glthread: track instance divisor changes
[mesa.git] / src / mesa / main / rastpos.c
1 /*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included
14 * in all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /**
27 * \file rastpos.c
28 * Raster position operations.
29 */
30
31 #include "glheader.h"
32 #include "context.h"
33 #include "feedback.h"
34 #include "macros.h"
35 #include "mtypes.h"
36 #include "rastpos.h"
37 #include "state.h"
38 #include "main/viewport.h"
39 #include "util/bitscan.h"
40
41
42
43 /**
44 * Clip a point against the view volume.
45 *
46 * \param v vertex vector describing the point to clip.
47 *
48 * \return zero if outside view volume, or one if inside.
49 */
50 static GLuint
51 viewclip_point_xy( const GLfloat v[] )
52 {
53 if ( v[0] > v[3] || v[0] < -v[3]
54 || v[1] > v[3] || v[1] < -v[3] ) {
55 return 0;
56 }
57 else {
58 return 1;
59 }
60 }
61
62
63 /**
64 * Clip a point against the near Z clipping planes.
65 *
66 * \param v vertex vector describing the point to clip.
67 *
68 * \return zero if outside view volume, or one if inside.
69 */
70 static GLuint
71 viewclip_point_near_z( const GLfloat v[] )
72 {
73 if (v[2] < -v[3]) {
74 return 0;
75 }
76 else {
77 return 1;
78 }
79 }
80
81
82 /**
83 * Clip a point against the far Z clipping planes.
84 *
85 * \param v vertex vector describing the point to clip.
86 *
87 * \return zero if outside view volume, or one if inside.
88 */
89 static GLuint
90 viewclip_point_far_z( const GLfloat v[] )
91 {
92 if (v[2] > v[3]) {
93 return 0;
94 }
95 else {
96 return 1;
97 }
98 }
99
100
101 /**
102 * Clip a point against the user clipping planes.
103 *
104 * \param ctx GL context.
105 * \param v vertex vector describing the point to clip.
106 *
107 * \return zero if the point was clipped, or one otherwise.
108 */
109 static GLuint
110 userclip_point( struct gl_context *ctx, const GLfloat v[] )
111 {
112 GLbitfield mask = ctx->Transform.ClipPlanesEnabled;
113 while (mask) {
114 const int p = u_bit_scan(&mask);
115 GLfloat dot = v[0] * ctx->Transform._ClipUserPlane[p][0]
116 + v[1] * ctx->Transform._ClipUserPlane[p][1]
117 + v[2] * ctx->Transform._ClipUserPlane[p][2]
118 + v[3] * ctx->Transform._ClipUserPlane[p][3];
119
120 if (dot < 0.0F) {
121 return 0;
122 }
123 }
124
125 return 1;
126 }
127
128
129 /**
130 * Compute lighting for the raster position. RGB modes computed.
131 * \param ctx the context
132 * \param vertex vertex location
133 * \param normal normal vector
134 * \param Rcolor returned color
135 * \param Rspec returned specular color (if separate specular enabled)
136 */
137 static void
138 shade_rastpos(struct gl_context *ctx,
139 const GLfloat vertex[4],
140 const GLfloat normal[3],
141 GLfloat Rcolor[4],
142 GLfloat Rspec[4])
143 {
144 /*const*/ GLfloat (*base)[3] = ctx->Light._BaseColor;
145 GLbitfield mask;
146 GLfloat diffuseColor[4], specularColor[4]; /* for RGB mode only */
147
148 COPY_3V(diffuseColor, base[0]);
149 diffuseColor[3] = CLAMP(
150 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3], 0.0F, 1.0F );
151 ASSIGN_4V(specularColor, 0.0, 0.0, 0.0, 1.0);
152
153 mask = ctx->Light._EnabledLights;
154 while (mask) {
