atten */
955 emit_op2(p, OPCODE_DP3, dist, 0, attenuation, dist);
956
957 if (!p->state->unit[i].light_spotcutoff_is_180) {
958 /* dist-atten */
959 emit_op1(p, OPCODE_RCP, dist, 0, dist);
960 /* spot-atten * dist-atten */
961 emit_op2(p, OPCODE_MUL, att, 0, dist, att);
962 }
963 else {
964 /* dist-atten */
965 emit_op1(p, OPCODE_RCP, att, 0, dist);
966 }
967 }
968
969 return att;
970 }
971
972
973 /**
974 * Compute:
975 * lit.y = MAX(0, dots.x)
976 * lit.z = SLT(0, dots.x)
977 */
978 static void emit_degenerate_lit( struct tnl_program *p,
979 struct ureg lit,
980 struct ureg dots )
981 {
982 struct ureg id = get_identity_param(p); /* id = {0,0,0,1} */
983
984 /* Note that lit.x & lit.w will not be examined. Note also that
985 * dots.xyzw == dots.xxxx.
986 */
987
988 /* MAX lit, id, dots;
989 */
990 emit_op2(p, OPCODE_MAX, lit, WRITEMASK_XYZW, id, dots);
991
992 /* result[2] = (in > 0 ? 1 : 0)
993 * SLT lit.z, id.z, dots; # lit.z = (0 < dots.z) ? 1 : 0
994 */
995 emit_op2(p, OPCODE_SLT, lit, WRITEMASK_Z, swizzle1(id,Z), dots);
996 }
997
998
999 /* Need to add some addtional parameters to allow lighting in object
1000 * space - STATE_SPOT_DIRECTION and STATE_HALF_VECTOR implicitly assume eye
1001 * space lighting.
1002 */
1003 static void build_lighting( struct tnl_program *p )
1004 {
1005 const GLboolean twoside = p->state->light_twoside;
1006 const GLboolean separate = p->state->separate_specular;
1007 GLuint nr_lights = 0, count = 0;
1008 struct ureg normal = get_transformed_normal(p);
1009 struct ureg lit = get_temp(p);
1010 struct ureg dots = get_temp(p);
1011 struct ureg _col0 = undef, _col1 = undef;
1012 struct ureg _bfc0 = undef, _bfc1 = undef;
1013 GLuint i;
1014
1015 /*
1016 * NOTE:
1017 * dots.x = dot(normal, VPpli)
1018 * dots.y = dot(normal, halfAngle)
1019 * dots.z = back.shininess
1020 * dots.w = front.shininess
1021 */
1022
1023 for (i = 0; i < MAX_LIGHTS; i++)
1024 if (p->state->unit[i].light_enabled)
1025 nr_lights++;
1026
1027 set_material_flags(p);
1028
1029 {
1030 if (!p->state->material_shininess_is_zero) {
1031 struct ureg shininess = get_material(p, 0, STATE_SHININESS);
1032 emit_op1(p, OPCODE_MOV, dots, WRITEMASK_W, swizzle1(shininess,X));
1033 release_temp(p, shininess);
1034 }
1035
1036 _col0 = make_temp(p, get_scenecolor(p, 0));
1037 if (separate)
1038 _col1 = make_temp(p, get_identity_param(p));
1039 else
1040 _col1 = _col0;
1041 }
1042
1043 if (twoside) {
1044 if (!p->state->material_shininess_is_zero) {
1045 /* Note that we negate the back-face specular exponent here.
1046 * The negation will be un-done later in the back-face code below.
1047 */
1048 struct ureg shininess = get_material(p, 1, STATE_SHININESS);
1049 emit_op1(p, OPCODE_MOV, dots, WRITEMASK_Z,
1050 negate(swizzle1(shininess,X)));
1051 release_temp(p, shininess);
1052 }
1053
1054 _bfc0 = make_temp(p, get_scenecolor(p, 1));
1055 if (separate)
1056 _bfc1 = make_temp(p, get_identity_param(p));
1057 else
1058 _bfc1 = _bfc0;
1059 }
1060
1061 /* If no lights, still need to emit the scenecolor.
