d3f89ee7cb7bae4b394e6ad53bc736b50e96a936
[mesa.git] / src / mesa / math / m_matrix.c
1 /*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 1999-2005 Brian Paul All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included
14 * in all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /**
27 * \file m_matrix.c
28 * Matrix operations.
29 *
30 * \note
31 * -# 4x4 transformation matrices are stored in memory in column major order.
32 * -# Points/vertices are to be thought of as column vectors.
33 * -# Transformation of a point p by a matrix M is: p' = M * p
34 */
35
36 #include <stddef.h>
37
38 #include "c99_math.h"
39 #include "main/errors.h"
40 #include "main/glheader.h"
41 #include "main/imports.h"
42 #include "main/macros.h"
43 #define MATH_ASM_PTR_SIZE sizeof(void *)
44 #include "math/m_vector_asm.h"
45
46 #include "m_matrix.h"
47
48
49 /**
50 * \defgroup MatFlags MAT_FLAG_XXX-flags
51 *
52 * Bitmasks to indicate different kinds of 4x4 matrices in GLmatrix::flags
53 */
54 /*@{*/
55 #define MAT_FLAG_IDENTITY 0 /**< is an identity matrix flag.
56 * (Not actually used - the identity
57 * matrix is identified by the absence
58 * of all other flags.)
59 */
60 #define MAT_FLAG_GENERAL 0x1 /**< is a general matrix flag */
61 #define MAT_FLAG_ROTATION 0x2 /**< is a rotation matrix flag */
62 #define MAT_FLAG_TRANSLATION 0x4 /**< is a translation matrix flag */
63 #define MAT_FLAG_UNIFORM_SCALE 0x8 /**< is an uniform scaling matrix flag */
64 #define MAT_FLAG_GENERAL_SCALE 0x10 /**< is a general scaling matrix flag */
65 #define MAT_FLAG_GENERAL_3D 0x20 /**< general 3D matrix flag */
66 #define MAT_FLAG_PERSPECTIVE 0x40 /**< is a perspective proj matrix flag */
67 #define MAT_FLAG_SINGULAR 0x80 /**< is a singular matrix flag */
68 #define MAT_DIRTY_TYPE 0x100 /**< matrix type is dirty */
69 #define MAT_DIRTY_FLAGS 0x200 /**< matrix flags are dirty */
70 #define MAT_DIRTY_INVERSE 0x400 /**< matrix inverse is dirty */
71
72 /** angle preserving matrix flags mask */
73 #define MAT_FLAGS_ANGLE_PRESERVING (MAT_FLAG_ROTATION | \
74 MAT_FLAG_TRANSLATION | \
75 MAT_FLAG_UNIFORM_SCALE)
76
77 /** geometry related matrix flags mask */
78 #define MAT_FLAGS_GEOMETRY (MAT_FLAG_GENERAL | \
79 MAT_FLAG_ROTATION | \
80 MAT_FLAG_TRANSLATION | \
81 MAT_FLAG_UNIFORM_SCALE | \
82 MAT_FLAG_GENERAL_SCALE | \
83 MAT_FLAG_GENERAL_3D | \
84 MAT_FLAG_PERSPECTIVE | \
85 MAT_FLAG_SINGULAR)
86
87 /** length preserving matrix flags mask */
88 #define MAT_FLAGS_LENGTH_PRESERVING (MAT_FLAG_ROTATION | \
89 MAT_FLAG_TRANSLATION)
90
91
92 /** 3D (non-perspective) matrix flags mask */
93 #define MAT_FLAGS_3D (MAT_FLAG_ROTATION | \
94 MAT_FLAG_TRANSLATION | \
95 MAT_FLAG_UNIFORM_SCALE | \
96 MAT_FLAG_GENERAL_SCALE | \
97 MAT_FLAG_GENERAL_3D)
98
99 /** dirty matrix flags mask */
100 #define MAT_DIRTY (MAT_DIRTY_TYPE | \
101 MAT_DIRTY_FLAGS | \
102 MAT_DIRTY_INVERSE)
103
104 /*@}*/
105
106
107 /**
108 * Test geometry related matrix flags.
109 *
110 * \param mat a pointer to a GLmatrix structure.
111 * \param a flags mask.
112 *
113 * \returns non-zero if all geometry related matrix flags are contained within
114 * the mask, or zero otherwise.
115 */
116 #define TEST_MAT_FLAGS(mat, a) \
117 ((MAT_FLAGS_GEOMETRY & (~(a)) & ((mat)->flags) ) == 0)
118
119
120
121 /**
122 * Names of the corresponding GLmatrixtype values.
123 */
124 static const char *types[] = {
125 "MATRIX_GENERAL",
126 "MATRIX_IDENTITY",
127 "MATRIX_3D_NO_ROT",
128 "MATRIX_PERSPECTIVE",
129 "MATRIX_2D",
130 "MATRIX_2D_NO_ROT",
131 "MATRIX_3D"
132 };
133
134
135 /**
136 * Identity matrix.
137 */
138 static const GLfloat Identity[16] = {
139 1.0, 0.0, 0.0, 0.0,
140 0.0, 1.0, 0.0, 0.0,
141 0.0, 0.0, 1.0, 0.0,
142 0.0, 0.0, 0.0, 1.0
143 };
144
145
146
147 /**********************************************************************/
148 /** \name Matrix multiplication */
149 /*@{*/
150
151 #define A(row,col) a[(col<<2)+row]
152 #define B(row,col) b[(col<<2)+row]
153 #define P(row,col) product[(col<<2)+row]
154
155 /**
156 * Perform a full 4x4 matrix multiplication.
157 *
158 * \param a matrix.
159 * \param b matrix.
160 * \param product will receive the product of \p a and \p b.
161 *
162 * \warning Is assumed that \p product != \p b. \p product == \p a is allowed.
163 *
164 * \note KW: 4*16 = 64 multiplications
165 *
166 * \author This \c matmul was contributed by Thomas Malik
167 */
168 static void matmul4( GLfloat *product, const GLfloat *a, const GLfloat *b )
169 {
170 GLint i;
171 for (i = 0; i < 4; i++) {
172 const GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3);
173 P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0);
174 P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1);
175 P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2);
176 P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3);
177 }
178 }
179
180 /**
181 * Multiply two matrices known to occupy only the top three rows, such
182 * as typical model matrices, and orthogonal matrices.
183 *
184 * \param a matrix.
185 * \param b matrix.
186 * \param product will receive the product of \p a and \p b.
187 */
188 static void matmul34( GLfloat *product, const GLfloat *a, const GLfloat *b )
189 {
190 GLint i;
191 for (i = 0; i < 3; i++) {
192 const GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3);
193 P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0);
194 P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1);
195 P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2);
196 P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3;
197 }
198 P(3,0) = 0;
199 P(3,1) = 0;
200 P(3,2) = 0;
201 P(3,3) = 1;
202 }
203
204 #undef A
205 #undef B
206 #undef P
207
208 /**
209 * Multiply a matrix by an array of floats with known properties.
210 *
211 * \param mat pointer to a GLmatrix structure containing the left multiplication
212 * matrix, and that will receive the product result.
213 * \param m right multiplication matrix array.
214 * \param flags flags of the matrix \p m.
215 *
216 * Joins both flags and marks the type and inverse as dirty. Calls matmul34()
217 * if both matrices are 3D, or matmul4() otherwise.
