Fix a few typos
[mesa.git] / src / mesa / main / ffvertex_prog.c
1 /**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * \file ffvertex_prog.c
30 *
31 * Create a vertex program to execute the current fixed function T&L pipeline.
32 * \author Keith Whitwell
33 */
34
35
36 #include "main/glheader.h"
37 #include "main/mtypes.h"
38 #include "main/macros.h"
39 #include "main/enums.h"
40 #include "main/ffvertex_prog.h"
41 #include "program/program.h"
42 #include "program/prog_cache.h"
43 #include "program/prog_instruction.h"
44 #include "program/prog_parameter.h"
45 #include "program/prog_print.h"
46 #include "program/prog_statevars.h"
47
48
49 /** Max of number of lights and texture coord units */
50 #define NUM_UNITS MAX2(MAX_TEXTURE_COORD_UNITS, MAX_LIGHTS)
51
52 struct state_key {
53 unsigned light_color_material_mask:12;
54 unsigned light_global_enabled:1;
55 unsigned light_local_viewer:1;
56 unsigned light_twoside:1;
57 unsigned material_shininess_is_zero:1;
58 unsigned need_eye_coords:1;
59 unsigned normalize:1;
60 unsigned rescale_normals:1;
61
62 unsigned fog_source_is_depth:1;
63 unsigned fog_distance_mode:2;
64 unsigned separate_specular:1;
65 unsigned point_attenuated:1;
66 unsigned point_array:1;
67 unsigned texture_enabled_global:1;
68 unsigned fragprog_inputs_read:12;
69
70 GLbitfield64 varying_vp_inputs;
71
72 struct {
73 unsigned light_enabled:1;
74 unsigned light_eyepos3_is_zero:1;
75 unsigned light_spotcutoff_is_180:1;
76 unsigned light_attenuated:1;
77 unsigned texunit_really_enabled:1;
78 unsigned texmat_enabled:1;
79 unsigned coord_replace:1;
80 unsigned texgen_enabled:4;
81 unsigned texgen_mode0:4;
82 unsigned texgen_mode1:4;
83 unsigned texgen_mode2:4;
84 unsigned texgen_mode3:4;
85 } unit[NUM_UNITS];
86 };
87
88
89 #define TXG_NONE 0
90 #define TXG_OBJ_LINEAR 1
91 #define TXG_EYE_LINEAR 2
92 #define TXG_SPHERE_MAP 3
93 #define TXG_REFLECTION_MAP 4
94 #define TXG_NORMAL_MAP 5
95
96 static GLuint translate_texgen( GLboolean enabled, GLenum mode )
97 {
98 if (!enabled)
99 return TXG_NONE;
100
101 switch (mode) {
102 case GL_OBJECT_LINEAR: return TXG_OBJ_LINEAR;
103 case GL_EYE_LINEAR: return TXG_EYE_LINEAR;
104 case GL_SPHERE_MAP: return TXG_SPHERE_MAP;
105 case GL_REFLECTION_MAP_NV: return TXG_REFLECTION_MAP;
106 case GL_NORMAL_MAP_NV: return TXG_NORMAL_MAP;
107 default: return TXG_NONE;
108 }
109 }
110
111 #define FDM_EYE_RADIAL 0
112 #define FDM_EYE_PLANE 1
113 #define FDM_EYE_PLANE_ABS 2
114
115 static GLuint translate_fog_distance_mode( GLenum mode )
116 {
117 switch (mode) {
118 case GL_EYE_RADIAL_NV:
119 return FDM_EYE_RADIAL;
120 case GL_EYE_PLANE:
121 return FDM_EYE_PLANE;
122 default: /* shouldn't happen; fall through to a sensible default */
123 case GL_EYE_PLANE_ABSOLUTE_NV:
124 return FDM_EYE_PLANE_ABS;
125 }
126 }
127
128 static GLboolean check_active_shininess( struct gl_context *ctx,
129 const struct state_key *key,
130 GLuint side )
131 {
132 GLuint attr = MAT_ATTRIB_FRONT_SHININESS + side;
133
134 if ((key->varying_vp_inputs & VERT_BIT_COLOR0) &&
135 (key->light_color_material_mask & (1 << attr)))
136 return GL_TRUE;
137
138 if (key->varying_vp_inputs & VERT_ATTRIB_GENERIC(attr))
139 return GL_TRUE;
140
141 if (ctx->Light.Material.Attrib[attr][0] != 0.0F)
142 return GL_TRUE;
143
144 return GL_FALSE;
145 }
146
147
148 static void make_state_key( struct gl_context *ctx, struct state_key *key )
149 {
150 const struct gl_fragment_program *fp;
151 GLuint i;
152
153 memset(key, 0, sizeof(struct state_key));
154 fp = ctx->FragmentProgram._Current;
155
156 /* This now relies on texenvprogram.c being active:
157 */
158 assert(fp);
159
160 key->need_eye_coords = ctx->_NeedEyeCoords;
161
162 key->fragprog_inputs_read = fp->Base.InputsRead;
163 key->varying_vp_inputs = ctx->varying_vp_inputs;
164
165 if (ctx->RenderMode == GL_FEEDBACK) {
166 /* make sure the vertprog emits color and tex0 */
167 key->fragprog_inputs_read |= (VARYING_BIT_COL0 | VARYING_BIT_TEX0);
168 }
169
170 key->separate_specular = (ctx->Light.Model.ColorControl ==
171 GL_SEPARATE_SPECULAR_COLOR);
172
173 if (ctx->Light.Enabled) {
174 key->light_global_enabled = 1;
175
176 if (ctx->Light.Model.LocalViewer)
177 key->light_local_viewer = 1;
178
179 if (ctx->Light.Model.TwoSide)
180 key->light_twoside = 1;
181
182 if (ctx->Light.ColorMaterialEnabled) {
183 key->light_color_material_mask = ctx->Light._ColorMaterialBitmask;
184 }
185
186 for (i = 0; i < MAX_LIGHTS; i++) {
187 struct gl_light *light = &ctx->Light.Light[i];
188
189 if (light->Enabled) {
190 key->unit[i].light_enabled = 1;
191
192 if (light->EyePosition[3] == 0.0)
193 key->unit[i].light_eyepos3_is_zero = 1;
194
195 if (light->SpotCutoff == 180.0)
196 key->unit[i].light_spotcutoff_is_180 = 1;
197
198 if (light->ConstantAttenuation != 1.0 ||
199 light->LinearAttenuation != 0.0 ||
200 light->QuadraticAttenuation != 0.0)
201 key->unit[i].light_attenuated = 1;
202 }
203 }
204
205 if (check_active_shininess(ctx, key, 0)) {
206 key->material_shininess_is_zero = 0;
207 }
208 else if (key->light_twoside &&
209 check_active_shininess(ctx, key, 1)) {
210 key->material_shininess_is_zero = 0;
211 }
212 else {
213 key->material_shininess_is_zero = 1;
214 }
215 }
216
217 if (ctx->Transform.Normalize)
218 key->normalize = 1;
219
220 if (ctx->Transform.RescaleNormals)
221 key->rescale_normals = 1;
222
223 if (ctx->Fog.FogCoordinateSource == GL_FRAGMENT_DEPTH_EXT) {
224 key->fog_source_is_depth = 1;
225 key->fog_distance_mode = translate_fog_distance_mode(ctx->Fog.FogDistanceMode);
226 }
227
228 if (ctx->Point._Attenuated)
229 key->point_attenuated = 1;
230
231 if (ctx->Array.VAO->VertexAttrib[VERT_ATTRIB_POINT_SIZE].Enabled)
232 key->point_array = 1;
233
234 if (ctx->Texture._TexGenEnabled ||
235 ctx->Texture._TexMatEnabled ||
236 ctx->Texture._MaxEnabledTexImageUnit != -1)
237 key->texture_enabled_global = 1;
238
239 for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
240 struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
241
242 if (texUnit->_Current)
243 key->unit[i].texunit_really_enabled = 1;
244
245 if (ctx->Point.PointSprite)
246 if (ctx->Point.CoordReplace[i])
247 key->unit[i].coord_replace = 1;
248
249 if (ctx->Texture._TexMatEnabled & ENABLE_TEXMAT(i))
250 key->unit[i].texmat_enabled = 1;
251
252 if (texUnit->TexGenEnabled) {
253 key->unit[i].texgen_enabled = 1;
254
255 key->unit[i].texgen_mode0 =
256 translate_texgen( texUnit->TexGenEnabled & (1<<0),
257 texUnit->GenS.Mode );
258 key->unit[i].texgen_mode1 =
259 translate_texgen( texUnit->TexGenEnabled & (1<<1),
260 texUnit->GenT.Mode );
261 key->unit[i].texgen_mode2 =
262 translate_texgen( texUnit->TexGenEnabled & (1<<2),
263 texUnit->GenR.Mode );
264 key->unit[i].texgen_mode3 =
265 translate_texgen( texUnit->TexGenEnabled & (1<<3),
266 texUnit->GenQ.Mode );
267 }
268 }
269 }
270
271
272
273 /* Very useful debugging tool - produces annotated listing of
274 * generated program with line/function references for each
275 * instruction back into this file:
276 */
277 #define DISASSEM 0
278
279
280 /* Use uregs to represent registers internally, translate to Mesa's
281 * expected formats on emit.