1062 */
1063 {
1064 struct ureg res0 = register_output( p, VERT_RESULT_COL0 );
1065 emit_op1(p, OPCODE_MOV, res0, 0, _col0);
1066 }
1067
1068 if (separate) {
1069 struct ureg res1 = register_output( p, VERT_RESULT_COL1 );
1070 emit_op1(p, OPCODE_MOV, res1, 0, _col1);
1071 }
1072
1073 if (twoside) {
1074 struct ureg res0 = register_output( p, VERT_RESULT_BFC0 );
1075 emit_op1(p, OPCODE_MOV, res0, 0, _bfc0);
1076 }
1077
1078 if (twoside && separate) {
1079 struct ureg res1 = register_output( p, VERT_RESULT_BFC1 );
1080 emit_op1(p, OPCODE_MOV, res1, 0, _bfc1);
1081 }
1082
1083 if (nr_lights == 0) {
1084 release_temps(p);
1085 return;
1086 }
1087
1088 for (i = 0; i < MAX_LIGHTS; i++) {
1089 if (p->state->unit[i].light_enabled) {
1090 struct ureg half = undef;
1091 struct ureg att = undef, VPpli = undef;
1092
1093 count++;
1094
1095 if (p->state->unit[i].light_eyepos3_is_zero) {
1096 /* Can used precomputed constants in this case.
1097 * Attenuation never applies to infinite lights.
1098 */
1099 VPpli = register_param3(p, STATE_INTERNAL,
1100 STATE_LIGHT_POSITION_NORMALIZED, i);
1101
1102 if (!p->state->material_shininess_is_zero) {
1103 if (p->state->light_local_viewer) {
1104 struct ureg eye_hat = get_eye_position_normalized(p);
1105 half = get_temp(p);
1106 emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
1107 emit_normalize_vec3(p, half, half);
1108 }
1109 else {
1110 half = register_param3(p, STATE_INTERNAL,
1111 STATE_LIGHT_HALF_VECTOR, i);
1112 }
1113 }
1114 }
1115 else {
1116 struct ureg Ppli = register_param3(p, STATE_INTERNAL,
1117 STATE_LIGHT_POSITION, i);
1118 struct ureg V = get_eye_position(p);
1119 struct ureg dist = get_temp(p);
1120
1121 VPpli = get_temp(p);
1122
1123 /* Calculate VPpli vector
1124 */
1125 emit_op2(p, OPCODE_SUB, VPpli, 0, Ppli, V);
1126
1127 /* Normalize VPpli. The dist value also used in
1128 * attenuation below.
1129 */
1130 emit_op2(p, OPCODE_DP3, dist, 0, VPpli, VPpli);
1131 emit_op1(p, OPCODE_RSQ, dist, 0, dist);
1132 emit_op2(p, OPCODE_MUL, VPpli, 0, VPpli, dist);
1133
1134 /* Calculate attenuation:
1135 */
1136 if (!p->state->unit[i].light_spotcutoff_is_180 ||
1137 p->state->unit[i].light_attenuated) {
1138 att = calculate_light_attenuation(p, i, VPpli, dist);
1139 }
1140
1141 /* Calculate viewer direction, or use infinite viewer:
1142 */
1143 if (!p->state->material_shininess_is_zero) {
1144 half = get_temp(p);
1145
1146 if (p->state->light_local_viewer) {
1147 struct ureg eye_hat = get_eye_position_normalized(p);
1148 emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
1149 }
1150 else {
1151 struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z);
1152 emit_op2(p, OPCODE_ADD, half, 0, VPpli, z_dir);
1153 }
1154
1155 emit_normalize_vec3(p, half, half);
1156 }
1157
1158 release_temp(p, dist);
1159 }
1160
1161 /* Calculate dot products:
1162 */
1163 if (p->state->material_shininess_is_zero) {
1164 emit_op2(p, OPCODE_DP3, dots, 0, normal, VPpli);
1165 }
1166 else {
1167 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli);
1168 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_Y, normal, half);
1169 }
1170
1171 /* Front face lighting:
1172 */
1173 {
1174 struct ureg ambient = get_lightprod(p, i, 0, STATE_AMBIENT);
1175 struct ureg diffuse = get_lightprod(p, i, 0, STATE_DIFFUSE);