218 */
219 static void matrix_multf( GLmatrix *mat, const GLfloat *m, GLuint flags )
220 {
221 mat->flags |= (flags | MAT_DIRTY_TYPE | MAT_DIRTY_INVERSE);
222
223 if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D))
224 matmul34( mat->m, mat->m, m );
225 else
226 matmul4( mat->m, mat->m, m );
227 }
228
229 /**
230 * Matrix multiplication.
231 *
232 * \param dest destination matrix.
233 * \param a left matrix.
234 * \param b right matrix.
235 *
236 * Joins both flags and marks the type and inverse as dirty. Calls matmul34()
237 * if both matrices are 3D, or matmul4() otherwise.
238 */
239 void
240 _math_matrix_mul_matrix( GLmatrix *dest, const GLmatrix *a, const GLmatrix *b )
241 {
242 dest->flags = (a->flags |
243 b->flags |
244 MAT_DIRTY_TYPE |
245 MAT_DIRTY_INVERSE);
246
247 if (TEST_MAT_FLAGS(dest, MAT_FLAGS_3D))
248 matmul34( dest->m, a->m, b->m );
249 else
250 matmul4( dest->m, a->m, b->m );
251 }
252
253 /**
254 * Matrix multiplication.
255 *
256 * \param dest left and destination matrix.
257 * \param m right matrix array.
258 *
259 * Marks the matrix flags with general flag, and type and inverse dirty flags.
260 * Calls matmul4() for the multiplication.
261 */
262 void
263 _math_matrix_mul_floats( GLmatrix *dest, const GLfloat *m )
264 {
265 dest->flags |= (MAT_FLAG_GENERAL |
266 MAT_DIRTY_TYPE |
267 MAT_DIRTY_INVERSE |
268 MAT_DIRTY_FLAGS);
269
270 matmul4( dest->m, dest->m, m );
271 }
272
273 /*@}*/
274
275
276 /**********************************************************************/
277 /** \name Matrix output */
278 /*@{*/
279
280 /**
281 * Print a matrix array.
282 *
283 * \param m matrix array.
284 *
285 * Called by _math_matrix_print() to print a matrix or its inverse.
286 */
287 static void print_matrix_floats( const GLfloat m[16] )
288 {
289 int i;
290 for (i=0;i<4;i++) {
291 _mesa_debug(NULL,"\t%f %f %f %f\n", m[i], m[4+i], m[8+i], m[12+i] );
292 }
293 }
294
295 /**
296 * Dumps the contents of a GLmatrix structure.
297 *
298 * \param m pointer to the GLmatrix structure.
299 */
300 void
301 _math_matrix_print( const GLmatrix *m )
302 {
303 GLfloat prod[16];
304
305 _mesa_debug(NULL, "Matrix type: %s, flags: %x\n", types[m->type], m->flags);
306 print_matrix_floats(m->m);
307 _mesa_debug(NULL, "Inverse: \n");
308 print_matrix_floats(m->inv);
309 matmul4(prod, m->m, m->inv);
310 _mesa_debug(NULL, "Mat * Inverse:\n");
311 print_matrix_floats(prod);
312 }
313
314 /*@}*/
315
316
317 /**
318 * References an element of 4x4 matrix.
319 *
320 * \param m matrix array.
321 * \param c column of the desired element.
322 * \param r row of the desired element.
323 *
324 * \return value of the desired element.
325 *
326 * Calculate the linear storage index of the element and references it.
327 */
328 #define MAT(m,r,c) (m)[(c)*4+(r)]
329
330
331 /**********************************************************************/
332 /** \name Matrix inversion */
333 /*@{*/
334
335 /**
336 * Swaps the values of two floating point variables.
337 *
338 * Used by invert_matrix_general() to swap the row pointers.
339 */
340 #define SWAP_ROWS(a, b) { GLfloat *_tmp = a; (a)=(b); (b)=_tmp; }
341
342 /**
343 * Compute inverse of 4x4 transformation matrix.
344 *
345 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
346 * stored in the GLmatrix::inv attribute.
347 *
348 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
349 *
350 * \author
351 * Code contributed by Jacques Leroy jle@star.be
352 *
353 * Calculates the inverse matrix by performing the gaussian matrix reduction
354 * with partial pivoting followed by back/substitution with the loops manually
355 * unrolled.
356 */
357 static GLboolean invert_matrix_general( GLmatrix *mat )
358 {
359 const GLfloat *m = mat->m;
360 GLfloat *out = mat->inv;
361 GLfloat wtmp[4][8];
362 GLfloat m0, m1, m2, m3, s;
363 GLfloat *r0, *r1, *r2, *r3;
364
365 r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3];
366
367 r0[0] = MAT(m,0,0), r0[1] = MAT(m,0,1),
368 r0[2] = MAT(m,0,2), r0[3] = MAT(m,0,3),
369 r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0,
370
371 r1[0] = MAT(m,1,0), r1[1] = MAT(m,1,1),
372 r1[2] = MAT(m,1,2), r1[3] = MAT(m,1,3),
373 r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0,
374
375 r2[0] = MAT(m,2,0), r2[1] = MAT(m,2,1),
376 r2[2] = MAT(m,2,2), r2[3] = MAT(m,2,3),
377 r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0,
378
379 r3[0] = MAT(m,3,0), r3[1] = MAT(m,3,1),
380 r3[2] = MAT(m,3,2), r3[3] = MAT(m,3,3),
381 r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0;
382
383 /* choose pivot - or die */
384 if (fabsf(r3[0])>fabsf(r2[0])) SWAP_ROWS(r3, r2);
385 if (fabsf(r2[0])>fabsf(r1[0])) SWAP_ROWS(r2, r1);
386 if (fabsf(r1[0])>fabsf(r0[0])) SWAP_ROWS(r1, r0);
387 if (0.0F == r0[0]) return GL_FALSE;
388
389 /* eliminate first variable */
390 m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0];
391 s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s;
392 s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s;
393 s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s;
394 s = r0[4];
395 if (s != 0.0F) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; }
396 s = r0[5];
397 if (s != 0.0F) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; }
398 s = r0[6];
399 if (s != 0.0F) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; }
400 s = r0[7];
401 if (s != 0.0F) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; }
402
403 /* choose pivot - or die */
404 if (fabsf(r3[1])>fabsf(r2[1])) SWAP_ROWS(r3, r2);
405 if (fabsf(r2[1])>fabsf(r1[1])) SWAP_ROWS(r2, r1);
406 if (0.0F == r1[1]) return GL_FALSE;
407
408 /* eliminate second variable */
409 m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1];
410 r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2];
411 r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3];
412 s = r1[4]; if (0.0F != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; }
413 s = r1[5]; if (0.0F != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; }
414 s = r1[6]; if (0.0F != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; }
415 s = r1[7]; if (0.0F != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; }
416
417 /* choose pivot - or die */
418 if (fabsf(r3[2])>fabsf(r2[2])) SWAP_ROWS(r3, r2);
419 if (0.0F == r2[2]) return GL_FALSE;
420
421 /* eliminate third variable */
422 m3 = r3[2]/r2[2];
423 r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4],
424 r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6],
425 r3[7] -= m3 * r2[7];
426
427 /* last check */
428 if (0.0F == r3[3]) return GL_FALSE;
429
430 s = 1.0F/r3[3]; /* now back substitute row 3 */
431 r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s;
432
433 m2 = r2[3]; /* now back substitute row 2 */
434 s = 1.0F/r2[2];
435 r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
436 r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2);
437 m1 = r1[3];
438 r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1,
439 r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1;
440 m0 = r0[3];
441 r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0,
442 r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0;
443
444 m1 = r1[2]; /* now back substitute row 1 */
445 s = 1.0F/r1[1];
446 r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
447 r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1);
448 m0 = r0[2];
449 r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0,
450 r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0;
451
452 m0 = r0[1]; /* now back substitute row 0 */
453 s = 1.0F/r0[0];
454 r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
455 r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0);
456
457 MAT(out,0,0) = r0[4]; MAT(out,0,1) = r0[5],
458 MAT(out,0,2) = r0[6]; MAT(out,0,3) = r0[7],
459 MAT(out,1,0) = r1[4]; MAT(out,1,1) = r1[5],
460 MAT(out,1,2) = r1[6]; MAT(out,1,3) = r1[7],
461 MAT(out,2,0) = r2[4]; MAT(out,2,1) = r2[5],
462 MAT(out,2,2) = r2[6]; MAT(out,2,3) = r2[7],
463 MAT(out,3,0) = r3[4]; MAT(out,3,1) = r3[5],
464 MAT(out,3,2) = r3[6]; MAT(out,3,3) = r3[7];
465
466 return GL_TRUE;
467 }
468 #undef SWAP_ROWS
469
470 /**
471 * Compute inverse of a general 3d transformation matrix.
