Added few more stubs so that control reaches to DestroyDevice().
[mesa.git] / src / mesa / main / ffvertex_prog.c
1 /**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * \file ffvertex_prog.c
30 *
31 * Create a vertex program to execute the current fixed function T&L pipeline.
32 * \author Keith Whitwell
33 */
34
35
36 #include "main/errors.h"
37 #include "main/glheader.h"
38 #include "main/mtypes.h"
39 #include "main/macros.h"
40 #include "main/enums.h"
41 #include "main/ffvertex_prog.h"
42 #include "program/program.h"
43 #include "program/prog_cache.h"
44 #include "program/prog_instruction.h"
45 #include "program/prog_parameter.h"
46 #include "program/prog_print.h"
47 #include "program/prog_statevars.h"
48 #include "util/bitscan.h"
49
50
51 /** Max of number of lights and texture coord units */
52 #define NUM_UNITS MAX2(MAX_TEXTURE_COORD_UNITS, MAX_LIGHTS)
53
54 struct state_key {
55 GLbitfield varying_vp_inputs;
56
57 unsigned fragprog_inputs_read:12;
58
59 unsigned light_color_material_mask:12;
60 unsigned light_global_enabled:1;
61 unsigned light_local_viewer:1;
62 unsigned light_twoside:1;
63 unsigned material_shininess_is_zero:1;
64 unsigned need_eye_coords:1;
65 unsigned normalize:1;
66 unsigned rescale_normals:1;
67
68 unsigned fog_distance_mode:2;
69 unsigned separate_specular:1;
70 unsigned point_attenuated:1;
71
72 struct {
73 unsigned char light_enabled:1;
74 unsigned char light_eyepos3_is_zero:1;
75 unsigned char light_spotcutoff_is_180:1;
76 unsigned char light_attenuated:1;
77 unsigned char texmat_enabled:1;
78 unsigned char coord_replace:1;
79 unsigned char texgen_enabled:1;
80 unsigned char texgen_mode0:4;
81 unsigned char texgen_mode1:4;
82 unsigned char texgen_mode2:4;
83 unsigned char texgen_mode3:4;
84 } unit[NUM_UNITS];
85 };
86
87
88 #define TXG_NONE 0
89 #define TXG_OBJ_LINEAR 1
90 #define TXG_EYE_LINEAR 2
91 #define TXG_SPHERE_MAP 3
92 #define TXG_REFLECTION_MAP 4
93 #define TXG_NORMAL_MAP 5
94
95 static GLuint translate_texgen( GLboolean enabled, GLenum mode )
96 {
97 if (!enabled)
98 return TXG_NONE;
99
100 switch (mode) {
101 case GL_OBJECT_LINEAR: return TXG_OBJ_LINEAR;
102 case GL_EYE_LINEAR: return TXG_EYE_LINEAR;
103 case GL_SPHERE_MAP: return TXG_SPHERE_MAP;
104 case GL_REFLECTION_MAP_NV: return TXG_REFLECTION_MAP;
105 case GL_NORMAL_MAP_NV: return TXG_NORMAL_MAP;
106 default: return TXG_NONE;
107 }
108 }
109
110 #define FDM_EYE_RADIAL 0
111 #define FDM_EYE_PLANE 1
112 #define FDM_EYE_PLANE_ABS 2
113 #define FDM_FROM_ARRAY 3
114
115 static GLuint translate_fog_distance_mode(GLenum source, GLenum mode)
116 {
117 if (source == GL_FRAGMENT_DEPTH_EXT) {
118 switch (mode) {
119 case GL_EYE_RADIAL_NV:
120 return FDM_EYE_RADIAL;
121 case GL_EYE_PLANE:
122 return FDM_EYE_PLANE;
123 default: /* shouldn't happen; fall through to a sensible default */
124 case GL_EYE_PLANE_ABSOLUTE_NV:
125 return FDM_EYE_PLANE_ABS;
126 }
127 } else {
128 return FDM_FROM_ARRAY;
129 }
130 }
131
132 static GLboolean check_active_shininess( struct gl_context *ctx,
133 const struct state_key *key,
134 GLuint side )
135 {
136 GLuint attr = MAT_ATTRIB_FRONT_SHININESS + side;
137
138 if ((key->varying_vp_inputs & VERT_BIT_COLOR0) &&
139 (key->light_color_material_mask & (1 << attr)))
140 return GL_TRUE;
141
142 if (key->varying_vp_inputs & VERT_BIT_MAT(attr))
143 return GL_TRUE;
144
145 if (ctx->Light.Material.Attrib[attr][0] != 0.0F)
146 return GL_TRUE;
147
148 return GL_FALSE;
149 }
150
151
152 static void make_state_key( struct gl_context *ctx, struct state_key *key )
153 {
154 const struct gl_program *fp = ctx->FragmentProgram._Current;
155 GLbitfield mask;
156
157 memset(key, 0, sizeof(struct state_key));
158
159 /* This now relies on texenvprogram.c being active:
160 */
161 assert(fp);
162
163 key->need_eye_coords = ctx->_NeedEyeCoords;
164
165 key->fragprog_inputs_read = fp->info.inputs_read;
166 key->varying_vp_inputs = ctx->varying_vp_inputs;
167
168 if (ctx->RenderMode == GL_FEEDBACK) {
169 /* make sure the vertprog emits color and tex0 */
170 key->fragprog_inputs_read |= (VARYING_BIT_COL0 | VARYING_BIT_TEX0);
171 }
172
173 if (ctx->Light.Enabled) {
174 key->light_global_enabled = 1;
175
176 if (ctx->Light.Model.LocalViewer)
177 key->light_local_viewer = 1;
178
179 if (ctx->Light.Model.TwoSide)
180 key->light_twoside = 1;
181
182 if (ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)
183 key->separate_specular = 1;
184
185 if (ctx->Light.ColorMaterialEnabled) {
186 key->light_color_material_mask = ctx->Light._ColorMaterialBitmask;
187 }
188
189 mask = ctx->Light._EnabledLights;
190 while (mask) {
191 const int i = u_bit_scan(&mask);
192 struct gl_light *light = &ctx->Light.Light[i];
193
194 key->unit[i].light_enabled = 1;
195
196 if (light->EyePosition[3] == 0.0F)
197 key->unit[i].light_eyepos3_is_zero = 1;
198
199 if (light->SpotCutoff == 180.0F)
200 key->unit[i].light_spotcutoff_is_180 = 1;
201
202 if (light->ConstantAttenuation != 1.0F ||
203 light->LinearAttenuation != 0.0F ||
204 light->QuadraticAttenuation != 0.0F)
205 key->unit[i].light_attenuated = 1;
206 }
207
208 if (check_active_shininess(ctx, key, 0)) {
209 key->material_shininess_is_zero = 0;
210 }
211 else if (key->light_twoside &&
212 check_active_shininess(ctx, key, 1)) {
213 key->material_shininess_is_zero = 0;
214 }
215 else {
216 key->material_shininess_is_zero = 1;
217 }
218 }
219
220 if (ctx->Transform.Normalize)
221 key->normalize = 1;
222
223 if (ctx->Transform.RescaleNormals)
224 key->rescale_normals = 1;
225
226 /* Only distinguish fog parameters if we actually need */
227 if (key->fragprog_inputs_read & VARYING_BIT_FOGC)
228 key->fog_distance_mode =
229 translate_fog_distance_mode(ctx->Fog.FogCoordinateSource,
230 ctx->Fog.FogDistanceMode);
231
232 if (ctx->Point._Attenuated)
233 key->point_attenuated = 1;
234
235 mask = ctx->Texture._EnabledCoordUnits | ctx->Texture._TexGenEnabled
236 | ctx->Texture._TexMatEnabled | ctx->Point.CoordReplace;
237 while (mask) {
238 const int i = u_bit_scan(&mask);
239 struct gl_fixedfunc_texture_unit *texUnit =
240 &ctx->Texture.FixedFuncUnit[i];
241
242 if (ctx->Point.PointSprite)
243 if (ctx->Point.CoordReplace & (1u << i))
244 key->unit[i].coord_replace = 1;
245
246 if (ctx->Texture._TexMatEnabled & ENABLE_TEXMAT(i))
247 key->unit[i].texmat_enabled = 1;
248
249 if (texUnit->TexGenEnabled) {
250 key->unit[i].texgen_enabled = 1;
251
252 key->unit[i].texgen_mode0 =
253 translate_texgen( texUnit->TexGenEnabled & (1<<0),
254 texUnit->GenS.Mode );
255 key->unit[i].texgen_mode1 =
256 translate_texgen( texUnit->TexGenEnabled & (1<<1),
257 texUnit->GenT.Mode );
258 key->unit[i].texgen_mode2 =
259 translate_texgen( texUnit->TexGenEnabled & (1<<2),
260 texUnit->GenR.Mode );
261 key->unit[i].texgen_mode3 =
262 translate_texgen( texUnit->TexGenEnabled & (1<<3),
263 texUnit->GenQ.Mode );
264 }
265 }
266 }
267
268
269
270 /* Very useful debugging tool - produces annotated listing of
271 * generated program with line/function references for each
272 * instruction back into this file:
273 */
274 #define DISASSEM 0
275
276
277 /* Use uregs to represent registers internally, translate to Mesa's
278 * expected formats on emit.