155 const int i = u_bit_scan(&mask);
156 struct gl_light *light = &ctx->Light.Light[i];
157 GLfloat attenuation = 1.0;
158 GLfloat VP[3]; /* vector from vertex to light pos */
159 GLfloat n_dot_VP;
160 GLfloat diffuseContrib[3], specularContrib[3];
161
162 if (!(light->_Flags & LIGHT_POSITIONAL)) {
163 /* light at infinity */
164 COPY_3V(VP, light->_VP_inf_norm);
165 attenuation = light->_VP_inf_spot_attenuation;
166 }
167 else {
168 /* local/positional light */
169 GLfloat d;
170
171 /* VP = vector from vertex pos to light[i].pos */
172 SUB_3V(VP, light->_Position, vertex);
173 /* d = length(VP) */
174 d = (GLfloat) LEN_3FV( VP );
175 if (d > 1.0e-6F) {
176 /* normalize VP */
177 GLfloat invd = 1.0F / d;
178 SELF_SCALE_SCALAR_3V(VP, invd);
179 }
180
181 /* atti */
182 attenuation = 1.0F / (light->ConstantAttenuation + d *
183 (light->LinearAttenuation + d *
184 light->QuadraticAttenuation));
185
186 if (light->_Flags & LIGHT_SPOT) {
187 GLfloat PV_dot_dir = - DOT3(VP, light->_NormSpotDirection);
188
189 if (PV_dot_dir<light->_CosCutoff) {
190 continue;
191 }
192 else {
193 GLfloat spot = powf(PV_dot_dir, light->SpotExponent);
194 attenuation *= spot;
195 }
196 }
197 }
198
199 if (attenuation < 1e-3F)
200 continue;
201
202 n_dot_VP = DOT3( normal, VP );
203
204 if (n_dot_VP < 0.0F) {
205 ACC_SCALE_SCALAR_3V(diffuseColor, attenuation, light->_MatAmbient[0]);
206 continue;
207 }
208
209 /* Ambient + diffuse */
210 COPY_3V(diffuseContrib, light->_MatAmbient[0]);
211 ACC_SCALE_SCALAR_3V(diffuseContrib, n_dot_VP, light->_MatDiffuse[0]);
212
213 /* Specular */
214 {
215 const GLfloat *h;
216 GLfloat n_dot_h;
217
218 ASSIGN_3V(specularContrib, 0.0, 0.0, 0.0);
219
220 if (ctx->Light.Model.LocalViewer) {
221 GLfloat v[3];
222 COPY_3V(v, vertex);
223 NORMALIZE_3FV(v);
224 SUB_3V(VP, VP, v);
225 NORMALIZE_3FV(VP);
226 h = VP;
227 }
228 else if (light->_Flags & LIGHT_POSITIONAL) {
229 ACC_3V(VP, ctx->_EyeZDir);
230 NORMALIZE_3FV(VP);
231 h = VP;
232 }
233 else {
234 h = light->_h_inf_norm;
235 }
236
237 n_dot_h = DOT3(normal, h);
238
239 if (n_dot_h > 0.0F) {
240 GLfloat shine;
241 GLfloat spec_coef;
242
243 shine = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SHININESS][0];
244 spec_coef = powf(n_dot_h, shine);
245
246 if (spec_coef > 1.0e-10F) {
247 if (ctx->Light.Model.ColorControl==GL_SEPARATE_SPECULAR_COLOR) {
248 ACC_SCALE_SCALAR_3V( specularContrib, spec_coef,
249 light->_MatSpecular[0]);
250 }
251 else {
252 ACC_SCALE_SCALAR_3V( diffuseContrib, spec_coef,
253 light->_MatSpecular[0]);
254 }
255 }
256 }
257 }
258
259 ACC_SCALE_SCALAR_3V( diffuseColor, attenuation, diffuseContrib );
260 ACC_SCALE_SCALAR_3V( specularColor, attenuation, specularContrib );
261 }
262
263 Rcolor[0] = CLAMP(diffuseColor[0], 0.0F, 1.0F);
264 Rcolor[1] = CLAMP(diffuseColor[1], 0.0F, 1.0F);
265 Rcolor[2] = CLAMP(diffuseColor[2], 0.0F, 1.0F);
266 Rcolor[3] = CLAMP(diffuseColor[3], 0.0F, 1.0F);
267 Rspec[0] = CLAMP(specularColor[0], 0.0F, 1.0F);
268 Rspec[1] = CLAMP(specularColor[1], 0.0F, 1.0F);
269 Rspec[2] = CLAMP(specularColor[2], 0.0F, 1.0F);
270 Rspec[3] = CLAMP(specularColor[3], 0.0F, 1.0F);
271 }
272
273
274 /**
275 * Do texgen needed for glRasterPos.
