mesa: include mtypes.h less
[mesa.git] / src / mesa / math / m_matrix.c
1 /*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 1999-2005 Brian Paul All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included
14 * in all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /**
27 * \file m_matrix.c
28 * Matrix operations.
29 *
30 * \note
31 * -# 4x4 transformation matrices are stored in memory in column major order.
32 * -# Points/vertices are to be thought of as column vectors.
33 * -# Transformation of a point p by a matrix M is: p' = M * p
34 */
35
36
37 #include "c99_math.h"
38 #include "main/errors.h"
39 #include "main/glheader.h"
40 #include "main/imports.h"
41 #include "main/macros.h"
42
43 #include "m_matrix.h"
44
45
46 /**
47 * \defgroup MatFlags MAT_FLAG_XXX-flags
48 *
49 * Bitmasks to indicate different kinds of 4x4 matrices in GLmatrix::flags
50 */
51 /*@{*/
52 #define MAT_FLAG_IDENTITY 0 /**< is an identity matrix flag.
53 * (Not actually used - the identity
54 * matrix is identified by the absence
55 * of all other flags.)
56 */
57 #define MAT_FLAG_GENERAL 0x1 /**< is a general matrix flag */
58 #define MAT_FLAG_ROTATION 0x2 /**< is a rotation matrix flag */
59 #define MAT_FLAG_TRANSLATION 0x4 /**< is a translation matrix flag */
60 #define MAT_FLAG_UNIFORM_SCALE 0x8 /**< is an uniform scaling matrix flag */
61 #define MAT_FLAG_GENERAL_SCALE 0x10 /**< is a general scaling matrix flag */
62 #define MAT_FLAG_GENERAL_3D 0x20 /**< general 3D matrix flag */
63 #define MAT_FLAG_PERSPECTIVE 0x40 /**< is a perspective proj matrix flag */
64 #define MAT_FLAG_SINGULAR 0x80 /**< is a singular matrix flag */
65 #define MAT_DIRTY_TYPE 0x100 /**< matrix type is dirty */
66 #define MAT_DIRTY_FLAGS 0x200 /**< matrix flags are dirty */
67 #define MAT_DIRTY_INVERSE 0x400 /**< matrix inverse is dirty */
68
69 /** angle preserving matrix flags mask */
70 #define MAT_FLAGS_ANGLE_PRESERVING (MAT_FLAG_ROTATION | \
71 MAT_FLAG_TRANSLATION | \
72 MAT_FLAG_UNIFORM_SCALE)
73
74 /** geometry related matrix flags mask */
75 #define MAT_FLAGS_GEOMETRY (MAT_FLAG_GENERAL | \
76 MAT_FLAG_ROTATION | \
77 MAT_FLAG_TRANSLATION | \
78 MAT_FLAG_UNIFORM_SCALE | \
79 MAT_FLAG_GENERAL_SCALE | \
80 MAT_FLAG_GENERAL_3D | \
81 MAT_FLAG_PERSPECTIVE | \
82 MAT_FLAG_SINGULAR)
83
84 /** length preserving matrix flags mask */
85 #define MAT_FLAGS_LENGTH_PRESERVING (MAT_FLAG_ROTATION | \
86 MAT_FLAG_TRANSLATION)
87
88
89 /** 3D (non-perspective) matrix flags mask */
90 #define MAT_FLAGS_3D (MAT_FLAG_ROTATION | \
91 MAT_FLAG_TRANSLATION | \
92 MAT_FLAG_UNIFORM_SCALE | \
93 MAT_FLAG_GENERAL_SCALE | \
94 MAT_FLAG_GENERAL_3D)
95
96 /** dirty matrix flags mask */
97 #define MAT_DIRTY (MAT_DIRTY_TYPE | \
98 MAT_DIRTY_FLAGS | \
99 MAT_DIRTY_INVERSE)
100
101 /*@}*/
102
103
104 /**
105 * Test geometry related matrix flags.
106 *
107 * \param mat a pointer to a GLmatrix structure.
108 * \param a flags mask.
109 *
110 * \returns non-zero if all geometry related matrix flags are contained within
111 * the mask, or zero otherwise.
112 */
113 #define TEST_MAT_FLAGS(mat, a) \
114 ((MAT_FLAGS_GEOMETRY & (~(a)) & ((mat)->flags) ) == 0)
115
116
117
118 /**
119 * Names of the corresponding GLmatrixtype values.
120 */
121 static const char *types[] = {
122 "MATRIX_GENERAL",
123 "MATRIX_IDENTITY",
124 "MATRIX_3D_NO_ROT",
125 "MATRIX_PERSPECTIVE",
126 "MATRIX_2D",
127 "MATRIX_2D_NO_ROT",
128 "MATRIX_3D"
129 };
130
131
132 /**
133 * Identity matrix.
134 */
135 static const GLfloat Identity[16] = {
136 1.0, 0.0, 0.0, 0.0,
137 0.0, 1.0, 0.0, 0.0,
138 0.0, 0.0, 1.0, 0.0,
139 0.0, 0.0, 0.0, 1.0
140 };
141
142
143
144 /**********************************************************************/
145 /** \name Matrix multiplication */
146 /*@{*/
147
148 #define A(row,col) a[(col<<2)+row]
149 #define B(row,col) b[(col<<2)+row]
150 #define P(row,col) product[(col<<2)+row]
151
152 /**
153 * Perform a full 4x4 matrix multiplication.
154 *
155 * \param a matrix.
156 * \param b matrix.
157 * \param product will receive the product of \p a and \p b.
158 *
159 * \warning Is assumed that \p product != \p b. \p product == \p a is allowed.
160 *
161 * \note KW: 4*16 = 64 multiplications
162 *
163 * \author This \c matmul was contributed by Thomas Malik
164 */
165 static void matmul4( GLfloat *product, const GLfloat *a, const GLfloat *b )
166 {
167 GLint i;
168 for (i = 0; i < 4; i++) {
169 const GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3);
170 P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0);
171 P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1);
172 P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2);
173 P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3);
174 }
175 }
176
177 /**
178 * Multiply two matrices known to occupy only the top three rows, such
179 * as typical model matrices, and orthogonal matrices.
180 *
181 * \param a matrix.
182 * \param b matrix.
183 * \param product will receive the product of \p a and \p b.
184 */
185 static void matmul34( GLfloat *product, const GLfloat *a, const GLfloat *b )
186 {
187 GLint i;
188 for (i = 0; i < 3; i++) {
189 const GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3);
190 P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0);
191 P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1);
192 P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2);
193 P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3;
194 }
195 P(3,0) = 0;
196 P(3,1) = 0;
197 P(3,2) = 0;
198 P(3,3) = 1;
199 }
200
201 #undef A
202 #undef B
203 #undef P
204
205 /**
206 * Multiply a matrix by an array of floats with known properties.
207 *
208 * \param mat pointer to a GLmatrix structure containing the left multiplication
209 * matrix, and that will receive the product result.
210 * \param m right multiplication matrix array.
211 * \param flags flags of the matrix \p m.
212 *
213 * Joins both flags and marks the type and inverse as dirty. Calls matmul34()
214 * if both matrices are 3D, or matmul4() otherwise.