279 *
280 * NOTE: These are passed by value extensively in this file rather
281 * than as usual by pointer reference. If this disturbs you, try
282 * remembering they are just 32bits in size.
283 *
284 * GCC is smart enough to deal with these dword-sized structures in
285 * much the same way as if I had defined them as dwords and was using
286 * macros to access and set the fields. This is much nicer and easier
287 * to evolve.
288 */
289 struct ureg {
290 GLuint file:4;
291 GLint idx:9; /* relative addressing may be negative */
292 /* sizeof(idx) should == sizeof(prog_src_reg::Index) */
293 GLuint negate:1;
294 GLuint swz:12;
295 GLuint pad:6;
296 };
297
298
299 struct tnl_program {
300 const struct state_key *state;
301 struct gl_program *program;
302 GLuint max_inst; /** number of instructions allocated for program */
303 GLboolean mvp_with_dp4;
304
305 GLuint temp_in_use;
306 GLuint temp_reserved;
307
308 struct ureg eye_position;
309 struct ureg eye_position_z;
310 struct ureg eye_position_normalized;
311 struct ureg transformed_normal;
312 struct ureg identity;
313
314 GLuint materials;
315 GLuint color_materials;
316 };
317
318
319 static const struct ureg undef = {
320 PROGRAM_UNDEFINED,
321 0,
322 0,
323 0,
324 0
325 };
326
327 /* Local shorthand:
328 */
329 #define X SWIZZLE_X
330 #define Y SWIZZLE_Y
331 #define Z SWIZZLE_Z
332 #define W SWIZZLE_W
333
334
335 /* Construct a ureg:
336 */
337 static struct ureg make_ureg(GLuint file, GLint idx)
338 {
339 struct ureg reg;
340 reg.file = file;
341 reg.idx = idx;
342 reg.negate = 0;
343 reg.swz = SWIZZLE_NOOP;
344 reg.pad = 0;
345 return reg;
346 }
347
348
349 static struct ureg negate( struct ureg reg )
350 {
351 reg.negate ^= 1;
352 return reg;
353 }
354
355
356 static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
357 {
358 reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
359 GET_SWZ(reg.swz, y),
360 GET_SWZ(reg.swz, z),
361 GET_SWZ(reg.swz, w));
362 return reg;
363 }
364
365
366 static struct ureg swizzle1( struct ureg reg, int x )
367 {
368 return swizzle(reg, x, x, x, x);
369 }
370
371
372 static struct ureg get_temp( struct tnl_program *p )
373 {
374 int bit = ffs( ~p->temp_in_use );
375 if (!bit) {
376 _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
377 exit(1);
378 }
379
380 if ((GLuint) bit > p->program->arb.NumTemporaries)
381 p->program->arb.NumTemporaries = bit;
382
383 p->temp_in_use |= 1<<(bit-1);
384 return make_ureg(PROGRAM_TEMPORARY, bit-1);
385 }
386
387
388 static struct ureg reserve_temp( struct tnl_program *p )
389 {
390 struct ureg temp = get_temp( p );
391 p->temp_reserved |= 1<<temp.idx;
392 return temp;
393 }
394
395
396 static void release_temp( struct tnl_program *p, struct ureg reg )
397 {
398 if (reg.file == PROGRAM_TEMPORARY) {
399 p->temp_in_use &= ~(1<<reg.idx);
400 p->temp_in_use |= p->temp_reserved; /* can't release reserved temps */
401 }
402 }
403
404 static void release_temps( struct tnl_program *p )
405 {
406 p->temp_in_use = p->temp_reserved;
407 }
408
409
410 static struct ureg register_param5(struct tnl_program *p,
411 GLint s0,
412 GLint s1,
413 GLint s2,
414 GLint s3,
415 GLint s4)
416 {
417 gl_state_index16 tokens[STATE_LENGTH];
418 GLint idx;
419 tokens[0] = s0;
420 tokens[1] = s1;
421 tokens[2] = s2;
422 tokens[3] = s3;
423 tokens[4] = s4;
424 idx = _mesa_add_state_reference(p->program->Parameters, tokens );
425 return make_ureg(PROGRAM_STATE_VAR, idx);
426 }
427
428
429 #define register_param1(p,s0) register_param5(p,s0,0,0,0,0)
430 #define register_param2(p,s0,s1) register_param5(p,s0,s1,0,0,0)
431 #define register_param3(p,s0,s1,s2) register_param5(p,s0,s1,s2,0,0)
432 #define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0)
433
434
435
436 /**
437 * \param input one of VERT_ATTRIB_x tokens.
438 */
439 static struct ureg register_input( struct tnl_program *p, GLuint input )
440 {
441 assert(input < VERT_ATTRIB_MAX);
442
443 if (p->state->varying_vp_inputs & VERT_BIT(input)) {
444 p->program->info.inputs_read |= VERT_BIT(input);
445 return make_ureg(PROGRAM_INPUT, input);
446 }
447 else {
448 return register_param3( p, STATE_INTERNAL, STATE_CURRENT_ATTRIB, input );
449 }
450 }
451
452
453 /**
454 * \param input one of VARYING_SLOT_x tokens.
