63676dfa64c6e6fe3e149eef1a26777278b481f7
[mesa.git] / src / mesa / main / texcompress_astc.cpp
1 /*
2 * Copyright 2015 Philip Taylor <philip@zaynar.co.uk>
3 * Copyright 2018 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 /**
26 * \file texcompress_astc.c
27 *
28 * Decompression code for GL_KHR_texture_compression_astc_ldr, which is just
29 * ASTC 2D LDR.
30 *
31 * The ASTC 2D LDR decoder (without the sRGB part) was copied from the OASTC
32 * library written by Philip Taylor. I added sRGB support and adjusted it for
33 * Mesa. - Marek
34 */
35
36 #include "texcompress_astc.h"
37 #include "macros.h"
38 #include "util/half_float.h"
39 #include <stdio.h>
40
41 static bool VERBOSE_DECODE = false;
42 static bool VERBOSE_WRITE = false;
43
44 static inline uint8_t
45 uint16_div_64k_to_half_to_unorm8(uint16_t v)
46 {
47 return _mesa_half_to_unorm8(_mesa_uint16_div_64k_to_half(v));
48 }
49
50 class decode_error
51 {
52 public:
53 enum type {
54 ok,
55 unsupported_hdr_void_extent,
56 reserved_block_mode_1,
57 reserved_block_mode_2,
58 dual_plane_and_too_many_partitions,
59 invalid_range_in_void_extent,
60 weight_grid_exceeds_block_size,
61 invalid_colour_endpoints_size,
62 invalid_colour_endpoints_count,
63 invalid_weight_bits,
64 invalid_num_weights,
65 };
66 };
67
68
69 struct cem_range {
70 uint8_t max;
71 uint8_t t, q, b;
72 };
73
74 /* Based on the Color Unquantization Parameters table,
75 * plus the bit-only representations, sorted by increasing size
76 */
77 static cem_range cem_ranges[] = {
78 { 5, 1, 0, 1 },
79 { 7, 0, 0, 3 },
80 { 9, 0, 1, 1 },
81 { 11, 1, 0, 2 },
82 { 15, 0, 0, 4 },
83 { 19, 0, 1, 2 },
84 { 23, 1, 0, 3 },
85 { 31, 0, 0, 5 },
86 { 39, 0, 1, 3 },
87 { 47, 1, 0, 4 },
88 { 63, 0, 0, 6 },
89 { 79, 0, 1, 4 },
90 { 95, 1, 0, 5 },
91 { 127, 0, 0, 7 },
92 { 159, 0, 1, 5 },
93 { 191, 1, 0, 6 },
94 { 255, 0, 0, 8 },
95 };
96
97 #define CAT_BITS_2(a, b) ( ((a) << 1) | (b) )
98 #define CAT_BITS_3(a, b, c) ( ((a) << 2) | ((b) << 1) | (c) )
99 #define CAT_BITS_4(a, b, c, d) ( ((a) << 3) | ((b) << 2) | ((c) << 1) | (d) )
100 #define CAT_BITS_5(a, b, c, d, e) ( ((a) << 4) | ((b) << 3) | ((c) << 2) | ((d) << 1) | (e) )
101
102 /**
103 * Unpack 5n+8 bits from 'in' into 5 output values.
104 * If n <= 4 then T should be uint32_t, else it must be uint64_t.
105 */
106 template <typename T>
107 static void unpack_trit_block(int n, T in, uint8_t *out)
108 {
109 assert(n <= 6); /* else output will overflow uint8_t */
110
111 uint8_t T0 = (in >> (n)) & 0x1;
112 uint8_t T1 = (in >> (n+1)) & 0x1;
113 uint8_t T2 = (in >> (2*n+2)) & 0x1;
114 uint8_t T3 = (in >> (2*n+3)) & 0x1;
115 uint8_t T4 = (in >> (3*n+4)) & 0x1;
116 uint8_t T5 = (in >> (4*n+5)) & 0x1;
117 uint8_t T6 = (in >> (4*n+6)) & 0x1;
118 uint8_t T7 = (in >> (5*n+7)) & 0x1;
119 uint8_t mmask = (1 << n) - 1;
120 uint8_t m0 = (in >> (0)) & mmask;
121 uint8_t m1 = (in >> (n+2)) & mmask;
122 uint8_t m2 = (in >> (2*n+4)) & mmask;
123 uint8_t m3 = (in >> (3*n+5)) & mmask;
124 uint8_t m4 = (in >> (4*n+7)) & mmask;
125
126 uint8_t C;
127 uint8_t t4, t3, t2, t1, t0;
128 if (CAT_BITS_3(T4, T3, T2) == 0x7) {
129 C = CAT_BITS_5(T7, T6, T5, T1, T0);
130 t4 = t3 = 2;
131 } else {
132 C = CAT_BITS_5(T4, T3, T2, T1, T0);
133 if (CAT_BITS_2(T6, T5) == 0x3) {
134 t4 = 2;
135 t3 = T7;
136 } else {
137 t4 = T7;
138 t3 = CAT_BITS_2(T6, T5);
139 }
140 }
141
142 if ((C & 0x3) == 0x3) {
143 t2 = 2;
144 t1 = (C >> 4) & 0x1;
145 uint8_t C3 = (C >> 3) & 0x1;
146 uint8_t C2 = (C >> 2) & 0x1;
147 t0 = (C3 << 1) | (C2 & ~C3);
148 } else if (((C >> 2) & 0x3) == 0x3) {
149 t2 = 2;
150 t1 = 2;
151 t0 = C & 0x3;
152 } else {
153 t2 = (C >> 4) & 0x1;
154 t1 = (C >> 2) & 0x3;
155 uint8_t C1 = (C >> 1) & 0x1;
156 uint8_t C0 = (C >> 0) & 0x1;
157 t0 = (C1 << 1) | (C0 & ~C1);
158 }
159
160 out[0] = (t0 << n) | m0;
161 out[1] = (t1 << n) | m1;
162 out[2] = (t2 << n) | m2;
163 out[3] = (t3 << n) | m3;
164 out[4] = (t4 << n) | m4;
165 }
166
167 /**
168 * Unpack 3n+7 bits from 'in' into 3 output values
169 */
170 static void unpack_quint_block(int n, uint32_t in, uint8_t *out)
171 {
172 assert(n <= 5); /* else output will overflow uint8_t */
173
174 uint8_t Q0 = (in >> (n)) & 0x1;
175 uint8_t Q1 = (in >> (n+1)) & 0x1;
176 uint8_t Q2 = (in >> (n+2)) & 0x1;
177 uint8_t Q3 = (in >> (2*n+3)) & 0x1;
178 uint8_t Q4 = (in >> (2*n+4)) & 0x1;
179 uint8_t Q5 = (in >> (3*n+5)) & 0x1;
180 uint8_t Q6 = (in >> (3*n+6)) & 0x1;
181 uint8_t mmask = (1 << n) - 1;
182 uint8_t m0 = (in >> (0)) & mmask;
183 uint8_t m1 = (in >> (n+3)) & mmask;
184 uint8_t m2 = (in >> (2*n+5)) & mmask;
185
186 uint8_t C;
187 uint8_t q2, q1, q0;
188 if (CAT_BITS_4(Q6, Q5, Q2, Q1) == 0x3) {
189 q2 = CAT_BITS_3(Q0, Q4 & ~Q0, Q3 & ~Q0);
190 q1 = 4;
191 q0 = 4;
192 } else {
193 if (CAT_BITS_2(Q2, Q1) == 0x3) {
194 q2 = 4;
195 C = CAT_BITS_5(Q4, Q3, 0x1 & ~Q6, 0x1 & ~Q5, Q0);
196 } else {
197 q2 = CAT_BITS_2(Q6, Q5);
198 C = CAT_BITS_5(Q4, Q3, Q2, Q1, Q0);
199 }
200 if ((C & 0x7) == 0x5) {
201 q1 = 4;
202 q0 = (C >> 3) & 0x3;
203 } else {
204 q1 = (C >> 3) & 0x3;
205 q0 = C & 0x7;
206 }
207 }
208 out[0] = (q0 << n) | m0;
209 out[1] = (q1 << n) | m1;
210 out[2] = (q2 << n) | m2;
211 }
212
213
214 struct uint8x4_t
215 {
216 uint8_t v[4];
217
218 uint8x4_t() { }
219
220 uint8x4_t(int a, int b, int c, int d)
221 {
222 assert(0 <= a && a <= 255);
223 assert(0 <= b && b <= 255);
224 assert(0 <= c && c <= 255);
225 assert(0 <= d && d <= 255);
226 v[0] = a;
227 v[1] = b;
228 v[2] = c;
229 v[3] = d;
230 }
231
232 static uint8x4_t clamped(int a, int b, int c, int d)
233 {
234 uint8x4_t r;
235 r.v[0] = MAX2(0, MIN2(255, a));
236 r.v[1] = MAX2(0, MIN2(255, b));
237 r.v[2] = MAX2(0, MIN2(255, c));
238 r.v[3] = MAX2(0, MIN2(255, d));
239 return r;
240 }
241 };
242
243 static uint8x4_t blue_contract(int r, int g, int b, int a)
244 {
245 return uint8x4_t((r+b) >> 1, (g+b) >> 1, b, a);
246 }
247
248 static uint8x4_t blue_contract_clamped(int r, int g, int b, int a)
249 {
250 return uint8x4_t::clamped((r+b) >> 1, (g+b) >> 1, b, a);
251 }
252
253 static void bit_transfer_signed(int &a, int &b)
254 {
255 b >>= 1;
256 b |= a & 0x80;
257 a >>= 1;
258 a &= 0x3f;
259 if (a & 0x20)
260 a -= 0x40;
261 }
262