215 */
216 static void matrix_multf( GLmatrix *mat, const GLfloat *m, GLuint flags )
217 {
218 mat->flags |= (flags | MAT_DIRTY_TYPE | MAT_DIRTY_INVERSE);
219
220 if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D))
221 matmul34( mat->m, mat->m, m );
222 else
223 matmul4( mat->m, mat->m, m );
224 }
225
226 /**
227 * Matrix multiplication.
228 *
229 * \param dest destination matrix.
230 * \param a left matrix.
231 * \param b right matrix.
232 *
233 * Joins both flags and marks the type and inverse as dirty. Calls matmul34()
234 * if both matrices are 3D, or matmul4() otherwise.
235 */
236 void
237 _math_matrix_mul_matrix( GLmatrix *dest, const GLmatrix *a, const GLmatrix *b )
238 {
239 dest->flags = (a->flags |
240 b->flags |
241 MAT_DIRTY_TYPE |
242 MAT_DIRTY_INVERSE);
243
244 if (TEST_MAT_FLAGS(dest, MAT_FLAGS_3D))
245 matmul34( dest->m, a->m, b->m );
246 else
247 matmul4( dest->m, a->m, b->m );
248 }
249
250 /**
251 * Matrix multiplication.
252 *
253 * \param dest left and destination matrix.
254 * \param m right matrix array.
255 *
256 * Marks the matrix flags with general flag, and type and inverse dirty flags.
257 * Calls matmul4() for the multiplication.
258 */
259 void
260 _math_matrix_mul_floats( GLmatrix *dest, const GLfloat *m )
261 {
262 dest->flags |= (MAT_FLAG_GENERAL |
263 MAT_DIRTY_TYPE |
264 MAT_DIRTY_INVERSE |
265 MAT_DIRTY_FLAGS);
266
267 matmul4( dest->m, dest->m, m );
268 }
269
270 /*@}*/
271
272
273 /**********************************************************************/
274 /** \name Matrix output */
275 /*@{*/
276
277 /**
278 * Print a matrix array.
279 *
280 * \param m matrix array.
281 *
282 * Called by _math_matrix_print() to print a matrix or its inverse.
283 */
284 static void print_matrix_floats( const GLfloat m[16] )
285 {
286 int i;
287 for (i=0;i<4;i++) {
288 _mesa_debug(NULL,"\t%f %f %f %f\n", m[i], m[4+i], m[8+i], m[12+i] );
289 }
290 }
291
292 /**
293 * Dumps the contents of a GLmatrix structure.
294 *
295 * \param m pointer to the GLmatrix structure.
296 */
297 void
298 _math_matrix_print( const GLmatrix *m )
299 {
300 GLfloat prod[16];
301
302 _mesa_debug(NULL, "Matrix type: %s, flags: %x\n", types[m->type], m->flags);
303 print_matrix_floats(m->m);
304 _mesa_debug(NULL, "Inverse: \n");
305 print_matrix_floats(m->inv);
306 matmul4(prod, m->m, m->inv);
307 _mesa_debug(NULL, "Mat * Inverse:\n");
308 print_matrix_floats(prod);
309 }
310
311 /*@}*/
312
313
314 /**
315 * References an element of 4x4 matrix.
316 *
317 * \param m matrix array.
318 * \param c column of the desired element.
319 * \param r row of the desired element.
320 *
321 * \return value of the desired element.
322 *
323 * Calculate the linear storage index of the element and references it.
324 */
325 #define MAT(m,r,c) (m)[(c)*4+(r)]
326
327
328 /**********************************************************************/
329 /** \name Matrix inversion */
330 /*@{*/
331
332 /**
333 * Swaps the values of two floating point variables.
334 *
335 * Used by invert_matrix_general() to swap the row pointers.
336 */
337 #define SWAP_ROWS(a, b) { GLfloat *_tmp = a; (a)=(b); (b)=_tmp; }
338
339 /**
340 * Compute inverse of 4x4 transformation matrix.
341 *
342 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
343 * stored in the GLmatrix::inv attribute.
344 *
345 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
346 *
347 * \author
348 * Code contributed by Jacques Leroy jle@star.be
349 *
350 * Calculates the inverse matrix by performing the gaussian matrix reduction
351 * with partial pivoting followed by back/substitution with the loops manually
352 * unrolled.
353 */
354 static GLboolean invert_matrix_general( GLmatrix *mat )
355 {
356 const GLfloat *m = mat->m;
357 GLfloat *out = mat->inv;
358 GLfloat wtmp[4][8];
359 GLfloat m0, m1, m2, m3, s;
360 GLfloat *r0, *r1, *r2, *r3;
361
362 r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3];
363
364 r0[0] = MAT(m,0,0), r0[1] = MAT(m,0,1),
365 r0[2] = MAT(m,0,2), r0[3] = MAT(m,0,3),
366 r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0,
367
368 r1[0] = MAT(m,1,0), r1[1] = MAT(m,1,1),
369 r1[2] = MAT(m,1,2), r1[3] = MAT(m,1,3),
370 r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0,
371
372 r2[0] = MAT(m,2,0), r2[1] = MAT(m,2,1),
373 r2[2] = MAT(m,2,2), r2[3] = MAT(m,2,3),
374 r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0,
375
376 r3[0] = MAT(m,3,0), r3[1] = MAT(m,3,1),
377 r3[2] = MAT(m,3,2), r3[3] = MAT(m,3,3),
378 r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0;
379
380 /* choose pivot - or die */
381 if (fabsf(r3[0])>fabsf(r2[0])) SWAP_ROWS(r3, r2);
382 if (fabsf(r2[0])>fabsf(r1[0])) SWAP_ROWS(r2, r1);
383 if (fabsf(r1[0])>fabsf(r0[0])) SWAP_ROWS(r1, r0);
384 if (0.0F == r0[0]) return GL_FALSE;
385
386 /* eliminate first variable */
387 m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0];
388 s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s;
389 s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s;
390 s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s;
391 s = r0[4];
392 if (s != 0.0F) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; }
393 s = r0[5];
394 if (s != 0.0F) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; }
395 s = r0[6];
396 if (s != 0.0F) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; }
397 s = r0[7];
398 if (s != 0.0F) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; }
399
400 /* choose pivot - or die */
401 if (fabsf(r3[1])>fabsf(r2[1])) SWAP_ROWS(r3, r2);
402 if (fabsf(r2[1])>fabsf(r1[1])) SWAP_ROWS(r2, r1);
403 if (0.0F == r1[1]) return GL_FALSE;
404
405 /* eliminate second variable */
406 m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1];
407 r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2];
408 r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3];
409 s = r1[4]; if (0.0F != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; }
410 s = r1[5]; if (0.0F != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; }
411 s = r1[6]; if (0.0F != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; }
412 s = r1[7]; if (0.0F != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; }
413
414 /* choose pivot - or die */
415 if (fabsf(r3[2])>fabsf(r2[2])) SWAP_ROWS(r3, r2);
416 if (0.0F == r2[2]) return GL_FALSE;
417
418 /* eliminate third variable */
419 m3 = r3[2]/r2[2];
420 r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4],
421 r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6],
422 r3[7] -= m3 * r2[7];
423
424 /* last check */
425 if (0.0F == r3[3]) return GL_FALSE;
426
427 s = 1.0F/r3[3]; /* now back substitute row 3 */
428 r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s;
429
430 m2 = r2[3]; /* now back substitute row 2 */
431 s = 1.0F/r2[2];
432 r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
433 r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2);
434 m1 = r1[3];
435 r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1,
436 r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1;
437 m0 = r0[3];
438 r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0,
439 r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0;
440
441 m1 = r1[2]; /* now back substitute row 1 */
442 s = 1.0F/r1[1];
443 r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
444 r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1);
445 m0 = r0[2];
446 r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0,
447 r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0;
448
449 m0 = r0[1]; /* now back substitute row 0 */
450 s = 1.0F/r0[0];
451 r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
452 r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0);
453
454 MAT(out,0,0) = r0[4]; MAT(out,0,1) = r0[5],
455 MAT(out,0,2) = r0[6]; MAT(out,0,3) = r0[7],
456 MAT(out,1,0) = r1[4]; MAT(out,1,1) = r1[5],
457 MAT(out,1,2) = r1[6]; MAT(out,1,3) = r1[7],
458 MAT(out,2,0) = r2[4]; MAT(out,2,1) = r2[5],
459 MAT(out,2,2) = r2[6]; MAT(out,2,3) = r2[7],
460 MAT(out,3,0) = r3[4]; MAT(out,3,1) = r3[5],
461 MAT(out,3,2) = r3[6]; MAT(out,3,3) = r3[7];
462
463 return GL_TRUE;
464 }
465 #undef SWAP_ROWS
466
467 /**
468 * Compute inverse of a general 3d transformation matrix.
