Merge ../mesa into vulkan
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/compiler.h"
34 #include "main/mtypes.h"
35 #include "main/shaderapi.h"
36 #include "main/shaderobj.h"
37 #include "main/uniforms.h"
38 #include "glsl/ast.h"
39 #include "glsl/ir.h"
40 #include "glsl/ir_expression_flattening.h"
41 #include "glsl/ir_visitor.h"
42 #include "glsl/ir_optimization.h"
43 #include "glsl/ir_uniform.h"
44 #include "glsl/glsl_parser_extras.h"
45 #include "glsl/glsl_types.h"
46 #include "glsl/linker.h"
47 #include "glsl/program.h"
48 #include "program/hash_table.h"
49 #include "program/prog_instruction.h"
50 #include "program/prog_optimize.h"
51 #include "program/prog_print.h"
52 #include "program/program.h"
53 #include "program/prog_parameter.h"
54 #include "program/sampler.h"
55
56
57 static int swizzle_for_size(int size);
58
59 namespace {
60
61 class src_reg;
62 class dst_reg;
63
64 /**
65 * This struct is a corresponding struct to Mesa prog_src_register, with
66 * wider fields.
67 */
68 class src_reg {
69 public:
70 src_reg(gl_register_file file, int index, const glsl_type *type)
71 {
72 this->file = file;
73 this->index = index;
74 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
75 this->swizzle = swizzle_for_size(type->vector_elements);
76 else
77 this->swizzle = SWIZZLE_XYZW;
78 this->negate = 0;
79 this->reladdr = NULL;
80 }
81
82 src_reg()
83 {
84 this->file = PROGRAM_UNDEFINED;
85 this->index = 0;
86 this->swizzle = 0;
87 this->negate = 0;
88 this->reladdr = NULL;
89 }
90
91 explicit src_reg(dst_reg reg);
92
93 gl_register_file file; /**< PROGRAM_* from Mesa */
94 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
95 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
96 int negate; /**< NEGATE_XYZW mask from mesa */
97 /** Register index should be offset by the integer in this reg. */
98 src_reg *reladdr;
99 };
100
101 class dst_reg {
102 public:
103 dst_reg(gl_register_file file, int writemask)
104 {
105 this->file = file;
106 this->index = 0;
107 this->writemask = writemask;
108 this->cond_mask = COND_TR;
109 this->reladdr = NULL;
110 }
111
112 dst_reg()
113 {
114 this->file = PROGRAM_UNDEFINED;
115 this->index = 0;
116 this->writemask = 0;
117 this->cond_mask = COND_TR;
118 this->reladdr = NULL;
119 }
120
121 explicit dst_reg(src_reg reg);
122
123 gl_register_file file; /**< PROGRAM_* from Mesa */
124 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
125 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
126 GLuint cond_mask:4;
127 /** Register index should be offset by the integer in this reg. */
128 src_reg *reladdr;
129 };
130
131 } /* anonymous namespace */
132
133 src_reg::src_reg(dst_reg reg)
134 {
135 this->file = reg.file;
136 this->index = reg.index;
137 this->swizzle = SWIZZLE_XYZW;
138 this->negate = 0;
139 this->reladdr = reg.reladdr;
140 }
141
142 dst_reg::dst_reg(src_reg reg)
143 {
144 this->file = reg.file;
145 this->index = reg.index;
146 this->writemask = WRITEMASK_XYZW;
147 this->cond_mask = COND_TR;
148 this->reladdr = reg.reladdr;
149 }
150
151 namespace {
152
153 class ir_to_mesa_instruction : public exec_node {
154 public:
155 DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)
156
157 enum prog_opcode op;
158 dst_reg dst;
159 src_reg src[3];
160 /** Pointer to the ir source this tree came from for debugging */
161 ir_instruction *ir;
162 GLboolean cond_update;
163 bool saturate;
164 int sampler; /**< sampler index */
165 int tex_target; /**< One of TEXTURE_*_INDEX */
166 GLboolean tex_shadow;
167 };
168
169 class variable_storage : public exec_node {
170 public:
171 variable_storage(ir_variable *var, gl_register_file file, int index)
172 : file(file), index(index), var(var)
173 {
174 /* empty */
175 }
176
177 gl_register_file file;
178 int index;
179 ir_variable *var; /* variable that maps to this, if any */
180 };
181
182 class function_entry : public exec_node {
183 public:
184 ir_function_signature *sig;
185
186 /**
187 * identifier of this function signature used by the program.
188 *
189 * At the point that Mesa instructions for function calls are
190 * generated, we don't know the address of the first instruction of
191 * the function body. So we make the BranchTarget that is called a
192 * small integer and rewrite them during set_branchtargets().
193 */
194 int sig_id;
195
196 /**
197 * Pointer to first instruction of the function body.
198 *
199 * Set during function body emits after main() is processed.
200 */
201 ir_to_mesa_instruction *bgn_inst;
202
203 /**
204 * Index of the first instruction of the function body in actual
205 * Mesa IR.
206 *
207 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
208 */
209 int inst;
210
211 /** Storage for the return value. */
212 src_reg return_reg;
213 };
214
215 class ir_to_mesa_visitor : public ir_visitor {
216 public:
217 ir_to_mesa_visitor();
218 ~ir_to_mesa_visitor();
219
220 function_entry *current_function;
221
222 struct gl_context *ctx;
223 struct gl_program *prog;
224 struct gl_shader_program *shader_program;
225 struct gl_shader_compiler_options *options;
226
227 int next_temp;
228
229 variable_storage *find_variable_storage(const ir_variable *var);
230
231 src_reg get_temp(const glsl_type *type);
232 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
233
234 src_reg src_reg_for_float(float val);
235
236 /**
237 * \name Visit methods
238 *
239 * As typical for the visitor pattern, there must be one \c visit method for
240 * each concrete subclass of \c ir_instruction. Virtual base classes within
241 * the hierarchy should not have \c visit methods.
242 */
243 /*@{*/
244 virtual void visit(ir_variable *);
245 virtual void visit(ir_loop *);
246 virtual void visit(ir_loop_jump *);
247 virtual void visit(ir_function_signature *);
248 virtual void visit(ir_function *);
249 virtual void visit(ir_expression *);
250 virtual void visit(ir_swizzle *);
251 virtual void visit(ir_dereference_variable *);
252 virtual void visit(ir_dereference_array *);
253 virtual void visit(ir_dereference_record *);
254 virtual void visit(ir_assignment *);
255 virtual void visit(ir_constant *);
256 virtual void visit(ir_call *);
257 virtual void visit(ir_return *);
258 virtual void visit(ir_discard *);
259 virtual void visit(ir_texture *);
260 virtual void visit(ir_if *);
261 virtual void visit(ir_emit_vertex *);
262 virtual void visit(ir_end_primitive *);
263 virtual void visit(ir_barrier *);
264 /*@}*/
265
266 src_reg result;
267
268 /** List of variable_storage */
269 exec_list variables;
270
271 /** List of function_entry */
272 exec_list function_signatures;
273 int next_signature_id;
274
275 /** List of ir_to_mesa_instruction */
276 exec_list instructions;
277
278 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
279
280 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
281 dst_reg dst, src_reg src0);
282
283 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
284 dst_reg dst, src_reg src0, src_reg src1);
285
286 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
287 dst_reg dst,
288 src_reg src0, src_reg src1, src_reg src2);
289
290 /**
291 * Emit the correct dot-product instruction for the type of arguments
292 */
293 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
294 dst_reg dst,
295 src_reg src0,
296 src_reg src1,
297 unsigned elements);
298
299 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
300 dst_reg dst, src_reg src0);
301
302 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
303 dst_reg dst, src_reg src0, src_reg src1);
304
305 bool try_emit_mad(ir_expression *ir,
306 int mul_operand);
307 bool try_emit_mad_for_and_not(ir_expression *ir,
308 int mul_operand);
309
310 void emit_swz(ir_expression *ir);
311
312 bool process_move_condition(ir_rvalue *ir);
313
314 void copy_propagate(void);
315
316 void *mem_ctx;
317 };
318
319 } /* anonymous namespace */
320
321 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
322
323 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
324
325 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
326
327 static int
328 swizzle_for_size(int size)
329 {
330 static const int size_swizzles[4] = {
331 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
332 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
333 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
334 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
335 };
336
337 assert((size >= 1) && (size <= 4));
338 return size_swizzles[size - 1];
339 }
340
341 ir_to_mesa_instruction *
342 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
343 dst_reg dst,
344 src_reg src0, src_reg src1, src_reg src2)
345 {
346 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
347 int num_reladdr = 0;
348
349 /* If we have to do relative addressing, we want to load the ARL
350 * reg directly for one of the regs, and preload the other reladdr
351 * sources into temps.