263 static uint32_t hash52(uint32_t p)
264 {
265 p ^= p >> 15;
266 p -= p << 17;
267 p += p << 7;
268 p += p << 4;
269 p ^= p >> 5;
270 p += p << 16;
271 p ^= p >> 7;
272 p ^= p >> 3;
273 p ^= p << 6;
274 p ^= p >> 17;
275 return p;
276 }
277
278 static int select_partition(int seed, int x, int y, int z, int partitioncount,
279 int small_block)
280 {
281 if (small_block) {
282 x <<= 1;
283 y <<= 1;
284 z <<= 1;
285 }
286 seed += (partitioncount - 1) * 1024;
287 uint32_t rnum = hash52(seed);
288 uint8_t seed1 = rnum & 0xF;
289 uint8_t seed2 = (rnum >> 4) & 0xF;
290 uint8_t seed3 = (rnum >> 8) & 0xF;
291 uint8_t seed4 = (rnum >> 12) & 0xF;
292 uint8_t seed5 = (rnum >> 16) & 0xF;
293 uint8_t seed6 = (rnum >> 20) & 0xF;
294 uint8_t seed7 = (rnum >> 24) & 0xF;
295 uint8_t seed8 = (rnum >> 28) & 0xF;
296 uint8_t seed9 = (rnum >> 18) & 0xF;
297 uint8_t seed10 = (rnum >> 22) & 0xF;
298 uint8_t seed11 = (rnum >> 26) & 0xF;
299 uint8_t seed12 = ((rnum >> 30) | (rnum << 2)) & 0xF;
300
301 seed1 *= seed1;
302 seed2 *= seed2;
303 seed3 *= seed3;
304 seed4 *= seed4;
305 seed5 *= seed5;
306 seed6 *= seed6;
307 seed7 *= seed7;
308 seed8 *= seed8;
309 seed9 *= seed9;
310 seed10 *= seed10;
311 seed11 *= seed11;
312 seed12 *= seed12;
313
314 int sh1, sh2, sh3;
315 if (seed & 1) {
316 sh1 = (seed & 2 ? 4 : 5);
317 sh2 = (partitioncount == 3 ? 6 : 5);
318 } else {
319 sh1 = (partitioncount == 3 ? 6 : 5);
320 sh2 = (seed & 2 ? 4 : 5);
321 }
322 sh3 = (seed & 0x10) ? sh1 : sh2;
323
324 seed1 >>= sh1;
325 seed2 >>= sh2;
326 seed3 >>= sh1;
327 seed4 >>= sh2;
328 seed5 >>= sh1;
329 seed6 >>= sh2;
330 seed7 >>= sh1;
331 seed8 >>= sh2;
332 seed9 >>= sh3;
333 seed10 >>= sh3;
334 seed11 >>= sh3;
335 seed12 >>= sh3;
336
337 int a = seed1 * x + seed2 * y + seed11 * z + (rnum >> 14);
338 int b = seed3 * x + seed4 * y + seed12 * z + (rnum >> 10);
339 int c = seed5 * x + seed6 * y + seed9 * z + (rnum >> 6);
340 int d = seed7 * x + seed8 * y + seed10 * z + (rnum >> 2);
341
342 a &= 0x3F;
343 b &= 0x3F;
344 c &= 0x3F;
345 d &= 0x3F;
346
347 if (partitioncount < 4)
348 d = 0;
349 if (partitioncount < 3)
350 c = 0;
351
352 if (a >= b && a >= c && a >= d)
353 return 0;
354 else if (b >= c && b >= d)
355 return 1;
356 else if (c >= d)
357 return 2;
358 else
359 return 3;
360 }
361
362
363 struct InputBitVector
364 {
365 uint32_t data[4];
366
367 void printf_bits(int offset, int count, const char *fmt = "", ...)
368 {
369 char out[129];
370 memset(out, '.', 128);
371 out[128] = '\0';
372 int idx = offset;
373 for (int i = 0; i < count; ++i) {
374 out[127 - idx] = ((data[idx >> 5] >> (idx & 31)) & 1) ? '1' : '0';
375 ++idx;
376 }
377 printf("%s ", out);
378 va_list ap;
379 va_start(ap, fmt);
380 vprintf(fmt, ap);
381 va_end(ap);
382 printf("\n");
383 }
384
385 uint32_t get_bits(int offset, int count)
386 {
387 assert(count >= 0 && count < 32);
388
389 uint32_t out = 0;
390 if (offset < 32)
391 out |= data[0] >> offset;
392
393 if (0 < offset && offset <= 32)
394 out |= data[1] << (32 - offset);
395 if (32 < offset && offset < 64)
396 out |= data[1] >> (offset - 32);
397
398 if (32 < offset && offset <= 64)
399 out |= data[2] << (64 - offset);
400 if (64 < offset && offset < 96)
401 out |= data[2] >> (offset - 64);
402
403 if (64 < offset && offset <= 96)
404 out |= data[3] << (96 - offset);
405 if (96 < offset && offset < 128)
406 out |= data[3] >> (offset - 96);
407
408 out &= (1 << count) - 1;
409 return out;
410 }
411
412 uint64_t get_bits64(int offset, int count)
413 {
414 assert(count >= 0 && count < 64);
415
416 uint64_t out = 0;
417 if (offset < 32)
418 out |= data[0] >> offset;
419
420 if (offset <= 32)
421 out |= (uint64_t)data[1] << (32 - offset);
422 if (32 < offset && offset < 64)
423 out |= data[1] >> (offset - 32);
424
425 if (0 < offset && offset <= 64)
426 out |= (uint64_t)data[2] << (64 - offset);
427 if (64 < offset && offset < 96)
428 out |= data[2] >> (offset - 64);
429
430 if (32 < offset && offset <= 96)
431 out |= (uint64_t)data[3] << (96 - offset);
432 if (96 < offset && offset < 128)
433 out |= data[3] >> (offset - 96);
434
435 out &= ((uint64_t)1 << count) - 1;
436 return out;
437 }
438
439 uint32_t get_bits_rev(int offset, int count)
440 {
441 assert(offset >= count);
442 uint32_t tmp = get_bits(offset - count, count);
443 uint32_t out = 0;
444 for (int i = 0; i < count; ++i)
445 out |= ((tmp >> i) & 1) << (count - 1 - i);
446 return out;
447 }
448 };
449
450 struct OutputBitVector
451 {
452 uint32_t data[4];
453 int offset;
454
455 OutputBitVector()
456 : offset(0)
457 {
458 memset(data, 0, sizeof(data));
459 }
460
461 void append(uint32_t value, int size)
462 {
463 if (VERBOSE_WRITE)
464 printf("append offset=%d size=%d values=0x%x\n", offset, size, value);
465
466 assert(offset + size <= 128);
467
468 assert(size <= 32);
469 if (size < 32)
470 assert((value >> size) == 0);
471
472 while (size) {
473 int c = MIN2(size, 32 - (offset & 31));
474 data[offset >> 5] |= (value << (offset & 31));
475 offset += c;
476 size -= c;
477 value >>= c;
478 }
479 }
480
481 void append64(uint64_t value, int size)
482 {
483 if (VERBOSE_WRITE)
484 printf("append offset=%d size=%d values=0x%llx\n", offset, size, (unsigned long long)value);
485
486 assert(offset + size <= 128);
487
488 assert(size <= 64);
489 if (size < 64)
490 assert((value >> size) == 0);
491
492 while (size) {
493 int c = MIN2(size, 32 - (offset & 31));
494 data[offset >> 5] |= (value << (offset & 31));
495 offset += c;
496 size -= c;
497 value >>= c;
498 }
499 }
500
501 void append(OutputBitVector &v, int size)
502 {
503 if (VERBOSE_WRITE)
504 printf("append vector offset=%d size=%d\n", offset, size);
505
506 assert(offset + size <= 128);
507 int i = 0;
508 while (size >= 32) {
509 append(v.data[i++], 32);
510 size -= 32;
511 }
512 if (size > 0)
513 append(v.data[i] & ((1 << size) - 1), size);
514 }
515
516 void append_end(OutputBitVector &v, int size)
517 {
518 for (int i = 0; i < size; ++i)
519 data[(127 - i) >> 5] |= ((v.data[i >> 5] >> (i & 31)) & 1) << ((127 - i) & 31);
520 }
521
522 /* Insert the given number of '1' bits. (We could use 0s instead, but 1s are
523 * more likely to flush out bugs where we accidentally read undefined bits.)