455 */
456 static struct ureg register_output( struct tnl_program *p, GLuint output )
457 {
458 p->program->info.outputs_written |= BITFIELD64_BIT(output);
459 return make_ureg(PROGRAM_OUTPUT, output);
460 }
461
462
463 static struct ureg register_const4f( struct tnl_program *p,
464 GLfloat s0,
465 GLfloat s1,
466 GLfloat s2,
467 GLfloat s3)
468 {
469 gl_constant_value values[4];
470 GLint idx;
471 GLuint swizzle;
472 values[0].f = s0;
473 values[1].f = s1;
474 values[2].f = s2;
475 values[3].f = s3;
476 idx = _mesa_add_unnamed_constant(p->program->Parameters, values, 4,
477 &swizzle );
478 assert(swizzle == SWIZZLE_NOOP);
479 return make_ureg(PROGRAM_CONSTANT, idx);
480 }
481
482 #define register_const1f(p, s0) register_const4f(p, s0, 0, 0, 1)
483 #define register_scalar_const(p, s0) register_const4f(p, s0, s0, s0, s0)
484 #define register_const2f(p, s0, s1) register_const4f(p, s0, s1, 0, 1)
485 #define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
486
487 static GLboolean is_undef( struct ureg reg )
488 {
489 return reg.file == PROGRAM_UNDEFINED;
490 }
491
492
493 static struct ureg get_identity_param( struct tnl_program *p )
494 {
495 if (is_undef(p->identity))
496 p->identity = register_const4f(p, 0,0,0,1);
497
498 return p->identity;
499 }
500
501 static void register_matrix_param5( struct tnl_program *p,
502 GLint s0, /* modelview, projection, etc */
503 GLint s1, /* texture matrix number */
504 GLint s2, /* first row */
505 GLint s3, /* last row */
506 GLint s4, /* inverse, transpose, etc */
507 struct ureg *matrix )
508 {
509 GLint i;
510
511 /* This is a bit sad as the support is there to pull the whole
512 * matrix out in one go:
513 */
514 for (i = 0; i <= s3 - s2; i++)
515 matrix[i] = register_param5( p, s0, s1, i, i, s4 );
516 }
517
518
519 static void emit_arg( struct prog_src_register *src,
520 struct ureg reg )
521 {
522 src->File = reg.file;
523 src->Index = reg.idx;
524 src->Swizzle = reg.swz;
525 src->Negate = reg.negate ? NEGATE_XYZW : NEGATE_NONE;
526 src->RelAddr = 0;
527 /* Check that bitfield sizes aren't exceeded */
528 assert(src->Index == reg.idx);
529 }
530
531
532 static void emit_dst( struct prog_dst_register *dst,
533 struct ureg reg, GLuint mask )
534 {
535 dst->File = reg.file;
536 dst->Index = reg.idx;
537 /* allow zero as a shorthand for xyzw */
538 dst->WriteMask = mask ? mask : WRITEMASK_XYZW;
539 /* Check that bitfield sizes aren't exceeded */
540 assert(dst->Index == reg.idx);
541 }
542
543
544 static void debug_insn( struct prog_instruction *inst, const char *fn,
545 GLuint line )
546 {
547 if (DISASSEM) {
548 static const char *last_fn;
549
550 if (fn != last_fn) {
551 last_fn = fn;
552 printf("%s:\n", fn);
553 }
554
555 printf("%d:\t", line);
556 _mesa_print_instruction(inst);
557 }
558 }
559
560
561 static void emit_op3fn(struct tnl_program *p,
562 enum prog_opcode op,
563 struct ureg dest,
564 GLuint mask,
565 struct ureg src0,
566 struct ureg src1,
567 struct ureg src2,
568 const char *fn,
569 GLuint line)
570 {
571 GLuint nr;
572 struct prog_instruction *inst;
573
574 assert(p->program->arb.NumInstructions <= p->max_inst);
575
576 if (p->program->arb.NumInstructions == p->max_inst) {
577 /* need to extend the program's instruction array */
578 struct prog_instruction *newInst;
579
580 /* double the size */
581 p->max_inst *= 2;
582
583 newInst =
584 rzalloc_array(p->program, struct prog_instruction, p->max_inst);
585 if (!newInst) {
586 _mesa_error(NULL, GL_OUT_OF_MEMORY, "vertex program build");
587 return;
588 }
589
590 _mesa_copy_instructions(newInst, p->program->arb.Instructions,
591 p->program->arb.NumInstructions);
592
593 ralloc_free(p->program->arb.Instructions);
594
595 p->program->arb.Instructions = newInst;
596 }
597
598 nr = p->program->arb.NumInstructions++;
599
600 inst = &p->program->arb.Instructions[nr];
601 inst->Opcode = (enum prog_opcode) op;
602
603 emit_arg( &inst->SrcReg[0], src0 );
604 emit_arg( &inst->SrcReg[1], src1 );
605 emit_arg( &inst->SrcReg[2], src2 );
606
607 emit_dst( &inst->DstReg, dest, mask );
608
609 debug_insn(inst, fn, line);
610 }
611
612
613 #define emit_op3(p, op, dst, mask, src0, src1, src2) \
614 emit_op3fn(p, op, dst, mask, src0, src1, src2, __func__, __LINE__)
615
616 #define emit_op2(p, op, dst, mask, src0, src1) \
617 emit_op3fn(p, op, dst, mask, src0, src1, undef, __func__, __LINE__)
618
619 #define emit_op1(p, op, dst, mask, src0) \
620 emit_op3fn(p, op, dst, mask, src0, undef, undef, __func__, __LINE__)
621
622
623 static struct ureg make_temp( struct tnl_program *p, struct ureg reg )
624 {
625 if (reg.file == PROGRAM_TEMPORARY &&
626 !(p->temp_reserved & (1<<reg.idx)))
627 return reg;
628 else {
629 struct ureg temp = get_temp(p);
630 emit_op1(p, OPCODE_MOV, temp, 0, reg);
631 return temp;
632 }
633 }
634
635
636 /* Currently no tracking performed of input/output/register size or
637 * active elements. Could be used to reduce these operations, as
638 * could the matrix type.
639 */
640 static void emit_matrix_transform_vec4( struct tnl_program *p,
641 struct ureg dest,
642 const struct ureg *mat,
643 struct ureg src)
644 {
645 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_X, src, mat[0]);
646 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Y, src, mat[1]);
647 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Z, src, mat[2]);
648 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_W, src, mat[3]);
649 }
650
651
652 /* This version is much easier to implement if writemasks are not
653 * supported natively on the target or (like SSE), the target doesn't
654 * have a clean/obvious dotproduct implementation.