352 */
353 num_reladdr += dst.reladdr != NULL;
354 num_reladdr += src0.reladdr != NULL;
355 num_reladdr += src1.reladdr != NULL;
356 num_reladdr += src2.reladdr != NULL;
357
358 reladdr_to_temp(ir, &src2, &num_reladdr);
359 reladdr_to_temp(ir, &src1, &num_reladdr);
360 reladdr_to_temp(ir, &src0, &num_reladdr);
361
362 if (dst.reladdr) {
363 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
364 num_reladdr--;
365 }
366 assert(num_reladdr == 0);
367
368 inst->op = op;
369 inst->dst = dst;
370 inst->src[0] = src0;
371 inst->src[1] = src1;
372 inst->src[2] = src2;
373 inst->ir = ir;
374
375 this->instructions.push_tail(inst);
376
377 return inst;
378 }
379
380
381 ir_to_mesa_instruction *
382 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
383 dst_reg dst, src_reg src0, src_reg src1)
384 {
385 return emit(ir, op, dst, src0, src1, undef_src);
386 }
387
388 ir_to_mesa_instruction *
389 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
390 dst_reg dst, src_reg src0)
391 {
392 assert(dst.writemask != 0);
393 return emit(ir, op, dst, src0, undef_src, undef_src);
394 }
395
396 ir_to_mesa_instruction *
397 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
398 {
399 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
400 }
401
402 ir_to_mesa_instruction *
403 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
404 dst_reg dst, src_reg src0, src_reg src1,
405 unsigned elements)
406 {
407 static const enum prog_opcode dot_opcodes[] = {
408 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
409 };
410
411 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
412 }
413
414 /**
415 * Emits Mesa scalar opcodes to produce unique answers across channels.
416 *
417 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
418 * channel determines the result across all channels. So to do a vec4
419 * of this operation, we want to emit a scalar per source channel used
420 * to produce dest channels.
421 */
422 void
423 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
424 dst_reg dst,
425 src_reg orig_src0, src_reg orig_src1)
426 {
427 int i, j;
428 int done_mask = ~dst.writemask;
429
430 /* Mesa RCP is a scalar operation splatting results to all channels,
431 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
432 * dst channels.
433 */
434 for (i = 0; i < 4; i++) {
435 GLuint this_mask = (1 << i);
436 ir_to_mesa_instruction *inst;
437 src_reg src0 = orig_src0;
438 src_reg src1 = orig_src1;
439
440 if (done_mask & this_mask)
441 continue;
442
443 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
444 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
445 for (j = i + 1; j < 4; j++) {
446 /* If there is another enabled component in the destination that is
447 * derived from the same inputs, generate its value on this pass as
448 * well.
449 */
450 if (!(done_mask & (1 << j)) &&
451 GET_SWZ(src0.swizzle, j) == src0_swiz &&
452 GET_SWZ(src1.swizzle, j) == src1_swiz) {
453 this_mask |= (1 << j);
454 }
455 }
456 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
457 src0_swiz, src0_swiz);
458 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
459 src1_swiz, src1_swiz);
460
461 inst = emit(ir, op, dst, src0, src1);
462 inst->dst.writemask = this_mask;
463 done_mask |= this_mask;
464 }
465 }
466
467 void
468 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
469 dst_reg dst, src_reg src0)
470 {
471 src_reg undef = undef_src;
472
473 undef.swizzle = SWIZZLE_XXXX;
474
475 emit_scalar(ir, op, dst, src0, undef);
476 }
477
478 src_reg
479 ir_to_mesa_visitor::src_reg_for_float(float val)
480 {
481 src_reg src(PROGRAM_CONSTANT, -1, NULL);
482
483 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
484 (const gl_constant_value *)&val, 1, &src.swizzle);
485
486 return src;
487 }
488
489 static int
490 type_size(const struct glsl_type *type)
491 {
492 unsigned int i;
493 int size;
494
495 switch (type->base_type) {
496 case GLSL_TYPE_UINT:
497 case GLSL_TYPE_INT:
498 case GLSL_TYPE_FLOAT:
499 case GLSL_TYPE_BOOL:
500 if (type->is_matrix()) {
501 return type->matrix_columns;
502 } else {
503 /* Regardless of size of vector, it gets a vec4. This is bad
504 * packing for things like floats, but otherwise arrays become a
505 * mess. Hopefully a later pass over the code can pack scalars
506 * down if appropriate.
507 */
508 return 1;
509 }
510 break;
511 case GLSL_TYPE_DOUBLE:
512 if (type->is_matrix()) {
513 if (type->vector_elements > 2)
514 return type->matrix_columns * 2;
515 else
516 return type->matrix_columns;
517 } else {
518 if (type->vector_elements > 2)
519 return 2;
520 else
521 return 1;
522 }
523 break;
524 case GLSL_TYPE_ARRAY:
525 assert(type->length > 0);
526 return type_size(type->fields.array) * type->length;
527 case GLSL_TYPE_STRUCT:
528 size = 0;
529 for (i = 0; i < type->length; i++) {
530 size += type_size(type->fields.structure[i].type);
531 }
532 return size;
533 case GLSL_TYPE_SAMPLER:
534 case GLSL_TYPE_IMAGE:
535 case GLSL_TYPE_SUBROUTINE:
536 /* Samplers take up one slot in UNIFORMS[], but they're baked in
537 * at link time.
538 */
539 return 1;
540 case GLSL_TYPE_ATOMIC_UINT:
541 case GLSL_TYPE_VOID:
542 case GLSL_TYPE_ERROR:
543 case GLSL_TYPE_INTERFACE:
544 case GLSL_TYPE_FUNCTION:
545 assert(!"Invalid type in type_size");
546 break;
547 }
548
549 return 0;
550 }
551
552 /**
553 * In the initial pass of codegen, we assign temporary numbers to
554 * intermediate results. (not SSA -- variable assignments will reuse
555 * storage). Actual register allocation for the Mesa VM occurs in a
556 * pass over the Mesa IR later.
557 */
558 src_reg
559 ir_to_mesa_visitor::get_temp(const glsl_type *type)
560 {
561 src_reg src;
562
563 src.file = PROGRAM_TEMPORARY;
564 src.index = next_temp;
565 src.reladdr = NULL;
566 next_temp += type_size(type);
567
568 if (type->is_array() || type->is_record()) {
569 src.swizzle = SWIZZLE_NOOP;
570 } else {
571 src.swizzle = swizzle_for_size(type->vector_elements);
572 }
573 src.negate = 0;
574
575 return src;
576 }
577
578 variable_storage *
579 ir_to_mesa_visitor::find_variable_storage(const ir_variable *var)
580 {
581 foreach_in_list(variable_storage, entry, &this->variables) {
582 if (entry->var == var)
583 return entry;
584 }
585
586 return NULL;
587 }
588
589 void
590 ir_to_mesa_visitor::visit(ir_variable *ir)
591 {
592 if (strcmp(ir->name, "gl_FragCoord") == 0) {
593 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
594
595 fp->OriginUpperLeft = ir->data.origin_upper_left;
596 fp->PixelCenterInteger = ir->data.pixel_center_integer;
597 }
598
599 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
600 unsigned int i;
601 const ir_state_slot *const slots = ir->get_state_slots();
602 assert(slots != NULL);
603
604 /* Check if this statevar's setup in the STATE file exactly
605 * matches how we'll want to reference it as a
606 * struct/array/whatever. If not, then we need to move it into
607 * temporary storage and hope that it'll get copy-propagated
608 * out.
609 */
610 for (i = 0; i < ir->get_num_state_slots(); i++) {
611 if (slots[i].swizzle != SWIZZLE_XYZW) {
612 break;
613 }
614 }
615
616 variable_storage *storage;
617 dst_reg dst;
618 if (i == ir->get_num_state_slots()) {
619 /* We'll set the index later. */
620 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
621 this->variables.push_tail(storage);
622
623 dst = undef_dst;
624 } else {
625 /* The variable_storage constructor allocates slots based on the size
626 * of the type. However, this had better match the number of state
627 * elements that we're going to copy into the new temporary.
628 */
629 assert((int) ir->get_num_state_slots() == type_size(ir->type));
630
631 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
632 this->next_temp);
633 this->variables.push_tail(storage);
634 this->next_temp += type_size(ir->type);
635
636 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
637 }
638
639
640 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
641 int index = _mesa_add_state_reference(this->prog->Parameters,
642 (gl_state_index *)slots[i].tokens);
643
644 if (storage->file == PROGRAM_STATE_VAR) {
645 if (storage->index == -1) {
646 storage->index = index;
647 } else {
648 assert(index == storage->index + (int)i);
649 }
650 } else {
651 src_reg src(PROGRAM_STATE_VAR, index, NULL);
652 src.swizzle = slots[i].swizzle;
653 emit(ir, OPCODE_MOV, dst, src);
654 /* even a float takes up a whole vec4 reg in a struct/array. */
655 dst.index++;
656 }
657 }
658
659 if (storage->file == PROGRAM_TEMPORARY &&
660 dst.index != storage->index + (int) ir->get_num_state_slots()) {
661 linker_error(this->shader_program,
662 "failed to load builtin uniform `%s' "
663 "(%d/%d regs loaded)\n",
664 ir->name, dst.index - storage->index,
665 type_size(ir->type));
666 }
667 }
668 }
669
670 void
671 ir_to_mesa_visitor::visit(ir_loop *ir)
672 {
673 emit(NULL, OPCODE_BGNLOOP);
674
675 visit_exec_list(&ir->body_instructions, this);
676
677 emit(NULL, OPCODE_ENDLOOP);
678 }
679
680 void
681 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
682 {
683 switch (ir->mode) {
684 case ir_loop_jump::jump_break:
685 emit(NULL, OPCODE_BRK);
686 break;
687 case ir_loop_jump::jump_continue:
688 emit(NULL, OPCODE_CONT);
689 break;
690 }
691 }
692
693
694 void
695 ir_to_mesa_visitor::visit(ir_function_signature *ir)
696 {
697 assert(0);
698 (void)ir;
699 }
700
701 void
702 ir_to_mesa_visitor::visit(ir_function *ir)
703 {
704 /* Ignore function bodies other than main() -- we shouldn't see calls to
705 * them since they should all be inlined before we get to ir_to_mesa.