469 *
470 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
471 * stored in the GLmatrix::inv attribute.
472 *
473 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
474 *
475 * \author Adapted from graphics gems II.
476 *
477 * Calculates the inverse of the upper left by first calculating its
478 * determinant and multiplying it to the symmetric adjust matrix of each
479 * element. Finally deals with the translation part by transforming the
480 * original translation vector using by the calculated submatrix inverse.
481 */
482 static GLboolean invert_matrix_3d_general( GLmatrix *mat )
483 {
484 const GLfloat *in = mat->m;
485 GLfloat *out = mat->inv;
486 GLfloat pos, neg, t;
487 GLfloat det;
488
489 /* Calculate the determinant of upper left 3x3 submatrix and
490 * determine if the matrix is singular.
491 */
492 pos = neg = 0.0;
493 t = MAT(in,0,0) * MAT(in,1,1) * MAT(in,2,2);
494 if (t >= 0.0F) pos += t; else neg += t;
495
496 t = MAT(in,1,0) * MAT(in,2,1) * MAT(in,0,2);
497 if (t >= 0.0F) pos += t; else neg += t;
498
499 t = MAT(in,2,0) * MAT(in,0,1) * MAT(in,1,2);
500 if (t >= 0.0F) pos += t; else neg += t;
501
502 t = -MAT(in,2,0) * MAT(in,1,1) * MAT(in,0,2);
503 if (t >= 0.0F) pos += t; else neg += t;
504
505 t = -MAT(in,1,0) * MAT(in,0,1) * MAT(in,2,2);
506 if (t >= 0.0F) pos += t; else neg += t;
507
508 t = -MAT(in,0,0) * MAT(in,2,1) * MAT(in,1,2);
509 if (t >= 0.0F) pos += t; else neg += t;
510
511 det = pos + neg;
512
513 if (fabsf(det) < 1e-25F)
514 return GL_FALSE;
515
516 det = 1.0F / det;
517 MAT(out,0,0) = ( (MAT(in,1,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,1,2) )*det);
518 MAT(out,0,1) = (- (MAT(in,0,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,0,2) )*det);
519 MAT(out,0,2) = ( (MAT(in,0,1)*MAT(in,1,2) - MAT(in,1,1)*MAT(in,0,2) )*det);
520 MAT(out,1,0) = (- (MAT(in,1,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,1,2) )*det);
521 MAT(out,1,1) = ( (MAT(in,0,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,0,2) )*det);
522 MAT(out,1,2) = (- (MAT(in,0,0)*MAT(in,1,2) - MAT(in,1,0)*MAT(in,0,2) )*det);
523 MAT(out,2,0) = ( (MAT(in,1,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,1,1) )*det);
524 MAT(out,2,1) = (- (MAT(in,0,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,0,1) )*det);
525 MAT(out,2,2) = ( (MAT(in,0,0)*MAT(in,1,1) - MAT(in,1,0)*MAT(in,0,1) )*det);
526
527 /* Do the translation part */
528 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
529 MAT(in,1,3) * MAT(out,0,1) +
530 MAT(in,2,3) * MAT(out,0,2) );
531 MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
532 MAT(in,1,3) * MAT(out,1,1) +
533 MAT(in,2,3) * MAT(out,1,2) );
534 MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
535 MAT(in,1,3) * MAT(out,2,1) +
536 MAT(in,2,3) * MAT(out,2,2) );
537
538 return GL_TRUE;
539 }
540
541 /**
542 * Compute inverse of a 3d transformation matrix.
543 *
544 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
545 * stored in the GLmatrix::inv attribute.
546 *
547 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
548 *
549 * If the matrix is not an angle preserving matrix then calls
550 * invert_matrix_3d_general for the actual calculation. Otherwise calculates
551 * the inverse matrix analyzing and inverting each of the scaling, rotation and
552 * translation parts.
553 */
554 static GLboolean invert_matrix_3d( GLmatrix *mat )
555 {
556 const GLfloat *in = mat->m;
557 GLfloat *out = mat->inv;
558
559 if (!TEST_MAT_FLAGS(mat, MAT_FLAGS_ANGLE_PRESERVING)) {
560 return invert_matrix_3d_general( mat );
561 }
562
563 if (mat->flags & MAT_FLAG_UNIFORM_SCALE) {
564 GLfloat scale = (MAT(in,0,0) * MAT(in,0,0) +
565 MAT(in,0,1) * MAT(in,0,1) +
566 MAT(in,0,2) * MAT(in,0,2));
567
568 if (scale == 0.0F)
569 return GL_FALSE;
570
571 scale = 1.0F / scale;
572
573 /* Transpose and scale the 3 by 3 upper-left submatrix. */
574 MAT(out,0,0) = scale * MAT(in,0,0);
575 MAT(out,1,0) = scale * MAT(in,0,1);
576 MAT(out,2,0) = scale * MAT(in,0,2);
577 MAT(out,0,1) = scale * MAT(in,1,0);
578 MAT(out,1,1) = scale * MAT(in,1,1);
579 MAT(out,2,1) = scale * MAT(in,1,2);
580 MAT(out,0,2) = scale * MAT(in,2,0);
581 MAT(out,1,2) = scale * MAT(in,2,1);
582 MAT(out,2,2) = scale * MAT(in,2,2);
583 }
584 else if (mat->flags & MAT_FLAG_ROTATION) {
585 /* Transpose the 3 by 3 upper-left submatrix. */
586 MAT(out,0,0) = MAT(in,0,0);
587 MAT(out,1,0) = MAT(in,0,1);
588 MAT(out,2,0) = MAT(in,0,2);
589 MAT(out,0,1) = MAT(in,1,0);
590 MAT(out,1,1) = MAT(in,1,1);
591 MAT(out,2,1) = MAT(in,1,2);
592 MAT(out,0,2) = MAT(in,2,0);
593 MAT(out,1,2) = MAT(in,2,1);
594 MAT(out,2,2) = MAT(in,2,2);
595 }
596 else {
597 /* pure translation */
598 memcpy( out, Identity, sizeof(Identity) );
599 MAT(out,0,3) = - MAT(in,0,3);
600 MAT(out,1,3) = - MAT(in,1,3);
601 MAT(out,2,3) = - MAT(in,2,3);
602 return GL_TRUE;
603 }
604
605 if (mat->flags & MAT_FLAG_TRANSLATION) {
606 /* Do the translation part */
607 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
608 MAT(in,1,3) * MAT(out,0,1) +
609 MAT(in,2,3) * MAT(out,0,2) );
610 MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
611 MAT(in,1,3) * MAT(out,1,1) +
612 MAT(in,2,3) * MAT(out,1,2) );
613 MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
614 MAT(in,1,3) * MAT(out,2,1) +
615 MAT(in,2,3) * MAT(out,2,2) );
616 }
617 else {
618 MAT(out,0,3) = MAT(out,1,3) = MAT(out,2,3) = 0.0;
619 }
620
621 return GL_TRUE;
622 }
623
624 /**
625 * Compute inverse of an identity transformation matrix.
