s/Tungsten Graphics/VMware/
[mesa.git] / src / mesa / main / querymatrix.c
1 /**************************************************************************
2 *
3 * Copyright 2008 VMware, Inc.
4 * All Rights Reserved.
5 *
6 **************************************************************************/
7
8
9 /**
10 * Code to implement GL_OES_query_matrix. See the spec at:
11 * http://www.khronos.org/registry/gles/extensions/OES/OES_query_matrix.txt
12 */
13
14
15 #include <stdlib.h>
16 #include <math.h>
17 #include "glheader.h"
18 #include "querymatrix.h"
19 #include "main/get.h"
20
21
22 /**
23 * This is from the GL_OES_query_matrix extension specification:
24 *
25 * GLbitfield glQueryMatrixxOES( GLfixed mantissa[16],
26 * GLint exponent[16] )
27 * mantissa[16] contains the contents of the current matrix in GLfixed
28 * format. exponent[16] contains the unbiased exponents applied to the
29 * matrix components, so that the internal representation of component i
30 * is close to mantissa[i] * 2^exponent[i]. The function returns a status
31 * word which is zero if all the components are valid. If
32 * status & (1<<i) != 0, the component i is invalid (e.g., NaN, Inf).
33 * The implementations are not required to keep track of overflows. In
34 * that case, the invalid bits are never set.
35 */
36
37 #define INT_TO_FIXED(x) ((GLfixed) ((x) << 16))
38 #define FLOAT_TO_FIXED(x) ((GLfixed) ((x) * 65536.0))
39
40 #if defined(_MSC_VER)
41 #if _MSC_VER < 1800 /* Not required on VS2013 and above. */
42 /* Oddly, the fpclassify() function doesn't exist in such a form
43 * on MSVC. This is an implementation using slightly different
44 * lower-level Windows functions.
45 */
46 #include <float.h>
47
48 enum {FP_NAN, FP_INFINITE, FP_ZERO, FP_SUBNORMAL, FP_NORMAL}
49 fpclassify(double x)
50 {
51 switch(_fpclass(x)) {
52 case _FPCLASS_SNAN: /* signaling NaN */
53 case _FPCLASS_QNAN: /* quiet NaN */
54 return FP_NAN;
55 case _FPCLASS_NINF: /* negative infinity */
56 case _FPCLASS_PINF: /* positive infinity */
57 return FP_INFINITE;
58 case _FPCLASS_NN: /* negative normal */
59 case _FPCLASS_PN: /* positive normal */
60 return FP_NORMAL;
61 case _FPCLASS_ND: /* negative denormalized */
62 case _FPCLASS_PD: /* positive denormalized */
63 return FP_SUBNORMAL;
64 case _FPCLASS_NZ: /* negative zero */
65 case _FPCLASS_PZ: /* positive zero */
66 return FP_ZERO;
67 default:
68 /* Should never get here; but if we do, this will guarantee
69 * that the pattern is not treated like a number.
70 */
71 return FP_NAN;
72 }
73 }
74 #endif /* _MSC_VER < 1800 */
75
76 #elif defined(__APPLE__) || defined(__CYGWIN__) || defined(__FreeBSD__) || \
77 defined(__OpenBSD__) || defined(__NetBSD__) || defined(__DragonFly__) || \
78 (defined(__sun) && defined(__C99FEATURES__)) || defined(__MINGW32__) || \
79 (defined(__sun) && defined(__GNUC__)) || defined(ANDROID) || defined(__HAIKU__)
80
81 /* fpclassify is available. */
82
83 #elif !defined(_XOPEN_SOURCE) || _XOPEN_SOURCE < 600
84
85 enum {FP_NAN, FP_INFINITE, FP_ZERO, FP_SUBNORMAL, FP_NORMAL}
86 fpclassify(double x)
87 {
88 /* XXX do something better someday */
89 return FP_NORMAL;
90 }
91
92 #endif
93
94 GLbitfield GLAPIENTRY _mesa_QueryMatrixxOES(GLfixed mantissa[16], GLint exponent[16])
95 {
96 GLfloat matrix[16];
97 GLint tmp;
98 GLenum currentMode = GL_FALSE;
99 GLenum desiredMatrix = GL_FALSE;
100 /* The bitfield returns 1 for each component that is invalid (i.e.