524 */
525 void skip(int size)
526 {
527 if (VERBOSE_WRITE)
528 printf("skip offset=%d size=%d\n", offset, size);
529
530 assert(offset + size <= 128);
531 while (size >= 32) {
532 append(0xffffffff, 32);
533 size -= 32;
534 }
535 if (size > 0)
536 append(0xffffffff >> (32 - size), size);
537 }
538 };
539
540
541 class Decoder
542 {
543 public:
544 Decoder(int block_w, int block_h, int block_d, bool srgb, bool output_unorm8)
545 : block_w(block_w), block_h(block_h), block_d(block_d), srgb(srgb),
546 output_unorm8(output_unorm8) {}
547
548 decode_error::type decode(const uint8_t *in, uint16_t *output) const;
549
550 int block_w, block_h, block_d;
551 bool srgb, output_unorm8;
552 };
553
554 struct Block
555 {
556 bool is_error;
557 bool bogus_colour_endpoints;
558 bool bogus_weights;
559
560 int high_prec;
561 int dual_plane;
562 int colour_component_selector;
563 int wt_range;
564 int wt_w, wt_h, wt_d;
565 int num_parts;
566 int partition_index;
567
568 bool is_void_extent;
569 int void_extent_d;
570 int void_extent_min_s;
571 int void_extent_max_s;
572 int void_extent_min_t;
573 int void_extent_max_t;
574 uint16_t void_extent_colour_r;
575 uint16_t void_extent_colour_g;
576 uint16_t void_extent_colour_b;
577 uint16_t void_extent_colour_a;
578
579 bool is_multi_cem;
580 int num_extra_cem_bits;
581 int colour_endpoint_data_offset;
582 int extra_cem_bits;
583 int cem_base_class;
584 int cems[4];
585
586 int num_cem_values;
587
588 /* Calculated by unpack_weights(): */
589 uint8_t weights_quant[64 + 4]; /* max 64 values, plus padding for overflows in trit parsing */
590
591 /* Calculated by unquantise_weights(): */
592 uint8_t weights[64 + 18]; /* max 64 values, plus padding for the infill interpolation */
593
594 /* Calculated by unpack_colour_endpoints(): */
595 uint8_t colour_endpoints_quant[18 + 4]; /* max 18 values, plus padding for overflows in trit parsing */
596
597 /* Calculated by unquantise_colour_endpoints(): */
598 uint8_t colour_endpoints[18];
599
600 /* Calculated by calculate_from_weights(): */
601 int wt_trits;
602 int wt_quints;
603 int wt_bits;
604 int wt_max;
605 int num_weights;
606 int weight_bits;
607
608 /* Calculated by calculate_remaining_bits(): */
609 int remaining_bits;
610
611 /* Calculated by calculate_colour_endpoints_size(): */
612 int colour_endpoint_bits;
613 int ce_max;
614 int ce_trits;
615 int ce_quints;
616 int ce_bits;
617
618 /* Calculated by compute_infill_weights(); */
619 uint8_t infill_weights[2][216]; /* large enough for 6x6x6 */
620
621 /* Calculated by decode_colour_endpoints(); */
622 uint8x4_t endpoints_decoded[2][4];
623
624 void calculate_from_weights();
625 void calculate_remaining_bits();
626 decode_error::type calculate_colour_endpoints_size();
627
628 void unquantise_weights();
629 void unquantise_colour_endpoints();
630
631 decode_error::type decode(const Decoder &decoder, InputBitVector in);
632
633 decode_error::type decode_block_mode(InputBitVector in);
634 decode_error::type decode_void_extent(InputBitVector in);
635 void decode_cem(InputBitVector in);
636 void unpack_colour_endpoints(InputBitVector in);
637 void decode_colour_endpoints();
638 void unpack_weights(InputBitVector in);
639 void compute_infill_weights(int block_w, int block_h, int block_d);
640
641 void write_decoded(const Decoder &decoder, uint16_t *output);
642 };
643
644
645 decode_error::type Decoder::decode(const uint8_t *in, uint16_t *output) const
646 {
647 Block blk;
648 InputBitVector in_vec;
649 memcpy(&in_vec.data, in, 16);
650 decode_error::type err = blk.decode(*this, in_vec);
651 if (err == decode_error::ok) {
652 blk.write_decoded(*this, output);
653 } else {
654 /* Fill output with the error colour */
655 for (int i = 0; i < block_w * block_h * block_d; ++i) {
656 if (output_unorm8) {
657 output[i*4+0] = 0xff;
658 output[i*4+1] = 0;
659 output[i*4+2] = 0xff;
660 output[i*4+3] = 0xff;
661 } else {
662 assert(!srgb); /* srgb must use unorm8 */
663
664 output[i*4+0] = FP16_ONE;
665 output[i*4+1] = FP16_ZERO;
666 output[i*4+2] = FP16_ONE;
667 output[i*4+3] = FP16_ONE;
668 }
669 }
670 }
671 return err;
672 }
673
674
675 decode_error::type Block::decode_void_extent(InputBitVector block)
676 {
677 /* TODO: 3D */
678
679 is_void_extent = true;
680 void_extent_d = block.get_bits(9, 1);
681 void_extent_min_s = block.get_bits(12, 13);
682 void_extent_max_s = block.get_bits(25, 13);
683 void_extent_min_t = block.get_bits(38, 13);
684 void_extent_max_t = block.get_bits(51, 13);
685 void_extent_colour_r = block.get_bits(64, 16);
686 void_extent_colour_g = block.get_bits(80, 16);
687 void_extent_colour_b = block.get_bits(96, 16);
688 void_extent_colour_a = block.get_bits(112, 16);
689
690 /* TODO: maybe we should do something useful with the extent coordinates? */
691
692 if (void_extent_d) {
693 return decode_error::unsupported_hdr_void_extent;
694 }
695
696 if (void_extent_min_s == 0x1fff && void_extent_max_s == 0x1fff
697 && void_extent_min_t == 0x1fff && void_extent_max_t == 0x1fff) {
698
699 /* No extents */
700
701 } else {
702
703 /* Check for illegal encoding */
704 if (void_extent_min_s >= void_extent_max_s || void_extent_min_t >= void_extent_max_t) {
705 return decode_error::invalid_range_in_void_extent;
706 }
707 }
708
709 return decode_error::ok;
710 }
711
712 decode_error::type Block::decode_block_mode(InputBitVector in)
713 {
714 dual_plane = in.get_bits(10, 1);
715 high_prec = in.get_bits(9, 1);
716
717 if (in.get_bits(0, 2) != 0x0) {
718 wt_range = (in.get_bits(0, 2) << 1) | in.get_bits(4, 1);
719 int a = in.get_bits(5, 2);
720 int b = in.get_bits(7, 2);
721 switch (in.get_bits(2, 2)) {
722 case 0x0:
723 if (VERBOSE_DECODE)
724 in.printf_bits(0, 11, "DHBBAAR00RR");
725 wt_w = b + 4;
726 wt_h = a + 2;
727 break;
728 case 0x1:
729 if (VERBOSE_DECODE)
730 in.printf_bits(0, 11, "DHBBAAR01RR");
731 wt_w = b + 8;
732 wt_h = a + 2;
733 break;
734 case 0x2:
735 if (VERBOSE_DECODE)
736 in.printf_bits(0, 11, "DHBBAAR10RR");
737 wt_w = a + 2;
738 wt_h = b + 8;
739 break;
740 case 0x3:
741 if ((b & 0x2) == 0) {
742 if (VERBOSE_DECODE)
743 in.printf_bits(0, 11, "DH0BAAR11RR");
744 wt_w = a + 2;
745 wt_h = b + 6;
746 } else {
747 if (VERBOSE_DECODE)
748 in.printf_bits(0, 11, "DH1BAAR11RR");
749 wt_w = (b & 0x1) + 2;