1176 struct ureg specular = get_lightprod(p, i, 0, STATE_SPECULAR);
1177 struct ureg res0, res1;
1178 GLuint mask0, mask1;
1179
1180 if (count == nr_lights) {
1181 if (separate) {
1182 mask0 = WRITEMASK_XYZ;
1183 mask1 = WRITEMASK_XYZ;
1184 res0 = register_output( p, VERT_RESULT_COL0 );
1185 res1 = register_output( p, VERT_RESULT_COL1 );
1186 }
1187 else {
1188 mask0 = 0;
1189 mask1 = WRITEMASK_XYZ;
1190 res0 = _col0;
1191 res1 = register_output( p, VERT_RESULT_COL0 );
1192 }
1193 }
1194 else {
1195 mask0 = 0;
1196 mask1 = 0;
1197 res0 = _col0;
1198 res1 = _col1;
1199 }
1200
1201 if (!is_undef(att)) {
1202 /* light is attenuated by distance */
1203 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1204 emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1205 emit_op3(p, OPCODE_MAD, _col0, 0, swizzle1(lit,X), ambient, _col0);
1206 }
1207 else if (!p->state->material_shininess_is_zero) {
1208 /* there's a non-zero specular term */
1209 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1210 emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1211 }
1212 else {
1213 /* no attenutation, no specular */
1214 emit_degenerate_lit(p, lit, dots);
1215 emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1216 }
1217
1218 emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _col0);
1219 emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _col1);
1220
1221 release_temp(p, ambient);
1222 release_temp(p, diffuse);
1223 release_temp(p, specular);
1224 }
1225
1226 /* Back face lighting:
1227 */
1228 if (twoside) {
1229 struct ureg ambient = get_lightprod(p, i, 1, STATE_AMBIENT);
1230 struct ureg diffuse = get_lightprod(p, i, 1, STATE_DIFFUSE);
1231 struct ureg specular = get_lightprod(p, i, 1, STATE_SPECULAR);
1232 struct ureg res0, res1;
1233 GLuint mask0, mask1;
1234
1235 if (count == nr_lights) {
1236 if (separate) {
1237 mask0 = WRITEMASK_XYZ;
1238 mask1 = WRITEMASK_XYZ;
1239 res0 = register_output( p, VERT_RESULT_BFC0 );
1240 res1 = register_output( p, VERT_RESULT_BFC1 );
1241 }
1242 else {
1243 mask0 = 0;
1244 mask1 = WRITEMASK_XYZ;
1245 res0 = _bfc0;
1246 res1 = register_output( p, VERT_RESULT_BFC0 );
1247 }
1248 }
1249 else {
1250 res0 = _bfc0;
1251 res1 = _bfc1;
1252 mask0 = 0;
1253 mask1 = 0;
1254 }
1255
1256 /* For the back face we need to negate the X and Y component
1257 * dot products. dots.Z has the negated back-face specular
1258 * exponent. We swizzle that into the W position. This
1259 * negation makes the back-face specular term positive again.
1260 */
1261 dots = negate(swizzle(dots,X,Y,W,Z));
1262
1263 if (!is_undef(att)) {
1264 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1265 emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1266 emit_op3(p, OPCODE_MAD, _bfc0, 0, swizzle1(lit,X), ambient, _bfc0);
1267 }
1268 else if (!p->state->material_shininess_is_zero) {
1269 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1270 emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0); /**/
1271 }
1272 else {
1273 emit_degenerate_lit(p, lit, dots);
1274 emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0);
1275 }
1276
1277 emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _bfc0);
1278 emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _bfc1);
1279 /* restore dots to its original state for subsequent lights
1280 * by negating and swizzling again.