282 *
283 * NOTE: These are passed by value extensively in this file rather
284 * than as usual by pointer reference. If this disturbs you, try
285 * remembering they are just 32bits in size.
286 *
287 * GCC is smart enough to deal with these dword-sized structures in
288 * much the same way as if I had defined them as dwords and was using
289 * macros to access and set the fields. This is much nicer and easier
290 * to evolve.
291 */
292 struct ureg {
293 GLuint file:4;
294 GLint idx:9; /* relative addressing may be negative */
295 /* sizeof(idx) should == sizeof(prog_src_reg::Index) */
296 GLuint negate:1;
297 GLuint swz:12;
298 GLuint pad:6;
299 };
300
301
302 struct tnl_program {
303 const struct state_key *state;
304 struct gl_vertex_program *program;
305 GLuint max_inst; /** number of instructions allocated for program */
306 GLboolean mvp_with_dp4;
307
308 GLuint temp_in_use;
309 GLuint temp_reserved;
310
311 struct ureg eye_position;
312 struct ureg eye_position_z;
313 struct ureg eye_position_normalized;
314 struct ureg transformed_normal;
315 struct ureg identity;
316
317 GLuint materials;
318 GLuint color_materials;
319 };
320
321
322 static const struct ureg undef = {
323 PROGRAM_UNDEFINED,
324 0,
325 0,
326 0,
327 0
328 };
329
330 /* Local shorthand:
331 */
332 #define X SWIZZLE_X
333 #define Y SWIZZLE_Y
334 #define Z SWIZZLE_Z
335 #define W SWIZZLE_W
336
337
338 /* Construct a ureg:
339 */
340 static struct ureg make_ureg(GLuint file, GLint idx)
341 {
342 struct ureg reg;
343 reg.file = file;
344 reg.idx = idx;
345 reg.negate = 0;
346 reg.swz = SWIZZLE_NOOP;
347 reg.pad = 0;
348 return reg;
349 }
350
351
352
353 static struct ureg negate( struct ureg reg )
354 {
355 reg.negate ^= 1;
356 return reg;
357 }
358
359
360 static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
361 {
362 reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
363 GET_SWZ(reg.swz, y),
364 GET_SWZ(reg.swz, z),
365 GET_SWZ(reg.swz, w));
366 return reg;
367 }
368
369
370 static struct ureg swizzle1( struct ureg reg, int x )
371 {
372 return swizzle(reg, x, x, x, x);
373 }
374
375
376 static struct ureg get_temp( struct tnl_program *p )
377 {
378 int bit = ffs( ~p->temp_in_use );
379 if (!bit) {
380 _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
381 exit(1);
382 }
383
384 if ((GLuint) bit > p->program->Base.NumTemporaries)
385 p->program->Base.NumTemporaries = bit;
386
387 p->temp_in_use |= 1<<(bit-1);
388 return make_ureg(PROGRAM_TEMPORARY, bit-1);
389 }
390
391
392 static struct ureg reserve_temp( struct tnl_program *p )
393 {
394 struct ureg temp = get_temp( p );
395 p->temp_reserved |= 1<<temp.idx;
396 return temp;
397 }
398
399
400 static void release_temp( struct tnl_program *p, struct ureg reg )
401 {
402 if (reg.file == PROGRAM_TEMPORARY) {
403 p->temp_in_use &= ~(1<<reg.idx);
404 p->temp_in_use |= p->temp_reserved; /* can't release reserved temps */
405 }
406 }
407
408 static void release_temps( struct tnl_program *p )
409 {
410 p->temp_in_use = p->temp_reserved;
411 }
412
413
414 static struct ureg register_param5(struct tnl_program *p,
415 GLint s0,
416 GLint s1,
417 GLint s2,
418 GLint s3,
419 GLint s4)
420 {
421 gl_state_index tokens[STATE_LENGTH];
422 GLint idx;
423 tokens[0] = s0;
424 tokens[1] = s1;
425 tokens[2] = s2;
426 tokens[3] = s3;
427 tokens[4] = s4;
428 idx = _mesa_add_state_reference( p->program->Base.Parameters, tokens );
429 return make_ureg(PROGRAM_STATE_VAR, idx);
430 }
431
432
433 #define register_param1(p,s0) register_param5(p,s0,0,0,0,0)
434 #define register_param2(p,s0,s1) register_param5(p,s0,s1,0,0,0)
435 #define register_param3(p,s0,s1,s2) register_param5(p,s0,s1,s2,0,0)
436 #define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0)
437
438
439
440 /**
441 * \param input one of VERT_ATTRIB_x tokens.
442 */
443 static struct ureg register_input( struct tnl_program *p, GLuint input )
444 {
445 assert(input < VERT_ATTRIB_MAX);
446
447 if (p->state->varying_vp_inputs & VERT_BIT(input)) {
448 p->program->Base.InputsRead |= VERT_BIT(input);
449 return make_ureg(PROGRAM_INPUT, input);
450 }
451 else {
452 return register_param3( p, STATE_INTERNAL, STATE_CURRENT_ATTRIB, input );
453 }
454 }
455
456
457 /**
458 * \param input one of VARYING_SLOT_x tokens.