706 */
707 if (strcmp(ir->name, "main") == 0) {
708 const ir_function_signature *sig;
709 exec_list empty;
710
711 sig = ir->matching_signature(NULL, &empty, false);
712
713 assert(sig);
714
715 foreach_in_list(ir_instruction, ir, &sig->body) {
716 ir->accept(this);
717 }
718 }
719 }
720
721 bool
722 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
723 {
724 int nonmul_operand = 1 - mul_operand;
725 src_reg a, b, c;
726
727 ir_expression *expr = ir->operands[mul_operand]->as_expression();
728 if (!expr || expr->operation != ir_binop_mul)
729 return false;
730
731 expr->operands[0]->accept(this);
732 a = this->result;
733 expr->operands[1]->accept(this);
734 b = this->result;
735 ir->operands[nonmul_operand]->accept(this);
736 c = this->result;
737
738 this->result = get_temp(ir->type);
739 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
740
741 return true;
742 }
743
744 /**
745 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
746 *
747 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
748 * implemented using multiplication, and logical-or is implemented using
749 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
750 * As result, the logical expression (a & !b) can be rewritten as:
751 *
752 * - a * !b
753 * - a * (1 - b)
754 * - (a * 1) - (a * b)
755 * - a + -(a * b)
756 * - a + (a * -b)
757 *
758 * This final expression can be implemented as a single MAD(a, -b, a)
759 * instruction.
760 */
761 bool
762 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
763 {
764 const int other_operand = 1 - try_operand;
765 src_reg a, b;
766
767 ir_expression *expr = ir->operands[try_operand]->as_expression();
768 if (!expr || expr->operation != ir_unop_logic_not)
769 return false;
770
771 ir->operands[other_operand]->accept(this);
772 a = this->result;
773 expr->operands[0]->accept(this);
774 b = this->result;
775
776 b.negate = ~b.negate;
777
778 this->result = get_temp(ir->type);
779 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
780
781 return true;
782 }
783
784 void
785 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
786 src_reg *reg, int *num_reladdr)
787 {
788 if (!reg->reladdr)
789 return;
790
791 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
792
793 if (*num_reladdr != 1) {
794 src_reg temp = get_temp(glsl_type::vec4_type);
795
796 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
797 *reg = temp;
798 }
799
800 (*num_reladdr)--;
801 }
802
803 void
804 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
805 {
806 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
807 * This means that each of the operands is either an immediate value of -1,
808 * 0, or 1, or is a component from one source register (possibly with
809 * negation).
810 */
811 uint8_t components[4] = { 0 };
812 bool negate[4] = { false };
813 ir_variable *var = NULL;
814
815 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
816 ir_rvalue *op = ir->operands[i];
817
818 assert(op->type->is_scalar());
819
820 while (op != NULL) {
821 switch (op->ir_type) {
822 case ir_type_constant: {
823
824 assert(op->type->is_scalar());
825
826 const ir_constant *const c = op->as_constant();
827 if (c->is_one()) {
828 components[i] = SWIZZLE_ONE;
829 } else if (c->is_zero()) {
830 components[i] = SWIZZLE_ZERO;
831 } else if (c->is_negative_one()) {
832 components[i] = SWIZZLE_ONE;
833 negate[i] = true;
834 } else {
835 assert(!"SWZ constant must be 0.0 or 1.0.");
836 }
837
838 op = NULL;
839 break;
840 }
841
842 case ir_type_dereference_variable: {
843 ir_dereference_variable *const deref =
844 (ir_dereference_variable *) op;
845
846 assert((var == NULL) || (deref->var == var));
847 components[i] = SWIZZLE_X;
848 var = deref->var;
849 op = NULL;
850 break;
851 }
852
853 case ir_type_expression: {
854 ir_expression *const expr = (ir_expression *) op;
855
856 assert(expr->operation == ir_unop_neg);
857 negate[i] = true;
858
859 op = expr->operands[0];
860 break;
861 }
862
863 case ir_type_swizzle: {
864 ir_swizzle *const swiz = (ir_swizzle *) op;
865
866 components[i] = swiz->mask.x;
867 op = swiz->val;
868 break;
869 }
870
871 default:
872 assert(!"Should not get here.");
873 return;
874 }
875 }
876 }
877
878 assert(var != NULL);
879
880 ir_dereference_variable *const deref =
881 new(mem_ctx) ir_dereference_variable(var);
882
883 this->result.file = PROGRAM_UNDEFINED;
884 deref->accept(this);
885 if (this->result.file == PROGRAM_UNDEFINED) {
886 printf("Failed to get tree for expression operand:\n");
887 deref->print();
888 printf("\n");
889 exit(1);
890 }
891
892 src_reg src;
893
894 src = this->result;
895 src.swizzle = MAKE_SWIZZLE4(components[0],
896 components[1],
897 components[2],
898 components[3]);
899 src.negate = ((unsigned(negate[0]) << 0)
900 | (unsigned(negate[1]) << 1)
901 | (unsigned(negate[2]) << 2)
902 | (unsigned(negate[3]) << 3));
903
904 /* Storage for our result. Ideally for an assignment we'd be using the
905 * actual storage for the result here, instead.
906 */
907 const src_reg result_src = get_temp(ir->type);
908 dst_reg result_dst = dst_reg(result_src);
909
910 /* Limit writes to the channels that will be used by result_src later.
911 * This does limit this temp's use as a temporary for multi-instruction
912 * sequences.
913 */
914 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
915
916 emit(ir, OPCODE_SWZ, result_dst, src);
917 this->result = result_src;
918 }
919
920 void
921 ir_to_mesa_visitor::visit(ir_expression *ir)
922 {
923 unsigned int operand;
924 src_reg op[ARRAY_SIZE(ir->operands)];
925 src_reg result_src;
926 dst_reg result_dst;
927
928 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
929 */
930 if (ir->operation == ir_binop_add) {
931 if (try_emit_mad(ir, 1))
932 return;
933 if (try_emit_mad(ir, 0))
934 return;
935 }
936
937 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
938 */
939 if (ir->operation == ir_binop_logic_and) {
940 if (try_emit_mad_for_and_not(ir, 1))
941 return;
942 if (try_emit_mad_for_and_not(ir, 0))
943 return;
944 }
945
946 if (ir->operation == ir_quadop_vector) {
947 this->emit_swz(ir);
948 return;
949 }
950
951 for (operand = 0; operand < ir->get_num_operands(); operand++) {
952 this->result.file = PROGRAM_UNDEFINED;
953 ir->operands[operand]->accept(this);
954 if (this->result.file == PROGRAM_UNDEFINED) {
955 printf("Failed to get tree for expression operand:\n");
956 ir->operands[operand]->print();
957 printf("\n");
958 exit(1);
959 }
960 op[operand] = this->result;
961
962 /* Matrix expression operands should have been broken down to vector
963 * operations already.
964 */
965 assert(!ir->operands[operand]->type->is_matrix());
966 }
967
968 int vector_elements = ir->operands[0]->type->vector_elements;
969 if (ir->operands[1]) {
970 vector_elements = MAX2(vector_elements,
971 ir->operands[1]->type->vector_elements);
972 }
973
974 this->result.file = PROGRAM_UNDEFINED;
975
976 /* Storage for our result. Ideally for an assignment we'd be using
977 * the actual storage for the result here, instead.
978 */
979 result_src = get_temp(ir->type);
980 /* convenience for the emit functions below. */
981 result_dst = dst_reg(result_src);
982 /* Limit writes to the channels that will be used by result_src later.
983 * This does limit this temp's use as a temporary for multi-instruction
984 * sequences.
985 */
986 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
987
988 switch (ir->operation) {
989 case ir_unop_logic_not:
990 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
991 * older GPUs implement SEQ using multiple instructions (i915 uses two
992 * SGE instructions and a MUL instruction). Since our logic values are
993 * 0.0 and 1.0, 1-x also implements !x.