472 *
473 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
474 * stored in the GLmatrix::inv attribute.
475 *
476 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
477 *
478 * \author Adapted from graphics gems II.
479 *
480 * Calculates the inverse of the upper left by first calculating its
481 * determinant and multiplying it to the symmetric adjust matrix of each
482 * element. Finally deals with the translation part by transforming the
483 * original translation vector using by the calculated submatrix inverse.
484 */
485 static GLboolean invert_matrix_3d_general( GLmatrix *mat )
486 {
487 const GLfloat *in = mat->m;
488 GLfloat *out = mat->inv;
489 GLfloat pos, neg, t;
490 GLfloat det;
491
492 /* Calculate the determinant of upper left 3x3 submatrix and
493 * determine if the matrix is singular.
494 */
495 pos = neg = 0.0;
496 t = MAT(in,0,0) * MAT(in,1,1) * MAT(in,2,2);
497 if (t >= 0.0F) pos += t; else neg += t;
498
499 t = MAT(in,1,0) * MAT(in,2,1) * MAT(in,0,2);
500 if (t >= 0.0F) pos += t; else neg += t;
501
502 t = MAT(in,2,0) * MAT(in,0,1) * MAT(in,1,2);
503 if (t >= 0.0F) pos += t; else neg += t;
504
505 t = -MAT(in,2,0) * MAT(in,1,1) * MAT(in,0,2);
506 if (t >= 0.0F) pos += t; else neg += t;
507
508 t = -MAT(in,1,0) * MAT(in,0,1) * MAT(in,2,2);
509 if (t >= 0.0F) pos += t; else neg += t;
510
511 t = -MAT(in,0,0) * MAT(in,2,1) * MAT(in,1,2);
512 if (t >= 0.0F) pos += t; else neg += t;
513
514 det = pos + neg;
515
516 if (fabsf(det) < 1e-25F)
517 return GL_FALSE;
518
519 det = 1.0F / det;
520 MAT(out,0,0) = ( (MAT(in,1,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,1,2) )*det);
521 MAT(out,0,1) = (- (MAT(in,0,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,0,2) )*det);
522 MAT(out,0,2) = ( (MAT(in,0,1)*MAT(in,1,2) - MAT(in,1,1)*MAT(in,0,2) )*det);
523 MAT(out,1,0) = (- (MAT(in,1,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,1,2) )*det);
524 MAT(out,1,1) = ( (MAT(in,0,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,0,2) )*det);
525 MAT(out,1,2) = (- (MAT(in,0,0)*MAT(in,1,2) - MAT(in,1,0)*MAT(in,0,2) )*det);
526 MAT(out,2,0) = ( (MAT(in,1,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,1,1) )*det);
527 MAT(out,2,1) = (- (MAT(in,0,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,0,1) )*det);
528 MAT(out,2,2) = ( (MAT(in,0,0)*MAT(in,1,1) - MAT(in,1,0)*MAT(in,0,1) )*det);
529
530 /* Do the translation part */
531 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
532 MAT(in,1,3) * MAT(out,0,1) +
533 MAT(in,2,3) * MAT(out,0,2) );
534 MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
535 MAT(in,1,3) * MAT(out,1,1) +
536 MAT(in,2,3) * MAT(out,1,2) );
537 MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
538 MAT(in,1,3) * MAT(out,2,1) +
539 MAT(in,2,3) * MAT(out,2,2) );
540
541 return GL_TRUE;
542 }
543
544 /**
545 * Compute inverse of a 3d transformation matrix.
546 *
547 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
548 * stored in the GLmatrix::inv attribute.
549 *
550 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
551 *
552 * If the matrix is not an angle preserving matrix then calls
553 * invert_matrix_3d_general for the actual calculation. Otherwise calculates
554 * the inverse matrix analyzing and inverting each of the scaling, rotation and
555 * translation parts.
556 */
557 static GLboolean invert_matrix_3d( GLmatrix *mat )
558 {
559 const GLfloat *in = mat->m;
560 GLfloat *out = mat->inv;
561
562 if (!TEST_MAT_FLAGS(mat, MAT_FLAGS_ANGLE_PRESERVING)) {
563 return invert_matrix_3d_general( mat );
564 }
565
566 if (mat->flags & MAT_FLAG_UNIFORM_SCALE) {
567 GLfloat scale = (MAT(in,0,0) * MAT(in,0,0) +
568 MAT(in,0,1) * MAT(in,0,1) +
569 MAT(in,0,2) * MAT(in,0,2));
570
571 if (scale == 0.0F)
572 return GL_FALSE;
573
574 scale = 1.0F / scale;
575
576 /* Transpose and scale the 3 by 3 upper-left submatrix. */
577 MAT(out,0,0) = scale * MAT(in,0,0);
578 MAT(out,1,0) = scale * MAT(in,0,1);
579 MAT(out,2,0) = scale * MAT(in,0,2);
580 MAT(out,0,1) = scale * MAT(in,1,0);
581 MAT(out,1,1) = scale * MAT(in,1,1);
582 MAT(out,2,1) = scale * MAT(in,1,2);
583 MAT(out,0,2) = scale * MAT(in,2,0);
584 MAT(out,1,2) = scale * MAT(in,2,1);
585 MAT(out,2,2) = scale * MAT(in,2,2);
586 }
587 else if (mat->flags & MAT_FLAG_ROTATION) {
588 /* Transpose the 3 by 3 upper-left submatrix. */
589 MAT(out,0,0) = MAT(in,0,0);
590 MAT(out,1,0) = MAT(in,0,1);
591 MAT(out,2,0) = MAT(in,0,2);
592 MAT(out,0,1) = MAT(in,1,0);
593 MAT(out,1,1) = MAT(in,1,1);
594 MAT(out,2,1) = MAT(in,1,2);
595 MAT(out,0,2) = MAT(in,2,0);
596 MAT(out,1,2) = MAT(in,2,1);
597 MAT(out,2,2) = MAT(in,2,2);
598 }
599 else {
600 /* pure translation */
601 memcpy( out, Identity, sizeof(Identity) );
602 MAT(out,0,3) = - MAT(in,0,3);
603 MAT(out,1,3) = - MAT(in,1,3);
604 MAT(out,2,3) = - MAT(in,2,3);
605 return GL_TRUE;
606 }
607
608 if (mat->flags & MAT_FLAG_TRANSLATION) {
609 /* Do the translation part */
610 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
611 MAT(in,1,3) * MAT(out,0,1) +
612 MAT(in,2,3) * MAT(out,0,2) );
613 MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
614 MAT(in,1,3) * MAT(out,1,1) +
615 MAT(in,2,3) * MAT(out,1,2) );
616 MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
617 MAT(in,1,3) * MAT(out,2,1) +
618 MAT(in,2,3) * MAT(out,2,2) );
619 }
620 else {
621 MAT(out,0,3) = MAT(out,1,3) = MAT(out,2,3) = 0.0;
622 }
623
624 return GL_TRUE;
625 }
626
627 /**
628 * Compute inverse of an identity transformation matrix.