655 */
656 static void emit_transpose_matrix_transform_vec4( struct tnl_program *p,
657 struct ureg dest,
658 const struct ureg *mat,
659 struct ureg src)
660 {
661 struct ureg tmp;
662
663 if (dest.file != PROGRAM_TEMPORARY)
664 tmp = get_temp(p);
665 else
666 tmp = dest;
667
668 emit_op2(p, OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]);
669 emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp);
670 emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp);
671 emit_op3(p, OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp);
672
673 if (dest.file != PROGRAM_TEMPORARY)
674 release_temp(p, tmp);
675 }
676
677
678 static void emit_matrix_transform_vec3( struct tnl_program *p,
679 struct ureg dest,
680 const struct ureg *mat,
681 struct ureg src)
682 {
683 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_X, src, mat[0]);
684 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Y, src, mat[1]);
685 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Z, src, mat[2]);
686 }
687
688
689 static void emit_normalize_vec3( struct tnl_program *p,
690 struct ureg dest,
691 struct ureg src )
692 {
693 struct ureg tmp = get_temp(p);
694 emit_op2(p, OPCODE_DP3, tmp, WRITEMASK_X, src, src);
695 emit_op1(p, OPCODE_RSQ, tmp, WRITEMASK_X, tmp);
696 emit_op2(p, OPCODE_MUL, dest, 0, src, swizzle1(tmp, X));
697 release_temp(p, tmp);
698 }
699
700
701 static void emit_passthrough( struct tnl_program *p,
702 GLuint input,
703 GLuint output )
704 {
705 struct ureg out = register_output(p, output);
706 emit_op1(p, OPCODE_MOV, out, 0, register_input(p, input));
707 }
708
709
710 static struct ureg get_eye_position( struct tnl_program *p )
711 {
712 if (is_undef(p->eye_position)) {
713 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
714 struct ureg modelview[4];
715
716 p->eye_position = reserve_temp(p);
717
718 if (p->mvp_with_dp4) {
719 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
720 0, modelview );
721
722 emit_matrix_transform_vec4(p, p->eye_position, modelview, pos);
723 }
724 else {
725 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
726 STATE_MATRIX_TRANSPOSE, modelview );
727
728 emit_transpose_matrix_transform_vec4(p, p->eye_position, modelview, pos);
729 }
730 }
731
732 return p->eye_position;
733 }
734
735
736 static struct ureg get_eye_position_z( struct tnl_program *p )
737 {
738 if (!is_undef(p->eye_position))
739 return swizzle1(p->eye_position, Z);
740
741 if (is_undef(p->eye_position_z)) {
742 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
743 struct ureg modelview[4];
744
745 p->eye_position_z = reserve_temp(p);
746
747 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
748 0, modelview );
749
750 emit_op2(p, OPCODE_DP4, p->eye_position_z, 0, pos, modelview[2]);
751 }
752
753 return p->eye_position_z;
754 }
755
756
757 static struct ureg get_eye_position_normalized( struct tnl_program *p )
758 {
759 if (is_undef(p->eye_position_normalized)) {
760 struct ureg eye = get_eye_position(p);
761 p->eye_position_normalized = reserve_temp(p);
762 emit_normalize_vec3(p, p->eye_position_normalized, eye);
763 }
764
765 return p->eye_position_normalized;
766 }
767
768
769 static struct ureg get_transformed_normal( struct tnl_program *p )
770 {
771 if (is_undef(p->transformed_normal) &&
772 !p->state->need_eye_coords &&
773 !p->state->normalize &&
774 !(p->state->need_eye_coords == p->state->rescale_normals))
775 {
776 p->transformed_normal = register_input(p, VERT_ATTRIB_NORMAL );
777 }
778 else if (is_undef(p->transformed_normal))
779 {
780 struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL );
781 struct ureg mvinv[3];
782 struct ureg transformed_normal = reserve_temp(p);
783
784 if (p->state->need_eye_coords) {
785 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 2,
786 STATE_MATRIX_INVTRANS, mvinv );
787
788 /* Transform to eye space:
789 */
790 emit_matrix_transform_vec3( p, transformed_normal, mvinv, normal );
791 normal = transformed_normal;
792 }
793
794 /* Normalize/Rescale:
795 */
796 if (p->state->normalize) {
797 emit_normalize_vec3( p, transformed_normal, normal );
798 normal = transformed_normal;
799 }
800 else if (p->state->need_eye_coords == p->state->rescale_normals) {
801 /* This is already adjusted for eye/non-eye rendering:
802 */
803 struct ureg rescale = register_param2(p, STATE_INTERNAL,
804 STATE_NORMAL_SCALE);
805
806 emit_op2( p, OPCODE_MUL, transformed_normal, 0, normal, rescale );
807 normal = transformed_normal;
808 }
809
810 assert(normal.file == PROGRAM_TEMPORARY);
811 p->transformed_normal = normal;
812 }
813
814 return p->transformed_normal;
815 }
816
817
818 static void build_hpos( struct tnl_program *p )
819 {
820 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
821 struct ureg hpos = register_output( p, VARYING_SLOT_POS );
822 struct ureg mvp[4];
823
824 if (p->mvp_with_dp4) {
825 register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
826 0, mvp );
827 emit_matrix_transform_vec4( p, hpos, mvp, pos );
828 }
829 else {
830 register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
831 STATE_MATRIX_TRANSPOSE, mvp );
832 emit_transpose_matrix_transform_vec4( p, hpos, mvp, pos );
833 }
834 }
835
836
837 static GLuint material_attrib( GLuint side, GLuint property )
838 {
839 return (property - STATE_AMBIENT) * 2 + side;
840 }
841
842
843 /**
844 * Get a bitmask of which material values vary on a per-vertex basis.
845 */
846 static void set_material_flags( struct tnl_program *p )
847 {
848 p->color_materials = 0;
849 p->materials = 0;
850
851 if (p->state->varying_vp_inputs & VERT_BIT_COLOR0) {
852 p->materials =
853 p->color_materials = p->state->light_color_material_mask;
854 }
855
856 p->materials |= ((p->state->varying_vp_inputs & VERT_BIT_MAT_ALL)
857 >> VERT_ATTRIB_MAT(0));
858 }
859
860
861 static struct ureg get_material( struct tnl_program *p, GLuint side,
862 GLuint property )
863 {
864 GLuint attrib = material_attrib(side, property);
865
866 if (p->color_materials & (1<<attrib))
867 return register_input(p, VERT_ATTRIB_COLOR0);
868 else if (p->materials & (1<<attrib)) {
869 /* Put material values in the GENERIC slots -- they are not used
870 * for anything in fixed function mode.
871 */
872 return register_input( p, VERT_ATTRIB_MAT(attrib) );
873 }
874 else
875 return register_param3( p, STATE_MATERIAL, side, property );
876 }
877
878 #define SCENE_COLOR_BITS(side) (( MAT_BIT_FRONT_EMISSION | \
879 MAT_BIT_FRONT_AMBIENT | \
880 MAT_BIT_FRONT_DIFFUSE) << (side))
881
882
883 /**
884 * Either return a precalculated constant value or emit code to
885 * calculate these values dynamically in the case where material calls
886 * are present between begin/end pairs.
887 *
888 * Probably want to shift this to the program compilation phase - if
889 * we always emitted the calculation here, a smart compiler could
890 * detect that it was constant (given a certain set of inputs), and
891 * lift it out of the main loop. That way the programs created here
892 * would be independent of the vertex_buffer details.