459 */
460 static struct ureg register_output( struct tnl_program *p, GLuint output )
461 {
462 p->program->Base.OutputsWritten |= BITFIELD64_BIT(output);
463 return make_ureg(PROGRAM_OUTPUT, output);
464 }
465
466
467 static struct ureg register_const4f( struct tnl_program *p,
468 GLfloat s0,
469 GLfloat s1,
470 GLfloat s2,
471 GLfloat s3)
472 {
473 gl_constant_value values[4];
474 GLint idx;
475 GLuint swizzle;
476 values[0].f = s0;
477 values[1].f = s1;
478 values[2].f = s2;
479 values[3].f = s3;
480 idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values, 4,
481 &swizzle );
482 assert(swizzle == SWIZZLE_NOOP);
483 return make_ureg(PROGRAM_CONSTANT, idx);
484 }
485
486 #define register_const1f(p, s0) register_const4f(p, s0, 0, 0, 1)
487 #define register_scalar_const(p, s0) register_const4f(p, s0, s0, s0, s0)
488 #define register_const2f(p, s0, s1) register_const4f(p, s0, s1, 0, 1)
489 #define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
490
491 static GLboolean is_undef( struct ureg reg )
492 {
493 return reg.file == PROGRAM_UNDEFINED;
494 }
495
496
497 static struct ureg get_identity_param( struct tnl_program *p )
498 {
499 if (is_undef(p->identity))
500 p->identity = register_const4f(p, 0,0,0,1);
501
502 return p->identity;
503 }
504
505 static void register_matrix_param5( struct tnl_program *p,
506 GLint s0, /* modelview, projection, etc */
507 GLint s1, /* texture matrix number */
508 GLint s2, /* first row */
509 GLint s3, /* last row */
510 GLint s4, /* inverse, transpose, etc */
511 struct ureg *matrix )
512 {
513 GLint i;
514
515 /* This is a bit sad as the support is there to pull the whole
516 * matrix out in one go:
517 */
518 for (i = 0; i <= s3 - s2; i++)
519 matrix[i] = register_param5( p, s0, s1, i, i, s4 );
520 }
521
522
523 static void emit_arg( struct prog_src_register *src,
524 struct ureg reg )
525 {
526 src->File = reg.file;
527 src->Index = reg.idx;
528 src->Swizzle = reg.swz;
529 src->Negate = reg.negate ? NEGATE_XYZW : NEGATE_NONE;
530 src->Abs = 0;
531 src->RelAddr = 0;
532 /* Check that bitfield sizes aren't exceeded */
533 assert(src->Index == reg.idx);
534 }
535
536
537 static void emit_dst( struct prog_dst_register *dst,
538 struct ureg reg, GLuint mask )
539 {
540 dst->File = reg.file;
541 dst->Index = reg.idx;
542 /* allow zero as a shorthand for xyzw */
543 dst->WriteMask = mask ? mask : WRITEMASK_XYZW;
544 dst->CondMask = COND_TR; /* always pass cond test */
545 dst->CondSwizzle = SWIZZLE_NOOP;
546 /* Check that bitfield sizes aren't exceeded */
547 assert(dst->Index == reg.idx);
548 }
549
550
551 static void debug_insn( struct prog_instruction *inst, const char *fn,
552 GLuint line )
553 {
554 if (DISASSEM) {
555 static const char *last_fn;
556
557 if (fn != last_fn) {
558 last_fn = fn;
559 printf("%s:\n", fn);
560 }
561
562 printf("%d:\t", line);
563 _mesa_print_instruction(inst);
564 }
565 }
566
567
568 static void emit_op3fn(struct tnl_program *p,
569 enum prog_opcode op,
570 struct ureg dest,
571 GLuint mask,
572 struct ureg src0,
573 struct ureg src1,
574 struct ureg src2,
575 const char *fn,
576 GLuint line)
577 {
578 GLuint nr;
579 struct prog_instruction *inst;
580
581 assert(p->program->Base.NumInstructions <= p->max_inst);
582
583 if (p->program->Base.NumInstructions == p->max_inst) {
584 /* need to extend the program's instruction array */
585 struct prog_instruction *newInst;
586
587 /* double the size */
588 p->max_inst *= 2;
589
590 newInst = _mesa_alloc_instructions(p->max_inst);
591 if (!newInst) {
592 _mesa_error(NULL, GL_OUT_OF_MEMORY, "vertex program build");
593 return;
594 }
595
596 _mesa_copy_instructions(newInst,
597 p->program->Base.Instructions,
598 p->program->Base.NumInstructions);
599
600 _mesa_free_instructions(p->program->Base.Instructions,
601 p->program->Base.NumInstructions);
602
603 p->program->Base.Instructions = newInst;
604 }
605
606 nr = p->program->Base.NumInstructions++;
607
608 inst = &p->program->Base.Instructions[nr];
609 inst->Opcode = (enum prog_opcode) op;
610
611 emit_arg( &inst->SrcReg[0], src0 );
612 emit_arg( &inst->SrcReg[1], src1 );
613 emit_arg( &inst->SrcReg[2], src2 );
614
615 emit_dst( &inst->DstReg, dest, mask );
616
617 debug_insn(inst, fn, line);
618 }
619
620
621 #define emit_op3(p, op, dst, mask, src0, src1, src2) \
622 emit_op3fn(p, op, dst, mask, src0, src1, src2, __func__, __LINE__)
623
624 #define emit_op2(p, op, dst, mask, src0, src1) \
625 emit_op3fn(p, op, dst, mask, src0, src1, undef, __func__, __LINE__)
626
627 #define emit_op1(p, op, dst, mask, src0) \
628 emit_op3fn(p, op, dst, mask, src0, undef, undef, __func__, __LINE__)
629
630
631 static struct ureg make_temp( struct tnl_program *p, struct ureg reg )
632 {
633 if (reg.file == PROGRAM_TEMPORARY &&
634 !(p->temp_reserved & (1<<reg.idx)))
635 return reg;
636 else {
637 struct ureg temp = get_temp(p);
638 emit_op1(p, OPCODE_MOV, temp, 0, reg);
639 return temp;
640 }
641 }
642
643
644 /* Currently no tracking performed of input/output/register size or
645 * active elements. Could be used to reduce these operations, as
646 * could the matrix type.
647 */
648 static void emit_matrix_transform_vec4( struct tnl_program *p,
649 struct ureg dest,
650 const struct ureg *mat,
651 struct ureg src)
652 {
653 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_X, src, mat[0]);
654 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Y, src, mat[1]);
655 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Z, src, mat[2]);
656 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_W, src, mat[3]);
657 }
658
659
660 /* This version is much easier to implement if writemasks are not
661 * supported natively on the target or (like SSE), the target doesn't
662 * have a clean/obvious dotproduct implementation.