626 *
627 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
628 * stored in the GLmatrix::inv attribute.
629 *
630 * \return always GL_TRUE.
631 *
632 * Simply copies Identity into GLmatrix::inv.
633 */
634 static GLboolean invert_matrix_identity( GLmatrix *mat )
635 {
636 memcpy( mat->inv, Identity, sizeof(Identity) );
637 return GL_TRUE;
638 }
639
640 /**
641 * Compute inverse of a no-rotation 3d transformation matrix.
642 *
643 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
644 * stored in the GLmatrix::inv attribute.
645 *
646 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
647 *
648 * Calculates the
649 */
650 static GLboolean invert_matrix_3d_no_rot( GLmatrix *mat )
651 {
652 const GLfloat *in = mat->m;
653 GLfloat *out = mat->inv;
654
655 if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0 || MAT(in,2,2) == 0 )
656 return GL_FALSE;
657
658 memcpy( out, Identity, sizeof(Identity) );
659 MAT(out,0,0) = 1.0F / MAT(in,0,0);
660 MAT(out,1,1) = 1.0F / MAT(in,1,1);
661 MAT(out,2,2) = 1.0F / MAT(in,2,2);
662
663 if (mat->flags & MAT_FLAG_TRANSLATION) {
664 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
665 MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
666 MAT(out,2,3) = - (MAT(in,2,3) * MAT(out,2,2));
667 }
668
669 return GL_TRUE;
670 }
671
672 /**
673 * Compute inverse of a no-rotation 2d transformation matrix.
674 *
675 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
676 * stored in the GLmatrix::inv attribute.
677 *
678 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
679 *
680 * Calculates the inverse matrix by applying the inverse scaling and
681 * translation to the identity matrix.
682 */
683 static GLboolean invert_matrix_2d_no_rot( GLmatrix *mat )
684 {
685 const GLfloat *in = mat->m;
686 GLfloat *out = mat->inv;
687
688 if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0)
689 return GL_FALSE;
690
691 memcpy( out, Identity, sizeof(Identity) );
692 MAT(out,0,0) = 1.0F / MAT(in,0,0);
693 MAT(out,1,1) = 1.0F / MAT(in,1,1);
694
695 if (mat->flags & MAT_FLAG_TRANSLATION) {
696 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
697 MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
698 }
699
700 return GL_TRUE;
701 }
702
703 #if 0
704 /* broken */
705 static GLboolean invert_matrix_perspective( GLmatrix *mat )
706 {
707 const GLfloat *in = mat->m;
708 GLfloat *out = mat->inv;
709
710 if (MAT(in,2,3) == 0)
711 return GL_FALSE;
712
713 memcpy( out, Identity, sizeof(Identity) );
714
715 MAT(out,0,0) = 1.0F / MAT(in,0,0);
716 MAT(out,1,1) = 1.0F / MAT(in,1,1);
717
718 MAT(out,0,3) = MAT(in,0,2);
719 MAT(out,1,3) = MAT(in,1,2);
720
721 MAT(out,2,2) = 0;
722 MAT(out,2,3) = -1;
723
724 MAT(out,3,2) = 1.0F / MAT(in,2,3);
725 MAT(out,3,3) = MAT(in,2,2) * MAT(out,3,2);
726
727 return GL_TRUE;
728 }
729 #endif
730
731 /**
732 * Matrix inversion function pointer type.
733 */
734 typedef GLboolean (*inv_mat_func)( GLmatrix *mat );
735
736 /**
737 * Table of the matrix inversion functions according to the matrix type.
738 */
739 static inv_mat_func inv_mat_tab[7] = {
740 invert_matrix_general,
741 invert_matrix_identity,
742 invert_matrix_3d_no_rot,
743 #if 0
744 /* Don't use this function for now - it fails when the projection matrix
745 * is premultiplied by a translation (ala Chromium's tilesort SPU).
746 */
747 invert_matrix_perspective,
748 #else
749 invert_matrix_general,
750 #endif
751 invert_matrix_3d, /* lazy! */
752 invert_matrix_2d_no_rot,
753 invert_matrix_3d
754 };
755
756 /**
757 * Compute inverse of a transformation matrix.
758 *
759 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
760 * stored in the GLmatrix::inv attribute.
761 *
762 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
763 *
764 * Calls the matrix inversion function in inv_mat_tab corresponding to the
765 * given matrix type. In case of failure, updates the MAT_FLAG_SINGULAR flag,
766 * and copies the identity matrix into GLmatrix::inv.
767 */
768 static GLboolean matrix_invert( GLmatrix *mat )
769 {
770 if (inv_mat_tab[mat->type](mat)) {
771 mat->flags &= ~MAT_FLAG_SINGULAR;
772 return GL_TRUE;
773 } else {
774 mat->flags |= MAT_FLAG_SINGULAR;
775 memcpy( mat->inv, Identity, sizeof(Identity) );
776 return GL_FALSE;
777 }
778 }
779
780 /*@}*/
781
782
783 /**********************************************************************/
784 /** \name Matrix generation */
785 /*@{*/
786
787 /**
788 * Generate a 4x4 transformation matrix from glRotate parameters, and
789 * post-multiply the input matrix by it.
790 *
791 * \author
792 * This function was contributed by Erich Boleyn (erich@uruk.org).
793 * Optimizations contributed by Rudolf Opalla (rudi@khm.de).