893 */
894 static struct ureg get_scenecolor( struct tnl_program *p, GLuint side )
895 {
896 if (p->materials & SCENE_COLOR_BITS(side)) {
897 struct ureg lm_ambient = register_param1(p, STATE_LIGHTMODEL_AMBIENT);
898 struct ureg material_emission = get_material(p, side, STATE_EMISSION);
899 struct ureg material_ambient = get_material(p, side, STATE_AMBIENT);
900 struct ureg material_diffuse = get_material(p, side, STATE_DIFFUSE);
901 struct ureg tmp = make_temp(p, material_diffuse);
902 emit_op3(p, OPCODE_MAD, tmp, WRITEMASK_XYZ, lm_ambient,
903 material_ambient, material_emission);
904 return tmp;
905 }
906 else
907 return register_param2( p, STATE_LIGHTMODEL_SCENECOLOR, side );
908 }
909
910
911 static struct ureg get_lightprod( struct tnl_program *p, GLuint light,
912 GLuint side, GLuint property )
913 {
914 GLuint attrib = material_attrib(side, property);
915 if (p->materials & (1<<attrib)) {
916 struct ureg light_value =
917 register_param3(p, STATE_LIGHT, light, property);
918 struct ureg material_value = get_material(p, side, property);
919 struct ureg tmp = get_temp(p);
920 emit_op2(p, OPCODE_MUL, tmp, 0, light_value, material_value);
921 return tmp;
922 }
923 else
924 return register_param4(p, STATE_LIGHTPROD, light, side, property);
925 }
926
927
928 static struct ureg calculate_light_attenuation( struct tnl_program *p,
929 GLuint i,
930 struct ureg VPpli,
931 struct ureg dist )
932 {
933 struct ureg attenuation = register_param3(p, STATE_LIGHT, i,
934 STATE_ATTENUATION);
935 struct ureg att = undef;
936
937 /* Calculate spot attenuation:
938 */
939 if (!p->state->unit[i].light_spotcutoff_is_180) {
940 struct ureg spot_dir_norm = register_param3(p, STATE_INTERNAL,
941 STATE_LIGHT_SPOT_DIR_NORMALIZED, i);
942 struct ureg spot = get_temp(p);
943 struct ureg slt = get_temp(p);
944
945 att = get_temp(p);
946
947 emit_op2(p, OPCODE_DP3, spot, 0, negate(VPpli), spot_dir_norm);
948 emit_op2(p, OPCODE_SLT, slt, 0, swizzle1(spot_dir_norm,W), spot);
949 emit_op1(p, OPCODE_ABS, spot, 0, spot);
950 emit_op2(p, OPCODE_POW, spot, 0, spot, swizzle1(attenuation, W));
951 emit_op2(p, OPCODE_MUL, att, 0, slt, spot);
952
953 release_temp(p, spot);
954 release_temp(p, slt);
955 }
956
957 /* Calculate distance attenuation(See formula (2.4) at glspec 2.1 page 62):
958 *
959 * Skip the calucation when _dist_ is undefined(light_eyepos3_is_zero)
960 */
961 if (p->state->unit[i].light_attenuated && !is_undef(dist)) {
962 if (is_undef(att))
963 att = get_temp(p);
964 /* 1/d,d,d,1/d */
965 emit_op1(p, OPCODE_RCP, dist, WRITEMASK_YZ, dist);
966 /* 1,d,d*d,1/d */
967 emit_op2(p, OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y));
968 /* 1/dist-atten */
969 emit_op2(p, OPCODE_DP3, dist, 0, attenuation, dist);
970
971 if (!p->state->unit[i].light_spotcutoff_is_180) {
972 /* dist-atten */
973 emit_op1(p, OPCODE_RCP, dist, 0, dist);
974 /* spot-atten * dist-atten */
975 emit_op2(p, OPCODE_MUL, att, 0, dist, att);
976 }
977 else {
978 /* dist-atten */
979 emit_op1(p, OPCODE_RCP, att, 0, dist);
980 }
981 }
982
983 return att;
984 }
985
986
987 /**
988 * Compute:
989 * lit.y = MAX(0, dots.x)
990 * lit.z = SLT(0, dots.x)
991 */
992 static void emit_degenerate_lit( struct tnl_program *p,
993 struct ureg lit,
994 struct ureg dots )
995 {
996 struct ureg id = get_identity_param(p); /* id = {0,0,0,1} */
997
998 /* Note that lit.x & lit.w will not be examined. Note also that
999 * dots.xyzw == dots.xxxx.
1000 */
1001
1002 /* MAX lit, id, dots;
1003 */
1004 emit_op2(p, OPCODE_MAX, lit, WRITEMASK_XYZW, id, dots);
1005
1006 /* result[2] = (in > 0 ? 1 : 0)
1007 * SLT lit.z, id.z, dots; # lit.z = (0 < dots.z) ? 1 : 0
1008 */
1009 emit_op2(p, OPCODE_SLT, lit, WRITEMASK_Z, swizzle1(id,Z), dots);
1010 }
1011
1012
1013 /* Need to add some addtional parameters to allow lighting in object
1014 * space - STATE_SPOT_DIRECTION and STATE_HALF_VECTOR implicitly assume eye
1015 * space lighting.
1016 */
1017 static void build_lighting( struct tnl_program *p )
1018 {
1019 const GLboolean twoside = p->state->light_twoside;
1020 const GLboolean separate = p->state->separate_specular;
1021 GLuint nr_lights = 0, count = 0;
1022 struct ureg normal = get_transformed_normal(p);
1023 struct ureg lit = get_temp(p);
1024 struct ureg dots = get_temp(p);
1025 struct ureg _col0 = undef, _col1 = undef;
1026 struct ureg _bfc0 = undef, _bfc1 = undef;
1027 GLuint i;
1028
1029 /*
1030 * NOTE:
1031 * dots.x = dot(normal, VPpli)
1032 * dots.y = dot(normal, halfAngle)
1033 * dots.z = back.shininess
1034 * dots.w = front.shininess
1035 */
1036
1037 for (i = 0; i < MAX_LIGHTS; i++)
1038 if (p->state->unit[i].light_enabled)
1039 nr_lights++;
1040
1041 set_material_flags(p);
1042
1043 {
1044 if (!p->state->material_shininess_is_zero) {
1045 struct ureg shininess = get_material(p, 0, STATE_SHININESS);
1046 emit_op1(p, OPCODE_MOV, dots, WRITEMASK_W, swizzle1(shininess,X));
1047 release_temp(p, shininess);
1048 }
1049
1050 _col0 = make_temp(p, get_scenecolor(p, 0));
1051 if (separate)
1052 _col1 = make_temp(p, get_identity_param(p));
1053 else
1054 _col1 = _col0;
1055 }
1056
1057 if (twoside) {
1058 if (!p->state->material_shininess_is_zero) {
1059 /* Note that we negate the back-face specular exponent here.
1060 * The negation will be un-done later in the back-face code below.
1061 */
1062 struct ureg shininess = get_material(p, 1, STATE_SHININESS);
1063 emit_op1(p, OPCODE_MOV, dots, WRITEMASK_Z,
1064 negate(swizzle1(shininess,X)));
1065 release_temp(p, shininess);
1066 }
1067
1068 _bfc0 = make_temp(p, get_scenecolor(p, 1));
1069 if (separate)
1070 _bfc1 = make_temp(p, get_identity_param(p));
1071 else
1072 _bfc1 = _bfc0;
1073 }
1074
1075 /* If no lights, still need to emit the scenecolor.