994 */
995 op[0].negate = ~op[0].negate;
996 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
997 break;
998 case ir_unop_neg:
999 op[0].negate = ~op[0].negate;
1000 result_src = op[0];
1001 break;
1002 case ir_unop_abs:
1003 emit(ir, OPCODE_ABS, result_dst, op[0]);
1004 break;
1005 case ir_unop_sign:
1006 emit(ir, OPCODE_SSG, result_dst, op[0]);
1007 break;
1008 case ir_unop_rcp:
1009 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1010 break;
1011
1012 case ir_unop_exp2:
1013 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1014 break;
1015 case ir_unop_exp:
1016 case ir_unop_log:
1017 assert(!"not reached: should be handled by ir_explog_to_explog2");
1018 break;
1019 case ir_unop_log2:
1020 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1021 break;
1022 case ir_unop_sin:
1023 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1024 break;
1025 case ir_unop_cos:
1026 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1027 break;
1028
1029 case ir_unop_dFdx:
1030 emit(ir, OPCODE_DDX, result_dst, op[0]);
1031 break;
1032 case ir_unop_dFdy:
1033 emit(ir, OPCODE_DDY, result_dst, op[0]);
1034 break;
1035
1036 case ir_unop_saturate: {
1037 ir_to_mesa_instruction *inst = emit(ir, OPCODE_MOV,
1038 result_dst, op[0]);
1039 inst->saturate = true;
1040 break;
1041 }
1042 case ir_unop_noise: {
1043 const enum prog_opcode opcode =
1044 prog_opcode(OPCODE_NOISE1
1045 + (ir->operands[0]->type->vector_elements) - 1);
1046 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1047
1048 emit(ir, opcode, result_dst, op[0]);
1049 break;
1050 }
1051
1052 case ir_binop_add:
1053 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1054 break;
1055 case ir_binop_sub:
1056 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1057 break;
1058
1059 case ir_binop_mul:
1060 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1061 break;
1062 case ir_binop_div:
1063 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1064 break;
1065 case ir_binop_mod:
1066 /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
1067 assert(ir->type->is_integer());
1068 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1069 break;
1070
1071 case ir_binop_less:
1072 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1073 break;
1074 case ir_binop_greater:
1075 emit(ir, OPCODE_SGT, result_dst, op[0], op[1]);
1076 break;
1077 case ir_binop_lequal:
1078 emit(ir, OPCODE_SLE, result_dst, op[0], op[1]);
1079 break;
1080 case ir_binop_gequal:
1081 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1082 break;
1083 case ir_binop_equal:
1084 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1085 break;
1086 case ir_binop_nequal:
1087 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1088 break;
1089 case ir_binop_all_equal:
1090 /* "==" operator producing a scalar boolean. */
1091 if (ir->operands[0]->type->is_vector() ||
1092 ir->operands[1]->type->is_vector()) {
1093 src_reg temp = get_temp(glsl_type::vec4_type);
1094 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1095
1096 /* After the dot-product, the value will be an integer on the
1097 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1098 */
1099 emit_dp(ir, result_dst, temp, temp, vector_elements);
1100
1101 /* Negating the result of the dot-product gives values on the range
1102 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1103 * achieved using SGE.
1104 */
1105 src_reg sge_src = result_src;
1106 sge_src.negate = ~sge_src.negate;
1107 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1108 } else {
1109 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1110 }
1111 break;
1112 case ir_binop_any_nequal:
1113 /* "!=" operator producing a scalar boolean. */
1114 if (ir->operands[0]->type->is_vector() ||
1115 ir->operands[1]->type->is_vector()) {
1116 src_reg temp = get_temp(glsl_type::vec4_type);
1117 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1118
1119 /* After the dot-product, the value will be an integer on the
1120 * range [0,4]. Zero stays zero, and positive values become 1.0.
1121 */
1122 ir_to_mesa_instruction *const dp =
1123 emit_dp(ir, result_dst, temp, temp, vector_elements);
1124 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1125 /* The clamping to [0,1] can be done for free in the fragment
1126 * shader with a saturate.
1127 */
1128 dp->saturate = true;
1129 } else {
1130 /* Negating the result of the dot-product gives values on the range
1131 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1132 * achieved using SLT.
1133 */
1134 src_reg slt_src = result_src;
1135 slt_src.negate = ~slt_src.negate;
1136 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1137 }
1138 } else {
1139 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1140 }
1141 break;
1142
1143 case ir_unop_any: {
1144 assert(ir->operands[0]->type->is_vector());
1145
1146 /* After the dot-product, the value will be an integer on the
1147 * range [0,4]. Zero stays zero, and positive values become 1.0.
1148 */
1149 ir_to_mesa_instruction *const dp =
1150 emit_dp(ir, result_dst, op[0], op[0],
1151 ir->operands[0]->type->vector_elements);
1152 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1153 /* The clamping to [0,1] can be done for free in the fragment
1154 * shader with a saturate.
1155 */
1156 dp->saturate = true;
1157 } else {
1158 /* Negating the result of the dot-product gives values on the range
1159 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1160 * is achieved using SLT.
1161 */
1162 src_reg slt_src = result_src;
1163 slt_src.negate = ~slt_src.negate;
1164 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1165 }
1166 break;
1167 }
1168
1169 case ir_binop_logic_xor:
1170 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1171 break;
1172
1173 case ir_binop_logic_or: {
1174 /* After the addition, the value will be an integer on the
1175 * range [0,2]. Zero stays zero, and positive values become 1.0.
1176 */
1177 ir_to_mesa_instruction *add =
1178 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1179 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1180 /* The clamping to [0,1] can be done for free in the fragment
1181 * shader with a saturate.
1182 */
1183 add->saturate = true;
1184 } else {
1185 /* Negating the result of the addition gives values on the range
1186 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1187 * is achieved using SLT.
1188 */
1189 src_reg slt_src = result_src;
1190 slt_src.negate = ~slt_src.negate;
1191 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1192 }
1193 break;
1194 }
1195
1196 case ir_binop_logic_and:
1197 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1198 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1199 break;
1200
1201 case ir_binop_dot:
1202 assert(ir->operands[0]->type->is_vector());
1203 assert(ir->operands[0]->type == ir->operands[1]->type);
1204 emit_dp(ir, result_dst, op[0], op[1],
1205 ir->operands[0]->type->vector_elements);
1206 break;
1207
1208 case ir_unop_sqrt:
1209 /* sqrt(x) = x * rsq(x). */
1210 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1211 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1212 /* For incoming channels <= 0, set the result to 0. */
1213 op[0].negate = ~op[0].negate;
1214 emit(ir, OPCODE_CMP, result_dst,
1215 op[0], result_src, src_reg_for_float(0.0));
1216 break;
1217 case ir_unop_rsq:
1218 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1219 break;
1220 case ir_unop_i2f:
1221 case ir_unop_u2f:
1222 case ir_unop_b2f:
1223 case ir_unop_b2i:
1224 case ir_unop_i2u:
1225 case ir_unop_u2i:
1226 /* Mesa IR lacks types, ints are stored as truncated floats. */
1227 result_src = op[0];
1228 break;
1229 case ir_unop_f2i:
1230 case ir_unop_f2u:
1231 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1232 break;
1233 case ir_unop_f2b:
1234 case ir_unop_i2b:
1235 emit(ir, OPCODE_SNE, result_dst,
1236 op[0], src_reg_for_float(0.0));
1237 break;
1238 case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1239 case ir_unop_bitcast_f2u:
1240 case ir_unop_bitcast_i2f:
1241 case ir_unop_bitcast_u2f:
1242 break;
1243 case ir_unop_trunc:
1244 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1245 break;
1246 case ir_unop_ceil:
1247 op[0].negate = ~op[0].negate;
1248 emit(ir, OPCODE_FLR, result_dst, op[0]);
1249 result_src.negate = ~result_src.negate;
1250 break;
1251 case ir_unop_floor:
1252 emit(ir, OPCODE_FLR, result_dst, op[0]);
1253 break;
1254 case ir_unop_fract:
1255 emit(ir, OPCODE_FRC, result_dst, op[0]);
1256 break;
1257 case ir_unop_pack_snorm_2x16:
1258 case ir_unop_pack_snorm_4x8:
1259 case ir_unop_pack_unorm_2x16:
1260 case ir_unop_pack_unorm_4x8:
1261 case ir_unop_pack_half_2x16:
1262 case ir_unop_pack_double_2x32:
1263 case ir_unop_unpack_snorm_2x16:
1264 case ir_unop_unpack_snorm_4x8:
1265 case ir_unop_unpack_unorm_2x16:
1266 case ir_unop_unpack_unorm_4x8:
1267 case ir_unop_unpack_half_2x16:
1268 case ir_unop_unpack_half_2x16_split_x:
1269 case ir_unop_unpack_half_2x16_split_y:
1270 case ir_unop_unpack_double_2x32:
1271 case ir_binop_pack_half_2x16_split:
1272 case ir_unop_bitfield_reverse:
1273 case ir_unop_bit_count:
1274 case ir_unop_find_msb:
1275 case ir_unop_find_lsb:
1276 case ir_unop_d2f:
1277 case ir_unop_f2d:
1278 case ir_unop_d2i:
1279 case ir_unop_i2d:
1280 case ir_unop_d2u:
1281 case ir_unop_u2d:
1282 case ir_unop_d2b:
1283 case ir_unop_frexp_sig:
1284 case ir_unop_frexp_exp:
1285 assert(!"not supported");
1286 break;
1287 case ir_binop_min:
1288 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1289 break;
1290 case ir_binop_max:
1291 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1292 break;
1293 case ir_binop_pow:
1294 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1295 break;
1296
1297 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1298 * hardware backends have no way to avoid Mesa IR generation
1299 * even if they don't use it, we need to emit "something" and
1300 * continue.