276 * \param ctx rendering context
277 * \param vObj object-space vertex coordinate
278 * \param vEye eye-space vertex coordinate
279 * \param normal vertex normal
280 * \param unit texture unit number
281 * \param texcoord incoming texcoord and resulting texcoord
282 */
283 static void
284 compute_texgen(struct gl_context *ctx, const GLfloat vObj[4], const GLfloat vEye[4],
285 const GLfloat normal[3], GLuint unit, GLfloat texcoord[4])
286 {
287 const struct gl_fixedfunc_texture_unit *texUnit =
288 &ctx->Texture.FixedFuncUnit[unit];
289
290 /* always compute sphere map terms, just in case */
291 GLfloat u[3], two_nu, rx, ry, rz, m, mInv;
292 COPY_3V(u, vEye);
293 NORMALIZE_3FV(u);
294 two_nu = 2.0F * DOT3(normal, u);
295 rx = u[0] - normal[0] * two_nu;
296 ry = u[1] - normal[1] * two_nu;
297 rz = u[2] - normal[2] * two_nu;
298 m = rx * rx + ry * ry + (rz + 1.0F) * (rz + 1.0F);
299 if (m > 0.0F)
300 mInv = 0.5F * (1.0f / sqrtf(m));
301 else
302 mInv = 0.0F;
303
304 if (texUnit->TexGenEnabled & S_BIT) {
305 switch (texUnit->GenS.Mode) {
306 case GL_OBJECT_LINEAR:
307 texcoord[0] = DOT4(vObj, texUnit->GenS.ObjectPlane);
308 break;
309 case GL_EYE_LINEAR:
310 texcoord[0] = DOT4(vEye, texUnit->GenS.EyePlane);
311 break;
312 case GL_SPHERE_MAP:
313 texcoord[0] = rx * mInv + 0.5F;
314 break;
315 case GL_REFLECTION_MAP:
316 texcoord[0] = rx;
317 break;
318 case GL_NORMAL_MAP:
319 texcoord[0] = normal[0];
320 break;
321 default:
322 _mesa_problem(ctx, "Bad S texgen in compute_texgen()");
323 return;
324 }
325 }
326
327 if (texUnit->TexGenEnabled & T_BIT) {
328 switch (texUnit->GenT.Mode) {
329 case GL_OBJECT_LINEAR:
330 texcoord[1] = DOT4(vObj, texUnit->GenT.ObjectPlane);
331 break;
332 case GL_EYE_LINEAR:
333 texcoord[1] = DOT4(vEye, texUnit->GenT.EyePlane);
334 break;
335 case GL_SPHERE_MAP:
336 texcoord[1] = ry * mInv + 0.5F;
337 break;
338 case GL_REFLECTION_MAP:
339 texcoord[1] = ry;
340 break;
341 case GL_NORMAL_MAP:
342 texcoord[1] = normal[1];
343 break;
344 default:
345 _mesa_problem(ctx, "Bad T texgen in compute_texgen()");
346 return;
347 }
348 }
349
350 if (texUnit->TexGenEnabled & R_BIT) {
351 switch (texUnit->GenR.Mode) {
352 case GL_OBJECT_LINEAR:
353 texcoord[2] = DOT4(vObj, texUnit->GenR.ObjectPlane);
354 break;
355 case GL_EYE_LINEAR:
356 texcoord[2] = DOT4(vEye, texUnit->GenR.EyePlane);
357 break;
358 case GL_REFLECTION_MAP:
359 texcoord[2] = rz;
360 break;
361 case GL_NORMAL_MAP:
362 texcoord[2] = normal[2];
363 break;
364 default:
365 _mesa_problem(ctx, "Bad R texgen in compute_texgen()");
366 return;
367 }
368 }
369
370 if (texUnit->TexGenEnabled & Q_BIT) {
371 switch (texUnit->GenQ.Mode) {
372 case GL_OBJECT_LINEAR:
373 texcoord[3] = DOT4(vObj, texUnit->GenQ.ObjectPlane);
374 break;
375 case GL_EYE_LINEAR:
376 texcoord[3] = DOT4(vEye, texUnit->GenQ.EyePlane);
377 break;
378 default:
379 _mesa_problem(ctx, "Bad Q texgen in compute_texgen()");
380 return;
381 }
382 }
383 }
384
385
386 /**
387 * glRasterPos transformation. Typically called via ctx->Driver.RasterPos().