663 */
664 static void emit_transpose_matrix_transform_vec4( struct tnl_program *p,
665 struct ureg dest,
666 const struct ureg *mat,
667 struct ureg src)
668 {
669 struct ureg tmp;
670
671 if (dest.file != PROGRAM_TEMPORARY)
672 tmp = get_temp(p);
673 else
674 tmp = dest;
675
676 emit_op2(p, OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]);
677 emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp);
678 emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp);
679 emit_op3(p, OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp);
680
681 if (dest.file != PROGRAM_TEMPORARY)
682 release_temp(p, tmp);
683 }
684
685
686 static void emit_matrix_transform_vec3( struct tnl_program *p,
687 struct ureg dest,
688 const struct ureg *mat,
689 struct ureg src)
690 {
691 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_X, src, mat[0]);
692 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Y, src, mat[1]);
693 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Z, src, mat[2]);
694 }
695
696
697 static void emit_normalize_vec3( struct tnl_program *p,
698 struct ureg dest,
699 struct ureg src )
700 {
701 struct ureg tmp = get_temp(p);
702 emit_op2(p, OPCODE_DP3, tmp, WRITEMASK_X, src, src);
703 emit_op1(p, OPCODE_RSQ, tmp, WRITEMASK_X, tmp);
704 emit_op2(p, OPCODE_MUL, dest, 0, src, swizzle1(tmp, X));
705 release_temp(p, tmp);
706 }
707
708
709 static void emit_passthrough( struct tnl_program *p,
710 GLuint input,
711 GLuint output )
712 {
713 struct ureg out = register_output(p, output);
714 emit_op1(p, OPCODE_MOV, out, 0, register_input(p, input));
715 }
716
717
718 static struct ureg get_eye_position( struct tnl_program *p )
719 {
720 if (is_undef(p->eye_position)) {
721 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
722 struct ureg modelview[4];
723
724 p->eye_position = reserve_temp(p);
725
726 if (p->mvp_with_dp4) {
727 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
728 0, modelview );
729
730 emit_matrix_transform_vec4(p, p->eye_position, modelview, pos);
731 }
732 else {
733 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
734 STATE_MATRIX_TRANSPOSE, modelview );
735
736 emit_transpose_matrix_transform_vec4(p, p->eye_position, modelview, pos);
737 }
738 }
739
740 return p->eye_position;
741 }
742
743
744 static struct ureg get_eye_position_z( struct tnl_program *p )
745 {
746 if (!is_undef(p->eye_position))
747 return swizzle1(p->eye_position, Z);
748
749 if (is_undef(p->eye_position_z)) {
750 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
751 struct ureg modelview[4];
752
753 p->eye_position_z = reserve_temp(p);
754
755 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
756 0, modelview );
757
758 emit_op2(p, OPCODE_DP4, p->eye_position_z, 0, pos, modelview[2]);
759 }
760
761 return p->eye_position_z;
762 }
763
764
765 static struct ureg get_eye_position_normalized( struct tnl_program *p )
766 {
767 if (is_undef(p->eye_position_normalized)) {
768 struct ureg eye = get_eye_position(p);
769 p->eye_position_normalized = reserve_temp(p);
770 emit_normalize_vec3(p, p->eye_position_normalized, eye);
771 }
772
773 return p->eye_position_normalized;
774 }
775
776
777 static struct ureg get_transformed_normal( struct tnl_program *p )
778 {
779 if (is_undef(p->transformed_normal) &&
780 !p->state->need_eye_coords &&
781 !p->state->normalize &&
782 !(p->state->need_eye_coords == p->state->rescale_normals))
783 {
784 p->transformed_normal = register_input(p, VERT_ATTRIB_NORMAL );
785 }
786 else if (is_undef(p->transformed_normal))
787 {
788 struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL );
789 struct ureg mvinv[3];
790 struct ureg transformed_normal = reserve_temp(p);
791
792 if (p->state->need_eye_coords) {
793 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 2,
794 STATE_MATRIX_INVTRANS, mvinv );
795
796 /* Transform to eye space:
797 */
798 emit_matrix_transform_vec3( p, transformed_normal, mvinv, normal );
799 normal = transformed_normal;
800 }
801
802 /* Normalize/Rescale:
803 */
804 if (p->state->normalize) {
805 emit_normalize_vec3( p, transformed_normal, normal );
806 normal = transformed_normal;
807 }
808 else if (p->state->need_eye_coords == p->state->rescale_normals) {
809 /* This is already adjusted for eye/non-eye rendering:
810 */
811 struct ureg rescale = register_param2(p, STATE_INTERNAL,
812 STATE_NORMAL_SCALE);
813
814 emit_op2( p, OPCODE_MUL, transformed_normal, 0, normal, rescale );
815 normal = transformed_normal;
816 }
817
818 assert(normal.file == PROGRAM_TEMPORARY);
819 p->transformed_normal = normal;
820 }
821
822 return p->transformed_normal;
823 }
824
825
826 static void build_hpos( struct tnl_program *p )
827 {
828 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
829 struct ureg hpos = register_output( p, VARYING_SLOT_POS );
830 struct ureg mvp[4];
831
832 if (p->mvp_with_dp4) {
833 register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
834 0, mvp );
835 emit_matrix_transform_vec4( p, hpos, mvp, pos );
836 }
837 else {
838 register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
839 STATE_MATRIX_TRANSPOSE, mvp );
840 emit_transpose_matrix_transform_vec4( p, hpos, mvp, pos );
841 }
842 }
843
844
845 static GLuint material_attrib( GLuint side, GLuint property )
846 {
847 return (property - STATE_AMBIENT) * 2 + side;
848 }
849
850
851 /**
852 * Get a bitmask of which material values vary on a per-vertex basis.
853 */
854 static void set_material_flags( struct tnl_program *p )
855 {
856 p->color_materials = 0;
857 p->materials = 0;
858
859 if (p->state->varying_vp_inputs & VERT_BIT_COLOR0) {
860 p->materials =
861 p->color_materials = p->state->light_color_material_mask;
862 }
863
864 p->materials |= (p->state->varying_vp_inputs >> VERT_ATTRIB_GENERIC0);
865 }
866
867
868 static struct ureg get_material( struct tnl_program *p, GLuint side,
869 GLuint property )
870 {
871 GLuint attrib = material_attrib(side, property);
872
873 if (p->color_materials & (1<<attrib))
874 return register_input(p, VERT_ATTRIB_COLOR0);
875 else if (p->materials & (1<<attrib)) {
876 /* Put material values in the GENERIC slots -- they are not used
877 * for anything in fixed function mode.
878 */
879 return register_input( p, attrib + VERT_ATTRIB_GENERIC0 );
880 }
881 else
882 return register_param3( p, STATE_MATERIAL, side, property );
883 }
884
885 #define SCENE_COLOR_BITS(side) (( MAT_BIT_FRONT_EMISSION | \
886 MAT_BIT_FRONT_AMBIENT | \
887 MAT_BIT_FRONT_DIFFUSE) << (side))
888
889
890 /**
891 * Either return a precalculated constant value or emit code to
892 * calculate these values dynamically in the case where material calls
893 * are present between begin/end pairs.
894 *
895 * Probably want to shift this to the program compilation phase - if
896 * we always emitted the calculation here, a smart compiler could
897 * detect that it was constant (given a certain set of inputs), and
898 * lift it out of the main loop. That way the programs created here
899 * would be independent of the vertex_buffer details.