794 */
795 void
796 _math_matrix_rotate( GLmatrix *mat,
797 GLfloat angle, GLfloat x, GLfloat y, GLfloat z )
798 {
799 GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c, s, c;
800 GLfloat m[16];
801 GLboolean optimized;
802
803 s = sinf( angle * M_PI / 180.0 );
804 c = cosf( angle * M_PI / 180.0 );
805
806 memcpy(m, Identity, sizeof(Identity));
807 optimized = GL_FALSE;
808
809 #define M(row,col) m[col*4+row]
810
811 if (x == 0.0F) {
812 if (y == 0.0F) {
813 if (z != 0.0F) {
814 optimized = GL_TRUE;
815 /* rotate only around z-axis */
816 M(0,0) = c;
817 M(1,1) = c;
818 if (z < 0.0F) {
819 M(0,1) = s;
820 M(1,0) = -s;
821 }
822 else {
823 M(0,1) = -s;
824 M(1,0) = s;
825 }
826 }
827 }
828 else if (z == 0.0F) {
829 optimized = GL_TRUE;
830 /* rotate only around y-axis */
831 M(0,0) = c;
832 M(2,2) = c;
833 if (y < 0.0F) {
834 M(0,2) = -s;
835 M(2,0) = s;
836 }
837 else {
838 M(0,2) = s;
839 M(2,0) = -s;
840 }
841 }
842 }
843 else if (y == 0.0F) {
844 if (z == 0.0F) {
845 optimized = GL_TRUE;
846 /* rotate only around x-axis */
847 M(1,1) = c;
848 M(2,2) = c;
849 if (x < 0.0F) {
850 M(1,2) = s;
851 M(2,1) = -s;
852 }
853 else {
854 M(1,2) = -s;
855 M(2,1) = s;
856 }
857 }
858 }
859
860 if (!optimized) {
861 const GLfloat mag = sqrtf(x * x + y * y + z * z);
862
863 if (mag <= 1.0e-4F) {
864 /* no rotation, leave mat as-is */
865 return;
866 }
867
868 x /= mag;
869 y /= mag;
870 z /= mag;
871
872
873 /*
874 * Arbitrary axis rotation matrix.
875 *
876 * This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied
877 * like so: Rz * Ry * T * Ry' * Rz'. T is the final rotation
878 * (which is about the X-axis), and the two composite transforms
879 * Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary
880 * from the arbitrary axis to the X-axis then back. They are
881 * all elementary rotations.
882 *
883 * Rz' is a rotation about the Z-axis, to bring the axis vector
884 * into the x-z plane. Then Ry' is applied, rotating about the
885 * Y-axis to bring the axis vector parallel with the X-axis. The
886 * rotation about the X-axis is then performed. Ry and Rz are
887 * simply the respective inverse transforms to bring the arbitrary
888 * axis back to its original orientation. The first transforms
889 * Rz' and Ry' are considered inverses, since the data from the
890 * arbitrary axis gives you info on how to get to it, not how
891 * to get away from it, and an inverse must be applied.
892 *
893 * The basic calculation used is to recognize that the arbitrary
894 * axis vector (x, y, z), since it is of unit length, actually
895 * represents the sines and cosines of the angles to rotate the
896 * X-axis to the same orientation, with theta being the angle about
897 * Z and phi the angle about Y (in the order described above)
898 * as follows:
899 *
900 * cos ( theta ) = x / sqrt ( 1 - z^2 )
901 * sin ( theta ) = y / sqrt ( 1 - z^2 )
902 *
903 * cos ( phi ) = sqrt ( 1 - z^2 )
904 * sin ( phi ) = z
905 *
906 * Note that cos ( phi ) can further be inserted to the above
907 * formulas:
908 *
909 * cos ( theta ) = x / cos ( phi )
910 * sin ( theta ) = y / sin ( phi )
911 *
912 * ...etc. Because of those relations and the standard trigonometric
913 * relations, it is pssible to reduce the transforms down to what
914 * is used below. It may be that any primary axis chosen will give the
915 * same results (modulo a sign convention) using thie method.
916 *
917 * Particularly nice is to notice that all divisions that might
918 * have caused trouble when parallel to certain planes or
919 * axis go away with care paid to reducing the expressions.
920 * After checking, it does perform correctly under all cases, since
921 * in all the cases of division where the denominator would have
922 * been zero, the numerator would have been zero as well, giving
923 * the expected result.
924 */
925
926 xx = x * x;
927 yy = y * y;
928 zz = z * z;
929 xy = x * y;
930 yz = y * z;
931 zx = z * x;
932 xs = x * s;
933 ys = y * s;
934 zs = z * s;
935 one_c = 1.0F - c;
936
937 /* We already hold the identity-matrix so we can skip some statements */
938 M(0,0) = (one_c * xx) + c;
939 M(0,1) = (one_c * xy) - zs;
940 M(0,2) = (one_c * zx) + ys;
941 /* M(0,3) = 0.0F; */
942
943 M(1,0) = (one_c * xy) + zs;
944 M(1,1) = (one_c * yy) + c;
945 M(1,2) = (one_c * yz) - xs;
946 /* M(1,3) = 0.0F; */
947
948 M(2,0) = (one_c * zx) - ys;
949 M(2,1) = (one_c * yz) + xs;
950 M(2,2) = (one_c * zz) + c;
951 /* M(2,3) = 0.0F; */
952
953 /*
954 M(3,0) = 0.0F;
955 M(3,1) = 0.0F;
956 M(3,2) = 0.0F;
957 M(3,3) = 1.0F;
958 */
959 }
960 #undef M
961
962 matrix_multf( mat, m, MAT_FLAG_ROTATION );
963 }
964
965 /**
966 * Apply a perspective projection matrix.
967 *
968 * \param mat matrix to apply the projection.
969 * \param left left clipping plane coordinate.
970 * \param right right clipping plane coordinate.
971 * \param bottom bottom clipping plane coordinate.
972 * \param top top clipping plane coordinate.
973 * \param nearval distance to the near clipping plane.
974 * \param farval distance to the far clipping plane.
975 *
976 * Creates the projection matrix and multiplies it with \p mat, marking the
977 * MAT_FLAG_PERSPECTIVE flag.
978 */
979 void
980 _math_matrix_frustum( GLmatrix *mat,
981 GLfloat left, GLfloat right,
982 GLfloat bottom, GLfloat top,
983 GLfloat nearval, GLfloat farval )
984 {
985 GLfloat x, y, a, b, c, d;
986 GLfloat m[16];
987
988 x = (2.0F*nearval) / (right-left);
989 y = (2.0F*nearval) / (top-bottom);
990 a = (right+left) / (right-left);
991 b = (top+bottom) / (top-bottom);
992 c = -(farval+nearval) / ( farval-nearval);
993 d = -(2.0F*farval*nearval) / (farval-nearval); /* error? */
994
995 #define M(row,col) m[col*4+row]
996 M(0,0) = x; M(0,1) = 0.0F; M(0,2) = a; M(0,3) = 0.0F;
997 M(1,0) = 0.0F; M(1,1) = y; M(1,2) = b; M(1,3) = 0.0F;
998 M(2,0) = 0.0F; M(2,1) = 0.0F; M(2,2) = c; M(2,3) = d;
999 M(3,0) = 0.0F; M(3,1) = 0.0F; M(3,2) = -1.0F; M(3,3) = 0.0F;
1000 #undef M
1001
1002 matrix_multf( mat, m, MAT_FLAG_PERSPECTIVE );
1003 }
1004
1005 /**
1006 * Apply an orthographic projection matrix.
1007 *
1008 * \param mat matrix to apply the projection.
1009 * \param left left clipping plane coordinate.
1010 * \param right right clipping plane coordinate.
1011 * \param bottom bottom clipping plane coordinate.
1012 * \param top top clipping plane coordinate.
1013 * \param nearval distance to the near clipping plane.
1014 * \param farval distance to the far clipping plane.
1015 *
1016 * Creates the projection matrix and multiplies it with \p mat, marking the
1017 * MAT_FLAG_GENERAL_SCALE and MAT_FLAG_TRANSLATION flags.