1076 */
1077 {
1078 struct ureg res0 = register_output( p, VARYING_SLOT_COL0 );
1079 emit_op1(p, OPCODE_MOV, res0, 0, _col0);
1080 }
1081
1082 if (separate) {
1083 struct ureg res1 = register_output( p, VARYING_SLOT_COL1 );
1084 emit_op1(p, OPCODE_MOV, res1, 0, _col1);
1085 }
1086
1087 if (twoside) {
1088 struct ureg res0 = register_output( p, VARYING_SLOT_BFC0 );
1089 emit_op1(p, OPCODE_MOV, res0, 0, _bfc0);
1090 }
1091
1092 if (twoside && separate) {
1093 struct ureg res1 = register_output( p, VARYING_SLOT_BFC1 );
1094 emit_op1(p, OPCODE_MOV, res1, 0, _bfc1);
1095 }
1096
1097 if (nr_lights == 0) {
1098 release_temps(p);
1099 return;
1100 }
1101
1102 for (i = 0; i < MAX_LIGHTS; i++) {
1103 if (p->state->unit[i].light_enabled) {
1104 struct ureg half = undef;
1105 struct ureg att = undef, VPpli = undef;
1106 struct ureg dist = undef;
1107
1108 count++;
1109 if (p->state->unit[i].light_eyepos3_is_zero) {
1110 VPpli = register_param3(p, STATE_INTERNAL,
1111 STATE_LIGHT_POSITION_NORMALIZED, i);
1112 } else {
1113 struct ureg Ppli = register_param3(p, STATE_INTERNAL,
1114 STATE_LIGHT_POSITION, i);
1115 struct ureg V = get_eye_position(p);
1116
1117 VPpli = get_temp(p);
1118 dist = get_temp(p);
1119
1120 /* Calculate VPpli vector
1121 */
1122 emit_op2(p, OPCODE_SUB, VPpli, 0, Ppli, V);
1123
1124 /* Normalize VPpli. The dist value also used in
1125 * attenuation below.
1126 */
1127 emit_op2(p, OPCODE_DP3, dist, 0, VPpli, VPpli);
1128 emit_op1(p, OPCODE_RSQ, dist, 0, dist);
1129 emit_op2(p, OPCODE_MUL, VPpli, 0, VPpli, dist);
1130 }
1131
1132 /* Calculate attenuation:
1133 */
1134 att = calculate_light_attenuation(p, i, VPpli, dist);
1135 release_temp(p, dist);
1136
1137 /* Calculate viewer direction, or use infinite viewer:
1138 */
1139 if (!p->state->material_shininess_is_zero) {
1140 if (p->state->light_local_viewer) {
1141 struct ureg eye_hat = get_eye_position_normalized(p);
1142 half = get_temp(p);
1143 emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
1144 emit_normalize_vec3(p, half, half);
1145 } else if (p->state->unit[i].light_eyepos3_is_zero) {
1146 half = register_param3(p, STATE_INTERNAL,
1147 STATE_LIGHT_HALF_VECTOR, i);
1148 } else {
1149 struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z);
1150 half = get_temp(p);
1151 emit_op2(p, OPCODE_ADD, half, 0, VPpli, z_dir);
1152 emit_normalize_vec3(p, half, half);
1153 }
1154 }
1155
1156 /* Calculate dot products:
1157 */
1158 if (p->state->material_shininess_is_zero) {
1159 emit_op2(p, OPCODE_DP3, dots, 0, normal, VPpli);
1160 }
1161 else {
1162 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli);
1163 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_Y, normal, half);
1164 }
1165
1166 /* Front face lighting:
1167 */
1168 {
1169 struct ureg ambient = get_lightprod(p, i, 0, STATE_AMBIENT);
1170 struct ureg diffuse = get_lightprod(p, i, 0, STATE_DIFFUSE);
1171 struct ureg specular = get_lightprod(p, i, 0, STATE_SPECULAR);
1172 struct ureg res0, res1;
1173 GLuint mask0, mask1;
1174
1175 if (count == nr_lights) {
1176 if (separate) {
1177 mask0 = WRITEMASK_XYZ;
1178 mask1 = WRITEMASK_XYZ;
1179 res0 = register_output( p, VARYING_SLOT_COL0 );
1180 res1 = register_output( p, VARYING_SLOT_COL1 );
1181 }
1182 else {
1183 mask0 = 0;
1184 mask1 = WRITEMASK_XYZ;
1185 res0 = _col0;
1186 res1 = register_output( p, VARYING_SLOT_COL0 );
1187 }
1188 }
1189 else {
1190 mask0 = 0;
1191 mask1 = 0;
1192 res0 = _col0;
1193 res1 = _col1;
1194 }
1195
1196 if (!is_undef(att)) {
1197 /* light is attenuated by distance */
1198 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1199 emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1200 emit_op3(p, OPCODE_MAD, _col0, 0, swizzle1(lit,X), ambient, _col0);
1201 }
1202 else if (!p->state->material_shininess_is_zero) {
1203 /* there's a non-zero specular term */
1204 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1205 emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1206 }
1207 else {
1208 /* no attenutation, no specular */
1209 emit_degenerate_lit(p, lit, dots);
1210 emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1211 }
1212
1213 emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _col0);
1214 emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _col1);
1215
1216 release_temp(p, ambient);
1217 release_temp(p, diffuse);
1218 release_temp(p, specular);
1219 }
1220
1221 /* Back face lighting:
1222 */
1223 if (twoside) {
1224 struct ureg ambient = get_lightprod(p, i, 1, STATE_AMBIENT);
1225 struct ureg diffuse = get_lightprod(p, i, 1, STATE_DIFFUSE);
1226 struct ureg specular = get_lightprod(p, i, 1, STATE_SPECULAR);
1227 struct ureg res0, res1;
1228 GLuint mask0, mask1;
1229
1230 if (count == nr_lights) {
1231 if (separate) {
1232 mask0 = WRITEMASK_XYZ;
1233 mask1 = WRITEMASK_XYZ;
1234 res0 = register_output( p, VARYING_SLOT_BFC0 );
1235 res1 = register_output( p, VARYING_SLOT_BFC1 );
1236 }
1237 else {
1238 mask0 = 0;
1239 mask1 = WRITEMASK_XYZ;
1240 res0 = _bfc0;
1241 res1 = register_output( p, VARYING_SLOT_BFC0 );
1242 }
1243 }
1244 else {
1245 res0 = _bfc0;
1246 res1 = _bfc1;
1247 mask0 = 0;
1248 mask1 = 0;
1249 }
1250
1251 /* For the back face we need to negate the X and Y component
1252 * dot products. dots.Z has the negated back-face specular
1253 * exponent. We swizzle that into the W position. This
1254 * negation makes the back-face specular term positive again.
1255 */
1256 dots = negate(swizzle(dots,X,Y,W,Z));
1257
1258 if (!is_undef(att)) {
1259 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1260 emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1261 emit_op3(p, OPCODE_MAD, _bfc0, 0, swizzle1(lit,X), ambient, _bfc0);
1262 }
1263 else if (!p->state->material_shininess_is_zero) {
1264 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1265 emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0); /**/
1266 }
1267 else {
1268 emit_degenerate_lit(p, lit, dots);
1269 emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0);
1270 }
1271
1272 emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _bfc0);
1273 emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _bfc1);
1274 /* restore dots to its original state for subsequent lights
1275 * by negating and swizzling again.