750 wt_h = a + 2;
751 }
752 break;
753 }
754 } else {
755 if (in.get_bits(6, 3) == 0x7) {
756 if (in.get_bits(0, 9) == 0x1fc) {
757 if (VERBOSE_DECODE)
758 in.printf_bits(0, 11, "xx111111100 (void extent)");
759 return decode_void_extent(in);
760 } else {
761 if (VERBOSE_DECODE)
762 in.printf_bits(0, 11, "xx111xxxx00");
763 return decode_error::reserved_block_mode_1;
764 }
765 }
766 if (in.get_bits(0, 4) == 0x0) {
767 if (VERBOSE_DECODE)
768 in.printf_bits(0, 11, "xxxxxxx0000");
769 return decode_error::reserved_block_mode_2;
770 }
771
772 wt_range = in.get_bits(1, 3) | in.get_bits(4, 1);
773 int a = in.get_bits(5, 2);
774 int b;
775
776 switch (in.get_bits(7, 2)) {
777 case 0x0:
778 if (VERBOSE_DECODE)
779 in.printf_bits(0, 11, "DH00AARRR00");
780 wt_w = 12;
781 wt_h = a + 2;
782 break;
783 case 0x1:
784 if (VERBOSE_DECODE)
785 in.printf_bits(0, 11, "DH01AARRR00");
786 wt_w = a + 2;
787 wt_h = 12;
788 break;
789 case 0x3:
790 if (in.get_bits(5, 1) == 0) {
791 if (VERBOSE_DECODE)
792 in.printf_bits(0, 11, "DH1100RRR00");
793 wt_w = 6;
794 wt_h = 10;
795 } else {
796 if (VERBOSE_DECODE)
797 in.printf_bits(0, 11, "DH1101RRR00");
798 wt_w = 10;
799 wt_h = 6;
800 }
801 break;
802 case 0x2:
803 if (VERBOSE_DECODE)
804 in.printf_bits(0, 11, "BB10AARRR00");
805 b = in.get_bits(9, 2);
806 wt_w = a + 6;
807 wt_h = b + 6;
808 dual_plane = 0;
809 high_prec = 0;
810 break;
811 }
812 }
813 return decode_error::ok;
814 }
815
816 void Block::decode_cem(InputBitVector in)
817 {
818 cems[0] = cems[1] = cems[2] = cems[3] = -1;
819
820 num_extra_cem_bits = 0;
821 extra_cem_bits = 0;
822
823 if (num_parts > 1) {
824
825 partition_index = in.get_bits(13, 10);
826 if (VERBOSE_DECODE)
827 in.printf_bits(13, 10, "partition ID (%d)", partition_index);
828
829 uint32_t cem = in.get_bits(23, 6);
830
831 if ((cem & 0x3) == 0x0) {
832 cem >>= 2;
833 cem_base_class = cem >> 2;
834 is_multi_cem = false;
835
836 for (int i = 0; i < num_parts; ++i)
837 cems[i] = cem;
838
839 if (VERBOSE_DECODE)
840 in.printf_bits(23, 6, "CEM (single, %d)", cem);
841 } else {
842
843 cem_base_class = (cem & 0x3) - 1;
844 is_multi_cem = true;
845
846 if (VERBOSE_DECODE)
847 in.printf_bits(23, 6, "CEM (multi, base class %d)", cem_base_class);
848
849 int offset = 128 - weight_bits;
850
851 if (num_parts == 2) {
852 if (VERBOSE_DECODE) {
853 in.printf_bits(25, 4, "M0M0 C1 C0");
854 in.printf_bits(offset - 2, 2, "M1M1");
855 }
856
857 uint32_t c0 = in.get_bits(25, 1);
858 uint32_t c1 = in.get_bits(26, 1);
859
860 extra_cem_bits = c0 + c1;
861
862 num_extra_cem_bits = 2;
863
864 uint32_t m0 = in.get_bits(27, 2);
865 uint32_t m1 = in.get_bits(offset - 2, 2);
866
867 cems[0] = ((cem_base_class + c0) << 2) | m0;
868 cems[1] = ((cem_base_class + c1) << 2) | m1;
869
870 } else if (num_parts == 3) {
871 if (VERBOSE_DECODE) {
872 in.printf_bits(25, 4, "M0 C2 C1 C0");
873 in.printf_bits(offset - 5, 5, "M2M2 M1M1 M0");
874 }
875
876 uint32_t c0 = in.get_bits(25, 1);
877 uint32_t c1 = in.get_bits(26, 1);
878 uint32_t c2 = in.get_bits(27, 1);
879
880 extra_cem_bits = c0 + c1 + c2;
881
882 num_extra_cem_bits = 5;
883
884 uint32_t m0 = in.get_bits(28, 1) | (in.get_bits(128 - weight_bits - 5, 1) << 1);
885 uint32_t m1 = in.get_bits(offset - 4, 2);
886 uint32_t m2 = in.get_bits(offset - 2, 2);
887
888 cems[0] = ((cem_base_class + c0) << 2) | m0;
889 cems[1] = ((cem_base_class + c1) << 2) | m1;
890 cems[2] = ((cem_base_class + c2) << 2) | m2;
891
892 } else if (num_parts == 4) {
893 if (VERBOSE_DECODE) {
894 in.printf_bits(25, 4, "C3 C2 C1 C0");
895 in.printf_bits(offset - 8, 8, "M3M3 M2M2 M1M1 M0M0");
896 }
897
898 uint32_t c0 = in.get_bits(25, 1);
899 uint32_t c1 = in.get_bits(26, 1);
900 uint32_t c2 = in.get_bits(27, 1);
901 uint32_t c3 = in.get_bits(28, 1);
902
903 extra_cem_bits = c0 + c1 + c2 + c3;
904
905 num_extra_cem_bits = 8;
906
907 uint32_t m0 = in.get_bits(offset - 8, 2);
908 uint32_t m1 = in.get_bits(offset - 6, 2);
909 uint32_t m2 = in.get_bits(offset - 4, 2);
910 uint32_t m3 = in.get_bits(offset - 2, 2);
911
912 cems[0] = ((cem_base_class + c0) << 2) | m0;
913 cems[1] = ((cem_base_class + c1) << 2) | m1;
914 cems[2] = ((cem_base_class + c2) << 2) | m2;
915 cems[3] = ((cem_base_class + c3) << 2) | m3;
916 } else {
917 unreachable("");
918 }
919 }
920
921 colour_endpoint_data_offset = 29;
922
923 } else {
924 uint32_t cem = in.get_bits(13, 4);
925
926 cem_base_class = cem >> 2;
927 is_multi_cem = false;
928
929 cems[0] = cem;
930
931 partition_index = -1;
932
933 if (VERBOSE_DECODE)
934 in.printf_bits(13, 4, "CEM = %d (class %d)", cem, cem_base_class);
935
936 colour_endpoint_data_offset = 17;
937 }
938 }
939
940 void Block::unpack_colour_endpoints(InputBitVector in)
941 {
942 if (ce_trits) {
943 int offset = colour_endpoint_data_offset;
944 int bits_left = colour_endpoint_bits;
945 for (int i = 0; i < num_cem_values; i += 5) {
946 int bits_to_read = MIN2(bits_left, 8 + ce_bits * 5);
947 /* If ce_trits then ce_bits <= 6, so bits_to_read <= 38 and we have to use uint64_t */
948 uint64_t raw = in.get_bits64(offset, bits_to_read);
949 unpack_trit_block(ce_bits, raw, &colour_endpoints_quant[i]);
950
951 if (VERBOSE_DECODE)
952 in.printf_bits(offset, bits_to_read,
953 "trits [%d,%d,%d,%d,%d]",
954 colour_endpoints_quant[i+0], colour_endpoints_quant[i+1],
955 colour_endpoints_quant[i+2], colour_endpoints_quant[i+3],
956 colour_endpoints_quant[i+4]);
957
958 offset += 8 + ce_bits * 5;
959 bits_left -= 8 + ce_bits * 5;
960 }
961 } else if (ce_quints) {
962 int offset = colour_endpoint_data_offset;
963 int bits_left = colour_endpoint_bits;
964 for (int i = 0; i < num_cem_values; i += 3) {
965 int bits_to_read = MIN2(bits_left, 7 + ce_bits * 3);
966 /* If ce_quints then ce_bits <= 5, so bits_to_read <= 22 and we can use uint32_t */
967 uint32_t raw = in.get_bits(offset, bits_to_read);
968 unpack_quint_block(ce_bits, raw, &colour_endpoints_quant[i]);
969
970 if (VERBOSE_DECODE)
971 in.printf_bits(offset, bits_to_read,
972 "quints [%d,%d,%d]",
973 colour_endpoints_quant[i], colour_endpoints_quant[i+1], colour_endpoints_quant[i+2]);
974
975 offset += 7 + ce_bits * 3;
976 bits_left -= 7 + ce_bits * 3;
977 }
978 } else {
979 assert((colour_endpoint_bits % ce_bits) == 0);
980 int offset = colour_endpoint_data_offset;