388 *
389 * \param vObj vertex position in object space
390 */
391 void
392 _mesa_RasterPos(struct gl_context *ctx, const GLfloat vObj[4])
393 {
394 if (_mesa_arb_vertex_program_enabled(ctx)) {
395 /* XXX implement this */
396 _mesa_problem(ctx, "Vertex programs not implemented for glRasterPos");
397 return;
398 }
399 else {
400 GLfloat eye[4], clip[4], ndc[3], d;
401 GLfloat *norm, eyenorm[3];
402 GLfloat *objnorm = ctx->Current.Attrib[VERT_ATTRIB_NORMAL];
403 float scale[3], translate[3];
404
405 /* apply modelview matrix: eye = MV * obj */
406 TRANSFORM_POINT( eye, ctx->ModelviewMatrixStack.Top->m, vObj );
407 /* apply projection matrix: clip = Proj * eye */
408 TRANSFORM_POINT( clip, ctx->ProjectionMatrixStack.Top->m, eye );
409
410 /* clip to view volume. */
411 if (!ctx->Transform.DepthClampNear) {
412 if (viewclip_point_near_z(clip) == 0) {
413 ctx->Current.RasterPosValid = GL_FALSE;
414 return;
415 }
416 }
417 if (!ctx->Transform.DepthClampFar) {
418 if (viewclip_point_far_z(clip) == 0) {
419 ctx->Current.RasterPosValid = GL_FALSE;
420 return;
421 }
422 }
423 if (!ctx->Transform.RasterPositionUnclipped) {
424 if (viewclip_point_xy(clip) == 0) {
425 ctx->Current.RasterPosValid = GL_FALSE;
426 return;
427 }
428 }
429
430 /* clip to user clipping planes */
431 if (ctx->Transform.ClipPlanesEnabled && !userclip_point(ctx, clip)) {
432 ctx->Current.RasterPosValid = GL_FALSE;
433 return;
434 }
435
436 /* ndc = clip / W */
437 d = (clip[3] == 0.0F) ? 1.0F : 1.0F / clip[3];
438 ndc[0] = clip[0] * d;
439 ndc[1] = clip[1] * d;
440 ndc[2] = clip[2] * d;
441 /* wincoord = viewport_mapping(ndc) */
442 _mesa_get_viewport_xform(ctx, 0, scale, translate);
443 ctx->Current.RasterPos[0] = ndc[0] * scale[0] + translate[0];
444 ctx->Current.RasterPos[1] = ndc[1] * scale[1] + translate[1];
445 ctx->Current.RasterPos[2] = ndc[2] * scale[2] + translate[2];
446 ctx->Current.RasterPos[3] = clip[3];
447
448 if (ctx->Transform.DepthClampNear &&
449 ctx->Transform.DepthClampFar) {
450 ctx->Current.RasterPos[3] = CLAMP(ctx->Current.RasterPos[3],
451 ctx->ViewportArray[0].Near,
452 ctx->ViewportArray[0].Far);
453 } else {
454 /* Clamp against near and far plane separately */
455 if (ctx->Transform.DepthClampNear) {
456 ctx->Current.RasterPos[3] = MAX2(ctx->Current.RasterPos[3],
457 ctx->ViewportArray[0].Near);
458 }
459
460 if (ctx->Transform.DepthClampFar) {
461 ctx->Current.RasterPos[3] = MIN2(ctx->Current.RasterPos[3],
462 ctx->ViewportArray[0].Far);
463 }
464 }
465
466 /* compute raster distance */
467 if (ctx->Fog.FogCoordinateSource == GL_FOG_COORDINATE_EXT)
468 ctx->Current.RasterDistance = ctx->Current.Attrib[VERT_ATTRIB_FOG][0];
469 else
470 ctx->Current.RasterDistance =
471 sqrtf( eye[0]*eye[0] + eye[1]*eye[1] + eye[2]*eye[2] );
472
473 /* compute transformed normal vector (for lighting or texgen) */
474 if (ctx->_NeedEyeCoords) {
475 const GLfloat *inv = ctx->ModelviewMatrixStack.Top->inv;
476 TRANSFORM_NORMAL( eyenorm, objnorm, inv );
477 norm = eyenorm;
478 }
479 else {
480 norm = objnorm;
481 }
482
483 /* update raster color */
484 if (ctx->Light.Enabled) {
485 /* lighting */
486 shade_rastpos( ctx, vObj, norm,