1276 */
1277 dots = negate(swizzle(dots,X,Y,W,Z));
1278
1279 release_temp(p, ambient);
1280 release_temp(p, diffuse);
1281 release_temp(p, specular);
1282 }
1283
1284 release_temp(p, half);
1285 release_temp(p, VPpli);
1286 release_temp(p, att);
1287 }
1288 }
1289
1290 release_temps( p );
1291 }
1292
1293
1294 static void build_fog( struct tnl_program *p )
1295 {
1296 struct ureg fog = register_output(p, VARYING_SLOT_FOGC);
1297 struct ureg input;
1298
1299 switch (p->state->fog_distance_mode) {
1300 case FDM_EYE_RADIAL: { /* Z = sqrt(Xe*Xe + Ye*Ye + Ze*Ze) */
1301 struct ureg tmp = get_temp(p);
1302 input = get_eye_position(p);
1303 emit_op2(p, OPCODE_DP3, tmp, WRITEMASK_X, input, input);
1304 emit_op1(p, OPCODE_RSQ, tmp, WRITEMASK_X, tmp);
1305 emit_op1(p, OPCODE_RCP, fog, WRITEMASK_X, tmp);
1306 break;
1307 }
1308 case FDM_EYE_PLANE: /* Z = Ze */
1309 input = get_eye_position_z(p);
1310 emit_op1(p, OPCODE_MOV, fog, WRITEMASK_X, input);
1311 break;
1312 case FDM_EYE_PLANE_ABS: /* Z = abs(Ze) */
1313 input = get_eye_position_z(p);
1314 emit_op1(p, OPCODE_ABS, fog, WRITEMASK_X, input);
1315 break;
1316 case FDM_FROM_ARRAY:
1317 input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X);
1318 emit_op1(p, OPCODE_ABS, fog, WRITEMASK_X, input);
1319 break;
1320 default:
1321 assert(!"Bad fog mode in build_fog()");
1322 break;
1323 }
1324
1325 emit_op1(p, OPCODE_MOV, fog, WRITEMASK_YZW, get_identity_param(p));
1326 }
1327
1328
1329 static void build_reflect_texgen( struct tnl_program *p,
1330 struct ureg dest,
1331 GLuint writemask )
1332 {
1333 struct ureg normal = get_transformed_normal(p);
1334 struct ureg eye_hat = get_eye_position_normalized(p);
1335 struct ureg tmp = get_temp(p);
1336
1337 /* n.u */
1338 emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1339 /* 2n.u */
1340 emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1341 /* (-2n.u)n + u */
1342 emit_op3(p, OPCODE_MAD, dest, writemask, negate(tmp), normal, eye_hat);
1343
1344 release_temp(p, tmp);
1345 }
1346
1347
1348 static void build_sphere_texgen( struct tnl_program *p,
1349 struct ureg dest,
1350 GLuint writemask )
1351 {
1352 struct ureg normal = get_transformed_normal(p);
1353 struct ureg eye_hat = get_eye_position_normalized(p);
1354 struct ureg tmp = get_temp(p);
1355 struct ureg half = register_scalar_const(p, .5);
1356 struct ureg r = get_temp(p);
1357 struct ureg inv_m = get_temp(p);
1358 struct ureg id = get_identity_param(p);
1359
1360 /* Could share the above calculations, but it would be
1361 * a fairly odd state for someone to set (both sphere and
1362 * reflection active for different texture coordinate
1363 * components. Of course - if two texture units enable
1364 * reflect and/or sphere, things start to tilt in favour
1365 * of seperating this out:
1366 */
1367
1368 /* n.u */
1369 emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1370 /* 2n.u */
1371 emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1372 /* (-2n.u)n + u */
1373 emit_op3(p, OPCODE_MAD, r, 0, negate(tmp), normal, eye_hat);
1374 /* r + 0,0,1 */
1375 emit_op2(p, OPCODE_ADD, tmp, 0, r, swizzle(id,X,Y,W,Z));
1376 /* rx^2 + ry^2 + (rz+1)^2 */
1377 emit_op2(p, OPCODE_DP3, tmp, 0, tmp, tmp);
1378 /* 2/m */
1379 emit_op1(p, OPCODE_RSQ, tmp, 0, tmp);
1380 /* 1/m */
1381 emit_op2(p, OPCODE_MUL, inv_m, 0, tmp, half);
1382 /* r/m + 1/2 */
1383 emit_op3(p, OPCODE_MAD, dest, writemask, r, inv_m, half);
1384
1385 release_temp(p, tmp);
1386 release_temp(p, r);
1387 release_temp(p, inv_m);
1388 }
1389
1390
1391 static void build_texture_transform( struct tnl_program *p )
1392 {
1393 GLuint i, j;
1394
1395 for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
1396
1397 if (!(p->state->fragprog_inputs_read & VARYING_BIT_TEX(i)))
1398 continue;
1399
1400 if (p->state->unit[i].coord_replace)
1401 continue;
1402
1403 if (p->state->unit[i].texgen_enabled ||
1404 p->state->unit[i].texmat_enabled) {
1405
1406 GLuint texmat_enabled = p->state->unit[i].texmat_enabled;
1407 struct ureg out = register_output(p, VARYING_SLOT_TEX0 + i);
1408 struct ureg out_texgen = undef;
1409
1410 if (p->state->unit[i].texgen_enabled) {
1411 GLuint copy_mask = 0;
1412 GLuint sphere_mask = 0;
1413 GLuint reflect_mask = 0;
1414 GLuint normal_mask = 0;
1415 GLuint modes[4];
1416
1417 if (texmat_enabled)
1418 out_texgen = get_temp(p);
1419 else
1420 out_texgen = out;
1421
1422 modes[0] = p->state->unit[i].texgen_mode0;
1423 modes[1] = p->state->unit[i].texgen_mode1;
1424 modes[2] = p->state->unit[i].texgen_mode2;
1425 modes[3] = p->state->unit[i].texgen_mode3;
1426
1427 for (j = 0; j < 4; j++) {
1428 switch (modes[j]) {
1429 case TXG_OBJ_LINEAR: {
1430 struct ureg obj = register_input(p, VERT_ATTRIB_POS);
1431 struct ureg plane =
1432 register_param3(p, STATE_TEXGEN, i,
1433 STATE_TEXGEN_OBJECT_S + j);
1434
1435 emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1436 obj, plane );
1437 break;
1438 }
1439 case TXG_EYE_LINEAR: {
1440 struct ureg eye = get_eye_position(p);
1441 struct ureg plane =
1442 register_param3(p, STATE_TEXGEN, i,
1443 STATE_TEXGEN_EYE_S + j);
1444
1445 emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1446 eye, plane );
1447 break;
1448 }
1449 case TXG_SPHERE_MAP:
1450 sphere_mask |= WRITEMASK_X << j;
1451 break;
1452 case TXG_REFLECTION_MAP:
1453 reflect_mask |= WRITEMASK_X << j;
1454 break;
1455 case TXG_NORMAL_MAP:
1456 normal_mask |= WRITEMASK_X << j;
1457 break;
1458 case TXG_NONE:
1459 copy_mask |= WRITEMASK_X << j;
1460 }
1461 }
1462
1463 if (sphere_mask) {
1464 build_sphere_texgen(p, out_texgen, sphere_mask);
1465 }
1466
1467 if (reflect_mask) {
1468 build_reflect_texgen(p, out_texgen, reflect_mask);
1469 }
1470
1471 if (normal_mask) {
1472 struct ureg normal = get_transformed_normal(p);
1473 emit_op1(p, OPCODE_MOV, out_texgen, normal_mask, normal );
1474 }
1475
1476 if (copy_mask) {
1477 struct ureg in = register_input(p, VERT_ATTRIB_TEX0+i);
1478 emit_op1(p, OPCODE_MOV, out_texgen, copy_mask, in );
1479 }
1480 }
1481
1482 if (texmat_enabled) {
1483 struct ureg texmat[4];
1484 struct ureg in = (!is_undef(out_texgen) ?