629 *
630 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
631 * stored in the GLmatrix::inv attribute.
632 *
633 * \return always GL_TRUE.
634 *
635 * Simply copies Identity into GLmatrix::inv.
636 */
637 static GLboolean invert_matrix_identity( GLmatrix *mat )
638 {
639 memcpy( mat->inv, Identity, sizeof(Identity) );
640 return GL_TRUE;
641 }
642
643 /**
644 * Compute inverse of a no-rotation 3d transformation matrix.
645 *
646 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
647 * stored in the GLmatrix::inv attribute.
648 *
649 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
650 *
651 * Calculates the
652 */
653 static GLboolean invert_matrix_3d_no_rot( GLmatrix *mat )
654 {
655 const GLfloat *in = mat->m;
656 GLfloat *out = mat->inv;
657
658 if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0 || MAT(in,2,2) == 0 )
659 return GL_FALSE;
660
661 memcpy( out, Identity, sizeof(Identity) );
662 MAT(out,0,0) = 1.0F / MAT(in,0,0);
663 MAT(out,1,1) = 1.0F / MAT(in,1,1);
664 MAT(out,2,2) = 1.0F / MAT(in,2,2);
665
666 if (mat->flags & MAT_FLAG_TRANSLATION) {
667 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
668 MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
669 MAT(out,2,3) = - (MAT(in,2,3) * MAT(out,2,2));
670 }
671
672 return GL_TRUE;
673 }
674
675 /**
676 * Compute inverse of a no-rotation 2d transformation matrix.
677 *
678 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
679 * stored in the GLmatrix::inv attribute.
680 *
681 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
682 *
683 * Calculates the inverse matrix by applying the inverse scaling and
684 * translation to the identity matrix.
685 */
686 static GLboolean invert_matrix_2d_no_rot( GLmatrix *mat )
687 {
688 const GLfloat *in = mat->m;
689 GLfloat *out = mat->inv;
690
691 if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0)
692 return GL_FALSE;
693
694 memcpy( out, Identity, sizeof(Identity) );
695 MAT(out,0,0) = 1.0F / MAT(in,0,0);
696 MAT(out,1,1) = 1.0F / MAT(in,1,1);
697
698 if (mat->flags & MAT_FLAG_TRANSLATION) {
699 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
700 MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
701 }
702
703 return GL_TRUE;
704 }
705
706 #if 0
707 /* broken */
708 static GLboolean invert_matrix_perspective( GLmatrix *mat )
709 {
710 const GLfloat *in = mat->m;
711 GLfloat *out = mat->inv;
712
713 if (MAT(in,2,3) == 0)
714 return GL_FALSE;
715
716 memcpy( out, Identity, sizeof(Identity) );
717
718 MAT(out,0,0) = 1.0F / MAT(in,0,0);
719 MAT(out,1,1) = 1.0F / MAT(in,1,1);
720
721 MAT(out,0,3) = MAT(in,0,2);
722 MAT(out,1,3) = MAT(in,1,2);
723
724 MAT(out,2,2) = 0;
725 MAT(out,2,3) = -1;
726
727 MAT(out,3,2) = 1.0F / MAT(in,2,3);
728 MAT(out,3,3) = MAT(in,2,2) * MAT(out,3,2);
729
730 return GL_TRUE;
731 }
732 #endif
733
734 /**
735 * Matrix inversion function pointer type.
736 */
737 typedef GLboolean (*inv_mat_func)( GLmatrix *mat );
738
739 /**
740 * Table of the matrix inversion functions according to the matrix type.
741 */
742 static inv_mat_func inv_mat_tab[7] = {
743 invert_matrix_general,
744 invert_matrix_identity,
745 invert_matrix_3d_no_rot,
746 #if 0
747 /* Don't use this function for now - it fails when the projection matrix
748 * is premultiplied by a translation (ala Chromium's tilesort SPU).
749 */
750 invert_matrix_perspective,
751 #else
752 invert_matrix_general,
753 #endif
754 invert_matrix_3d, /* lazy! */
755 invert_matrix_2d_no_rot,
756 invert_matrix_3d
757 };
758
759 /**
760 * Compute inverse of a transformation matrix.
761 *
762 * \param mat pointer to a GLmatrix structure. The matrix inverse will be
763 * stored in the GLmatrix::inv attribute.
764 *
765 * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix).
766 *
767 * Calls the matrix inversion function in inv_mat_tab corresponding to the
768 * given matrix type. In case of failure, updates the MAT_FLAG_SINGULAR flag,
769 * and copies the identity matrix into GLmatrix::inv.
770 */
771 static GLboolean matrix_invert( GLmatrix *mat )
772 {
773 if (inv_mat_tab[mat->type](mat)) {
774 mat->flags &= ~MAT_FLAG_SINGULAR;
775 return GL_TRUE;
776 } else {
777 mat->flags |= MAT_FLAG_SINGULAR;
778 memcpy( mat->inv, Identity, sizeof(Identity) );
779 return GL_FALSE;
780 }
781 }
782
783 /*@}*/
784
785
786 /**********************************************************************/
787 /** \name Matrix generation */
788 /*@{*/
789
790 /**
791 * Generate a 4x4 transformation matrix from glRotate parameters, and
792 * post-multiply the input matrix by it.
793 *
794 * \author
795 * This function was contributed by Erich Boleyn (erich@uruk.org).
796 * Optimizations contributed by Rudolf Opalla (rudi@khm.de).