487 ctx->Current.RasterColor,
488 ctx->Current.RasterSecondaryColor );
489 }
490 else {
491 /* use current color */
492 COPY_4FV(ctx->Current.RasterColor,
493 ctx->Current.Attrib[VERT_ATTRIB_COLOR0]);
494 COPY_4FV(ctx->Current.RasterSecondaryColor,
495 ctx->Current.Attrib[VERT_ATTRIB_COLOR1]);
496 }
497
498 /* texture coords */
499 {
500 GLuint u;
501 for (u = 0; u < ctx->Const.MaxTextureCoordUnits; u++) {
502 GLfloat tc[4];
503 COPY_4V(tc, ctx->Current.Attrib[VERT_ATTRIB_TEX0 + u]);
504 if (ctx->Texture.FixedFuncUnit[u].TexGenEnabled) {
505 compute_texgen(ctx, vObj, eye, norm, u, tc);
506 }
507 TRANSFORM_POINT(ctx->Current.RasterTexCoords[u],
508 ctx->TextureMatrixStack[u].Top->m, tc);
509 }
510 }
511
512 ctx->Current.RasterPosValid = GL_TRUE;
513 }
514
515 if (ctx->RenderMode == GL_SELECT) {
516 _mesa_update_hitflag( ctx, ctx->Current.RasterPos[2] );
517 }
518 }
519
520
521 /**
522 * Helper function for all the RasterPos functions.
523 */
524 static void
525 rasterpos(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
526 {
527 GET_CURRENT_CONTEXT(ctx);
528 GLfloat p[4];
529
530 p[0] = x;
531 p[1] = y;
532 p[2] = z;
533 p[3] = w;
534
535 FLUSH_VERTICES(ctx, 0);
536 FLUSH_CURRENT(ctx, 0);
537
538 if (ctx->NewState)
539 _mesa_update_state( ctx );
540
541 ctx->Driver.RasterPos(ctx, p);
542 }
543
544
545 void GLAPIENTRY
546 _mesa_RasterPos2d(GLdouble x, GLdouble y)
547 {
548 rasterpos((GLfloat)x, (GLfloat)y, (GLfloat)0.0, (GLfloat)1.0);
549 }
550
551 void GLAPIENTRY
552 _mesa_RasterPos2f(GLfloat x, GLfloat y)
553 {
554 rasterpos(x, y, 0.0F, 1.0F);
555 }
556
557 void GLAPIENTRY
558 _mesa_RasterPos2i(GLint x, GLint y)
559 {
560 rasterpos((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
561 }
562
563 void GLAPIENTRY
564 _mesa_RasterPos2s(GLshort x, GLshort y)
565 {
566 rasterpos(x, y, 0.0F, 1.0F);
567 }
568
569 void GLAPIENTRY
570 _mesa_RasterPos3d(GLdouble x, GLdouble y, GLdouble z)
571 {
572 rasterpos((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
573 }
574
575 void GLAPIENTRY
576 _mesa_RasterPos3f(GLfloat x, GLfloat y, GLfloat z)
577 {
578 rasterpos(x, y, z, 1.0F);
579 }
580
581 void GLAPIENTRY
582 _mesa_RasterPos3i(GLint x, GLint y, GLint z)
583 {
584 rasterpos((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
585 }
586
587 void GLAPIENTRY
588 _mesa_RasterPos3s(GLshort x, GLshort y, GLshort z)
589 {
590 rasterpos(x, y, z, 1.0F);
591 }
592
593 void GLAPIENTRY
594 _mesa_RasterPos4d(GLdouble x, GLdouble y, GLdouble z, GLdouble w)
595 {
596 rasterpos((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
597 }
598
599 void GLAPIENTRY
600 _mesa_RasterPos4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
601 {
602 rasterpos(x, y, z, w);
603 }
604
605 void GLAPIENTRY
606 _mesa_RasterPos4i(GLint x, GLint y, GLint z, GLint w)
607 {
608 rasterpos((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
609 }
610
611 void GLAPIENTRY
612 _mesa_RasterPos4s(GLshort x, GLshort y, GLshort z, GLshort w)
613 {
614 rasterpos(x, y, z, w);
615 }
616
617 void GLAPIENTRY
618 _mesa_RasterPos2dv(const GLdouble *v)
619 {
620 rasterpos((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