1485 out_texgen :
1486 register_input(p, VERT_ATTRIB_TEX0+i));
1487 if (p->mvp_with_dp4) {
1488 register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1489 0, texmat );
1490 emit_matrix_transform_vec4( p, out, texmat, in );
1491 }
1492 else {
1493 register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1494 STATE_MATRIX_TRANSPOSE, texmat );
1495 emit_transpose_matrix_transform_vec4( p, out, texmat, in );
1496 }
1497 }
1498
1499 release_temps(p);
1500 }
1501 else {
1502 emit_passthrough(p, VERT_ATTRIB_TEX0+i, VARYING_SLOT_TEX0+i);
1503 }
1504 }
1505 }
1506
1507
1508 /**
1509 * Point size attenuation computation.
1510 */
1511 static void build_atten_pointsize( struct tnl_program *p )
1512 {
1513 struct ureg eye = get_eye_position_z(p);
1514 struct ureg state_size = register_param2(p, STATE_INTERNAL, STATE_POINT_SIZE_CLAMPED);
1515 struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION);
1516 struct ureg out = register_output(p, VARYING_SLOT_PSIZ);
1517 struct ureg ut = get_temp(p);
1518
1519 /* dist = |eyez| */
1520 emit_op1(p, OPCODE_ABS, ut, WRITEMASK_Y, swizzle1(eye, Z));
1521 /* p1 + dist * (p2 + dist * p3); */
1522 emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1523 swizzle1(state_attenuation, Z), swizzle1(state_attenuation, Y));
1524 emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1525 ut, swizzle1(state_attenuation, X));
1526
1527 /* 1 / sqrt(factor) */
1528 emit_op1(p, OPCODE_RSQ, ut, WRITEMASK_X, ut );
1529
1530 #if 0
1531 /* out = pointSize / sqrt(factor) */
1532 emit_op2(p, OPCODE_MUL, out, WRITEMASK_X, ut, state_size);
1533 #else
1534 /* this is a good place to clamp the point size since there's likely
1535 * no hardware registers to clamp point size at rasterization time.
1536 */
1537 emit_op2(p, OPCODE_MUL, ut, WRITEMASK_X, ut, state_size);
1538 emit_op2(p, OPCODE_MAX, ut, WRITEMASK_X, ut, swizzle1(state_size, Y));
1539 emit_op2(p, OPCODE_MIN, out, WRITEMASK_X, ut, swizzle1(state_size, Z));
1540 #endif
1541
1542 release_temp(p, ut);
1543 }
1544
1545
1546 /**
1547 * Pass-though per-vertex point size, from user's point size array.
1548 */
1549 static void build_array_pointsize( struct tnl_program *p )
1550 {
1551 struct ureg in = register_input(p, VERT_ATTRIB_POINT_SIZE);
1552 struct ureg out = register_output(p, VARYING_SLOT_PSIZ);
1553 emit_op1(p, OPCODE_MOV, out, WRITEMASK_X, in);
1554 }
1555
1556
1557 static void build_tnl_program( struct tnl_program *p )
1558 {
1559 /* Emit the program, starting with the modelview, projection transforms:
1560 */
1561 build_hpos(p);
1562
1563 /* Lighting calculations:
1564 */
1565 if (p->state->fragprog_inputs_read & (VARYING_BIT_COL0|VARYING_BIT_COL1)) {
1566 if (p->state->light_global_enabled)
1567 build_lighting(p);
1568 else {
1569 if (p->state->fragprog_inputs_read & VARYING_BIT_COL0)
1570 emit_passthrough(p, VERT_ATTRIB_COLOR0, VARYING_SLOT_COL0);
1571
1572 if (p->state->fragprog_inputs_read & VARYING_BIT_COL1)
1573 emit_passthrough(p, VERT_ATTRIB_COLOR1, VARYING_SLOT_COL1);
1574 }
1575 }
1576
1577 if (p->state->fragprog_inputs_read & VARYING_BIT_FOGC)
1578 build_fog(p);
1579
1580 if (p->state->fragprog_inputs_read & VARYING_BITS_TEX_ANY)
1581 build_texture_transform(p);
1582
1583 if (p->state->point_attenuated)
1584 build_atten_pointsize(p);
1585 else if (p->state->varying_vp_inputs & VERT_BIT_POINT_SIZE)
1586 build_array_pointsize(p);
1587
1588 /* Finish up:
1589 */
1590 emit_op1(p, OPCODE_END, undef, 0, undef);
1591
1592 /* Disassemble:
1593 */
1594 if (DISASSEM) {
1595 printf ("\n");
1596 }
1597 }
1598
1599
1600 static void
1601 create_new_program( const struct state_key *key,
1602 struct gl_program *program,
1603 GLboolean mvp_with_dp4,
1604 GLuint max_temps)
1605 {
1606 struct tnl_program p;
1607
1608 memset(&p, 0, sizeof(p));
1609 p.state = key;
1610 p.program = program;
1611 p.eye_position = undef;
1612 p.eye_position_z = undef;
1613 p.eye_position_normalized = undef;
1614 p.transformed_normal = undef;
1615 p.identity = undef;
1616 p.temp_in_use = 0;
1617 p.mvp_with_dp4 = mvp_with_dp4;
1618
1619 if (max_temps >= sizeof(int) * 8)
1620 p.temp_reserved = 0;
1621 else
1622 p.temp_reserved = ~((1<<max_temps)-1);
1623
1624 /* Start by allocating 32 instructions.
1625 * If we need more, we'll grow the instruction array as needed.
1626 */
1627 p.max_inst = 32;
1628 p.program->arb.Instructions =
1629 rzalloc_array(program, struct prog_instruction, p.max_inst);
1630 p.program->String = NULL;
1631 p.program->arb.NumInstructions =
1632 p.program->arb.NumTemporaries =
1633 p.program->arb.NumParameters =
1634 p.program->arb.NumAttributes = p.program->arb.NumAddressRegs = 0;
1635 p.program->Parameters = _mesa_new_parameter_list();
1636 p.program->info.inputs_read = 0;
1637 p.program->info.outputs_written = 0;
1638
1639 build_tnl_program( &p );
1640 }
1641
1642
1643 /**
1644 * Return a vertex program which implements the current fixed-function
1645 * transform/lighting/texgen operations.
1646 */
1647 struct gl_program *
1648 _mesa_get_fixed_func_vertex_program(struct gl_context *ctx)
1649 {
1650 struct gl_program *prog;
1651 struct state_key key;
1652
1653 /* We only update ctx->varying_vp_inputs when in VP_MODE_FF _VPMode */
1654 assert(VP_MODE_FF == ctx->VertexProgram._VPMode);
1655
1656 /* Grab all the relevant state and put it in a single structure:
1657 */
1658 make_state_key(ctx, &key);
1659
1660 /* Look for an already-prepared program for this state:
1661 */
1662 prog = _mesa_search_program_cache(ctx->VertexProgram.Cache, &key,
1663 sizeof(key));
1664
1665 if (!prog) {
1666 /* OK, we'll have to build a new one */
1667 if (0)
1668 printf("Build new TNL program\n");
1669
1670 prog = ctx->Driver.NewProgram(ctx, MESA_SHADER_VERTEX, 0, true);
1671 if (!prog)
1672 return NULL;
1673
1674 create_new_program( &key, prog,
1675 ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].OptimizeForAOS,
1676 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTemps );
1677
1678 if (ctx->Driver.ProgramStringNotify)
1679 ctx->Driver.ProgramStringNotify(ctx, GL_VERTEX_PROGRAM_ARB, prog);
1680
1681 _mesa_program_cache_insert(ctx, ctx->VertexProgram.Cache, &key,
1682 sizeof(key), prog);
1683 }
1684
1685 return prog;
1686 }