981 for (int i = 0; i < num_cem_values; i++) {
982 colour_endpoints_quant[i] = in.get_bits(offset, ce_bits);
983
984 if (VERBOSE_DECODE)
985 in.printf_bits(offset, ce_bits, "bits [%d]", colour_endpoints_quant[i]);
986
987 offset += ce_bits;
988 }
989 }
990 }
991
992 void Block::decode_colour_endpoints()
993 {
994 int cem_values_idx = 0;
995 for (int part = 0; part < num_parts; ++part) {
996 uint8_t *v = &colour_endpoints[cem_values_idx];
997 int v0 = v[0];
998 int v1 = v[1];
999 int v2 = v[2];
1000 int v3 = v[3];
1001 int v4 = v[4];
1002 int v5 = v[5];
1003 int v6 = v[6];
1004 int v7 = v[7];
1005 cem_values_idx += ((cems[part] >> 2) + 1) * 2;
1006
1007 uint8x4_t e0, e1;
1008 int s0, s1, L0, L1;
1009
1010 switch (cems[part])
1011 {
1012 case 0:
1013 e0 = uint8x4_t(v0, v0, v0, 0xff);
1014 e1 = uint8x4_t(v1, v1, v1, 0xff);
1015 break;
1016 case 1:
1017 L0 = (v0 >> 2) | (v1 & 0xc0);
1018 L1 = L0 + (v1 & 0x3f);
1019 if (L1 > 0xff)
1020 L1 = 0xff;
1021 e0 = uint8x4_t(L0, L0, L0, 0xff);
1022 e1 = uint8x4_t(L1, L1, L1, 0xff);
1023 break;
1024 case 4:
1025 e0 = uint8x4_t(v0, v0, v0, v2);
1026 e1 = uint8x4_t(v1, v1, v1, v3);
1027 break;
1028 case 5:
1029 bit_transfer_signed(v1, v0);
1030 bit_transfer_signed(v3, v2);
1031 e0 = uint8x4_t(v0, v0, v0, v2);
1032 e1 = uint8x4_t::clamped(v0+v1, v0+v1, v0+v1, v2+v3);
1033 break;
1034 case 6:
1035 e0 = uint8x4_t(v0*v3 >> 8, v1*v3 >> 8, v2*v3 >> 8, 0xff);
1036 e1 = uint8x4_t(v0, v1, v2, 0xff);
1037 break;
1038 case 8:
1039 s0 = v0 + v2 + v4;
1040 s1 = v1 + v3 + v5;
1041 if (s1 >= s0) {
1042 e0 = uint8x4_t(v0, v2, v4, 0xff);
1043 e1 = uint8x4_t(v1, v3, v5, 0xff);
1044 } else {
1045 e0 = blue_contract(v1, v3, v5, 0xff);
1046 e1 = blue_contract(v0, v2, v4, 0xff);
1047 }
1048 break;
1049 case 9:
1050 bit_transfer_signed(v1, v0);
1051 bit_transfer_signed(v3, v2);
1052 bit_transfer_signed(v5, v4);
1053 if (v1 + v3 + v5 >= 0) {
1054 e0 = uint8x4_t(v0, v2, v4, 0xff);
1055 e1 = uint8x4_t::clamped(v0+v1, v2+v3, v4+v5, 0xff);
1056 } else {
1057 e0 = blue_contract_clamped(v0+v1, v2+v3, v4+v5, 0xff);
1058 e1 = blue_contract(v0, v2, v4, 0xff);
1059 }
1060 break;
1061 case 10:
1062 e0 = uint8x4_t(v0*v3 >> 8, v1*v3 >> 8, v2*v3 >> 8, v4);
1063 e1 = uint8x4_t(v0, v1, v2, v5);
1064 break;
1065 case 12:
1066 s0 = v0 + v2 + v4;
1067 s1 = v1 + v3 + v5;
1068 if (s1 >= s0) {
1069 e0 = uint8x4_t(v0, v2, v4, v6);
1070 e1 = uint8x4_t(v1, v3, v5, v7);
1071 } else {
1072 e0 = blue_contract(v1, v3, v5, v7);
1073 e1 = blue_contract(v0, v2, v4, v6);
1074 }
1075 break;
1076 case 13:
1077 bit_transfer_signed(v1, v0);
1078 bit_transfer_signed(v3, v2);
1079 bit_transfer_signed(v5, v4);
1080 bit_transfer_signed(v7, v6);
1081 if (v1 + v3 + v5 >= 0) {
1082 e0 = uint8x4_t(v0, v2, v4, v6);
1083 e1 = uint8x4_t::clamped(v0+v1, v2+v3, v4+v5, v6+v7);
1084 } else {
1085 e0 = blue_contract_clamped(v0+v1, v2+v3, v4+v5, v6+v7);
1086 e1 = blue_contract(v0, v2, v4, v6);
1087 }
1088 break;
1089 default:
1090 /* HDR endpoints not supported; return error colour */
1091 e0 = uint8x4_t(255, 0, 255, 255);
1092 e1 = uint8x4_t(255, 0, 255, 255);
1093 break;
1094 }
1095
1096 endpoints_decoded[0][part] = e0;
1097 endpoints_decoded[1][part] = e1;
1098
1099 if (VERBOSE_DECODE) {
1100 printf("cems[%d]=%d v=[", part, cems[part]);
1101 for (int i = 0; i < (cems[part] >> 2) + 1; ++i) {
1102 if (i)
1103 printf(", ");
1104 printf("%3d", v[i]);
1105 }
1106 printf("] e0=[%3d,%4d,%4d,%4d] e1=[%3d,%4d,%4d,%4d]\n",
1107 e0.v[0], e0.v[1], e0.v[2], e0.v[3],
1108 e1.v[0], e1.v[1], e1.v[2], e1.v[3]);
1109 }
1110 }
1111 }
1112
1113 void Block::unpack_weights(InputBitVector in)
1114 {
1115 if (wt_trits) {
1116 int offset = 128;
1117 int bits_left = weight_bits;
1118 for (int i = 0; i < num_weights; i += 5) {
1119 int bits_to_read = MIN2(bits_left, 8 + 5*wt_bits);
1120 /* If wt_trits then wt_bits <= 3, so bits_to_read <= 23 and we can use uint32_t */
1121 uint32_t raw = in.get_bits_rev(offset, bits_to_read);
1122 unpack_trit_block(wt_bits, raw, &weights_quant[i]);
1123
1124 if (VERBOSE_DECODE)
1125 in.printf_bits(offset - bits_to_read, bits_to_read, "weight trits [%d,%d,%d,%d,%d]",
1126 weights_quant[i+0], weights_quant[i+1],
1127 weights_quant[i+2], weights_quant[i+3],
1128 weights_quant[i+4]);
1129
1130 offset -= 8 + wt_bits * 5;
1131 bits_left -= 8 + wt_bits * 5;
1132 }
1133
1134 } else if (wt_quints) {
1135
1136 int offset = 128;
1137 int bits_left = weight_bits;
1138 for (int i = 0; i < num_weights; i += 3) {
1139 int bits_to_read = MIN2(bits_left, 7 + 3*wt_bits);
1140 /* If wt_quints then wt_bits <= 2, so bits_to_read <= 13 and we can use uint32_t */
1141 uint32_t raw = in.get_bits_rev(offset, bits_to_read);
1142 unpack_quint_block(wt_bits, raw, &weights_quant[i]);
1143
1144 if (VERBOSE_DECODE)
1145 in.printf_bits(offset - bits_to_read, bits_to_read, "weight quints [%d,%d,%d]",
1146 weights_quant[i], weights_quant[i+1], weights_quant[i+2]);
1147
1148 offset -= 7 + wt_bits * 3;
1149 bits_left -= 7 + wt_bits * 3;
1150 }
1151
1152 } else {
1153 int offset = 128;
1154 assert((weight_bits % wt_bits) == 0);
1155 for (int i = 0; i < num_weights; ++i) {
1156 weights_quant[i] = in.get_bits_rev(offset, wt_bits);
1157
1158 if (VERBOSE_DECODE)
1159 in.printf_bits(offset - wt_bits, wt_bits, "weight bits [%d]", weights_quant[i]);
1160
1161 offset -= wt_bits;
1162 }
1163 }
1164 }
1165
1166 void Block::unquantise_weights()
1167 {
1168 assert(num_weights <= (int)ARRAY_SIZE(weights_quant));
1169 assert(num_weights <= (int)ARRAY_SIZE(weights));
1170
1171 memset(weights, 0, sizeof(weights));
1172
1173 for (int i = 0; i < num_weights; ++i) {
1174
1175 uint8_t v = weights_quant[i];
1176 uint8_t w;
1177
1178 if (wt_trits) {
1179
1180 if (wt_bits == 0) {
1181 w = v * 32;
1182 } else {
1183 uint8_t A, B, C, D;
1184 A = (v & 0x1) ? 0x7F : 0x00;
1185 switch (wt_bits) {
1186 case 1:
1187 B = 0;
1188 C = 50;
1189 D = v >> 1;
1190 break;
1191 case 2:
1192 B = (v & 0x2) ? 0x45 : 0x00;
1193 C = 23;
1194 D = v >> 2;
1195 break;
1196 case 3:
1197 B = ((v & 0x6) >> 1) | ((v & 0x6) << 4);
1198 C = 11;
1199 D = v >> 3;
1200 break;
1201 default:
1202 unreachable("");
1203 }
1204 uint16_t T = D * C + B;
1205 T = T ^ A;
1206 T = (A & 0x20) | (T >> 2);
1207 assert(T < 64);
1208 if (T > 32)
1209 T++;
1210 w = T;
1211 }
1212