621 }
622
623 void GLAPIENTRY
624 _mesa_RasterPos2fv(const GLfloat *v)
625 {
626 rasterpos(v[0], v[1], 0.0F, 1.0F);
627 }
628
629 void GLAPIENTRY
630 _mesa_RasterPos2iv(const GLint *v)
631 {
632 rasterpos((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
633 }
634
635 void GLAPIENTRY
636 _mesa_RasterPos2sv(const GLshort *v)
637 {
638 rasterpos(v[0], v[1], 0.0F, 1.0F);
639 }
640
641 void GLAPIENTRY
642 _mesa_RasterPos3dv(const GLdouble *v)
643 {
644 rasterpos((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
645 }
646
647 void GLAPIENTRY
648 _mesa_RasterPos3fv(const GLfloat *v)
649 {
650 rasterpos(v[0], v[1], v[2], 1.0F);
651 }
652
653 void GLAPIENTRY
654 _mesa_RasterPos3iv(const GLint *v)
655 {
656 rasterpos((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
657 }
658
659 void GLAPIENTRY
660 _mesa_RasterPos3sv(const GLshort *v)
661 {
662 rasterpos(v[0], v[1], v[2], 1.0F);
663 }
664
665 void GLAPIENTRY
666 _mesa_RasterPos4dv(const GLdouble *v)
667 {
668 rasterpos((GLfloat) v[0], (GLfloat) v[1],
669 (GLfloat) v[2], (GLfloat) v[3]);
670 }
671
672 void GLAPIENTRY
673 _mesa_RasterPos4fv(const GLfloat *v)
674 {
675 rasterpos(v[0], v[1], v[2], v[3]);
676 }
677
678 void GLAPIENTRY
679 _mesa_RasterPos4iv(const GLint *v)
680 {
681 rasterpos((GLfloat) v[0], (GLfloat) v[1],
682 (GLfloat) v[2], (GLfloat) v[3]);
683 }
684
685 void GLAPIENTRY
686 _mesa_RasterPos4sv(const GLshort *v)
687 {
688 rasterpos(v[0], v[1], v[2], v[3]);
689 }
690
691
692 /**********************************************************************/
693 /*** GL_ARB_window_pos / GL_MESA_window_pos ***/
694 /**********************************************************************/
695
696
697 /**
698 * All glWindowPosMESA and glWindowPosARB commands call this function to
699 * update the current raster position.
700 */
701 static void
702 window_pos3f(GLfloat x, GLfloat y, GLfloat z)
703 {
704 GET_CURRENT_CONTEXT(ctx);
705 GLfloat z2;
706
707 FLUSH_VERTICES(ctx, 0);
708 FLUSH_CURRENT(ctx, 0);
709
710 z2 = CLAMP(z, 0.0F, 1.0F)
711 * (ctx->ViewportArray[0].Far - ctx->ViewportArray[0].Near)
712 + ctx->ViewportArray[0].Near;
713
714 /* set raster position */
715 ctx->Current.RasterPos[0] = x;
716 ctx->Current.RasterPos[1] = y;
717 ctx->Current.RasterPos[2] = z2;
718 ctx->Current.RasterPos[3] = 1.0F;
719
720 ctx->Current.RasterPosValid = GL_TRUE;
721
722 if (ctx->Fog.FogCoordinateSource == GL_FOG_COORDINATE_EXT)
723 ctx->Current.RasterDistance = ctx->Current.Attrib[VERT_ATTRIB_FOG][0];
724 else
725 ctx->Current.RasterDistance = 0.0;
726
727 /* raster color = current color or index */
728 ctx->Current.RasterColor[0]
729 = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][0], 0.0F, 1.0F);
730 ctx->Current.RasterColor[1]
731 = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][1], 0.0F, 1.0F);
732 ctx->Current.RasterColor[2]
733 = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][2], 0.0F, 1.0F);
734 ctx->Current.RasterColor[3]
735 = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][3], 0.0F, 1.0F);
736 ctx->Current.RasterSecondaryColor[0]
737 = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][0], 0.0F, 1.0F);