797 */
798 void
799 _math_matrix_rotate( GLmatrix *mat,
800 GLfloat angle, GLfloat x, GLfloat y, GLfloat z )
801 {
802 GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c, s, c;
803 GLfloat m[16];
804 GLboolean optimized;
805
806 s = sinf( angle * M_PI / 180.0 );
807 c = cosf( angle * M_PI / 180.0 );
808
809 memcpy(m, Identity, sizeof(Identity));
810 optimized = GL_FALSE;
811
812 #define M(row,col) m[col*4+row]
813
814 if (x == 0.0F) {
815 if (y == 0.0F) {
816 if (z != 0.0F) {
817 optimized = GL_TRUE;
818 /* rotate only around z-axis */
819 M(0,0) = c;
820 M(1,1) = c;
821 if (z < 0.0F) {
822 M(0,1) = s;
823 M(1,0) = -s;
824 }
825 else {
826 M(0,1) = -s;
827 M(1,0) = s;
828 }
829 }
830 }
831 else if (z == 0.0F) {
832 optimized = GL_TRUE;
833 /* rotate only around y-axis */
834 M(0,0) = c;
835 M(2,2) = c;
836 if (y < 0.0F) {
837 M(0,2) = -s;
838 M(2,0) = s;
839 }
840 else {
841 M(0,2) = s;
842 M(2,0) = -s;
843 }
844 }
845 }
846 else if (y == 0.0F) {
847 if (z == 0.0F) {
848 optimized = GL_TRUE;
849 /* rotate only around x-axis */
850 M(1,1) = c;
851 M(2,2) = c;
852 if (x < 0.0F) {
853 M(1,2) = s;
854 M(2,1) = -s;
855 }
856 else {
857 M(1,2) = -s;
858 M(2,1) = s;
859 }
860 }
861 }
862
863 if (!optimized) {
864 const GLfloat mag = sqrtf(x * x + y * y + z * z);
865
866 if (mag <= 1.0e-4F) {
867 /* no rotation, leave mat as-is */
868 return;
869 }
870
871 x /= mag;
872 y /= mag;
873 z /= mag;
874
875
876 /*
877 * Arbitrary axis rotation matrix.
878 *
879 * This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied
880 * like so: Rz * Ry * T * Ry' * Rz'. T is the final rotation
881 * (which is about the X-axis), and the two composite transforms
882 * Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary
883 * from the arbitrary axis to the X-axis then back. They are
884 * all elementary rotations.
885 *
886 * Rz' is a rotation about the Z-axis, to bring the axis vector
887 * into the x-z plane. Then Ry' is applied, rotating about the
888 * Y-axis to bring the axis vector parallel with the X-axis. The
889 * rotation about the X-axis is then performed. Ry and Rz are
890 * simply the respective inverse transforms to bring the arbitrary
891 * axis back to its original orientation. The first transforms
892 * Rz' and Ry' are considered inverses, since the data from the
893 * arbitrary axis gives you info on how to get to it, not how
894 * to get away from it, and an inverse must be applied.
895 *
896 * The basic calculation used is to recognize that the arbitrary
897 * axis vector (x, y, z), since it is of unit length, actually
898 * represents the sines and cosines of the angles to rotate the
899 * X-axis to the same orientation, with theta being the angle about
900 * Z and phi the angle about Y (in the order described above)
901 * as follows:
902 *
903 * cos ( theta ) = x / sqrt ( 1 - z^2 )
904 * sin ( theta ) = y / sqrt ( 1 - z^2 )
905 *
906 * cos ( phi ) = sqrt ( 1 - z^2 )
907 * sin ( phi ) = z
908 *
909 * Note that cos ( phi ) can further be inserted to the above
910 * formulas:
911 *
912 * cos ( theta ) = x / cos ( phi )
913 * sin ( theta ) = y / sin ( phi )
914 *
915 * ...etc. Because of those relations and the standard trigonometric
916 * relations, it is pssible to reduce the transforms down to what
917 * is used below. It may be that any primary axis chosen will give the
918 * same results (modulo a sign convention) using thie method.
919 *
920 * Particularly nice is to notice that all divisions that might
921 * have caused trouble when parallel to certain planes or
922 * axis go away with care paid to reducing the expressions.
923 * After checking, it does perform correctly under all cases, since
924 * in all the cases of division where the denominator would have
925 * been zero, the numerator would have been zero as well, giving
926 * the expected result.
927 */
928
929 xx = x * x;
930 yy = y * y;
931 zz = z * z;
932 xy = x * y;
933 yz = y * z;
934 zx = z * x;
935 xs = x * s;
936 ys = y * s;
937 zs = z * s;
938 one_c = 1.0F - c;
939
940 /* We already hold the identity-matrix so we can skip some statements */
941 M(0,0) = (one_c * xx) + c;
942 M(0,1) = (one_c * xy) - zs;
943 M(0,2) = (one_c * zx) + ys;
944 /* M(0,3) = 0.0F; */
945
946 M(1,0) = (one_c * xy) + zs;
947 M(1,1) = (one_c * yy) + c;
948 M(1,2) = (one_c * yz) - xs;
949 /* M(1,3) = 0.0F; */
950
951 M(2,0) = (one_c * zx) - ys;
952 M(2,1) = (one_c * yz) + xs;
953 M(2,2) = (one_c * zz) + c;
954 /* M(2,3) = 0.0F; */
955
956 /*
957 M(3,0) = 0.0F;
958 M(3,1) = 0.0F;
959 M(3,2) = 0.0F;
960 M(3,3) = 1.0F;
961 */
962 }
963 #undef M
964
965 matrix_multf( mat, m, MAT_FLAG_ROTATION );
966 }
967
968 /**
969 * Apply a perspective projection matrix.
970 *
971 * \param mat matrix to apply the projection.
972 * \param left left clipping plane coordinate.
973 * \param right right clipping plane coordinate.
974 * \param bottom bottom clipping plane coordinate.
975 * \param top top clipping plane coordinate.
976 * \param nearval distance to the near clipping plane.
977 * \param farval distance to the far clipping plane.
978 *
979 * Creates the projection matrix and multiplies it with \p mat, marking the
980 * MAT_FLAG_PERSPECTIVE flag.
981 */
982 void
983 _math_matrix_frustum( GLmatrix *mat,
984 GLfloat left, GLfloat right,
985 GLfloat bottom, GLfloat top,
986 GLfloat nearval, GLfloat farval )
987 {
988 GLfloat x, y, a, b, c, d;
989 GLfloat m[16];
990
991 x = (2.0F*nearval) / (right-left);
992 y = (2.0F*nearval) / (top-bottom);
993 a = (right+left) / (right-left);
994 b = (top+bottom) / (top-bottom);
995 c = -(farval+nearval) / ( farval-nearval);
996 d = -(2.0F*farval*nearval) / (farval-nearval); /* error? */
997
998 #define M(row,col) m[col*4+row]
999 M(0,0) = x; M(0,1) = 0.0F; M(0,2) = a; M(0,3) = 0.0F;
1000 M(1,0) = 0.0F; M(1,1) = y; M(1,2) = b; M(1,3) = 0.0F;
1001 M(2,0) = 0.0F; M(2,1) = 0.0F; M(2,2) = c; M(2,3) = d;
1002 M(3,0) = 0.0F; M(3,1) = 0.0F; M(3,2) = -1.0F; M(3,3) = 0.0F;
1003 #undef M
1004
1005 matrix_multf( mat, m, MAT_FLAG_PERSPECTIVE );
1006 }
1007
1008 /**
1009 * Apply an orthographic projection matrix.
1010 *
1011 * \param mat matrix to apply the projection.
1012 * \param left left clipping plane coordinate.
1013 * \param right right clipping plane coordinate.
1014 * \param bottom bottom clipping plane coordinate.
1015 * \param top top clipping plane coordinate.
1016 * \param nearval distance to the near clipping plane.
1017 * \param farval distance to the far clipping plane.
1018 *
1019 * Creates the projection matrix and multiplies it with \p mat, marking the
1020 * MAT_FLAG_GENERAL_SCALE and MAT_FLAG_TRANSLATION flags.