1213 } else if (wt_quints) {
1214
1215 if (wt_bits == 0) {
1216 w = v * 16;
1217 } else {
1218 uint8_t A, B, C, D;
1219 A = (v & 0x1) ? 0x7F : 0x00;
1220 switch (wt_bits) {
1221 case 1:
1222 B = 0;
1223 C = 28;
1224 D = v >> 1;
1225 break;
1226 case 2:
1227 B = (v & 0x2) ? 0x42 : 0x00;
1228 C = 13;
1229 D = v >> 2;
1230 break;
1231 default:
1232 unreachable("");
1233 }
1234 uint16_t T = D * C + B;
1235 T = T ^ A;
1236 T = (A & 0x20) | (T >> 2);
1237 assert(T < 64);
1238 if (T > 32)
1239 T++;
1240 w = T;
1241 }
1242 weights[i] = w;
1243
1244 } else {
1245
1246 switch (wt_bits) {
1247 case 1: w = v ? 0x3F : 0x00; break;
1248 case 2: w = v | (v << 2) | (v << 4); break;
1249 case 3: w = v | (v << 3); break;
1250 case 4: w = (v >> 2) | (v << 2); break;
1251 case 5: w = (v >> 4) | (v << 1); break;
1252 default: unreachable("");
1253 }
1254 assert(w < 64);
1255 if (w > 32)
1256 w++;
1257 }
1258 weights[i] = w;
1259 }
1260 }
1261
1262 void Block::compute_infill_weights(int block_w, int block_h, int block_d)
1263 {
1264 int Ds = block_w <= 1 ? 0 : (1024 + block_w / 2) / (block_w - 1);
1265 int Dt = block_h <= 1 ? 0 : (1024 + block_h / 2) / (block_h - 1);
1266 int Dr = block_d <= 1 ? 0 : (1024 + block_d / 2) / (block_d - 1);
1267 for (int r = 0; r < block_d; ++r) {
1268 for (int t = 0; t < block_h; ++t) {
1269 for (int s = 0; s < block_w; ++s) {
1270 int cs = Ds * s;
1271 int ct = Dt * t;
1272 int cr = Dr * r;
1273 int gs = (cs * (wt_w - 1) + 32) >> 6;
1274 int gt = (ct * (wt_h - 1) + 32) >> 6;
1275 int gr = (cr * (wt_d - 1) + 32) >> 6;
1276 assert(gs >= 0 && gs <= 176);
1277 assert(gt >= 0 && gt <= 176);
1278 assert(gr >= 0 && gr <= 176);
1279 int js = gs >> 4;
1280 int fs = gs & 0xf;
1281 int jt = gt >> 4;
1282 int ft = gt & 0xf;
1283 int jr = gr >> 4;
1284 int fr = gr & 0xf;
1285
1286 /* TODO: 3D */
1287 (void)jr;
1288 (void)fr;
1289
1290 int w11 = (fs * ft + 8) >> 4;
1291 int w10 = ft - w11;
1292 int w01 = fs - w11;
1293 int w00 = 16 - fs - ft + w11;
1294
1295 if (dual_plane) {
1296 int p00, p01, p10, p11, i0, i1;
1297 int v0 = js + jt * wt_w;
1298 p00 = weights[(v0) * 2];
1299 p01 = weights[(v0 + 1) * 2];
1300 p10 = weights[(v0 + wt_w) * 2];
1301 p11 = weights[(v0 + wt_w + 1) * 2];
1302 i0 = (p00*w00 + p01*w01 + p10*w10 + p11*w11 + 8) >> 4;
1303 p00 = weights[(v0) * 2 + 1];
1304 p01 = weights[(v0 + 1) * 2 + 1];
1305 p10 = weights[(v0 + wt_w) * 2 + 1];
1306 p11 = weights[(v0 + wt_w + 1) * 2 + 1];
1307 assert((v0 + wt_w + 1) * 2 + 1 < (int)ARRAY_SIZE(weights));
1308 i1 = (p00*w00 + p01*w01 + p10*w10 + p11*w11 + 8) >> 4;
1309 assert(0 <= i0 && i0 <= 64);
1310 infill_weights[0][s + t*block_w + r*block_w*block_h] = i0;
1311 infill_weights[1][s + t*block_w + r*block_w*block_h] = i1;
1312 } else {
1313 int p00, p01, p10, p11, i;
1314 int v0 = js + jt * wt_w;
1315 p00 = weights[v0];
1316 p01 = weights[v0 + 1];
1317 p10 = weights[v0 + wt_w];
1318 p11 = weights[v0 + wt_w + 1];
1319 assert(v0 + wt_w + 1 < (int)ARRAY_SIZE(weights));
1320 i = (p00*w00 + p01*w01 + p10*w10 + p11*w11 + 8) >> 4;
1321 assert(0 <= i && i <= 64);
1322 infill_weights[0][s + t*block_w + r*block_w*block_h] = i;
1323 }
1324 }
1325 }
1326 }
1327 }
1328
1329 void Block::unquantise_colour_endpoints()
1330 {
1331 assert(num_cem_values <= (int)ARRAY_SIZE(colour_endpoints_quant));
1332 assert(num_cem_values <= (int)ARRAY_SIZE(colour_endpoints));
1333
1334 for (int i = 0; i < num_cem_values; ++i) {
1335 uint8_t v = colour_endpoints_quant[i];
1336
1337 if (ce_trits) {
1338 uint16_t A, B, C, D;
1339 uint16_t t;
1340 A = (v & 0x1) ? 0x1FF : 0x000;
1341 switch (ce_bits) {
1342 case 1:
1343 B = 0;
1344 C = 204;
1345 D = v >> 1;
1346 break;
1347 case 2:
1348 B = (v & 0x2) ? 0x116 : 0x000;
1349 C = 93;
1350 D = v >> 2;
1351 break;
1352 case 3:
1353 t = ((v >> 1) & 0x3);
1354 B = t | (t << 2) | (t << 7);
1355 C = 44;
1356 D = v >> 3;
1357 break;
1358 case 4:
1359 t = ((v >> 1) & 0x7);
1360 B = t | (t << 6);
1361 C = 22;
1362 D = v >> 4;
1363 break;
1364 case 5:
1365 t = ((v >> 1) & 0xF);
1366 B = (t >> 2) | (t << 5);
1367 C = 11;
1368 D = v >> 5;
1369 break;
1370 case 6:
1371 B = ((v & 0x3E) << 3) | ((v >> 5) & 0x1);
1372 C = 5;
1373 D = v >> 6;
1374 break;
1375 default:
1376 unreachable("");
1377 }
1378 uint16_t T = D * C + B;
1379 T = T ^ A;
1380 T = (A & 0x80) | (T >> 2);
1381 assert(T < 256);
1382 colour_endpoints[i] = T;
1383 } else if (ce_quints) {
1384 uint16_t A, B, C, D;
1385 uint16_t t;
1386 A = (v & 0x1) ? 0x1FF : 0x000;
1387 switch (ce_bits) {
1388 case 1:
1389 B = 0;
1390 C = 113;
1391 D = v >> 1;
1392 break;
1393 case 2:
1394 B = (v & 0x2) ? 0x10C : 0x000;
1395 C = 54;
1396 D = v >> 2;
1397 break;
1398 case 3:
1399 t = ((v >> 1) & 0x3);
1400 B = (t >> 1) | (t << 1) | (t << 7);
1401 C = 26;
1402 D = v >> 3;
1403 break;
1404 case 4:
1405 t = ((v >> 1) & 0x7);
1406 B = (t >> 1) | (t << 6);
1407 C = 13;
1408 D = v >> 4;
1409 break;
1410 case 5:
1411 t = ((v >> 1) & 0xF);
1412 B = (t >> 4) | (t << 5);
1413 C = 6;
1414 D = v >> 5;
1415 break;
1416 default:
1417 unreachable("");
1418 }
1419 uint16_t T = D * C + B;
1420 T = T ^ A;
1421 T = (A & 0x80) | (T >> 2);
1422 assert(T < 256);
1423 colour_endpoints[i] = T;
1424 } else {
1425 switch (ce_bits) {
1426 case 1: v = v ? 0xFF : 0x00; break;
1427 case 2: v = (v << 6) | (v << 4) | (v << 2) | v; break;
1428 case 3: v = (v << 5) | (v << 2) | (v >> 1); break;
1429 case 4: v = (v << 4) | v; break;
1430 case 5: v = (v << 3) | (v >> 2); break;
1431 case 6: v = (v << 2) | (v >> 4); break;
1432 case 7: v = (v << 1) | (v >> 6); break;
1433 case 8: break;
1434 default: unreachable("");
1435 }
1436 colour_endpoints[i] = v;
1437 }
1438 }
1439 }
1440
1441 decode_error::type Block::decode(const Decoder &decoder, InputBitVector in)
1442 {
1443 decode_error::type err;
1444
1445 is_error = false;
1446 bogus_colour_endpoints = false;
1447 bogus_weights = false;
1448 is_void_extent = false;
1449
1450 wt_d = 1;
1451 /* TODO: 3D */
1452
1453 /* TODO: test for all the illegal encodings */
1454
1455 if (VERBOSE_DECODE)
1456 in.printf_bits(0, 128);
1457
1458 err = decode_block_mode(in);
1459 if (err != decode_error::ok)
1460 return err;
1461
1462 if (is_void_extent)
1463 return decode_error::ok;
1464
1465 /* TODO: 3D */
1466
1467 calculate_from_weights();
1468
1469 if (VERBOSE_DECODE)