900 */
901 static struct ureg get_scenecolor( struct tnl_program *p, GLuint side )
902 {
903 if (p->materials & SCENE_COLOR_BITS(side)) {
904 struct ureg lm_ambient = register_param1(p, STATE_LIGHTMODEL_AMBIENT);
905 struct ureg material_emission = get_material(p, side, STATE_EMISSION);
906 struct ureg material_ambient = get_material(p, side, STATE_AMBIENT);
907 struct ureg material_diffuse = get_material(p, side, STATE_DIFFUSE);
908 struct ureg tmp = make_temp(p, material_diffuse);
909 emit_op3(p, OPCODE_MAD, tmp, WRITEMASK_XYZ, lm_ambient,
910 material_ambient, material_emission);
911 return tmp;
912 }
913 else
914 return register_param2( p, STATE_LIGHTMODEL_SCENECOLOR, side );
915 }
916
917
918 static struct ureg get_lightprod( struct tnl_program *p, GLuint light,
919 GLuint side, GLuint property )
920 {
921 GLuint attrib = material_attrib(side, property);
922 if (p->materials & (1<<attrib)) {
923 struct ureg light_value =
924 register_param3(p, STATE_LIGHT, light, property);
925 struct ureg material_value = get_material(p, side, property);
926 struct ureg tmp = get_temp(p);
927 emit_op2(p, OPCODE_MUL, tmp, 0, light_value, material_value);
928 return tmp;
929 }
930 else
931 return register_param4(p, STATE_LIGHTPROD, light, side, property);
932 }
933
934
935 static struct ureg calculate_light_attenuation( struct tnl_program *p,
936 GLuint i,
937 struct ureg VPpli,
938 struct ureg dist )
939 {
940 struct ureg attenuation = register_param3(p, STATE_LIGHT, i,
941 STATE_ATTENUATION);
942 struct ureg att = undef;
943
944 /* Calculate spot attenuation:
945 */
946 if (!p->state->unit[i].light_spotcutoff_is_180) {
947 struct ureg spot_dir_norm = register_param3(p, STATE_INTERNAL,
948 STATE_LIGHT_SPOT_DIR_NORMALIZED, i);
949 struct ureg spot = get_temp(p);
950 struct ureg slt = get_temp(p);
951
952 att = get_temp(p);
953
954 emit_op2(p, OPCODE_DP3, spot, 0, negate(VPpli), spot_dir_norm);
955 emit_op2(p, OPCODE_SLT, slt, 0, swizzle1(spot_dir_norm,W), spot);
956 emit_op2(p, OPCODE_POW, spot, 0, spot, swizzle1(attenuation, W));
957 emit_op2(p, OPCODE_MUL, att, 0, slt, spot);
958
959 release_temp(p, spot);
960 release_temp(p, slt);
961 }
962
963 /* Calculate distance attenuation(See formula (2.4) at glspec 2.1 page 62):
964 *
965 * Skip the calucation when _dist_ is undefined(light_eyepos3_is_zero)
966 */
967 if (p->state->unit[i].light_attenuated && !is_undef(dist)) {
968 if (is_undef(att))
969 att = get_temp(p);
970 /* 1/d,d,d,1/d */
971 emit_op1(p, OPCODE_RCP, dist, WRITEMASK_YZ, dist);
972 /* 1,d,d*d,1/d */
973 emit_op2(p, OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y));
974 /* 1/dist-atten */
975 emit_op2(p, OPCODE_DP3, dist, 0, attenuation, dist);
976
977 if (!p->state->unit[i].light_spotcutoff_is_180) {
978 /* dist-atten */
979 emit_op1(p, OPCODE_RCP, dist, 0, dist);
980 /* spot-atten * dist-atten */
981 emit_op2(p, OPCODE_MUL, att, 0, dist, att);
982 }
983 else {
984 /* dist-atten */
985 emit_op1(p, OPCODE_RCP, att, 0, dist);
986 }
987 }
988
989 return att;
990 }
991
992
993 /**
994 * Compute:
995 * lit.y = MAX(0, dots.x)
996 * lit.z = SLT(0, dots.x)
997 */
998 static void emit_degenerate_lit( struct tnl_program *p,
999 struct ureg lit,
1000 struct ureg dots )
1001 {
1002 struct ureg id = get_identity_param(p); /* id = {0,0,0,1} */
1003
1004 /* Note that lit.x & lit.w will not be examined. Note also that
1005 * dots.xyzw == dots.xxxx.
1006 */
1007
1008 /* MAX lit, id, dots;
1009 */
1010 emit_op2(p, OPCODE_MAX, lit, WRITEMASK_XYZW, id, dots);
1011
1012 /* result[2] = (in > 0 ? 1 : 0)
1013 * SLT lit.z, id.z, dots; # lit.z = (0 < dots.z) ? 1 : 0
1014 */
1015 emit_op2(p, OPCODE_SLT, lit, WRITEMASK_Z, swizzle1(id,Z), dots);
1016 }
1017
1018
1019 /* Need to add some addtional parameters to allow lighting in object
1020 * space - STATE_SPOT_DIRECTION and STATE_HALF_VECTOR implicitly assume eye
1021 * space lighting.
1022 */
1023 static void build_lighting( struct tnl_program *p )
1024 {
1025 const GLboolean twoside = p->state->light_twoside;
1026 const GLboolean separate = p->state->separate_specular;
1027 GLuint nr_lights = 0, count = 0;
1028 struct ureg normal = get_transformed_normal(p);
1029 struct ureg lit = get_temp(p);
1030 struct ureg dots = get_temp(p);
1031 struct ureg _col0 = undef, _col1 = undef;
1032 struct ureg _bfc0 = undef, _bfc1 = undef;
1033 GLuint i;
1034
1035 /*
1036 * NOTE:
1037 * dots.x = dot(normal, VPpli)
1038 * dots.y = dot(normal, halfAngle)
1039 * dots.z = back.shininess
1040 * dots.w = front.shininess
1041 */
1042
1043 for (i = 0; i < MAX_LIGHTS; i++)
1044 if (p->state->unit[i].light_enabled)
1045 nr_lights++;
1046
1047 set_material_flags(p);
1048
1049 {
1050 if (!p->state->material_shininess_is_zero) {
1051 struct ureg shininess = get_material(p, 0, STATE_SHININESS);
1052 emit_op1(p, OPCODE_MOV, dots, WRITEMASK_W, swizzle1(shininess,X));
1053 release_temp(p, shininess);
1054 }
1055
1056 _col0 = make_temp(p, get_scenecolor(p, 0));
1057 if (separate)
1058 _col1 = make_temp(p, get_identity_param(p));
1059 else
1060 _col1 = _col0;
1061 }
1062
1063 if (twoside) {
1064 if (!p->state->material_shininess_is_zero) {
1065 /* Note that we negate the back-face specular exponent here.
1066 * The negation will be un-done later in the back-face code below.
1067 */
1068 struct ureg shininess = get_material(p, 1, STATE_SHININESS);
1069 emit_op1(p, OPCODE_MOV, dots, WRITEMASK_Z,
1070 negate(swizzle1(shininess,X)));
1071 release_temp(p, shininess);
1072 }
1073
1074 _bfc0 = make_temp(p, get_scenecolor(p, 1));
1075 if (separate)
1076 _bfc1 = make_temp(p, get_identity_param(p));
1077 else
1078 _bfc1 = _bfc0;
1079 }
1080
1081 /* If no lights, still need to emit the scenecolor.