1281 */
1282 dots = negate(swizzle(dots,X,Y,W,Z));
1283
1284 release_temp(p, ambient);
1285 release_temp(p, diffuse);
1286 release_temp(p, specular);
1287 }
1288
1289 release_temp(p, half);
1290 release_temp(p, VPpli);
1291 release_temp(p, att);
1292 }
1293 }
1294
1295 release_temps( p );
1296 }
1297
1298
1299 static void build_fog( struct tnl_program *p )
1300 {
1301 struct ureg fog = register_output(p, VERT_RESULT_FOGC);
1302 struct ureg input;
1303
1304 if (p->state->fog_source_is_depth) {
1305 input = get_eye_position_z(p);
1306 }
1307 else {
1308 input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X);
1309 }
1310
1311 /* result.fog = {abs(f),0,0,1}; */
1312 emit_op1(p, OPCODE_ABS, fog, WRITEMASK_X, input);
1313 emit_op1(p, OPCODE_MOV, fog, WRITEMASK_YZW, get_identity_param(p));
1314 }
1315
1316
1317 static void build_reflect_texgen( struct tnl_program *p,
1318 struct ureg dest,
1319 GLuint writemask )
1320 {
1321 struct ureg normal = get_transformed_normal(p);
1322 struct ureg eye_hat = get_eye_position_normalized(p);
1323 struct ureg tmp = get_temp(p);
1324
1325 /* n.u */
1326 emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1327 /* 2n.u */
1328 emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1329 /* (-2n.u)n + u */
1330 emit_op3(p, OPCODE_MAD, dest, writemask, negate(tmp), normal, eye_hat);
1331
1332 release_temp(p, tmp);
1333 }
1334
1335
1336 static void build_sphere_texgen( struct tnl_program *p,
1337 struct ureg dest,
1338 GLuint writemask )
1339 {
1340 struct ureg normal = get_transformed_normal(p);
1341 struct ureg eye_hat = get_eye_position_normalized(p);
1342 struct ureg tmp = get_temp(p);
1343 struct ureg half = register_scalar_const(p, .5);
1344 struct ureg r = get_temp(p);
1345 struct ureg inv_m = get_temp(p);
1346 struct ureg id = get_identity_param(p);
1347
1348 /* Could share the above calculations, but it would be
1349 * a fairly odd state for someone to set (both sphere and
1350 * reflection active for different texture coordinate
1351 * components. Of course - if two texture units enable
1352 * reflect and/or sphere, things start to tilt in favour
1353 * of seperating this out:
1354 */
1355
1356 /* n.u */
1357 emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1358 /* 2n.u */
1359 emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1360 /* (-2n.u)n + u */
1361 emit_op3(p, OPCODE_MAD, r, 0, negate(tmp), normal, eye_hat);
1362 /* r + 0,0,1 */
1363 emit_op2(p, OPCODE_ADD, tmp, 0, r, swizzle(id,X,Y,W,Z));
1364 /* rx^2 + ry^2 + (rz+1)^2 */
1365 emit_op2(p, OPCODE_DP3, tmp, 0, tmp, tmp);
1366 /* 2/m */
1367 emit_op1(p, OPCODE_RSQ, tmp, 0, tmp);
1368 /* 1/m */
1369 emit_op2(p, OPCODE_MUL, inv_m, 0, tmp, half);
1370 /* r/m + 1/2 */
1371 emit_op3(p, OPCODE_MAD, dest, writemask, r, inv_m, half);
1372
1373 release_temp(p, tmp);
1374 release_temp(p, r);
1375 release_temp(p, inv_m);
1376 }
1377
1378
1379 static void build_texture_transform( struct tnl_program *p )
1380 {
1381 GLuint i, j;
1382
1383 for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
1384
1385 if (!(p->state->fragprog_inputs_read & FRAG_BIT_TEX(i)))
1386 continue;
1387
1388 if (p->state->unit[i].texgen_enabled ||
1389 p->state->unit[i].texmat_enabled) {
1390
1391 GLuint texmat_enabled = p->state->unit[i].texmat_enabled;
1392 struct ureg out = register_output(p, VERT_RESULT_TEX0 + i);
1393 struct ureg out_texgen = undef;
1394
1395 if (p->state->unit[i].texgen_enabled) {
1396 GLuint copy_mask = 0;
1397 GLuint sphere_mask = 0;
1398 GLuint reflect_mask = 0;
1399 GLuint normal_mask = 0;
1400 GLuint modes[4];
1401
1402 if (texmat_enabled)
1403 out_texgen = get_temp(p);
1404 else
1405 out_texgen = out;
1406
1407 modes[0] = p->state->unit[i].texgen_mode0;
1408 modes[1] = p->state->unit[i].texgen_mode1;
1409 modes[2] = p->state->unit[i].texgen_mode2;
1410 modes[3] = p->state->unit[i].texgen_mode3;
1411
1412 for (j = 0; j < 4; j++) {
1413 switch (modes[j]) {
1414 case TXG_OBJ_LINEAR: {
1415 struct ureg obj = register_input(p, VERT_ATTRIB_POS);
1416 struct ureg plane =
1417 register_param3(p, STATE_TEXGEN, i,
1418 STATE_TEXGEN_OBJECT_S + j);
1419
1420 emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1421 obj, plane );
1422 break;
1423 }
1424 case TXG_EYE_LINEAR: {
1425 struct ureg eye = get_eye_position(p);
1426 struct ureg plane =
1427 register_param3(p, STATE_TEXGEN, i,
1428 STATE_TEXGEN_EYE_S + j);
1429
1430 emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1431 eye, plane );
1432 break;
1433 }
1434 case TXG_SPHERE_MAP:
1435 sphere_mask |= WRITEMASK_X << j;
1436 break;
1437 case TXG_REFLECTION_MAP:
1438 reflect_mask |= WRITEMASK_X << j;
1439 break;
1440 case TXG_NORMAL_MAP:
1441 normal_mask |= WRITEMASK_X << j;
1442 break;
1443 case TXG_NONE:
1444 copy_mask |= WRITEMASK_X << j;
1445 }
1446 }
1447
1448 if (sphere_mask) {
1449 build_sphere_texgen(p, out_texgen, sphere_mask);
1450 }
1451
1452 if (reflect_mask) {
1453 build_reflect_texgen(p, out_texgen, reflect_mask);
1454 }
1455
1456 if (normal_mask) {
1457 struct ureg normal = get_transformed_normal(p);
1458 emit_op1(p, OPCODE_MOV, out_texgen, normal_mask, normal );
1459 }
1460
1461 if (copy_mask) {
1462 struct ureg in = register_input(p, VERT_ATTRIB_TEX0+i);
1463 emit_op1(p, OPCODE_MOV, out_texgen, copy_mask, in );
1464 }
1465 }
1466
1467 if (texmat_enabled) {
1468 struct ureg texmat[4];
1469 struct ureg in = (!is_undef(out_texgen) ?