1470 printf("weights_grid=%dx%dx%d dual_plane=%d num_weights=%d high_prec=%d r=%d range=0..%d (%dt %dq %db) weight_bits=%d\n",
1471 wt_w, wt_h, wt_d, dual_plane, num_weights, high_prec, wt_range, wt_max, wt_trits, wt_quints, wt_bits, weight_bits);
1472
1473 if (wt_w > decoder.block_w || wt_h > decoder.block_h || wt_d > decoder.block_d)
1474 return decode_error::weight_grid_exceeds_block_size;
1475
1476 num_parts = in.get_bits(11, 2) + 1;
1477
1478 if (VERBOSE_DECODE)
1479 in.printf_bits(11, 2, "partitions = %d", num_parts);
1480
1481 if (dual_plane && num_parts > 3)
1482 return decode_error::dual_plane_and_too_many_partitions;
1483
1484 decode_cem(in);
1485
1486 if (VERBOSE_DECODE)
1487 printf("cem=[%d,%d,%d,%d] base_cem_class=%d\n", cems[0], cems[1], cems[2], cems[3], cem_base_class);
1488
1489 int num_cem_pairs = (cem_base_class + 1) * num_parts + extra_cem_bits;
1490 num_cem_values = num_cem_pairs * 2;
1491
1492 calculate_remaining_bits();
1493 err = calculate_colour_endpoints_size();
1494 if (err != decode_error::ok)
1495 return err;
1496
1497 if (VERBOSE_DECODE)
1498 in.printf_bits(colour_endpoint_data_offset, colour_endpoint_bits,
1499 "endpoint data (%d bits, %d vals, %dt %dq %db)",
1500 colour_endpoint_bits, num_cem_values, ce_trits, ce_quints, ce_bits);
1501
1502 unpack_colour_endpoints(in);
1503
1504 if (VERBOSE_DECODE) {
1505 printf("cem values raw =[");
1506 for (int i = 0; i < num_cem_values; i++) {
1507 if (i)
1508 printf(", ");
1509 printf("%3d", colour_endpoints_quant[i]);
1510 }
1511 printf("]\n");
1512 }
1513
1514 if (num_cem_values > 18)
1515 return decode_error::invalid_colour_endpoints_count;
1516
1517 unquantise_colour_endpoints();
1518
1519 if (VERBOSE_DECODE) {
1520 printf("cem values norm=[");
1521 for (int i = 0; i < num_cem_values; i++) {
1522 if (i)
1523 printf(", ");
1524 printf("%3d", colour_endpoints[i]);
1525 }
1526 printf("]\n");
1527 }
1528
1529 decode_colour_endpoints();
1530
1531 if (dual_plane) {
1532 int ccs_offset = 128 - weight_bits - num_extra_cem_bits - 2;
1533 colour_component_selector = in.get_bits(ccs_offset, 2);
1534
1535 if (VERBOSE_DECODE)
1536 in.printf_bits(ccs_offset, 2, "colour component selector = %d", colour_component_selector);
1537 } else {
1538 colour_component_selector = 0;
1539 }
1540
1541
1542 if (VERBOSE_DECODE)
1543 in.printf_bits(128 - weight_bits, weight_bits, "weights (%d bits)", weight_bits);
1544
1545 if (num_weights > 64)
1546 return decode_error::invalid_num_weights;
1547
1548 if (weight_bits < 24 || weight_bits > 96)
1549 return decode_error::invalid_weight_bits;
1550
1551 unpack_weights(in);
1552
1553 unquantise_weights();
1554
1555 if (VERBOSE_DECODE) {
1556 printf("weights=[");
1557 for (int i = 0; i < num_weights; ++i) {
1558 if (i)
1559 printf(", ");
1560 printf("%d", weights[i]);
1561 }
1562 printf("]\n");
1563
1564 for (int plane = 0; plane <= dual_plane; ++plane) {
1565 printf("weights (plane %d):\n", plane);
1566 int i = 0;
1567 (void)i;
1568
1569 for (int r = 0; r < wt_d; ++r) {
1570 for (int t = 0; t < wt_h; ++t) {
1571 for (int s = 0; s < wt_w; ++s) {
1572 printf("%3d", weights[i++ * (1 + dual_plane) + plane]);
1573 }
1574 printf("\n");
1575 }
1576 if (r < wt_d - 1)
1577 printf("\n");
1578 }
1579 }
1580 }
1581
1582 compute_infill_weights(decoder.block_w, decoder.block_h, decoder.block_d);
1583
1584 if (VERBOSE_DECODE) {
1585 for (int plane = 0; plane <= dual_plane; ++plane) {
1586 printf("infilled weights (plane %d):\n", plane);
1587 int i = 0;
1588 (void)i;
1589
1590 for (int r = 0; r < decoder.block_d; ++r) {
1591 for (int t = 0; t < decoder.block_h; ++t) {
1592 for (int s = 0; s < decoder.block_w; ++s) {
1593 printf("%3d", infill_weights[plane][i++]);
1594 }
1595 printf("\n");
1596 }
1597 if (r < decoder.block_d - 1)
1598 printf("\n");
1599 }
1600 }
1601 }
1602 if (VERBOSE_DECODE)
1603 printf("\n");
1604
1605 return decode_error::ok;
1606 }
1607
1608 void Block::write_decoded(const Decoder &decoder, uint16_t *output)
1609 {
1610 /* sRGB can only be stored as unorm8. */
1611 assert(!decoder.srgb || decoder.output_unorm8);
1612
1613 if (is_void_extent) {
1614 for (int idx = 0; idx < decoder.block_w*decoder.block_h*decoder.block_d; ++idx) {
1615 if (decoder.output_unorm8) {
1616 if (decoder.srgb) {
1617 output[idx*4+0] = void_extent_colour_r >> 8;
1618 output[idx*4+1] = void_extent_colour_g >> 8;
1619 output[idx*4+2] = void_extent_colour_b >> 8;
1620 } else {
1621 output[idx*4+0] = uint16_div_64k_to_half_to_unorm8(void_extent_colour_r);
1622 output[idx*4+1] = uint16_div_64k_to_half_to_unorm8(void_extent_colour_g);
1623 output[idx*4+2] = uint16_div_64k_to_half_to_unorm8(void_extent_colour_b);
1624 }
1625 output[idx*4+3] = uint16_div_64k_to_half_to_unorm8(void_extent_colour_a);
1626 } else {
1627 /* Store the color as FP16. */
1628 output[idx*4+0] = _mesa_uint16_div_64k_to_half(void_extent_colour_r);
1629 output[idx*4+1] = _mesa_uint16_div_64k_to_half(void_extent_colour_g);
1630 output[idx*4+2] = _mesa_uint16_div_64k_to_half(void_extent_colour_b);
1631 output[idx*4+3] = _mesa_uint16_div_64k_to_half(void_extent_colour_a);
1632 }
1633 }
1634 return;
1635 }
1636
1637 int small_block = (decoder.block_w * decoder.block_h * decoder.block_d) < 31;
1638
1639 int idx = 0;
1640 for (int z = 0; z < decoder.block_d; ++z) {
1641 for (int y = 0; y < decoder.block_h; ++y) {
1642 for (int x = 0; x < decoder.block_w; ++x) {
1643
1644 int partition;
1645 if (num_parts > 1) {
1646 partition = select_partition(partition_index, x, y, z, num_parts, small_block);
1647 assert(partition < num_parts);
1648 } else {
1649 partition = 0;
1650 }
1651
1652 /* TODO: HDR */
1653
1654 uint8x4_t e0 = endpoints_decoded[0][partition];
1655 uint8x4_t e1 = endpoints_decoded[1][partition];
1656 uint16_t c0[4], c1[4];
1657
1658 /* Expand to 16 bits. */
1659 if (decoder.srgb) {
1660 c0[0] = (uint16_t)((e0.v[0] << 8) | 0x80);
1661 c0[1] = (uint16_t)((e0.v[1] << 8) | 0x80);
1662 c0[2] = (uint16_t)((e0.v[2] << 8) | 0x80);
1663 c0[3] = (uint16_t)((e0.v[3] << 8) | 0x80);
1664
1665 c1[0] = (uint16_t)((e1.v[0] << 8) | 0x80);
1666 c1[1] = (uint16_t)((e1.v[1] << 8) | 0x80);
1667 c1[2] = (uint16_t)((e1.v[2] << 8) | 0x80);
1668 c1[3] = (uint16_t)((e1.v[3] << 8) | 0x80);
1669 } else {
1670 c0[0] = (uint16_t)((e0.v[0] << 8) | e0.v[0]);