1082 */
1083 {
1084 struct ureg res0 = register_output( p, VARYING_SLOT_COL0 );
1085 emit_op1(p, OPCODE_MOV, res0, 0, _col0);
1086 }
1087
1088 if (separate) {
1089 struct ureg res1 = register_output( p, VARYING_SLOT_COL1 );
1090 emit_op1(p, OPCODE_MOV, res1, 0, _col1);
1091 }
1092
1093 if (twoside) {
1094 struct ureg res0 = register_output( p, VARYING_SLOT_BFC0 );
1095 emit_op1(p, OPCODE_MOV, res0, 0, _bfc0);
1096 }
1097
1098 if (twoside && separate) {
1099 struct ureg res1 = register_output( p, VARYING_SLOT_BFC1 );
1100 emit_op1(p, OPCODE_MOV, res1, 0, _bfc1);
1101 }
1102
1103 if (nr_lights == 0) {
1104 release_temps(p);
1105 return;
1106 }
1107
1108 for (i = 0; i < MAX_LIGHTS; i++) {
1109 if (p->state->unit[i].light_enabled) {
1110 struct ureg half = undef;
1111 struct ureg att = undef, VPpli = undef;
1112 struct ureg dist = undef;
1113
1114 count++;
1115 if (p->state->unit[i].light_eyepos3_is_zero) {
1116 VPpli = register_param3(p, STATE_INTERNAL,
1117 STATE_LIGHT_POSITION_NORMALIZED, i);
1118 } else {
1119 struct ureg Ppli = register_param3(p, STATE_INTERNAL,
1120 STATE_LIGHT_POSITION, i);
1121 struct ureg V = get_eye_position(p);
1122
1123 VPpli = get_temp(p);
1124 dist = get_temp(p);
1125
1126 /* Calculate VPpli vector
1127 */
1128 emit_op2(p, OPCODE_SUB, VPpli, 0, Ppli, V);
1129
1130 /* Normalize VPpli. The dist value also used in
1131 * attenuation below.
1132 */
1133 emit_op2(p, OPCODE_DP3, dist, 0, VPpli, VPpli);
1134 emit_op1(p, OPCODE_RSQ, dist, 0, dist);
1135 emit_op2(p, OPCODE_MUL, VPpli, 0, VPpli, dist);
1136 }
1137
1138 /* Calculate attenuation:
1139 */
1140 att = calculate_light_attenuation(p, i, VPpli, dist);
1141 release_temp(p, dist);
1142
1143 /* Calculate viewer direction, or use infinite viewer:
1144 */
1145 if (!p->state->material_shininess_is_zero) {
1146 if (p->state->light_local_viewer) {
1147 struct ureg eye_hat = get_eye_position_normalized(p);
1148 half = get_temp(p);
1149 emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
1150 emit_normalize_vec3(p, half, half);
1151 } else if (p->state->unit[i].light_eyepos3_is_zero) {
1152 half = register_param3(p, STATE_INTERNAL,
1153 STATE_LIGHT_HALF_VECTOR, i);
1154 } else {
1155 struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z);
1156 half = get_temp(p);
1157 emit_op2(p, OPCODE_ADD, half, 0, VPpli, z_dir);
1158 emit_normalize_vec3(p, half, half);
1159 }
1160 }
1161
1162 /* Calculate dot products:
1163 */
1164 if (p->state->material_shininess_is_zero) {
1165 emit_op2(p, OPCODE_DP3, dots, 0, normal, VPpli);
1166 }
1167 else {
1168 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli);
1169 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_Y, normal, half);
1170 }
1171
1172 /* Front face lighting:
1173 */
1174 {
1175 struct ureg ambient = get_lightprod(p, i, 0, STATE_AMBIENT);
1176 struct ureg diffuse = get_lightprod(p, i, 0, STATE_DIFFUSE);
1177 struct ureg specular = get_lightprod(p, i, 0, STATE_SPECULAR);
1178 struct ureg res0, res1;
1179 GLuint mask0, mask1;
1180
1181 if (count == nr_lights) {
1182 if (separate) {
1183 mask0 = WRITEMASK_XYZ;
1184 mask1 = WRITEMASK_XYZ;
1185 res0 = register_output( p, VARYING_SLOT_COL0 );
1186 res1 = register_output( p, VARYING_SLOT_COL1 );
1187 }
1188 else {
1189 mask0 = 0;
1190 mask1 = WRITEMASK_XYZ;
1191 res0 = _col0;
1192 res1 = register_output( p, VARYING_SLOT_COL0 );
1193 }
1194 }
1195 else {
1196 mask0 = 0;
1197 mask1 = 0;
1198 res0 = _col0;
1199 res1 = _col1;
1200 }
1201
1202 if (!is_undef(att)) {
1203 /* light is attenuated by distance */
1204 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1205 emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1206 emit_op3(p, OPCODE_MAD, _col0, 0, swizzle1(lit,X), ambient, _col0);
1207 }
1208 else if (!p->state->material_shininess_is_zero) {
1209 /* there's a non-zero specular term */
1210 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1211 emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1212 }
1213 else {
1214 /* no attenutation, no specular */
1215 emit_degenerate_lit(p, lit, dots);
1216 emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1217 }
1218
1219 emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _col0);
1220 emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _col1);
1221
1222 release_temp(p, ambient);
1223 release_temp(p, diffuse);
1224 release_temp(p, specular);
1225 }
1226
1227 /* Back face lighting:
1228 */
1229 if (twoside) {
1230 struct ureg ambient = get_lightprod(p, i, 1, STATE_AMBIENT);
1231 struct ureg diffuse = get_lightprod(p, i, 1, STATE_DIFFUSE);
1232 struct ureg specular = get_lightprod(p, i, 1, STATE_SPECULAR);
1233 struct ureg res0, res1;
1234 GLuint mask0, mask1;
1235
1236 if (count == nr_lights) {
1237 if (separate) {
1238 mask0 = WRITEMASK_XYZ;
1239 mask1 = WRITEMASK_XYZ;
1240 res0 = register_output( p, VARYING_SLOT_BFC0 );
1241 res1 = register_output( p, VARYING_SLOT_BFC1 );
1242 }
1243 else {
1244 mask0 = 0;
1245 mask1 = WRITEMASK_XYZ;
1246 res0 = _bfc0;
1247 res1 = register_output( p, VARYING_SLOT_BFC0 );
1248 }
1249 }
1250 else {
1251 res0 = _bfc0;
1252 res1 = _bfc1;
1253 mask0 = 0;
1254 mask1 = 0;
1255 }
1256
1257 /* For the back face we need to negate the X and Y component
1258 * dot products. dots.Z has the negated back-face specular
1259 * exponent. We swizzle that into the W position. This
1260 * negation makes the back-face specular term positive again.
1261 */
1262 dots = negate(swizzle(dots,X,Y,W,Z));
1263
1264 if (!is_undef(att)) {
1265 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1266 emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1267 emit_op3(p, OPCODE_MAD, _bfc0, 0, swizzle1(lit,X), ambient, _bfc0);
1268 }
1269 else if (!p->state->material_shininess_is_zero) {
1270 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1271 emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0); /**/
1272 }
1273 else {
1274 emit_degenerate_lit(p, lit, dots);
1275 emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0);
1276 }
1277
1278 emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _bfc0);
1279 emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _bfc1);
1280 /* restore dots to its original state for subsequent lights
1281 * by negating and swizzling again.