1470 out_texgen :
1471 register_input(p, VERT_ATTRIB_TEX0+i));
1472 if (p->mvp_with_dp4) {
1473 register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1474 0, texmat );
1475 emit_matrix_transform_vec4( p, out, texmat, in );
1476 }
1477 else {
1478 register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1479 STATE_MATRIX_TRANSPOSE, texmat );
1480 emit_transpose_matrix_transform_vec4( p, out, texmat, in );
1481 }
1482 }
1483
1484 release_temps(p);
1485 }
1486 else {
1487 emit_passthrough(p, VERT_ATTRIB_TEX0+i, VERT_RESULT_TEX0+i);
1488 }
1489 }
1490 }
1491
1492
1493 /**
1494 * Point size attenuation computation.
1495 */
1496 static void build_atten_pointsize( struct tnl_program *p )
1497 {
1498 struct ureg eye = get_eye_position_z(p);
1499 struct ureg state_size = register_param1(p, STATE_POINT_SIZE);
1500 struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION);
1501 struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1502 struct ureg ut = get_temp(p);
1503
1504 /* dist = |eyez| */
1505 emit_op1(p, OPCODE_ABS, ut, WRITEMASK_Y, swizzle1(eye, Z));
1506 /* p1 + dist * (p2 + dist * p3); */
1507 emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1508 swizzle1(state_attenuation, Z), swizzle1(state_attenuation, Y));
1509 emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1510 ut, swizzle1(state_attenuation, X));
1511
1512 /* 1 / sqrt(factor) */
1513 emit_op1(p, OPCODE_RSQ, ut, WRITEMASK_X, ut );
1514
1515 #if 0
1516 /* out = pointSize / sqrt(factor) */
1517 emit_op2(p, OPCODE_MUL, out, WRITEMASK_X, ut, state_size);
1518 #else
1519 /* this is a good place to clamp the point size since there's likely
1520 * no hardware registers to clamp point size at rasterization time.
1521 */
1522 emit_op2(p, OPCODE_MUL, ut, WRITEMASK_X, ut, state_size);
1523 emit_op2(p, OPCODE_MAX, ut, WRITEMASK_X, ut, swizzle1(state_size, Y));
1524 emit_op2(p, OPCODE_MIN, out, WRITEMASK_X, ut, swizzle1(state_size, Z));
1525 #endif
1526
1527 release_temp(p, ut);
1528 }
1529
1530
1531 /**
1532 * Pass-though per-vertex point size, from user's point size array.