1021 */
1022 void
1023 _math_matrix_ortho( GLmatrix *mat,
1024 GLfloat left, GLfloat right,
1025 GLfloat bottom, GLfloat top,
1026 GLfloat nearval, GLfloat farval )
1027 {
1028 GLfloat m[16];
1029
1030 #define M(row,col) m[col*4+row]
1031 M(0,0) = 2.0F / (right-left);
1032 M(0,1) = 0.0F;
1033 M(0,2) = 0.0F;
1034 M(0,3) = -(right+left) / (right-left);
1035
1036 M(1,0) = 0.0F;
1037 M(1,1) = 2.0F / (top-bottom);
1038 M(1,2) = 0.0F;
1039 M(1,3) = -(top+bottom) / (top-bottom);
1040
1041 M(2,0) = 0.0F;
1042 M(2,1) = 0.0F;
1043 M(2,2) = -2.0F / (farval-nearval);
1044 M(2,3) = -(farval+nearval) / (farval-nearval);
1045
1046 M(3,0) = 0.0F;
1047 M(3,1) = 0.0F;
1048 M(3,2) = 0.0F;
1049 M(3,3) = 1.0F;
1050 #undef M
1051
1052 matrix_multf( mat, m, (MAT_FLAG_GENERAL_SCALE|MAT_FLAG_TRANSLATION));
1053 }
1054
1055 /**
1056 * Multiply a matrix with a general scaling matrix.
1057 *
1058 * \param mat matrix.
1059 * \param x x axis scale factor.
1060 * \param y y axis scale factor.
1061 * \param z z axis scale factor.
1062 *
1063 * Multiplies in-place the elements of \p mat by the scale factors. Checks if
1064 * the scales factors are roughly the same, marking the MAT_FLAG_UNIFORM_SCALE
1065 * flag, or MAT_FLAG_GENERAL_SCALE. Marks the MAT_DIRTY_TYPE and
1066 * MAT_DIRTY_INVERSE dirty flags.
1067 */
1068 void
1069 _math_matrix_scale( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
1070 {
1071 GLfloat *m = mat->m;
1072 m[0] *= x; m[4] *= y; m[8] *= z;
1073 m[1] *= x; m[5] *= y; m[9] *= z;
1074 m[2] *= x; m[6] *= y; m[10] *= z;
1075 m[3] *= x; m[7] *= y; m[11] *= z;
1076
1077 if (fabsf(x - y) < 1e-8F && fabsf(x - z) < 1e-8F)
1078 mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1079 else
1080 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1081
1082 mat->flags |= (MAT_DIRTY_TYPE |
1083 MAT_DIRTY_INVERSE);
1084 }
1085
1086 /**
1087 * Multiply a matrix with a translation matrix.
1088 *
1089 * \param mat matrix.
1090 * \param x translation vector x coordinate.
1091 * \param y translation vector y coordinate.
1092 * \param z translation vector z coordinate.
1093 *
1094 * Adds the translation coordinates to the elements of \p mat in-place. Marks
1095 * the MAT_FLAG_TRANSLATION flag, and the MAT_DIRTY_TYPE and MAT_DIRTY_INVERSE
1096 * dirty flags.
1097 */
1098 void
1099 _math_matrix_translate( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
1100 {
1101 GLfloat *m = mat->m;
1102 m[12] = m[0] * x + m[4] * y + m[8] * z + m[12];
1103 m[13] = m[1] * x + m[5] * y + m[9] * z + m[13];
1104 m[14] = m[2] * x + m[6] * y + m[10] * z + m[14];
1105 m[15] = m[3] * x + m[7] * y + m[11] * z + m[15];
1106
1107 mat->flags |= (MAT_FLAG_TRANSLATION |
1108 MAT_DIRTY_TYPE |
1109 MAT_DIRTY_INVERSE);
1110 }
1111
1112
1113 /**
1114 * Set matrix to do viewport and depthrange mapping.
1115 * Transforms Normalized Device Coords to window/Z values.
1116 */
1117 void
1118 _math_matrix_viewport(GLmatrix *m, const float scale[3],
1119 const float translate[3], double depthMax)
1120 {
1121 m->m[MAT_SX] = scale[0];
1122 m->m[MAT_TX] = translate[0];
1123 m->m[MAT_SY] = scale[1];
1124 m->m[MAT_TY] = translate[1];
1125 m->m[MAT_SZ] = depthMax*scale[2];
1126 m->m[MAT_TZ] = depthMax*translate[2];
1127 m->flags = MAT_FLAG_GENERAL_SCALE | MAT_FLAG_TRANSLATION;
1128 m->type = MATRIX_3D_NO_ROT;
1129 }
1130
1131
1132 /**
1133 * Set a matrix to the identity matrix.
1134 *
1135 * \param mat matrix.
1136 *
1137 * Copies ::Identity into \p GLmatrix::m, and into GLmatrix::inv if not NULL.
1138 * Sets the matrix type to identity, and clear the dirty flags.
1139 */
1140 void
1141 _math_matrix_set_identity( GLmatrix *mat )
1142 {
1143 STATIC_ASSERT(MATRIX_M == offsetof(GLmatrix, m));
1144 STATIC_ASSERT(MATRIX_INV == offsetof(GLmatrix, inv));
1145
1146 memcpy( mat->m, Identity, sizeof(Identity) );
1147 memcpy( mat->inv, Identity, sizeof(Identity) );
1148
1149 mat->type = MATRIX_IDENTITY;
1150 mat->flags &= ~(MAT_DIRTY_FLAGS|
1151 MAT_DIRTY_TYPE|
1152 MAT_DIRTY_INVERSE);
1153 }
1154
1155 /*@}*/
1156
1157
1158 /**********************************************************************/
1159 /** \name Matrix analysis */
1160 /*@{*/
1161
1162 #define ZERO(x) (1<<x)
1163 #define ONE(x) (1<<(x+16))
1164
1165 #define MASK_NO_TRX (ZERO(12) | ZERO(13) | ZERO(14))
1166 #define MASK_NO_2D_SCALE ( ONE(0) | ONE(5))
1167
1168 #define MASK_IDENTITY ( ONE(0) | ZERO(4) | ZERO(8) | ZERO(12) |\
1169 ZERO(1) | ONE(5) | ZERO(9) | ZERO(13) |\
1170 ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\
1171 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
1172
1173 #define MASK_2D_NO_ROT ( ZERO(4) | ZERO(8) | \
1174 ZERO(1) | ZERO(9) | \
1175 ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\
1176 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
1177
1178 #define MASK_2D ( ZERO(8) | \
1179 ZERO(9) | \
1180 ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\
1181 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
1182
1183
1184 #define MASK_3D_NO_ROT ( ZERO(4) | ZERO(8) | \
1185 ZERO(1) | ZERO(9) | \
1186 ZERO(2) | ZERO(6) | \
1187 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
1188
1189 #define MASK_3D ( \
1190 \
1191 \
1192 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
1193
1194
1195 #define MASK_PERSPECTIVE ( ZERO(4) | ZERO(12) |\
1196 ZERO(1) | ZERO(13) |\
1197 ZERO(2) | ZERO(6) | \
1198 ZERO(3) | ZERO(7) | ZERO(15) )
1199
1200 #define SQ(x) ((x)*(x))
1201
1202 /**
1203 * Determine type and flags from scratch.
1204 *
1205 * \param mat matrix.
1206 *
1207 * This is expensive enough to only want to do it once.