1282 */
1283 dots = negate(swizzle(dots,X,Y,W,Z));
1284
1285 release_temp(p, ambient);
1286 release_temp(p, diffuse);
1287 release_temp(p, specular);
1288 }
1289
1290 release_temp(p, half);
1291 release_temp(p, VPpli);
1292 release_temp(p, att);
1293 }
1294 }
1295
1296 release_temps( p );
1297 }
1298
1299
1300 static void build_fog( struct tnl_program *p )
1301 {
1302 struct ureg fog = register_output(p, VARYING_SLOT_FOGC);
1303 struct ureg input;
1304
1305 if (p->state->fog_source_is_depth) {
1306
1307 switch (p->state->fog_distance_mode) {
1308 case FDM_EYE_RADIAL: /* Z = sqrt(Xe*Xe + Ye*Ye + Ze*Ze) */
1309 input = get_eye_position(p);
1310 emit_op2(p, OPCODE_DP3, fog, WRITEMASK_X, input, input);
1311 emit_op1(p, OPCODE_RSQ, fog, WRITEMASK_X, fog);
1312 emit_op1(p, OPCODE_RCP, fog, WRITEMASK_X, fog);
1313 break;
1314 case FDM_EYE_PLANE: /* Z = Ze */
1315 input = get_eye_position_z(p);
1316 emit_op1(p, OPCODE_MOV, fog, WRITEMASK_X, input);
1317 break;
1318 case FDM_EYE_PLANE_ABS: /* Z = abs(Ze) */
1319 input = get_eye_position_z(p);
1320 emit_op1(p, OPCODE_ABS, fog, WRITEMASK_X, input);
1321 break;
1322 default:
1323 assert(!"Bad fog mode in build_fog()");
1324 break;
1325 }
1326
1327 }
1328 else {
1329 input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X);
1330 emit_op1(p, OPCODE_ABS, fog, WRITEMASK_X, input);
1331 }
1332
1333 emit_op1(p, OPCODE_MOV, fog, WRITEMASK_YZW, get_identity_param(p));
1334 }
1335
1336
1337 static void build_reflect_texgen( struct tnl_program *p,
1338 struct ureg dest,
1339 GLuint writemask )
1340 {
1341 struct ureg normal = get_transformed_normal(p);
1342 struct ureg eye_hat = get_eye_position_normalized(p);
1343 struct ureg tmp = get_temp(p);
1344
1345 /* n.u */
1346 emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1347 /* 2n.u */
1348 emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1349 /* (-2n.u)n + u */
1350 emit_op3(p, OPCODE_MAD, dest, writemask, negate(tmp), normal, eye_hat);
1351
1352 release_temp(p, tmp);
1353 }
1354
1355
1356 static void build_sphere_texgen( struct tnl_program *p,
1357 struct ureg dest,
1358 GLuint writemask )
1359 {
1360 struct ureg normal = get_transformed_normal(p);
1361 struct ureg eye_hat = get_eye_position_normalized(p);
1362 struct ureg tmp = get_temp(p);
1363 struct ureg half = register_scalar_const(p, .5);
1364 struct ureg r = get_temp(p);
1365 struct ureg inv_m = get_temp(p);
1366 struct ureg id = get_identity_param(p);
1367
1368 /* Could share the above calculations, but it would be
1369 * a fairly odd state for someone to set (both sphere and
1370 * reflection active for different texture coordinate
1371 * components. Of course - if two texture units enable
1372 * reflect and/or sphere, things start to tilt in favour
1373 * of seperating this out:
1374 */
1375
1376 /* n.u */
1377 emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1378 /* 2n.u */
1379 emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1380 /* (-2n.u)n + u */
1381 emit_op3(p, OPCODE_MAD, r, 0, negate(tmp), normal, eye_hat);
1382 /* r + 0,0,1 */
1383 emit_op2(p, OPCODE_ADD, tmp, 0, r, swizzle(id,X,Y,W,Z));
1384 /* rx^2 + ry^2 + (rz+1)^2 */
1385 emit_op2(p, OPCODE_DP3, tmp, 0, tmp, tmp);
1386 /* 2/m */
1387 emit_op1(p, OPCODE_RSQ, tmp, 0, tmp);
1388 /* 1/m */
1389 emit_op2(p, OPCODE_MUL, inv_m, 0, tmp, half);
1390 /* r/m + 1/2 */
1391 emit_op3(p, OPCODE_MAD, dest, writemask, r, inv_m, half);
1392
1393 release_temp(p, tmp);
1394 release_temp(p, r);
1395 release_temp(p, inv_m);
1396 }
1397
1398
1399 static void build_texture_transform( struct tnl_program *p )
1400 {
1401 GLuint i, j;
1402
1403 for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
1404
1405 if (!(p->state->fragprog_inputs_read & VARYING_BIT_TEX(i)))
1406 continue;
1407
1408 if (p->state->unit[i].coord_replace)
1409 continue;
1410
1411 if (p->state->unit[i].texgen_enabled ||
1412 p->state->unit[i].texmat_enabled) {
1413
1414 GLuint texmat_enabled = p->state->unit[i].texmat_enabled;
1415 struct ureg out = register_output(p, VARYING_SLOT_TEX0 + i);
1416 struct ureg out_texgen = undef;
1417
1418 if (p->state->unit[i].texgen_enabled) {
1419 GLuint copy_mask = 0;
1420 GLuint sphere_mask = 0;
1421 GLuint reflect_mask = 0;
1422 GLuint normal_mask = 0;
1423 GLuint modes[4];
1424
1425 if (texmat_enabled)
1426 out_texgen = get_temp(p);
1427 else
1428 out_texgen = out;
1429
1430 modes[0] = p->state->unit[i].texgen_mode0;
1431 modes[1] = p->state->unit[i].texgen_mode1;
1432 modes[2] = p->state->unit[i].texgen_mode2;
1433 modes[3] = p->state->unit[i].texgen_mode3;
1434
1435 for (j = 0; j < 4; j++) {
1436 switch (modes[j]) {
1437 case TXG_OBJ_LINEAR: {
1438 struct ureg obj = register_input(p, VERT_ATTRIB_POS);
1439 struct ureg plane =
1440 register_param3(p, STATE_TEXGEN, i,
1441 STATE_TEXGEN_OBJECT_S + j);
1442
1443 emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1444 obj, plane );
1445 break;
1446 }
1447 case TXG_EYE_LINEAR: {
1448 struct ureg eye = get_eye_position(p);
1449 struct ureg plane =
1450 register_param3(p, STATE_TEXGEN, i,
1451 STATE_TEXGEN_EYE_S + j);
1452
1453 emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1454 eye, plane );
1455 break;
1456 }
1457 case TXG_SPHERE_MAP:
1458 sphere_mask |= WRITEMASK_X << j;
1459 break;
1460 case TXG_REFLECTION_MAP:
1461 reflect_mask |= WRITEMASK_X << j;
1462 break;
1463 case TXG_NORMAL_MAP:
1464 normal_mask |= WRITEMASK_X << j;
1465 break;
1466 case TXG_NONE:
1467 copy_mask |= WRITEMASK_X << j;
1468 }
1469 }
1470
1471 if (sphere_mask) {
1472 build_sphere_texgen(p, out_texgen, sphere_mask);
1473 }
1474
1475 if (reflect_mask) {
1476 build_reflect_texgen(p, out_texgen, reflect_mask);
1477 }
1478
1479 if (normal_mask) {
1480 struct ureg normal = get_transformed_normal(p);
1481 emit_op1(p, OPCODE_MOV, out_texgen, normal_mask, normal );
1482 }
1483
1484 if (copy_mask) {
1485 struct ureg in = register_input(p, VERT_ATTRIB_TEX0+i);
1486 emit_op1(p, OPCODE_MOV, out_texgen, copy_mask, in );
1487 }
1488 }
1489
1490 if (texmat_enabled) {
1491 struct ureg texmat[4];
1492 struct ureg in = (!is_undef(out_texgen) ?