1018 */
1019 void
1020 _math_matrix_ortho( GLmatrix *mat,
1021 GLfloat left, GLfloat right,
1022 GLfloat bottom, GLfloat top,
1023 GLfloat nearval, GLfloat farval )
1024 {
1025 GLfloat m[16];
1026
1027 #define M(row,col) m[col*4+row]
1028 M(0,0) = 2.0F / (right-left);
1029 M(0,1) = 0.0F;
1030 M(0,2) = 0.0F;
1031 M(0,3) = -(right+left) / (right-left);
1032
1033 M(1,0) = 0.0F;
1034 M(1,1) = 2.0F / (top-bottom);
1035 M(1,2) = 0.0F;
1036 M(1,3) = -(top+bottom) / (top-bottom);
1037
1038 M(2,0) = 0.0F;
1039 M(2,1) = 0.0F;
1040 M(2,2) = -2.0F / (farval-nearval);
1041 M(2,3) = -(farval+nearval) / (farval-nearval);
1042
1043 M(3,0) = 0.0F;
1044 M(3,1) = 0.0F;
1045 M(3,2) = 0.0F;
1046 M(3,3) = 1.0F;
1047 #undef M
1048
1049 matrix_multf( mat, m, (MAT_FLAG_GENERAL_SCALE|MAT_FLAG_TRANSLATION));
1050 }
1051
1052 /**
1053 * Multiply a matrix with a general scaling matrix.
1054 *
1055 * \param mat matrix.
1056 * \param x x axis scale factor.
1057 * \param y y axis scale factor.
1058 * \param z z axis scale factor.
1059 *
1060 * Multiplies in-place the elements of \p mat by the scale factors. Checks if
1061 * the scales factors are roughly the same, marking the MAT_FLAG_UNIFORM_SCALE
1062 * flag, or MAT_FLAG_GENERAL_SCALE. Marks the MAT_DIRTY_TYPE and
1063 * MAT_DIRTY_INVERSE dirty flags.
1064 */
1065 void
1066 _math_matrix_scale( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
1067 {
1068 GLfloat *m = mat->m;
1069 m[0] *= x; m[4] *= y; m[8] *= z;
1070 m[1] *= x; m[5] *= y; m[9] *= z;
1071 m[2] *= x; m[6] *= y; m[10] *= z;
1072 m[3] *= x; m[7] *= y; m[11] *= z;
1073
1074 if (fabsf(x - y) < 1e-8F && fabsf(x - z) < 1e-8F)
1075 mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1076 else
1077 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1078
1079 mat->flags |= (MAT_DIRTY_TYPE |
1080 MAT_DIRTY_INVERSE);
1081 }
1082
1083 /**
1084 * Multiply a matrix with a translation matrix.
1085 *
1086 * \param mat matrix.
1087 * \param x translation vector x coordinate.
1088 * \param y translation vector y coordinate.
1089 * \param z translation vector z coordinate.
1090 *
1091 * Adds the translation coordinates to the elements of \p mat in-place. Marks
1092 * the MAT_FLAG_TRANSLATION flag, and the MAT_DIRTY_TYPE and MAT_DIRTY_INVERSE
1093 * dirty flags.
1094 */
1095 void
1096 _math_matrix_translate( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
1097 {
1098 GLfloat *m = mat->m;
1099 m[12] = m[0] * x + m[4] * y + m[8] * z + m[12];
1100 m[13] = m[1] * x + m[5] * y + m[9] * z + m[13];
1101 m[14] = m[2] * x + m[6] * y + m[10] * z + m[14];
1102 m[15] = m[3] * x + m[7] * y + m[11] * z + m[15];
1103
1104 mat->flags |= (MAT_FLAG_TRANSLATION |
1105 MAT_DIRTY_TYPE |
1106 MAT_DIRTY_INVERSE);
1107 }
1108
1109
1110 /**
1111 * Set matrix to do viewport and depthrange mapping.
1112 * Transforms Normalized Device Coords to window/Z values.
1113 */
1114 void
1115 _math_matrix_viewport(GLmatrix *m, const float scale[3],
1116 const float translate[3], double depthMax)
1117 {
1118 m->m[MAT_SX] = scale[0];
1119 m->m[MAT_TX] = translate[0];
1120 m->m[MAT_SY] = scale[1];
1121 m->m[MAT_TY] = translate[1];
1122 m->m[MAT_SZ] = depthMax*scale[2];
1123 m->m[MAT_TZ] = depthMax*translate[2];
1124 m->flags = MAT_FLAG_GENERAL_SCALE | MAT_FLAG_TRANSLATION;
1125 m->type = MATRIX_3D_NO_ROT;
1126 }
1127
1128
1129 /**
1130 * Set a matrix to the identity matrix.
1131 *
1132 * \param mat matrix.
1133 *
1134 * Copies ::Identity into \p GLmatrix::m, and into GLmatrix::inv if not NULL.
1135 * Sets the matrix type to identity, and clear the dirty flags.
1136 */
1137 void
1138 _math_matrix_set_identity( GLmatrix *mat )
1139 {
1140 memcpy( mat->m, Identity, sizeof(Identity) );
1141 memcpy( mat->inv, Identity, sizeof(Identity) );
1142
1143 mat->type = MATRIX_IDENTITY;
1144 mat->flags &= ~(MAT_DIRTY_FLAGS|
1145 MAT_DIRTY_TYPE|
1146 MAT_DIRTY_INVERSE);
1147 }
1148
1149 /*@}*/
1150
1151
1152 /**********************************************************************/
1153 /** \name Matrix analysis */
1154 /*@{*/
1155
1156 #define ZERO(x) (1<<x)
1157 #define ONE(x) (1<<(x+16))
1158
1159 #define MASK_NO_TRX (ZERO(12) | ZERO(13) | ZERO(14))
1160 #define MASK_NO_2D_SCALE ( ONE(0) | ONE(5))
1161
1162 #define MASK_IDENTITY ( ONE(0) | ZERO(4) | ZERO(8) | ZERO(12) |\
1163 ZERO(1) | ONE(5) | ZERO(9) | ZERO(13) |\
1164 ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\
1165 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
1166
1167 #define MASK_2D_NO_ROT ( ZERO(4) | ZERO(8) | \
1168 ZERO(1) | ZERO(9) | \
1169 ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\
1170 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
1171
1172 #define MASK_2D ( ZERO(8) | \
1173 ZERO(9) | \
1174 ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\
1175 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
1176
1177
1178 #define MASK_3D_NO_ROT ( ZERO(4) | ZERO(8) | \
1179 ZERO(1) | ZERO(9) | \
1180 ZERO(2) | ZERO(6) | \
1181 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
1182
1183 #define MASK_3D ( \
1184 \
1185 \
1186 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
1187
1188
1189 #define MASK_PERSPECTIVE ( ZERO(4) | ZERO(12) |\
1190 ZERO(1) | ZERO(13) |\
1191 ZERO(2) | ZERO(6) | \
1192 ZERO(3) | ZERO(7) | ZERO(15) )
1193
1194 #define SQ(x) ((x)*(x))
1195
1196 /**
1197 * Determine type and flags from scratch.
1198 *
1199 * \param mat matrix.
1200 *
1201 * This is expensive enough to only want to do it once.