1208 */
1209 static void analyse_from_scratch( GLmatrix *mat )
1210 {
1211 const GLfloat *m = mat->m;
1212 GLuint mask = 0;
1213 GLuint i;
1214
1215 for (i = 0 ; i < 16 ; i++) {
1216 if (m[i] == 0.0F) mask |= (1<<i);
1217 }
1218
1219 if (m[0] == 1.0F) mask |= (1<<16);
1220 if (m[5] == 1.0F) mask |= (1<<21);
1221 if (m[10] == 1.0F) mask |= (1<<26);
1222 if (m[15] == 1.0F) mask |= (1<<31);
1223
1224 mat->flags &= ~MAT_FLAGS_GEOMETRY;
1225
1226 /* Check for translation - no-one really cares
1227 */
1228 if ((mask & MASK_NO_TRX) != MASK_NO_TRX)
1229 mat->flags |= MAT_FLAG_TRANSLATION;
1230
1231 /* Do the real work
1232 */
1233 if (mask == (GLuint) MASK_IDENTITY) {
1234 mat->type = MATRIX_IDENTITY;
1235 }
1236 else if ((mask & MASK_2D_NO_ROT) == (GLuint) MASK_2D_NO_ROT) {
1237 mat->type = MATRIX_2D_NO_ROT;
1238
1239 if ((mask & MASK_NO_2D_SCALE) != MASK_NO_2D_SCALE)
1240 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1241 }
1242 else if ((mask & MASK_2D) == (GLuint) MASK_2D) {
1243 GLfloat mm = DOT2(m, m);
1244 GLfloat m4m4 = DOT2(m+4,m+4);
1245 GLfloat mm4 = DOT2(m,m+4);
1246
1247 mat->type = MATRIX_2D;
1248
1249 /* Check for scale */
1250 if (SQ(mm-1) > SQ(1e-6F) ||
1251 SQ(m4m4-1) > SQ(1e-6F))
1252 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1253
1254 /* Check for rotation */
1255 if (SQ(mm4) > SQ(1e-6F))
1256 mat->flags |= MAT_FLAG_GENERAL_3D;
1257 else
1258 mat->flags |= MAT_FLAG_ROTATION;
1259
1260 }
1261 else if ((mask & MASK_3D_NO_ROT) == (GLuint) MASK_3D_NO_ROT) {
1262 mat->type = MATRIX_3D_NO_ROT;
1263
1264 /* Check for scale */
1265 if (SQ(m[0]-m[5]) < SQ(1e-6F) &&
1266 SQ(m[0]-m[10]) < SQ(1e-6F)) {
1267 if (SQ(m[0]-1.0F) > SQ(1e-6F)) {
1268 mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1269 }
1270 }
1271 else {
1272 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1273 }
1274 }
1275 else if ((mask & MASK_3D) == (GLuint) MASK_3D) {
1276 GLfloat c1 = DOT3(m,m);
1277 GLfloat c2 = DOT3(m+4,m+4);
1278 GLfloat c3 = DOT3(m+8,m+8);
1279 GLfloat d1 = DOT3(m, m+4);
1280 GLfloat cp[3];
1281
1282 mat->type = MATRIX_3D;
1283
1284 /* Check for scale */
1285 if (SQ(c1-c2) < SQ(1e-6F) && SQ(c1-c3) < SQ(1e-6F)) {
1286 if (SQ(c1-1.0F) > SQ(1e-6F))
1287 mat->flags |= MAT_FLAG_UNIFORM_SCALE;
1288 /* else no scale at all */
1289 }
1290 else {
1291 mat->flags |= MAT_FLAG_GENERAL_SCALE;
1292 }
1293
1294 /* Check for rotation */
1295 if (SQ(d1) < SQ(1e-6F)) {
1296 CROSS3( cp, m, m+4 );
1297 SUB_3V( cp, cp, (m+8) );
1298 if (LEN_SQUARED_3FV(cp) < SQ(1e-6F))
1299 mat->flags |= MAT_FLAG_ROTATION;
1300 else
1301 mat->flags |= MAT_FLAG_GENERAL_3D;
1302 }
1303 else {
1304 mat->flags |= MAT_FLAG_GENERAL_3D; /* shear, etc */
1305 }
1306 }
1307 else if ((mask & MASK_PERSPECTIVE) == MASK_PERSPECTIVE && m[11]==-1.0F) {
1308 mat->type = MATRIX_PERSPECTIVE;
1309 mat->flags |= MAT_FLAG_GENERAL;
1310 }
1311 else {
1312 mat->type = MATRIX_GENERAL;
1313 mat->flags |= MAT_FLAG_GENERAL;
1314 }
1315 }
1316
1317 /**
1318 * Analyze a matrix given that its flags are accurate.
1319 *
1320 * This is the more common operation, hopefully.
1321 */
1322 static void analyse_from_flags( GLmatrix *mat )
1323 {
1324 const GLfloat *m = mat->m;
1325
1326 if (TEST_MAT_FLAGS(mat, 0)) {
1327 mat->type = MATRIX_IDENTITY;
1328 }
1329 else if (TEST_MAT_FLAGS(mat, (MAT_FLAG_TRANSLATION |
1330 MAT_FLAG_UNIFORM_SCALE |
1331 MAT_FLAG_GENERAL_SCALE))) {
1332 if ( m[10]==1.0F && m[14]==0.0F ) {
1333 mat->type = MATRIX_2D_NO_ROT;
1334 }
1335 else {
1336 mat->type = MATRIX_3D_NO_ROT;
1337 }
1338 }
1339 else if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) {
1340 if ( m[ 8]==0.0F
1341 && m[ 9]==0.0F
1342 && m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F) {
1343 mat->type = MATRIX_2D;
1344 }
1345 else {
1346 mat->type = MATRIX_3D;
1347 }
1348 }
1349 else if ( m[4]==0.0F && m[12]==0.0F
1350 && m[1]==0.0F && m[13]==0.0F
1351 && m[2]==0.0F && m[6]==0.0F
1352 && m[3]==0.0F && m[7]==0.0F && m[11]==-1.0F && m[15]==0.0F) {
1353 mat->type = MATRIX_PERSPECTIVE;
1354 }
1355 else {
1356 mat->type = MATRIX_GENERAL;
1357 }
1358 }
1359
1360 /**
1361 * Analyze and update a matrix.
1362 *
1363 * \param mat matrix.
1364 *
1365 * If the matrix type is dirty then calls either analyse_from_scratch() or
1366 * analyse_from_flags() to determine its type, according to whether the flags
1367 * are dirty or not, respectively. If the matrix has an inverse and it's dirty
1368 * then calls matrix_invert(). Finally clears the dirty flags.
1369 */
1370 void
1371 _math_matrix_analyse( GLmatrix *mat )
1372 {
1373 if (mat->flags & MAT_DIRTY_TYPE) {
1374 if (mat->flags & MAT_DIRTY_FLAGS)
1375 analyse_from_scratch( mat );
1376 else
1377 analyse_from_flags( mat );
1378 }
1379
1380 if (mat->inv && (mat->flags & MAT_DIRTY_INVERSE)) {
1381 matrix_invert( mat );
1382 mat->flags &= ~MAT_DIRTY_INVERSE;
1383 }
1384
1385 mat->flags &= ~(MAT_DIRTY_FLAGS | MAT_DIRTY_TYPE);
1386 }
1387
1388 /*@}*/
1389
1390
1391 /**
1392 * Test if the given matrix preserves vector lengths.
1393 */
1394 GLboolean
1395 _math_matrix_is_length_preserving( const GLmatrix *m )
1396 {
1397 return TEST_MAT_FLAGS( m, MAT_FLAGS_LENGTH_PRESERVING);
1398 }
1399
1400
1401 /**
1402 * Test if the given matrix does any rotation.