1301 */
1302 case ir_binop_lshift:
1303 case ir_binop_rshift:
1304 case ir_binop_bit_and:
1305 case ir_binop_bit_xor:
1306 case ir_binop_bit_or:
1307 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1308 break;
1309
1310 case ir_unop_bit_not:
1311 case ir_unop_round_even:
1312 emit(ir, OPCODE_MOV, result_dst, op[0]);
1313 break;
1314
1315 case ir_binop_ubo_load:
1316 assert(!"not supported");
1317 break;
1318
1319 case ir_triop_lrp:
1320 /* ir_triop_lrp operands are (x, y, a) while
1321 * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1322 */
1323 emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1324 break;
1325
1326 case ir_binop_vector_extract:
1327 case ir_binop_bfm:
1328 case ir_triop_fma:
1329 case ir_triop_bfi:
1330 case ir_triop_bitfield_extract:
1331 case ir_triop_vector_insert:
1332 case ir_quadop_bitfield_insert:
1333 case ir_binop_ldexp:
1334 case ir_triop_csel:
1335 case ir_binop_carry:
1336 case ir_binop_borrow:
1337 case ir_binop_imul_high:
1338 case ir_unop_interpolate_at_centroid:
1339 case ir_binop_interpolate_at_offset:
1340 case ir_binop_interpolate_at_sample:
1341 case ir_unop_dFdx_coarse:
1342 case ir_unop_dFdx_fine:
1343 case ir_unop_dFdy_coarse:
1344 case ir_unop_dFdy_fine:
1345 case ir_unop_subroutine_to_int:
1346 case ir_unop_get_buffer_size:
1347 assert(!"not supported");
1348 break;
1349
1350 case ir_unop_ssbo_unsized_array_length:
1351 case ir_quadop_vector:
1352 /* This operation should have already been handled.
1353 */
1354 assert(!"Should not get here.");
1355 break;
1356 }
1357
1358 this->result = result_src;
1359 }
1360
1361
1362 void
1363 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1364 {
1365 src_reg src;
1366 int i;
1367 int swizzle[4];
1368
1369 /* Note that this is only swizzles in expressions, not those on the left
1370 * hand side of an assignment, which do write masking. See ir_assignment
1371 * for that.
1372 */
1373
1374 ir->val->accept(this);
1375 src = this->result;
1376 assert(src.file != PROGRAM_UNDEFINED);
1377 assert(ir->type->vector_elements > 0);
1378
1379 for (i = 0; i < 4; i++) {
1380 if (i < ir->type->vector_elements) {
1381 switch (i) {
1382 case 0:
1383 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1384 break;
1385 case 1:
1386 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1387 break;
1388 case 2:
1389 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1390 break;
1391 case 3:
1392 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1393 break;
1394 }
1395 } else {
1396 /* If the type is smaller than a vec4, replicate the last
1397 * channel out.
1398 */
1399 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1400 }
1401 }
1402
1403 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1404
1405 this->result = src;
1406 }
1407
1408 void
1409 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1410 {
1411 variable_storage *entry = find_variable_storage(ir->var);
1412 ir_variable *var = ir->var;
1413
1414 if (!entry) {
1415 switch (var->data.mode) {
1416 case ir_var_uniform:
1417 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1418 var->data.location);
1419 this->variables.push_tail(entry);
1420 break;
1421 case ir_var_shader_in:
1422 /* The linker assigns locations for varyings and attributes,
1423 * including deprecated builtins (like gl_Color),
1424 * user-assigned generic attributes (glBindVertexLocation),
1425 * and user-defined varyings.
1426 */
1427 assert(var->data.location != -1);
1428 entry = new(mem_ctx) variable_storage(var,
1429 PROGRAM_INPUT,
1430 var->data.location);
1431 break;
1432 case ir_var_shader_out:
1433 assert(var->data.location != -1);
1434 entry = new(mem_ctx) variable_storage(var,
1435 PROGRAM_OUTPUT,
1436 var->data.location);
1437 break;
1438 case ir_var_system_value:
1439 entry = new(mem_ctx) variable_storage(var,
1440 PROGRAM_SYSTEM_VALUE,
1441 var->data.location);
1442 break;
1443 case ir_var_auto:
1444 case ir_var_temporary:
1445 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1446 this->next_temp);
1447 this->variables.push_tail(entry);
1448
1449 next_temp += type_size(var->type);
1450 break;
1451 }
1452
1453 if (!entry) {
1454 printf("Failed to make storage for %s\n", var->name);
1455 exit(1);
1456 }
1457 }
1458
1459 this->result = src_reg(entry->file, entry->index, var->type);
1460 }
1461
1462 void
1463 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1464 {
1465 ir_constant *index;
1466 src_reg src;
1467 int element_size = type_size(ir->type);
1468
1469 index = ir->array_index->constant_expression_value();
1470
1471 ir->array->accept(this);
1472 src = this->result;
1473
1474 if (index) {
1475 src.index += index->value.i[0] * element_size;
1476 } else {
1477 /* Variable index array dereference. It eats the "vec4" of the
1478 * base of the array and an index that offsets the Mesa register
1479 * index.
1480 */
1481 ir->array_index->accept(this);
1482
1483 src_reg index_reg;
1484
1485 if (element_size == 1) {
1486 index_reg = this->result;
1487 } else {
1488 index_reg = get_temp(glsl_type::float_type);
1489
1490 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1491 this->result, src_reg_for_float(element_size));
1492 }
1493
1494 /* If there was already a relative address register involved, add the
1495 * new and the old together to get the new offset.
1496 */
1497 if (src.reladdr != NULL) {
1498 src_reg accum_reg = get_temp(glsl_type::float_type);
1499
1500 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1501 index_reg, *src.reladdr);
1502
1503 index_reg = accum_reg;
1504 }
1505
1506 src.reladdr = ralloc(mem_ctx, src_reg);
1507 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1508 }
1509
1510 /* If the type is smaller than a vec4, replicate the last channel out. */
1511 if (ir->type->is_scalar() || ir->type->is_vector())
1512 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1513 else
1514 src.swizzle = SWIZZLE_NOOP;
1515
1516 this->result = src;
1517 }
1518
1519 void
1520 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1521 {
1522 unsigned int i;
1523 const glsl_type *struct_type = ir->record->type;
1524 int offset = 0;
1525
1526 ir->record->accept(this);
1527
1528 for (i = 0; i < struct_type->length; i++) {
1529 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1530 break;
1531 offset += type_size(struct_type->fields.structure[i].type);
1532 }
1533
1534 /* If the type is smaller than a vec4, replicate the last channel out. */
1535 if (ir->type->is_scalar() || ir->type->is_vector())
1536 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1537 else
1538 this->result.swizzle = SWIZZLE_NOOP;
1539
1540 this->result.index += offset;
1541 }
1542
1543 /**
1544 * We want to be careful in assignment setup to hit the actual storage
1545 * instead of potentially using a temporary like we might with the
1546 * ir_dereference handler.
1547 */
1548 static dst_reg
1549 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1550 {
1551 /* The LHS must be a dereference. If the LHS is a variable indexed array
1552 * access of a vector, it must be separated into a series conditional moves
1553 * before reaching this point (see ir_vec_index_to_cond_assign).
1554 */
1555 assert(ir->as_dereference());
1556 ir_dereference_array *deref_array = ir->as_dereference_array();
1557 if (deref_array) {
1558 assert(!deref_array->array->type->is_vector());
1559 }
1560
1561 /* Use the rvalue deref handler for the most part. We'll ignore
1562 * swizzles in it and write swizzles using writemask, though.
1563 */
1564 ir->accept(v);
1565 return dst_reg(v->result);
1566 }
1567
1568 /**
1569 * Process the condition of a conditional assignment
1570 *
1571 * Examines the condition of a conditional assignment to generate the optimal
1572 * first operand of a \c CMP instruction. If the condition is a relational
1573 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1574 * used as the source for the \c CMP instruction. Otherwise the comparison
1575 * is processed to a boolean result, and the boolean result is used as the
1576 * operand to the CMP instruction.
1577 */
1578 bool
1579 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1580 {
1581 ir_rvalue *src_ir = ir;
1582 bool negate = true;
1583 bool switch_order = false;
1584
1585 ir_expression *const expr = ir->as_expression();
1586 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1587 bool zero_on_left = false;
1588
1589 if (expr->operands[0]->is_zero()) {
1590 src_ir = expr->operands[1];
1591 zero_on_left = true;
1592 } else if (expr->operands[1]->is_zero()) {
1593 src_ir = expr->operands[0];
1594 zero_on_left = false;
1595 }
1596
1597 /* a is - 0 + - 0 +
1598 * (a < 0) T F F ( a < 0) T F F
1599 * (0 < a) F F T (-a < 0) F F T
1600 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
1601 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
1602 * (a > 0) F F T (-a < 0) F F T
1603 * (0 > a) T F F ( a < 0) T F F
1604 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1605 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1606 *
1607 * Note that exchanging the order of 0 and 'a' in the comparison simply
1608 * means that the value of 'a' should be negated.