1202 */
1203 static void analyse_from_scratch( GLmatrix *mat )
1204 {
1205 const GLfloat *m = mat->m;
1206 GLuint mask = 0;
1207 GLuint i;
1208
1209 for (i = 0 ; i < 16 ; i++) {
1210 if (m[i] == 0.0F) mask |= (1<<i);
1211 }
1212
1213 if (m[0] == 1.0F) mask |= (1<<16);
1214 if (m[5] == 1.0F) mask |= (1<<21);
1215 if (m[10] == 1.0F) mask |= (1<<26);
1216 if (m[15] == 1.0F) mask |= (1<<31);
1217
1218 mat->flags &= ~MAT_FLAGS_GEOMETRY;
1219
1220 /* Check for translation - no-one really cares
1221 */
1222 if ((mask & MASK_NO_TRX) != MASK_NO_TRX)
1223 mat->flags |= MAT_FLAG_TRANSLATION;
1224
1225 /* Do the real work
1226 */
1227 if (mask == (GLuint) MASK_IDENTITY) {
1228 mat->type = MATRIX_IDENTITY;
1229 }
1230 else if ((mask & MASK_2D_NO_ROT) == (GLuint) MASK_2D_NO_ROT) {
1231 mat->type = MATRIX_2D_NO_ROT;
1232
1233 if ((mask & MASK_NO_2D_SCALE) != MASK_NO_2D_SCALE)
1234 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1235 }
1236 else if ((mask & MASK_2D) == (GLuint) MASK_2D) {
1237 GLfloat mm = DOT2(m, m);
1238 GLfloat m4m4 = DOT2(m+4,m+4);
1239 GLfloat mm4 = DOT2(m,m+4);
1240
1241 mat->type = MATRIX_2D;
1242
1243 /* Check for scale */
1244 if (SQ(mm-1) > SQ(1e-6F) ||
1245 SQ(m4m4-1) > SQ(1e-6F))
1246 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1247
1248 /* Check for rotation */
1249 if (SQ(mm4) > SQ(1e-6F))
1250 mat->flags |= MAT_FLAG_GENERAL_3D;
1251 else
1252 mat->flags |= MAT_FLAG_ROTATION;
1253
1254 }
1255 else if ((mask & MASK_3D_NO_ROT) == (GLuint) MASK_3D_NO_ROT) {
1256 mat->type = MATRIX_3D_NO_ROT;
1257
1258 /* Check for scale */
1259 if (SQ(m[0]-m[5]) < SQ(1e-6F) &&
1260 SQ(m[0]-m[10]) < SQ(1e-6F)) {
1261 if (SQ(m[0]-1.0F) > SQ(1e-6F)) {
1262 mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1263 }
1264 }
1265 else {
1266 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1267 }
1268 }
1269 else if ((mask & MASK_3D) == (GLuint) MASK_3D) {
1270 GLfloat c1 = DOT3(m,m);
1271 GLfloat c2 = DOT3(m+4,m+4);
1272 GLfloat c3 = DOT3(m+8,m+8);
1273 GLfloat d1 = DOT3(m, m+4);
1274 GLfloat cp[3];
1275
1276 mat->type = MATRIX_3D;
1277
1278 /* Check for scale */
1279 if (SQ(c1-c2) < SQ(1e-6F) && SQ(c1-c3) < SQ(1e-6F)) {
1280 if (SQ(c1-1.0F) > SQ(1e-6F))
1281 mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1282 /* else no scale at all */
1283 }
1284 else {
1285 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1286 }
1287
1288 /* Check for rotation */
1289 if (SQ(d1) < SQ(1e-6F)) {
1290 CROSS3( cp, m, m+4 );
1291 SUB_3V( cp, cp, (m+8) );
1292 if (LEN_SQUARED_3FV(cp) < SQ(1e-6F))
1293 mat->flags |= MAT_FLAG_ROTATION;
1294 else
1295 mat->flags |= MAT_FLAG_GENERAL_3D;
1296 }
1297 else {
1298 mat->flags |= MAT_FLAG_GENERAL_3D; /* shear, etc */
1299 }
1300 }
1301 else if ((mask & MASK_PERSPECTIVE) == MASK_PERSPECTIVE && m[11]==-1.0F) {
1302 mat->type = MATRIX_PERSPECTIVE;
1303 mat->flags |= MAT_FLAG_GENERAL;
1304 }
1305 else {
1306 mat->type = MATRIX_GENERAL;
1307 mat->flags |= MAT_FLAG_GENERAL;
1308 }
1309 }
1310
1311 /**
1312 * Analyze a matrix given that its flags are accurate.
1313 *
1314 * This is the more common operation, hopefully.
1315 */
1316 static void analyse_from_flags( GLmatrix *mat )
1317 {
1318 const GLfloat *m = mat->m;
1319
1320 if (TEST_MAT_FLAGS(mat, 0)) {
1321 mat->type = MATRIX_IDENTITY;
1322 }
1323 else if (TEST_MAT_FLAGS(mat, (MAT_FLAG_TRANSLATION |
1324 MAT_FLAG_UNIFORM_SCALE |
1325 MAT_FLAG_GENERAL_SCALE))) {
1326 if ( m[10]==1.0F && m[14]==0.0F ) {
1327 mat->type = MATRIX_2D_NO_ROT;
1328 }
1329 else {
1330 mat->type = MATRIX_3D_NO_ROT;
1331 }
1332 }
1333 else if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) {
1334 if ( m[ 8]==0.0F
1335 && m[ 9]==0.0F
1336 && m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F) {
1337 mat->type = MATRIX_2D;
1338 }
1339 else {
1340 mat->type = MATRIX_3D;
1341 }
1342 }
1343 else if ( m[4]==0.0F && m[12]==0.0F
1344 && m[1]==0.0F && m[13]==0.0F
1345 && m[2]==0.0F && m[6]==0.0F
1346 && m[3]==0.0F && m[7]==0.0F && m[11]==-1.0F && m[15]==0.0F) {
1347 mat->type = MATRIX_PERSPECTIVE;
1348 }
1349 else {
1350 mat->type = MATRIX_GENERAL;
1351 }
1352 }
1353
1354 /**
1355 * Analyze and update a matrix.
1356 *
1357 * \param mat matrix.
1358 *
1359 * If the matrix type is dirty then calls either analyse_from_scratch() or
1360 * analyse_from_flags() to determine its type, according to whether the flags
1361 * are dirty or not, respectively. If the matrix has an inverse and it's dirty
1362 * then calls matrix_invert(). Finally clears the dirty flags.
1363 */
1364 void
1365 _math_matrix_analyse( GLmatrix *mat )
1366 {
1367 if (mat->flags & MAT_DIRTY_TYPE) {
1368 if (mat->flags & MAT_DIRTY_FLAGS)
1369 analyse_from_scratch( mat );
1370 else
1371 analyse_from_flags( mat );
1372 }
1373
1374 if (mat->inv && (mat->flags & MAT_DIRTY_INVERSE)) {
1375 matrix_invert( mat );
1376 mat->flags &= ~MAT_DIRTY_INVERSE;
1377 }
1378
1379 mat->flags &= ~(MAT_DIRTY_FLAGS | MAT_DIRTY_TYPE);
1380 }
1381
1382 /*@}*/
1383
1384
1385 /**
1386 * Test if the given matrix preserves vector lengths.
1387 */
1388 GLboolean
1389 _math_matrix_is_length_preserving( const GLmatrix *m )
1390 {
1391 return TEST_MAT_FLAGS( m, MAT_FLAGS_LENGTH_PRESERVING);
1392 }
1393
1394
1395 /**
1396 * Test if the given matrix does any rotation.