1403 * (or perhaps if the upper-left 3x3 is non-identity)
1404 */
1405 GLboolean
1406 _math_matrix_has_rotation( const GLmatrix *m )
1407 {
1408 if (m->flags & (MAT_FLAG_GENERAL |
1409 MAT_FLAG_ROTATION |
1410 MAT_FLAG_GENERAL_3D |
1411 MAT_FLAG_PERSPECTIVE))
1412 return GL_TRUE;
1413 else
1414 return GL_FALSE;
1415 }
1416
1417
1418 GLboolean
1419 _math_matrix_is_general_scale( const GLmatrix *m )
1420 {
1421 return (m->flags & MAT_FLAG_GENERAL_SCALE) ? GL_TRUE : GL_FALSE;
1422 }
1423
1424
1425 GLboolean
1426 _math_matrix_is_dirty( const GLmatrix *m )
1427 {
1428 return (m->flags & MAT_DIRTY) ? GL_TRUE : GL_FALSE;
1429 }
1430
1431
1432 /**********************************************************************/
1433 /** \name Matrix setup */
1434 /*@{*/
1435
1436 /**
1437 * Copy a matrix.
1438 *
1439 * \param to destination matrix.
1440 * \param from source matrix.
1441 *
1442 * Copies all fields in GLmatrix, creating an inverse array if necessary.
1443 */
1444 void
1445 _math_matrix_copy( GLmatrix *to, const GLmatrix *from )
1446 {
1447 memcpy(to->m, from->m, 16 * sizeof(GLfloat));
1448 memcpy(to->inv, from->inv, 16 * sizeof(GLfloat));
1449 to->flags = from->flags;
1450 to->type = from->type;
1451 }
1452
1453 /**
1454 * Loads a matrix array into GLmatrix.
1455 *
1456 * \param m matrix array.
1457 * \param mat matrix.
1458 *
1459 * Copies \p m into GLmatrix::m and marks the MAT_FLAG_GENERAL and MAT_DIRTY
1460 * flags.
1461 */
1462 void
1463 _math_matrix_loadf( GLmatrix *mat, const GLfloat *m )
1464 {
1465 memcpy( mat->m, m, 16*sizeof(GLfloat) );
1466 mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY);
1467 }
1468
1469 /**
1470 * Matrix constructor.
1471 *
1472 * \param m matrix.
1473 *
1474 * Initialize the GLmatrix fields.
1475 */
1476 void
1477 _math_matrix_ctr( GLmatrix *m )
1478 {
1479 m->m = _mesa_align_malloc( 16 * sizeof(GLfloat), 16 );
1480 if (m->m)
1481 memcpy( m->m, Identity, sizeof(Identity) );
1482 m->inv = _mesa_align_malloc( 16 * sizeof(GLfloat), 16 );
1483 if (m->inv)
1484 memcpy( m->inv, Identity, sizeof(Identity) );
1485 m->type = MATRIX_IDENTITY;
1486 m->flags = 0;
1487 }
1488
1489 /**
1490 * Matrix destructor.
1491 *
1492 * \param m matrix.
1493 *
1494 * Frees the data in a GLmatrix.
1495 */
1496 void
1497 _math_matrix_dtr( GLmatrix *m )
1498 {
1499 _mesa_align_free( m->m );
1500 m->m = NULL;
1501
1502 _mesa_align_free( m->inv );
1503 m->inv = NULL;
1504 }
1505
1506 /*@}*/
1507
1508
1509 /**********************************************************************/
1510 /** \name Matrix transpose */
1511 /*@{*/
1512
1513 /**
1514 * Transpose a GLfloat matrix.
1515 *
1516 * \param to destination array.
1517 * \param from source array.
1518 */
1519 void
1520 _math_transposef( GLfloat to[16], const GLfloat from[16] )
1521 {
1522 to[0] = from[0];
1523 to[1] = from[4];
1524 to[2] = from[8];
1525 to[3] = from[12];
1526 to[4] = from[1];
1527 to[5] = from[5];
1528 to[6] = from[9];
1529 to[7] = from[13];
1530 to[8] = from[2];
1531 to[9] = from[6];
1532 to[10] = from[10];
1533 to[11] = from[14];
1534 to[12] = from[3];
1535 to[13] = from[7];
1536 to[14] = from[11];
1537 to[15] = from[15];
1538 }
1539
1540 /**
1541 * Transpose a GLdouble matrix.
1542 *
1543 * \param to destination array.
1544 * \param from source array.
1545 */
1546 void
1547 _math_transposed( GLdouble to[16], const GLdouble from[16] )
1548 {
1549 to[0] = from[0];
1550 to[1] = from[4];
1551 to[2] = from[8];
1552 to[3] = from[12];
1553 to[4] = from[1];
1554 to[5] = from[5];
1555 to[6] = from[9];
1556 to[7] = from[13];
1557 to[8] = from[2];
1558 to[9] = from[6];
1559 to[10] = from[10];
1560 to[11] = from[14];
1561 to[12] = from[3];
1562 to[13] = from[7];
1563 to[14] = from[11];
1564 to[15] = from[15];
1565 }
1566
1567 /**
1568 * Transpose a GLdouble matrix and convert to GLfloat.
1569 *
1570 * \param to destination array.
1571 * \param from source array.
1572 */
1573 void
1574 _math_transposefd( GLfloat to[16], const GLdouble from[16] )
1575 {
1576 to[0] = (GLfloat) from[0];
1577 to[1] = (GLfloat) from[4];
1578 to[2] = (GLfloat) from[8];
1579 to[3] = (GLfloat) from[12];
1580 to[4] = (GLfloat) from[1];
1581 to[5] = (GLfloat) from[5];
1582 to[6] = (GLfloat) from[9];
1583 to[7] = (GLfloat) from[13];
1584 to[8] = (GLfloat) from[2];
1585 to[9] = (GLfloat) from[6];
1586 to[10] = (GLfloat) from[10];
1587 to[11] = (GLfloat) from[14];
1588 to[12] = (GLfloat) from[3];
1589 to[13] = (GLfloat) from[7];
1590 to[14] = (GLfloat) from[11];
1591 to[15] = (GLfloat) from[15];
1592 }
1593
1594 /*@}*/
1595
1596
1597 /**
1598 * Transform a 4-element row vector (1x4 matrix) by a 4x4 matrix. This
1599 * function is used for transforming clipping plane equations and spotlight
1600 * directions.
1601 * Mathematically, u = v * m.
1602 * Input: v - input vector
1603 * m - transformation matrix
1604 * Output: u - transformed vector
1605 */
1606 void
1607 _mesa_transform_vector( GLfloat u[4], const GLfloat v[4], const GLfloat m[16] )
1608 {
1609 const GLfloat v0 = v[0], v1 = v[1], v2 = v[2], v3 = v[3];
1610 #define M(row,col) m[row + col*4]
1611 u[0] = v0 * M(0,0) + v1 * M(1,0) + v2 * M(2,0) + v3 * M(3,0);
1612 u[1] = v0 * M(0,1) + v1 * M(1,1) + v2 * M(2,1) + v3 * M(3,1);
1613 u[2] = v0 * M(0,2) + v1 * M(1,2) + v2 * M(2,2) + v3 * M(3,2);
1614 u[3] = v0 * M(0,3) + v1 * M(1,3) + v2 * M(2,3) + v3 * M(3,3);
1615 #undef M
1616 }