1609 */
1610 if (src_ir != ir) {
1611 switch (expr->operation) {
1612 case ir_binop_less:
1613 switch_order = false;
1614 negate = zero_on_left;
1615 break;
1616
1617 case ir_binop_greater:
1618 switch_order = false;
1619 negate = !zero_on_left;
1620 break;
1621
1622 case ir_binop_lequal:
1623 switch_order = true;
1624 negate = !zero_on_left;
1625 break;
1626
1627 case ir_binop_gequal:
1628 switch_order = true;
1629 negate = zero_on_left;
1630 break;
1631
1632 default:
1633 /* This isn't the right kind of comparison afterall, so make sure
1634 * the whole condition is visited.
1635 */
1636 src_ir = ir;
1637 break;
1638 }
1639 }
1640 }
1641
1642 src_ir->accept(this);
1643
1644 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1645 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1646 * choose which value OPCODE_CMP produces without an extra instruction
1647 * computing the condition.
1648 */
1649 if (negate)
1650 this->result.negate = ~this->result.negate;
1651
1652 return switch_order;
1653 }
1654
1655 void
1656 ir_to_mesa_visitor::visit(ir_assignment *ir)
1657 {
1658 dst_reg l;
1659 src_reg r;
1660 int i;
1661
1662 ir->rhs->accept(this);
1663 r = this->result;
1664
1665 l = get_assignment_lhs(ir->lhs, this);
1666
1667 /* FINISHME: This should really set to the correct maximal writemask for each
1668 * FINISHME: component written (in the loops below). This case can only
1669 * FINISHME: occur for matrices, arrays, and structures.
1670 */
1671 if (ir->write_mask == 0) {
1672 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1673 l.writemask = WRITEMASK_XYZW;
1674 } else if (ir->lhs->type->is_scalar()) {
1675 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1676 * FINISHME: W component of fragment shader output zero, work correctly.
1677 */
1678 l.writemask = WRITEMASK_XYZW;
1679 } else {
1680 int swizzles[4];
1681 int first_enabled_chan = 0;
1682 int rhs_chan = 0;
1683
1684 assert(ir->lhs->type->is_vector());
1685 l.writemask = ir->write_mask;
1686
1687 for (int i = 0; i < 4; i++) {
1688 if (l.writemask & (1 << i)) {
1689 first_enabled_chan = GET_SWZ(r.swizzle, i);
1690 break;
1691 }
1692 }
1693
1694 /* Swizzle a small RHS vector into the channels being written.
1695 *
1696 * glsl ir treats write_mask as dictating how many channels are
1697 * present on the RHS while Mesa IR treats write_mask as just
1698 * showing which channels of the vec4 RHS get written.
1699 */
1700 for (int i = 0; i < 4; i++) {
1701 if (l.writemask & (1 << i))
1702 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1703 else
1704 swizzles[i] = first_enabled_chan;
1705 }
1706 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1707 swizzles[2], swizzles[3]);
1708 }
1709
1710 assert(l.file != PROGRAM_UNDEFINED);
1711 assert(r.file != PROGRAM_UNDEFINED);
1712
1713 if (ir->condition) {
1714 const bool switch_order = this->process_move_condition(ir->condition);
1715 src_reg condition = this->result;
1716
1717 for (i = 0; i < type_size(ir->lhs->type); i++) {
1718 if (switch_order) {
1719 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1720 } else {
1721 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1722 }
1723
1724 l.index++;
1725 r.index++;
1726 }
1727 } else {
1728 for (i = 0; i < type_size(ir->lhs->type); i++) {
1729 emit(ir, OPCODE_MOV, l, r);
1730 l.index++;
1731 r.index++;
1732 }
1733 }
1734 }
1735
1736
1737 void
1738 ir_to_mesa_visitor::visit(ir_constant *ir)
1739 {
1740 src_reg src;
1741 GLfloat stack_vals[4] = { 0 };
1742 GLfloat *values = stack_vals;
1743 unsigned int i;
1744
1745 /* Unfortunately, 4 floats is all we can get into
1746 * _mesa_add_unnamed_constant. So, make a temp to store an
1747 * aggregate constant and move each constant value into it. If we
1748 * get lucky, copy propagation will eliminate the extra moves.
1749 */
1750
1751 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1752 src_reg temp_base = get_temp(ir->type);
1753 dst_reg temp = dst_reg(temp_base);
1754
1755 foreach_in_list(ir_constant, field_value, &ir->components) {
1756 int size = type_size(field_value->type);
1757
1758 assert(size > 0);
1759
1760 field_value->accept(this);
1761 src = this->result;
1762
1763 for (i = 0; i < (unsigned int)size; i++) {
1764 emit(ir, OPCODE_MOV, temp, src);
1765
1766 src.index++;
1767 temp.index++;
1768 }
1769 }
1770 this->result = temp_base;
1771 return;
1772 }
1773
1774 if (ir->type->is_array()) {
1775 src_reg temp_base = get_temp(ir->type);
1776 dst_reg temp = dst_reg(temp_base);
1777 int size = type_size(ir->type->fields.array);
1778
1779 assert(size > 0);
1780
1781 for (i = 0; i < ir->type->length; i++) {
1782 ir->array_elements[i]->accept(this);
1783 src = this->result;
1784 for (int j = 0; j < size; j++) {
1785 emit(ir, OPCODE_MOV, temp, src);
1786
1787 src.index++;
1788 temp.index++;
1789 }
1790 }
1791 this->result = temp_base;
1792 return;
1793 }
1794
1795 if (ir->type->is_matrix()) {
1796 src_reg mat = get_temp(ir->type);
1797 dst_reg mat_column = dst_reg(mat);
1798
1799 for (i = 0; i < ir->type->matrix_columns; i++) {
1800 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
1801 values = &ir->value.f[i * ir->type->vector_elements];
1802
1803 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1804 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1805 (gl_constant_value *) values,
1806 ir->type->vector_elements,
1807 &src.swizzle);
1808 emit(ir, OPCODE_MOV, mat_column, src);
1809
1810 mat_column.index++;
1811 }
1812
1813 this->result = mat;
1814 return;
1815 }
1816
1817 src.file = PROGRAM_CONSTANT;
1818 switch (ir->type->base_type) {
1819 case GLSL_TYPE_FLOAT:
1820 values = &ir->value.f[0];
1821 break;
1822 case GLSL_TYPE_UINT:
1823 for (i = 0; i < ir->type->vector_elements; i++) {
1824 values[i] = ir->value.u[i];
1825 }
1826 break;
1827 case GLSL_TYPE_INT:
1828 for (i = 0; i < ir->type->vector_elements; i++) {
1829 values[i] = ir->value.i[i];
1830 }
1831 break;
1832 case GLSL_TYPE_BOOL:
1833 for (i = 0; i < ir->type->vector_elements; i++) {
1834 values[i] = ir->value.b[i];
1835 }
1836 break;
1837 default:
1838 assert(!"Non-float/uint/int/bool constant");
1839 }
1840
1841 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1842 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1843 (gl_constant_value *) values,
1844 ir->type->vector_elements,
1845 &this->result.swizzle);
1846 }
1847
1848 void
1849 ir_to_mesa_visitor::visit(ir_call *)
1850 {
1851 assert(!"ir_to_mesa: All function calls should have been inlined by now.");
1852 }
1853
1854 void
1855 ir_to_mesa_visitor::visit(ir_texture *ir)
1856 {
1857 src_reg result_src, coord, lod_info, projector, dx, dy;
1858 dst_reg result_dst, coord_dst;
1859 ir_to_mesa_instruction *inst = NULL;
1860 prog_opcode opcode = OPCODE_NOP;
1861
1862 if (ir->op == ir_txs)
1863 this->result = src_reg_for_float(0.0);
1864 else
1865 ir->coordinate->accept(this);
1866
1867 /* Put our coords in a temp. We'll need to modify them for shadow,
1868 * projection, or LOD, so the only case we'd use it as is is if
1869 * we're doing plain old texturing. Mesa IR optimization should
1870 * handle cleaning up our mess in that case.
1871 */
1872 coord = get_temp(glsl_type::vec4_type);
1873 coord_dst = dst_reg(coord);
1874 emit(ir, OPCODE_MOV, coord_dst, this->result);
1875
1876 if (ir->projector) {
1877 ir->projector->accept(this);
1878 projector = this->result;
1879 }
1880
1881 /* Storage for our result. Ideally for an assignment we'd be using
1882 * the actual storage for the result here, instead.