1671 c0[1] = (uint16_t)((e0.v[1] << 8) | e0.v[1]);
1672 c0[2] = (uint16_t)((e0.v[2] << 8) | e0.v[2]);
1673 c0[3] = (uint16_t)((e0.v[3] << 8) | e0.v[3]);
1674
1675 c1[0] = (uint16_t)((e1.v[0] << 8) | e1.v[0]);
1676 c1[1] = (uint16_t)((e1.v[1] << 8) | e1.v[1]);
1677 c1[2] = (uint16_t)((e1.v[2] << 8) | e1.v[2]);
1678 c1[3] = (uint16_t)((e1.v[3] << 8) | e1.v[3]);
1679 }
1680
1681 int w[4];
1682 if (dual_plane) {
1683 int w0 = infill_weights[0][idx];
1684 int w1 = infill_weights[1][idx];
1685 w[0] = w[1] = w[2] = w[3] = w0;
1686 w[colour_component_selector] = w1;
1687 } else {
1688 int w0 = infill_weights[0][idx];
1689 w[0] = w[1] = w[2] = w[3] = w0;
1690 }
1691
1692 /* Interpolate to produce UNORM16, applying weights. */
1693 uint16_t c[4] = {
1694 (uint16_t)((c0[0] * (64 - w[0]) + c1[0] * w[0] + 32) >> 6),
1695 (uint16_t)((c0[1] * (64 - w[1]) + c1[1] * w[1] + 32) >> 6),
1696 (uint16_t)((c0[2] * (64 - w[2]) + c1[2] * w[2] + 32) >> 6),
1697 (uint16_t)((c0[3] * (64 - w[3]) + c1[3] * w[3] + 32) >> 6),
1698 };
1699
1700 if (decoder.output_unorm8) {
1701 if (decoder.srgb) {
1702 output[idx*4+0] = c[0] >> 8;
1703 output[idx*4+1] = c[1] >> 8;
1704 output[idx*4+2] = c[2] >> 8;
1705 } else {
1706 output[idx*4+0] = c[0] == 65535 ? 0xff : uint16_div_64k_to_half_to_unorm8(c[0]);
1707 output[idx*4+1] = c[1] == 65535 ? 0xff : uint16_div_64k_to_half_to_unorm8(c[1]);
1708 output[idx*4+2] = c[2] == 65535 ? 0xff : uint16_div_64k_to_half_to_unorm8(c[2]);
1709 }
1710 output[idx*4+3] = c[3] == 65535 ? 0xff : uint16_div_64k_to_half_to_unorm8(c[3]);
1711 } else {
1712 /* Store the color as FP16. */
1713 output[idx*4+0] = c[0] == 65535 ? FP16_ONE : _mesa_uint16_div_64k_to_half(c[0]);
1714 output[idx*4+1] = c[1] == 65535 ? FP16_ONE : _mesa_uint16_div_64k_to_half(c[1]);
1715 output[idx*4+2] = c[2] == 65535 ? FP16_ONE : _mesa_uint16_div_64k_to_half(c[2]);
1716 output[idx*4+3] = c[3] == 65535 ? FP16_ONE : _mesa_uint16_div_64k_to_half(c[3]);
1717 }
1718
1719 idx++;
1720 }
1721 }
1722 }
1723 }
1724
1725 void Block::calculate_from_weights()
1726 {
1727 wt_trits = 0;
1728 wt_quints = 0;
1729 wt_bits = 0;
1730 switch (high_prec) {
1731 case 0:
1732 switch (wt_range) {
1733 case 0x2: wt_max = 1; wt_bits = 1; break;
1734 case 0x3: wt_max = 2; wt_trits = 1; break;
1735 case 0x4: wt_max = 3; wt_bits = 2; break;
1736 case 0x5: wt_max = 4; wt_quints = 1; break;
1737 case 0x6: wt_max = 5; wt_trits = 1; wt_bits = 1; break;
1738 case 0x7: wt_max = 7; wt_bits = 3; break;
1739 default: abort();
1740 }
1741 break;
1742 case 1:
1743 switch (wt_range) {
1744 case 0x2: wt_max = 9; wt_quints = 1; wt_bits = 1; break;
1745 case 0x3: wt_max = 11; wt_trits = 1; wt_bits = 2; break;
1746 case 0x4: wt_max = 15; wt_bits = 4; break;
1747 case 0x5: wt_max = 19; wt_quints = 1; wt_bits = 2; break;
1748 case 0x6: wt_max = 23; wt_trits = 1; wt_bits = 3; break;
1749 case 0x7: wt_max = 31; wt_bits = 5; break;
1750 default: abort();
1751 }
1752 break;
1753 }
1754
1755 assert(wt_trits || wt_quints || wt_bits);
1756
1757 num_weights = wt_w * wt_h * wt_d;
1758
1759 if (dual_plane)
1760 num_weights *= 2;
1761
1762 weight_bits =
1763 (num_weights * 8 * wt_trits + 4) / 5
1764 + (num_weights * 7 * wt_quints + 2) / 3
1765 + num_weights * wt_bits;
1766 }
1767
1768 void Block::calculate_remaining_bits()
1769 {
1770 int config_bits;
1771 if (num_parts > 1) {
1772 if (!is_multi_cem)
1773 config_bits = 29;
1774 else
1775 config_bits = 25 + 3 * num_parts;
1776 } else {
1777 config_bits = 17;
1778 }
1779
1780 if (dual_plane)
1781 config_bits += 2;
1782
1783 remaining_bits = 128 - config_bits - weight_bits;
1784 }
1785
1786 decode_error::type Block::calculate_colour_endpoints_size()
1787 {
1788 /* Specified as illegal */
1789 if (remaining_bits < (13 * num_cem_values + 4) / 5) {
1790 colour_endpoint_bits = ce_max = ce_trits = ce_quints = ce_bits = 0;
1791 return decode_error::invalid_colour_endpoints_size;
1792 }
1793
1794 /* Find the largest cem_ranges that fits within remaining_bits */
1795 for (int i = ARRAY_SIZE(cem_ranges)-1; i >= 0; --i) {
1796 int cem_bits;
1797 cem_bits = (num_cem_values * 8 * cem_ranges[i].t + 4) / 5
1798 + (num_cem_values * 7 * cem_ranges[i].q + 2) / 3
1799 + num_cem_values * cem_ranges[i].b;
1800
1801 if (cem_bits <= remaining_bits)
1802 {
1803 colour_endpoint_bits = cem_bits;
1804 ce_max = cem_ranges[i].max;
1805 ce_trits = cem_ranges[i].t;
1806 ce_quints = cem_ranges[i].q;
1807 ce_bits = cem_ranges[i].b;
1808 return decode_error::ok;
1809 }
1810 }
1811
1812 assert(0);
1813 return decode_error::invalid_colour_endpoints_size;
1814 }
1815
1816 /**
1817 * Decode ASTC 2D LDR texture data.
1818 *
1819 * \param src_width in pixels
1820 * \param src_height in pixels
1821 * \param dst_stride in bytes
1822 */
1823 extern "C" void
1824 _mesa_unpack_astc_2d_ldr(uint8_t *dst_row,
1825 unsigned dst_stride,
1826 const uint8_t *src_row,
1827 unsigned src_stride,
1828 unsigned src_width,
1829 unsigned src_height,
1830 mesa_format format)
1831 {
1832 assert(_mesa_is_format_astc_2d(format));
1833 bool srgb = _mesa_is_format_srgb(format);
1834
1835 unsigned blk_w, blk_h;
1836 _mesa_get_format_block_size(format, &blk_w, &blk_h);
1837
1838 const unsigned block_size = 16;
1839 unsigned x_blocks = (src_width + blk_w - 1) / blk_w;
1840 unsigned y_blocks = (src_height + blk_h - 1) / blk_h;
1841
1842 Decoder dec(blk_w, blk_h, 1, srgb, true);
1843
1844 for (unsigned y = 0; y < y_blocks; ++y) {
1845 for (unsigned x = 0; x < x_blocks; ++x) {
1846 /* Same size as the largest block. */
1847 uint16_t block_out[12 * 12 * 4];
1848
1849 dec.decode(src_row + x * block_size, block_out);
1850
1851 /* This can be smaller with NPOT dimensions. */
1852 unsigned dst_blk_w = MIN2(blk_w, src_width - x*blk_w);
1853 unsigned dst_blk_h = MIN2(blk_h, src_height - y*blk_h);
1854
1855 for (unsigned sub_y = 0; sub_y < dst_blk_h; ++sub_y) {
1856 for (unsigned sub_x = 0; sub_x < dst_blk_w; ++sub_x) {
1857 uint8_t *dst = dst_row + sub_y * dst_stride +
1858 (x * blk_w + sub_x) * 4;
1859 const uint16_t *src = &block_out[(sub_y * blk_w + sub_x) * 4];
1860
1861 dst[0] = src[0];
1862 dst[1] = src[1];
1863 dst[2] = src[2];
1864 dst[3] = src[3];
1865 }
1866 }
1867 }
1868 src_row += src_stride;
1869 dst_row += dst_stride * blk_h;
1870 }
1871 }