738 ctx->Current.RasterSecondaryColor[1]
739 = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][1], 0.0F, 1.0F);
740 ctx->Current.RasterSecondaryColor[2]
741 = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][2], 0.0F, 1.0F);
742 ctx->Current.RasterSecondaryColor[3]
743 = CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][3], 0.0F, 1.0F);
744
745 /* raster texcoord = current texcoord */
746 {
747 GLuint texSet;
748 for (texSet = 0; texSet < ctx->Const.MaxTextureCoordUnits; texSet++) {
749 assert(texSet < ARRAY_SIZE(ctx->Current.RasterTexCoords));
750 COPY_4FV( ctx->Current.RasterTexCoords[texSet],
751 ctx->Current.Attrib[VERT_ATTRIB_TEX0 + texSet] );
752 }
753 }
754
755 if (ctx->RenderMode==GL_SELECT) {
756 _mesa_update_hitflag( ctx, ctx->Current.RasterPos[2] );
757 }
758 }
759
760
761 /* This is just to support the GL_MESA_window_pos version */
762 static void
763 window_pos4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
764 {
765 GET_CURRENT_CONTEXT(ctx);
766 window_pos3f(x, y, z);
767 ctx->Current.RasterPos[3] = w;
768 }
769
770
771 void GLAPIENTRY
772 _mesa_WindowPos2d(GLdouble x, GLdouble y)
773 {
774 window_pos4f((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
775 }
776
777 void GLAPIENTRY
778 _mesa_WindowPos2f(GLfloat x, GLfloat y)
779 {
780 window_pos4f(x, y, 0.0F, 1.0F);
781 }
782
783 void GLAPIENTRY
784 _mesa_WindowPos2i(GLint x, GLint y)
785 {
786 window_pos4f((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
787 }
788
789 void GLAPIENTRY
790 _mesa_WindowPos2s(GLshort x, GLshort y)
791 {
792 window_pos4f(x, y, 0.0F, 1.0F);
793 }
794
795 void GLAPIENTRY
796 _mesa_WindowPos3d(GLdouble x, GLdouble y, GLdouble z)
797 {
798 window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
799 }
800
801 void GLAPIENTRY
802 _mesa_WindowPos3f(GLfloat x, GLfloat y, GLfloat z)
803 {
804 window_pos4f(x, y, z, 1.0F);
805 }
806
807 void GLAPIENTRY
808 _mesa_WindowPos3i(GLint x, GLint y, GLint z)
809 {
810 window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
811 }
812
813 void GLAPIENTRY
814 _mesa_WindowPos3s(GLshort x, GLshort y, GLshort z)
815 {
816 window_pos4f(x, y, z, 1.0F);
817 }
818
819 void GLAPIENTRY
820 _mesa_WindowPos4dMESA(GLdouble x, GLdouble y, GLdouble z, GLdouble w)
821 {
822 window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
823 }
824
825 void GLAPIENTRY
826 _mesa_WindowPos4fMESA(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
827 {
828 window_pos4f(x, y, z, w);
829 }
830
831 void GLAPIENTRY
832 _mesa_WindowPos4iMESA(GLint x, GLint y, GLint z, GLint w)
833 {
834 window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
835 }
836
837 void GLAPIENTRY
838 _mesa_WindowPos4sMESA(GLshort x, GLshort y, GLshort z, GLshort w)
839 {
840 window_pos4f(x, y, z, w);
841 }
842
843 void GLAPIENTRY
844 _mesa_WindowPos2dv(const GLdouble *v)
845 {
846 window_pos4f((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
847 }
848
849 void GLAPIENTRY
850 _mesa_WindowPos2fv(const GLfloat *v)
851 {
852 window_pos4f(v[0], v[1], 0.0F, 1.0F);
853 }
854
855 void GLAPIENTRY
856 _mesa_WindowPos2iv(const GLint *v)
857 {
858 window_pos4f((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