1883 */
1884 result_src = get_temp(glsl_type::vec4_type);
1885 result_dst = dst_reg(result_src);
1886
1887 switch (ir->op) {
1888 case ir_tex:
1889 case ir_txs:
1890 opcode = OPCODE_TEX;
1891 break;
1892 case ir_txb:
1893 opcode = OPCODE_TXB;
1894 ir->lod_info.bias->accept(this);
1895 lod_info = this->result;
1896 break;
1897 case ir_txf:
1898 /* Pretend to be TXL so the sampler, coordinate, lod are available */
1899 case ir_txl:
1900 opcode = OPCODE_TXL;
1901 ir->lod_info.lod->accept(this);
1902 lod_info = this->result;
1903 break;
1904 case ir_txd:
1905 opcode = OPCODE_TXD;
1906 ir->lod_info.grad.dPdx->accept(this);
1907 dx = this->result;
1908 ir->lod_info.grad.dPdy->accept(this);
1909 dy = this->result;
1910 break;
1911 case ir_txf_ms:
1912 assert(!"Unexpected ir_txf_ms opcode");
1913 break;
1914 case ir_lod:
1915 assert(!"Unexpected ir_lod opcode");
1916 break;
1917 case ir_tg4:
1918 assert(!"Unexpected ir_tg4 opcode");
1919 break;
1920 case ir_query_levels:
1921 assert(!"Unexpected ir_query_levels opcode");
1922 break;
1923 case ir_texture_samples:
1924 unreachable("Unexpected ir_texture_samples opcode");
1925 }
1926
1927 const glsl_type *sampler_type = ir->sampler->type;
1928
1929 if (ir->projector) {
1930 if (opcode == OPCODE_TEX) {
1931 /* Slot the projector in as the last component of the coord. */
1932 coord_dst.writemask = WRITEMASK_W;
1933 emit(ir, OPCODE_MOV, coord_dst, projector);
1934 coord_dst.writemask = WRITEMASK_XYZW;
1935 opcode = OPCODE_TXP;
1936 } else {
1937 src_reg coord_w = coord;
1938 coord_w.swizzle = SWIZZLE_WWWW;
1939
1940 /* For the other TEX opcodes there's no projective version
1941 * since the last slot is taken up by lod info. Do the
1942 * projective divide now.
1943 */
1944 coord_dst.writemask = WRITEMASK_W;
1945 emit(ir, OPCODE_RCP, coord_dst, projector);
1946
1947 /* In the case where we have to project the coordinates "by hand,"
1948 * the shadow comparitor value must also be projected.
1949 */
1950 src_reg tmp_src = coord;
1951 if (ir->shadow_comparitor) {
1952 /* Slot the shadow value in as the second to last component of the
1953 * coord.
1954 */
1955 ir->shadow_comparitor->accept(this);
1956
1957 tmp_src = get_temp(glsl_type::vec4_type);
1958 dst_reg tmp_dst = dst_reg(tmp_src);
1959
1960 /* Projective division not allowed for array samplers. */
1961 assert(!sampler_type->sampler_array);
1962
1963 tmp_dst.writemask = WRITEMASK_Z;
1964 emit(ir, OPCODE_MOV, tmp_dst, this->result);
1965
1966 tmp_dst.writemask = WRITEMASK_XY;
1967 emit(ir, OPCODE_MOV, tmp_dst, coord);
1968 }
1969
1970 coord_dst.writemask = WRITEMASK_XYZ;
1971 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
1972
1973 coord_dst.writemask = WRITEMASK_XYZW;
1974 coord.swizzle = SWIZZLE_XYZW;
1975 }
1976 }
1977
1978 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
1979 * comparitor was put in the correct place (and projected) by the code,
1980 * above, that handles by-hand projection.
1981 */
1982 if (ir->shadow_comparitor && (!ir->projector || opcode == OPCODE_TXP)) {
1983 /* Slot the shadow value in as the second to last component of the
1984 * coord.
1985 */
1986 ir->shadow_comparitor->accept(this);
1987
1988 /* XXX This will need to be updated for cubemap array samplers. */
1989 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
1990 sampler_type->sampler_array) {
1991 coord_dst.writemask = WRITEMASK_W;
1992 } else {
1993 coord_dst.writemask = WRITEMASK_Z;
1994 }
1995
1996 emit(ir, OPCODE_MOV, coord_dst, this->result);
1997 coord_dst.writemask = WRITEMASK_XYZW;
1998 }
1999
2000 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2001 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2002 coord_dst.writemask = WRITEMASK_W;
2003 emit(ir, OPCODE_MOV, coord_dst, lod_info);
2004 coord_dst.writemask = WRITEMASK_XYZW;
2005 }
2006
2007 if (opcode == OPCODE_TXD)
2008 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2009 else
2010 inst = emit(ir, opcode, result_dst, coord);
2011
2012 if (ir->shadow_comparitor)
2013 inst->tex_shadow = GL_TRUE;
2014
2015 inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2016 this->shader_program,
2017 this->prog);
2018
2019 switch (sampler_type->sampler_dimensionality) {
2020 case GLSL_SAMPLER_DIM_1D:
2021 inst->tex_target = (sampler_type->sampler_array)
2022 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2023 break;
2024 case GLSL_SAMPLER_DIM_2D:
2025 inst->tex_target = (sampler_type->sampler_array)
2026 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2027 break;
2028 case GLSL_SAMPLER_DIM_3D:
2029 inst->tex_target = TEXTURE_3D_INDEX;
2030 break;
2031 case GLSL_SAMPLER_DIM_CUBE:
2032 inst->tex_target = TEXTURE_CUBE_INDEX;
2033 break;
2034 case GLSL_SAMPLER_DIM_RECT:
2035 inst->tex_target = TEXTURE_RECT_INDEX;
2036 break;
2037 case GLSL_SAMPLER_DIM_BUF:
2038 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2039 break;
2040 case GLSL_SAMPLER_DIM_EXTERNAL:
2041 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2042 break;
2043 default:
2044 assert(!"Should not get here.");
2045 }
2046
2047 this->result = result_src;
2048 }
2049
2050 void
2051 ir_to_mesa_visitor::visit(ir_return *ir)
2052 {
2053 /* Non-void functions should have been inlined. We may still emit RETs
2054 * from main() unless the EmitNoMainReturn option is set.
2055 */
2056 assert(!ir->get_value());
2057 emit(ir, OPCODE_RET);
2058 }
2059
2060 void
2061 ir_to_mesa_visitor::visit(ir_discard *ir)
2062 {
2063 if (ir->condition) {
2064 ir->condition->accept(this);
2065 this->result.negate = ~this->result.negate;
2066 emit(ir, OPCODE_KIL, undef_dst, this->result);
2067 } else {
2068 emit(ir, OPCODE_KIL_NV);
2069 }
2070 }
2071
2072 void
2073 ir_to_mesa_visitor::visit(ir_if *ir)
2074 {
2075 ir_to_mesa_instruction *cond_inst, *if_inst;
2076 ir_to_mesa_instruction *prev_inst;
2077
2078 prev_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2079
2080 ir->condition->accept(this);
2081 assert(this->result.file != PROGRAM_UNDEFINED);
2082
2083 if (this->options->EmitCondCodes) {
2084 cond_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2085
2086 /* See if we actually generated any instruction for generating
2087 * the condition. If not, then cook up a move to a temp so we
2088 * have something to set cond_update on.
2089 */
2090 if (cond_inst == prev_inst) {
2091 src_reg temp = get_temp(glsl_type::bool_type);
2092 cond_inst = emit(ir->condition, OPCODE_MOV, dst_reg(temp), result);
2093 }
2094 cond_inst->cond_update = GL_TRUE;
2095
2096 if_inst = emit(ir->condition, OPCODE_IF);
2097 if_inst->dst.cond_mask = COND_NE;
2098 } else {
2099 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2100 }
2101
2102 this->instructions.push_tail(if_inst);
2103
2104 visit_exec_list(&ir->then_instructions, this);
2105
2106 if (!ir->else_instructions.is_empty()) {
2107 emit(ir->condition, OPCODE_ELSE);
2108 visit_exec_list(&ir->else_instructions, this);
2109 }
2110
2111 emit(ir->condition, OPCODE_ENDIF);
2112 }
2113
2114 void
2115 ir_to_mesa_visitor::visit(ir_emit_vertex *)
2116 {
2117 assert(!"Geometry shaders not supported.");
2118 }
2119
2120 void
2121 ir_to_mesa_visitor::visit(ir_end_primitive *)
2122 {
2123 assert(!"Geometry shaders not supported.");
2124 }
2125
2126 void
2127 ir_to_mesa_visitor::visit(ir_barrier *)
2128 {
2129 unreachable("GLSL barrier() not supported.");
2130 }
2131
2132 ir_to_mesa_visitor::ir_to_mesa_visitor()
2133 {
2134 result.file = PROGRAM_UNDEFINED;
2135 next_temp = 1;
2136 next_signature_id = 1;
2137 current_function = NULL;
2138 mem_ctx = ralloc_context(NULL);
2139 }
2140
2141 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2142 {
2143 ralloc_free(mem_ctx);
2144 }
2145
2146 static struct prog_src_register
2147 mesa_src_reg_from_ir_src_reg(src_reg reg)
2148 {
2149 struct prog_src_register mesa_reg;
2150
2151 mesa_reg.File = reg.file;
2152 assert(reg.index < (1 << INST_INDEX_BITS));
2153 mesa_reg.Index = reg.index;
2154 mesa_reg.Swizzle = reg.swizzle;
2155 mesa_reg.RelAddr = reg.reladdr != NULL;
2156 mesa_reg.Negate = reg.negate;
2157 mesa_reg.Abs = 0;
2158 mesa_reg.HasIndex2 = GL_FALSE;
2159 mesa_reg.RelAddr2 = 0;
2160 mesa_reg.Index2 = 0;
2161
2162 return mesa_reg;
2163 }
2164
2165 static void
2166 set_branchtargets(ir_to_mesa_visitor *v,
2167 struct prog_instruction *mesa_instructions,
2168 int num_instructions)
2169 {
2170 int if_count = 0, loop_count = 0;
2171 int *if_stack, *loop_stack;
2172 int if_stack_pos = 0, loop_stack_pos = 0;
2173 int i, j;
2174
2175 for (i = 0; i < num_instructions; i++) {
2176 switch (mesa_instructions[i].Opcode) {
2177 case OPCODE_IF:
2178 if_count++;
2179 break;
2180 case OPCODE_BGNLOOP:
2181 loop_count++;
2182 break;
2183 case OPCODE_BRK:
2184 case OPCODE_CONT:
2185 mesa_instructions[i].BranchTarget = -1;
2186 break;
2187 default:
2188 break;
2189 }
2190 }
2191
2192 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2193 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2194
2195 for (i = 0; i < num_instructions; i++) {
2196 switch (mesa_instructions[i].Opcode) {
2197 case OPCODE_IF:
2198 if_stack[if_stack_pos] = i;
2199 if_stack_pos++;
2200 break;
2201 case OPCODE_ELSE:
2202 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2203 if_stack[if_stack_pos - 1] = i;
2204 break;
2205 case OPCODE_ENDIF:
2206 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2207 if_stack_pos--;
2208 break;
2209 case OPCODE_BGNLOOP:
2210 loop_stack[loop_stack_pos] = i;
2211 loop_stack_pos++;
2212 break;
2213 case OPCODE_ENDLOOP:
2214 loop_stack_pos--;
2215 /* Rewrite any breaks/conts at this nesting level (haven't
2216 * already had a BranchTarget assigned) to point to the end
2217 * of the loop.