101 * NaN or Inf). In case of error, everything is invalid.
102 */
103 GLbitfield rv;
104 register unsigned int i;
105 unsigned int bit;
106
107 /* This data structure defines the mapping between the current matrix
108 * mode and the desired matrix identifier.
109 */
110 static struct {
111 GLenum currentMode;
112 GLenum desiredMatrix;
113 } modes[] = {
114 {GL_MODELVIEW, GL_MODELVIEW_MATRIX},
115 {GL_PROJECTION, GL_PROJECTION_MATRIX},
116 {GL_TEXTURE, GL_TEXTURE_MATRIX},
117 };
118
119 /* Call Mesa to get the current matrix in floating-point form. First,
120 * we have to figure out what the current matrix mode is.
121 */
122 _mesa_GetIntegerv(GL_MATRIX_MODE, &tmp);
123 currentMode = (GLenum) tmp;
124
125 /* The mode is either GL_FALSE, if for some reason we failed to query
126 * the mode, or a given mode from the above table. Search for the
127 * returned mode to get the desired matrix; if we don't find it,
128 * we can return immediately, as _mesa_GetInteger() will have
129 * logged the necessary error already.
130 */
131 for (i = 0; i < sizeof(modes)/sizeof(modes[0]); i++) {
132 if (modes[i].currentMode == currentMode) {
133 desiredMatrix = modes[i].desiredMatrix;
134 break;
135 }
136 }
137 if (desiredMatrix == GL_FALSE) {
138 /* Early error means all values are invalid. */
139 return 0xffff;
140 }
141
142 /* Now pull the matrix itself. */
143 _mesa_GetFloatv(desiredMatrix, matrix);
144
145 rv = 0;
146 for (i = 0, bit = 1; i < 16; i++, bit<<=1) {
147 float normalizedFraction;
148 int exp;
149
150 switch (fpclassify(matrix[i])) {
151 /* A "subnormal" or denormalized number is too small to be
152 * represented in normal format; but despite that it's a
153 * valid floating point number. FP_ZERO and FP_NORMAL
154 * are both valid as well. We should be fine treating
155 * these three cases as legitimate floating-point numbers.
156 */
157 case FP_SUBNORMAL:
158 case FP_NORMAL:
159 case FP_ZERO:
160 normalizedFraction = (GLfloat)frexp(matrix[i], &exp);
161 mantissa[i] = FLOAT_TO_FIXED(normalizedFraction);
162 exponent[i] = (GLint) exp;
163 break;
164
165 /* If the entry is not-a-number or an infinity, then the
166 * matrix component is invalid. The invalid flag for
167 * the component is already set; might as well set the
168 * other return values to known values. We'll set
169 * distinct values so that a savvy end user could determine
170 * whether the matrix component was a NaN or an infinity,
171 * but this is more useful for debugging than anything else
172 * since the standard doesn't specify any such magic
173 * values to return.
174 */
175 case FP_NAN:
176 mantissa[i] = INT_TO_FIXED(0);
177 exponent[i] = (GLint) 0;
178 rv |= bit;
179 break;
180
181 case FP_INFINITE:
182 /* Return +/- 1 based on whether it's a positive or
183 * negative infinity.
184 */
185 if (matrix[i] > 0) {
186 mantissa[i] = INT_TO_FIXED(1);
187 }
188 else {
189 mantissa[i] = -INT_TO_FIXED(1);
190 }
191 exponent[i] = (GLint) 0;
192 rv |= bit;
193 break;
194
195 /* We should never get here; but here's a catching case
196 * in case fpclassify() is returnings something unexpected.
197 */
198 default:
199 mantissa[i] = INT_TO_FIXED(2);
200 exponent[i] = (GLint) 0;
201 rv |= bit;
202 break;
203 }
204
205 } /* for each component */
206
207 /* All done */
208 return rv;
209 }