1493 out_texgen :
1494 register_input(p, VERT_ATTRIB_TEX0+i));
1495 if (p->mvp_with_dp4) {
1496 register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1497 0, texmat );
1498 emit_matrix_transform_vec4( p, out, texmat, in );
1499 }
1500 else {
1501 register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1502 STATE_MATRIX_TRANSPOSE, texmat );
1503 emit_transpose_matrix_transform_vec4( p, out, texmat, in );
1504 }
1505 }
1506
1507 release_temps(p);
1508 }
1509 else {
1510 emit_passthrough(p, VERT_ATTRIB_TEX0+i, VARYING_SLOT_TEX0+i);
1511 }
1512 }
1513 }
1514
1515
1516 /**
1517 * Point size attenuation computation.
1518 */
1519 static void build_atten_pointsize( struct tnl_program *p )
1520 {
1521 struct ureg eye = get_eye_position_z(p);
1522 struct ureg state_size = register_param2(p, STATE_INTERNAL, STATE_POINT_SIZE_CLAMPED);
1523 struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION);
1524 struct ureg out = register_output(p, VARYING_SLOT_PSIZ);
1525 struct ureg ut = get_temp(p);
1526
1527 /* dist = |eyez| */
1528 emit_op1(p, OPCODE_ABS, ut, WRITEMASK_Y, swizzle1(eye, Z));
1529 /* p1 + dist * (p2 + dist * p3); */
1530 emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1531 swizzle1(state_attenuation, Z), swizzle1(state_attenuation, Y));
1532 emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1533 ut, swizzle1(state_attenuation, X));
1534
1535 /* 1 / sqrt(factor) */
1536 emit_op1(p, OPCODE_RSQ, ut, WRITEMASK_X, ut );
1537
1538 #if 0
1539 /* out = pointSize / sqrt(factor) */
1540 emit_op2(p, OPCODE_MUL, out, WRITEMASK_X, ut, state_size);
1541 #else
1542 /* this is a good place to clamp the point size since there's likely
1543 * no hardware registers to clamp point size at rasterization time.
1544 */
1545 emit_op2(p, OPCODE_MUL, ut, WRITEMASK_X, ut, state_size);
1546 emit_op2(p, OPCODE_MAX, ut, WRITEMASK_X, ut, swizzle1(state_size, Y));
1547 emit_op2(p, OPCODE_MIN, out, WRITEMASK_X, ut, swizzle1(state_size, Z));
1548 #endif
1549
1550 release_temp(p, ut);
1551 }
1552
1553
1554 /**
1555 * Pass-though per-vertex point size, from user's point size array.
1556 */
1557 static void build_array_pointsize( struct tnl_program *p )
1558 {
1559 struct ureg in = register_input(p, VERT_ATTRIB_POINT_SIZE);
1560 struct ureg out = register_output(p, VARYING_SLOT_PSIZ);
1561 emit_op1(p, OPCODE_MOV, out, WRITEMASK_X, in);
1562 }
1563
1564
1565 static void build_tnl_program( struct tnl_program *p )
1566 {
1567 /* Emit the program, starting with the modelview, projection transforms:
1568 */
1569 build_hpos(p);
1570
1571 /* Lighting calculations:
1572 */
1573 if (p->state->fragprog_inputs_read & (VARYING_BIT_COL0|VARYING_BIT_COL1)) {
1574 if (p->state->light_global_enabled)
1575 build_lighting(p);
1576 else {
1577 if (p->state->fragprog_inputs_read & VARYING_BIT_COL0)
1578 emit_passthrough(p, VERT_ATTRIB_COLOR0, VARYING_SLOT_COL0);
1579
1580 if (p->state->fragprog_inputs_read & VARYING_BIT_COL1)
1581 emit_passthrough(p, VERT_ATTRIB_COLOR1, VARYING_SLOT_COL1);
1582 }
1583 }
1584
1585 if (p->state->fragprog_inputs_read & VARYING_BIT_FOGC)
1586 build_fog(p);
1587
1588 if (p->state->fragprog_inputs_read & VARYING_BITS_TEX_ANY)
1589 build_texture_transform(p);
1590
1591 if (p->state->point_attenuated)
1592 build_atten_pointsize(p);
1593 else if (p->state->point_array)
1594 build_array_pointsize(p);
1595
1596 /* Finish up:
1597 */
1598 emit_op1(p, OPCODE_END, undef, 0, undef);
1599
1600 /* Disassemble:
1601 */
1602 if (DISASSEM) {
1603 printf ("\n");
1604 }
1605 }
1606
1607
1608 static void
1609 create_new_program( const struct state_key *key,
1610 struct gl_vertex_program *program,
1611 GLboolean mvp_with_dp4,
1612 GLuint max_temps)
1613 {
1614 struct tnl_program p;
1615
1616 memset(&p, 0, sizeof(p));
1617 p.state = key;
1618 p.program = program;
1619 p.eye_position = undef;
1620 p.eye_position_z = undef;
1621 p.eye_position_normalized = undef;
1622 p.transformed_normal = undef;
1623 p.identity = undef;
1624 p.temp_in_use = 0;
1625 p.mvp_with_dp4 = mvp_with_dp4;
1626
1627 if (max_temps >= sizeof(int) * 8)
1628 p.temp_reserved = 0;
1629 else
1630 p.temp_reserved = ~((1<<max_temps)-1);
1631
1632 /* Start by allocating 32 instructions.
1633 * If we need more, we'll grow the instruction array as needed.
1634 */
1635 p.max_inst = 32;
1636 p.program->Base.Instructions = _mesa_alloc_instructions(p.max_inst);
1637 p.program->Base.String = NULL;
1638 p.program->Base.NumInstructions =
1639 p.program->Base.NumTemporaries =
1640 p.program->Base.NumParameters =
1641 p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
1642 p.program->Base.Parameters = _mesa_new_parameter_list();
1643 p.program->Base.InputsRead = 0;
1644 p.program->Base.OutputsWritten = 0;
1645
1646 build_tnl_program( &p );
1647 }
1648
1649
1650 /**
1651 * Return a vertex program which implements the current fixed-function
1652 * transform/lighting/texgen operations.
1653 */
1654 struct gl_vertex_program *
1655 _mesa_get_fixed_func_vertex_program(struct gl_context *ctx)
1656 {
1657 struct gl_vertex_program *prog;
1658 struct state_key key;
1659
1660 /* Grab all the relevant state and put it in a single structure:
1661 */
1662 make_state_key(ctx, &key);
1663
1664 /* Look for an already-prepared program for this state:
1665 */
1666 prog = gl_vertex_program(
1667 _mesa_search_program_cache(ctx->VertexProgram.Cache, &key, sizeof(key)));
1668
1669 if (!prog) {
1670 /* OK, we'll have to build a new one */
1671 if (0)
1672 printf("Build new TNL program\n");
1673
1674 prog = gl_vertex_program(ctx->Driver.NewProgram(ctx, GL_VERTEX_PROGRAM_ARB, 0));
1675 if (!prog)
1676 return NULL;
1677
1678 create_new_program( &key, prog,
1679 ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].OptimizeForAOS,
1680 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTemps );
1681
1682 #if 0
1683 if (ctx->Driver.ProgramStringNotify)
1684 ctx->Driver.ProgramStringNotify( ctx, GL_VERTEX_PROGRAM_ARB,
1685 &prog->Base );
1686 #endif
1687 _mesa_program_cache_insert(ctx, ctx->VertexProgram.Cache,
1688 &key, sizeof(key), &prog->Base);
1689 }
1690
1691 return prog;
1692 }