1533 */
1534 static void build_array_pointsize( struct tnl_program *p )
1535 {
1536 struct ureg in = register_input(p, VERT_ATTRIB_POINT_SIZE);
1537 struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1538 emit_op1(p, OPCODE_MOV, out, WRITEMASK_X, in);
1539 }
1540
1541
1542 static void build_tnl_program( struct tnl_program *p )
1543 {
1544 /* Emit the program, starting with modelviewproject:
1545 */
1546 build_hpos(p);
1547
1548 /* Lighting calculations:
1549 */
1550 if (p->state->fragprog_inputs_read & (FRAG_BIT_COL0|FRAG_BIT_COL1)) {
1551 if (p->state->light_global_enabled)
1552 build_lighting(p);
1553 else {
1554 if (p->state->fragprog_inputs_read & FRAG_BIT_COL0)
1555 emit_passthrough(p, VERT_ATTRIB_COLOR0, VERT_RESULT_COL0);
1556
1557 if (p->state->fragprog_inputs_read & FRAG_BIT_COL1)
1558 emit_passthrough(p, VERT_ATTRIB_COLOR1, VERT_RESULT_COL1);
1559 }
1560 }
1561
1562 if (p->state->fragprog_inputs_read & FRAG_BIT_FOGC)
1563 build_fog(p);
1564
1565 if (p->state->fragprog_inputs_read & FRAG_BITS_TEX_ANY)
1566 build_texture_transform(p);
1567
1568 if (p->state->point_attenuated)
1569 build_atten_pointsize(p);
1570 else if (p->state->point_array)
1571 build_array_pointsize(p);
1572
1573 /* Finish up:
1574 */
1575 emit_op1(p, OPCODE_END, undef, 0, undef);
1576
1577 /* Disassemble:
1578 */
1579 if (DISASSEM) {
1580 _mesa_printf ("\n");
1581 }
1582 }
1583
1584
1585 static void
1586 create_new_program( const struct state_key *key,
1587 struct gl_vertex_program *program,
1588 GLboolean mvp_with_dp4,
1589 GLuint max_temps)
1590 {
1591 struct tnl_program p;
1592
1593 _mesa_memset(&p, 0, sizeof(p));
1594 p.state = key;
1595 p.program = program;
1596 p.eye_position = undef;
1597 p.eye_position_z = undef;
1598 p.eye_position_normalized = undef;
1599 p.transformed_normal = undef;
1600 p.identity = undef;
1601 p.temp_in_use = 0;
1602 p.mvp_with_dp4 = mvp_with_dp4;
1603
1604 if (max_temps >= sizeof(int) * 8)
1605 p.temp_reserved = 0;
1606 else
1607 p.temp_reserved = ~((1<<max_temps)-1);
1608
1609 /* Start by allocating 32 instructions.
1610 * If we need more, we'll grow the instruction array as needed.
1611 */
1612 p.max_inst = 32;
1613 p.program->Base.Instructions = _mesa_alloc_instructions(p.max_inst);
1614 p.program->Base.String = NULL;
1615 p.program->Base.NumInstructions =
1616 p.program->Base.NumTemporaries =
1617 p.program->Base.NumParameters =
1618 p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
1619 p.program->Base.Parameters = _mesa_new_parameter_list();
1620 p.program->Base.InputsRead = 0;
1621 p.program->Base.OutputsWritten = 0;
1622
1623 build_tnl_program( &p );
1624 }
1625
1626
1627 /**
1628 * Return a vertex program which implements the current fixed-function
1629 * transform/lighting/texgen operations.
1630 * XXX move this into core mesa (main/)
1631 */
1632 struct gl_vertex_program *
1633 _mesa_get_fixed_func_vertex_program(GLcontext *ctx)
1634 {
1635 struct gl_vertex_program *prog;
1636 struct state_key key;
1637
1638 /* Grab all the relevent state and put it in a single structure:
1639 */
1640 make_state_key(ctx, &key);
1641
1642 /* Look for an already-prepared program for this state:
1643 */
1644 prog = (struct gl_vertex_program *)
1645 _mesa_search_program_cache(ctx->VertexProgram.Cache, &key, sizeof(key));
1646
1647 if (!prog) {
1648 /* OK, we'll have to build a new one */
1649 if (0)
1650 _mesa_printf("Build new TNL program\n");
1651
1652 prog = (struct gl_vertex_program *)
1653 ctx->Driver.NewProgram(ctx, GL_VERTEX_PROGRAM_ARB, 0);
1654 if (!prog)
1655 return NULL;
1656
1657 create_new_program( &key, prog,
1658 ctx->mvp_with_dp4,
1659 ctx->Const.VertexProgram.MaxTemps );
1660
1661 #if 0
1662 if (ctx->Driver.ProgramStringNotify)
1663 ctx->Driver.ProgramStringNotify( ctx, GL_VERTEX_PROGRAM_ARB,
1664 &prog->Base );
1665 #endif
1666 _mesa_program_cache_insert(ctx, ctx->VertexProgram.Cache,
1667 &key, sizeof(key), &prog->Base);
1668 }
1669
1670 return prog;
1671 }