859 }
860
861 void GLAPIENTRY
862 _mesa_WindowPos2sv(const GLshort *v)
863 {
864 window_pos4f(v[0], v[1], 0.0F, 1.0F);
865 }
866
867 void GLAPIENTRY
868 _mesa_WindowPos3dv(const GLdouble *v)
869 {
870 window_pos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
871 }
872
873 void GLAPIENTRY
874 _mesa_WindowPos3fv(const GLfloat *v)
875 {
876 window_pos4f(v[0], v[1], v[2], 1.0);
877 }
878
879 void GLAPIENTRY
880 _mesa_WindowPos3iv(const GLint *v)
881 {
882 window_pos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
883 }
884
885 void GLAPIENTRY
886 _mesa_WindowPos3sv(const GLshort *v)
887 {
888 window_pos4f(v[0], v[1], v[2], 1.0F);
889 }
890
891 void GLAPIENTRY
892 _mesa_WindowPos4dvMESA(const GLdouble *v)
893 {
894 window_pos4f((GLfloat) v[0], (GLfloat) v[1],
895 (GLfloat) v[2], (GLfloat) v[3]);
896 }
897
898 void GLAPIENTRY
899 _mesa_WindowPos4fvMESA(const GLfloat *v)
900 {
901 window_pos4f(v[0], v[1], v[2], v[3]);
902 }
903
904 void GLAPIENTRY
905 _mesa_WindowPos4ivMESA(const GLint *v)
906 {
907 window_pos4f((GLfloat) v[0], (GLfloat) v[1],
908 (GLfloat) v[2], (GLfloat) v[3]);
909 }
910
911 void GLAPIENTRY
912 _mesa_WindowPos4svMESA(const GLshort *v)
913 {
914 window_pos4f(v[0], v[1], v[2], v[3]);
915 }
916
917
918 #if 0
919
920 /*
921 * OpenGL implementation of glWindowPos*MESA()
922 */
923 void glWindowPos4fMESA( GLfloat x, GLfloat y, GLfloat z, GLfloat w )
924 {
925 GLfloat fx, fy;
926
927 /* Push current matrix mode and viewport attributes */
928 glPushAttrib( GL_TRANSFORM_BIT | GL_VIEWPORT_BIT );
929
930 /* Setup projection parameters */
931 glMatrixMode( GL_PROJECTION );
932 glPushMatrix();
933 glLoadIdentity();
934 glMatrixMode( GL_MODELVIEW );
935 glPushMatrix();
936 glLoadIdentity();
937
938 glDepthRange( z, z );
939 glViewport( (int) x - 1, (int) y - 1, 2, 2 );
940
941 /* set the raster (window) position */
942 fx = x - (int) x;
943 fy = y - (int) y;
944 glRasterPos4f( fx, fy, 0.0, w );
945
946 /* restore matrices, viewport and matrix mode */
947 glPopMatrix();
948 glMatrixMode( GL_PROJECTION );
949 glPopMatrix();
950
951 glPopAttrib();
952 }
953
954 #endif
955
956
957 /**********************************************************************/
958 /** \name Initialization */
959 /**********************************************************************/
960 /*@{*/
961
962 /**
963 * Initialize the context current raster position information.
964 *
965 * \param ctx GL context.
966 *
967 * Initialize the current raster position information in
968 * __struct gl_contextRec::Current, and adds the extension entry points to the
969 * dispatcher.
970 */
971 void _mesa_init_rastpos( struct gl_context * ctx )
972 {
973 unsigned i;
974
975 ASSIGN_4V( ctx->Current.RasterPos, 0.0, 0.0, 0.0, 1.0 );
976 ctx->Current.RasterDistance = 0.0;
977 ASSIGN_4V( ctx->Current.RasterColor, 1.0, 1.0, 1.0, 1.0 );
978 ASSIGN_4V( ctx->Current.RasterSecondaryColor, 0.0, 0.0, 0.0, 1.0 );
979 for (i = 0; i < ARRAY_SIZE(ctx->Current.RasterTexCoords); i++)
980 ASSIGN_4V( ctx->Current.RasterTexCoords[i], 0.0, 0.0, 0.0, 1.0 );
981 ctx->Current.RasterPosValid = GL_TRUE;
982 }
983
984 /*@}*/