1397 * (or perhaps if the upper-left 3x3 is non-identity)
1398 */
1399 GLboolean
1400 _math_matrix_has_rotation( const GLmatrix *m )
1401 {
1402 if (m->flags & (MAT_FLAG_GENERAL |
1403 MAT_FLAG_ROTATION |
1404 MAT_FLAG_GENERAL_3D |
1405 MAT_FLAG_PERSPECTIVE))
1406 return GL_TRUE;
1407 else
1408 return GL_FALSE;
1409 }
1410
1411
1412 GLboolean
1413 _math_matrix_is_general_scale( const GLmatrix *m )
1414 {
1415 return (m->flags & MAT_FLAG_GENERAL_SCALE) ? GL_TRUE : GL_FALSE;
1416 }
1417
1418
1419 GLboolean
1420 _math_matrix_is_dirty( const GLmatrix *m )
1421 {
1422 return (m->flags & MAT_DIRTY) ? GL_TRUE : GL_FALSE;
1423 }
1424
1425
1426 /**********************************************************************/
1427 /** \name Matrix setup */
1428 /*@{*/
1429
1430 /**
1431 * Copy a matrix.
1432 *
1433 * \param to destination matrix.
1434 * \param from source matrix.
1435 *
1436 * Copies all fields in GLmatrix, creating an inverse array if necessary.
1437 */
1438 void
1439 _math_matrix_copy( GLmatrix *to, const GLmatrix *from )
1440 {
1441 memcpy(to->m, from->m, 16 * sizeof(GLfloat));
1442 memcpy(to->inv, from->inv, 16 * sizeof(GLfloat));
1443 to->flags = from->flags;
1444 to->type = from->type;
1445 }
1446
1447 /**
1448 * Loads a matrix array into GLmatrix.
1449 *
1450 * \param m matrix array.
1451 * \param mat matrix.
1452 *
1453 * Copies \p m into GLmatrix::m and marks the MAT_FLAG_GENERAL and MAT_DIRTY
1454 * flags.
1455 */
1456 void
1457 _math_matrix_loadf( GLmatrix *mat, const GLfloat *m )
1458 {
1459 memcpy( mat->m, m, 16*sizeof(GLfloat) );
1460 mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY);
1461 }
1462
1463 /**
1464 * Matrix constructor.
1465 *
1466 * \param m matrix.
1467 *
1468 * Initialize the GLmatrix fields.
1469 */
1470 void
1471 _math_matrix_ctr( GLmatrix *m )
1472 {
1473 m->m = _mesa_align_malloc( 16 * sizeof(GLfloat), 16 );
1474 if (m->m)
1475 memcpy( m->m, Identity, sizeof(Identity) );
1476 m->inv = _mesa_align_malloc( 16 * sizeof(GLfloat), 16 );
1477 if (m->inv)
1478 memcpy( m->inv, Identity, sizeof(Identity) );
1479 m->type = MATRIX_IDENTITY;
1480 m->flags = 0;
1481 }
1482
1483 /**
1484 * Matrix destructor.
1485 *
1486 * \param m matrix.
1487 *
1488 * Frees the data in a GLmatrix.
1489 */
1490 void
1491 _math_matrix_dtr( GLmatrix *m )
1492 {
1493 _mesa_align_free( m->m );
1494 m->m = NULL;
1495
1496 _mesa_align_free( m->inv );
1497 m->inv = NULL;
1498 }
1499
1500 /*@}*/
1501
1502
1503 /**********************************************************************/
1504 /** \name Matrix transpose */
1505 /*@{*/
1506
1507 /**
1508 * Transpose a GLfloat matrix.
1509 *
1510 * \param to destination array.
1511 * \param from source array.
1512 */
1513 void
1514 _math_transposef( GLfloat to[16], const GLfloat from[16] )
1515 {
1516 to[0] = from[0];
1517 to[1] = from[4];
1518 to[2] = from[8];
1519 to[3] = from[12];
1520 to[4] = from[1];
1521 to[5] = from[5];
1522 to[6] = from[9];
1523 to[7] = from[13];
1524 to[8] = from[2];
1525 to[9] = from[6];
1526 to[10] = from[10];
1527 to[11] = from[14];
1528 to[12] = from[3];
1529 to[13] = from[7];
1530 to[14] = from[11];
1531 to[15] = from[15];
1532 }
1533
1534 /**
1535 * Transpose a GLdouble matrix.
1536 *
1537 * \param to destination array.
1538 * \param from source array.
1539 */
1540 void
1541 _math_transposed( GLdouble to[16], const GLdouble from[16] )
1542 {
1543 to[0] = from[0];
1544 to[1] = from[4];
1545 to[2] = from[8];
1546 to[3] = from[12];
1547 to[4] = from[1];
1548 to[5] = from[5];
1549 to[6] = from[9];
1550 to[7] = from[13];
1551 to[8] = from[2];
1552 to[9] = from[6];
1553 to[10] = from[10];
1554 to[11] = from[14];
1555 to[12] = from[3];
1556 to[13] = from[7];
1557 to[14] = from[11];
1558 to[15] = from[15];
1559 }
1560
1561 /**
1562 * Transpose a GLdouble matrix and convert to GLfloat.
1563 *
1564 * \param to destination array.
1565 * \param from source array.
1566 */
1567 void
1568 _math_transposefd( GLfloat to[16], const GLdouble from[16] )
1569 {
1570 to[0] = (GLfloat) from[0];
1571 to[1] = (GLfloat) from[4];
1572 to[2] = (GLfloat) from[8];
1573 to[3] = (GLfloat) from[12];
1574 to[4] = (GLfloat) from[1];
1575 to[5] = (GLfloat) from[5];
1576 to[6] = (GLfloat) from[9];
1577 to[7] = (GLfloat) from[13];
1578 to[8] = (GLfloat) from[2];
1579 to[9] = (GLfloat) from[6];
1580 to[10] = (GLfloat) from[10];
1581 to[11] = (GLfloat) from[14];
1582 to[12] = (GLfloat) from[3];
1583 to[13] = (GLfloat) from[7];
1584 to[14] = (GLfloat) from[11];
1585 to[15] = (GLfloat) from[15];
1586 }
1587
1588 /*@}*/
1589
1590
1591 /**
1592 * Transform a 4-element row vector (1x4 matrix) by a 4x4 matrix. This
1593 * function is used for transforming clipping plane equations and spotlight
1594 * directions.
1595 * Mathematically, u = v * m.
1596 * Input: v - input vector
1597 * m - transformation matrix
1598 * Output: u - transformed vector
1599 */
1600 void
1601 _mesa_transform_vector( GLfloat u[4], const GLfloat v[4], const GLfloat m[16] )
1602 {
1603 const GLfloat v0 = v[0], v1 = v[1], v2 = v[2], v3 = v[3];
1604 #define M(row,col) m[row + col*4]
1605 u[0] = v0 * M(0,0) + v1 * M(1,0) + v2 * M(2,0) + v3 * M(3,0);
1606 u[1] = v0 * M(0,1) + v1 * M(1,1) + v2 * M(2,1) + v3 * M(3,1);
1607 u[2] = v0 * M(0,2) + v1 * M(1,2) + v2 * M(2,2) + v3 * M(3,2);
1608 u[3] = v0 * M(0,3) + v1 * M(1,3) + v2 * M(2,3) + v3 * M(3,3);
1609 #undef M
1610 }