2218 */
2219 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2220 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2221 mesa_instructions[j].Opcode == OPCODE_CONT) {
2222 if (mesa_instructions[j].BranchTarget == -1) {
2223 mesa_instructions[j].BranchTarget = i;
2224 }
2225 }
2226 }
2227 /* The loop ends point at each other. */
2228 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2229 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2230 break;
2231 case OPCODE_CAL:
2232 foreach_in_list(function_entry, entry, &v->function_signatures) {
2233 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2234 mesa_instructions[i].BranchTarget = entry->inst;
2235 break;
2236 }
2237 }
2238 break;
2239 default:
2240 break;
2241 }
2242 }
2243 }
2244
2245 static void
2246 print_program(struct prog_instruction *mesa_instructions,
2247 ir_instruction **mesa_instruction_annotation,
2248 int num_instructions)
2249 {
2250 ir_instruction *last_ir = NULL;
2251 int i;
2252 int indent = 0;
2253
2254 for (i = 0; i < num_instructions; i++) {
2255 struct prog_instruction *mesa_inst = mesa_instructions + i;
2256 ir_instruction *ir = mesa_instruction_annotation[i];
2257
2258 fprintf(stdout, "%3d: ", i);
2259
2260 if (last_ir != ir && ir) {
2261 int j;
2262
2263 for (j = 0; j < indent; j++) {
2264 fprintf(stdout, " ");
2265 }
2266 ir->print();
2267 printf("\n");
2268 last_ir = ir;
2269
2270 fprintf(stdout, " "); /* line number spacing. */
2271 }
2272
2273 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2274 PROG_PRINT_DEBUG, NULL);
2275 }
2276 }
2277
2278 namespace {
2279
2280 class add_uniform_to_shader : public program_resource_visitor {
2281 public:
2282 add_uniform_to_shader(struct gl_shader_program *shader_program,
2283 struct gl_program_parameter_list *params,
2284 gl_shader_stage shader_type)
2285 : shader_program(shader_program), params(params), idx(-1),
2286 shader_type(shader_type)
2287 {
2288 /* empty */
2289 }
2290
2291 void process(ir_variable *var)
2292 {
2293 this->idx = -1;
2294 this->program_resource_visitor::process(var);
2295
2296 var->data.location = this->idx;
2297 }
2298
2299 private:
2300 virtual void visit_field(const glsl_type *type, const char *name,
2301 bool row_major);
2302
2303 struct gl_shader_program *shader_program;
2304 struct gl_program_parameter_list *params;
2305 int idx;
2306 gl_shader_stage shader_type;
2307 };
2308
2309 } /* anonymous namespace */
2310
2311 void
2312 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2313 bool row_major)
2314 {
2315 unsigned int size;
2316
2317 (void) row_major;
2318
2319 if (type->is_vector() || type->is_scalar()) {
2320 size = type->vector_elements;
2321 if (type->is_double())
2322 size *= 2;
2323 } else {
2324 size = type_size(type) * 4;
2325 }
2326
2327 gl_register_file file;
2328 if (type->without_array()->is_sampler()) {
2329 file = PROGRAM_SAMPLER;
2330 } else {
2331 file = PROGRAM_UNIFORM;
2332 }
2333
2334 int index = _mesa_lookup_parameter_index(params, -1, name);
2335 if (index < 0) {
2336 index = _mesa_add_parameter(params, file, name, size, type->gl_type,
2337 NULL, NULL);
2338
2339 /* Sampler uniform values are stored in prog->SamplerUnits,
2340 * and the entry in that array is selected by this index we
2341 * store in ParameterValues[].
2342 */
2343 if (file == PROGRAM_SAMPLER) {
2344 unsigned location;
2345 const bool found =
2346 this->shader_program->UniformHash->get(location,
2347 params->Parameters[index].Name);
2348 assert(found);
2349
2350 if (!found)
2351 return;
2352
2353 struct gl_uniform_storage *storage =
2354 &this->shader_program->UniformStorage[location];
2355
2356 assert(storage->type->is_sampler() &&
2357 storage->opaque[shader_type].active);
2358
2359 for (unsigned int j = 0; j < size / 4; j++)
2360 params->ParameterValues[index + j][0].f =
2361 storage->opaque[shader_type].index + j;
2362 }
2363 }
2364
2365 /* The first part of the uniform that's processed determines the base
2366 * location of the whole uniform (for structures).
2367 */
2368 if (this->idx < 0)
2369 this->idx = index;
2370 }
2371
2372 /**
2373 * Generate the program parameters list for the user uniforms in a shader
2374 *
2375 * \param shader_program Linked shader program. This is only used to
2376 * emit possible link errors to the info log.
2377 * \param sh Shader whose uniforms are to be processed.
2378 * \param params Parameter list to be filled in.
2379 */
2380 void
2381 _mesa_generate_parameters_list_for_uniforms(struct gl_shader_program
2382 *shader_program,
2383 struct gl_shader *sh,
2384 struct gl_program_parameter_list
2385 *params)
2386 {
2387 add_uniform_to_shader add(shader_program, params, sh->Stage);
2388
2389 foreach_in_list(ir_instruction, node, sh->ir) {
2390 ir_variable *var = node->as_variable();
2391
2392 if ((var == NULL) || (var->data.mode != ir_var_uniform)
2393 || var->is_in_buffer_block() || (strncmp(var->name, "gl_", 3) == 0))
2394 continue;
2395
2396 add.process(var);
2397 }
2398 }
2399
2400 void
2401 _mesa_associate_uniform_storage(struct gl_context *ctx,
2402 struct gl_shader_program *shader_program,
2403 struct gl_program_parameter_list *params)
2404 {
2405 /* After adding each uniform to the parameter list, connect the storage for
2406 * the parameter with the tracking structure used by the API for the
2407 * uniform.
2408 */
2409 unsigned last_location = unsigned(~0);
2410 for (unsigned i = 0; i < params->NumParameters; i++) {
2411 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2412 continue;
2413
2414 unsigned location;
2415 const bool found =
2416 shader_program->UniformHash->get(location, params->Parameters[i].Name);
2417 assert(found);
2418
2419 if (!found)
2420 continue;
2421
2422 struct gl_uniform_storage *storage =
2423 &shader_program->UniformStorage[location];
2424
2425 /* Do not associate any uniform storage to built-in uniforms */
2426 if (storage->builtin)
2427 continue;
2428
2429 if (location != last_location) {
2430 enum gl_uniform_driver_format format = uniform_native;
2431
2432 unsigned columns = 0;
2433 int dmul = 4 * sizeof(float);
2434 switch (storage->type->base_type) {
2435 case GLSL_TYPE_UINT:
2436 assert(ctx->Const.NativeIntegers);
2437 format = uniform_native;
2438 columns = 1;
2439 break;
2440 case GLSL_TYPE_INT:
2441 format =
2442 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2443 columns = 1;
2444 break;
2445
2446 case GLSL_TYPE_DOUBLE:
2447 if (storage->type->vector_elements > 2)
2448 dmul *= 2;
2449 /* fallthrough */
2450 case GLSL_TYPE_FLOAT:
2451 format = uniform_native;
2452 columns = storage->type->matrix_columns;
2453 break;
2454 case GLSL_TYPE_BOOL:
2455 format = uniform_native;
2456 columns = 1;
2457 break;
2458 case GLSL_TYPE_SAMPLER:
2459 case GLSL_TYPE_IMAGE:
2460 case GLSL_TYPE_SUBROUTINE:
2461 format = uniform_native;
2462 columns = 1;
2463 break;
2464 case GLSL_TYPE_ATOMIC_UINT:
2465 case GLSL_TYPE_ARRAY:
2466 case GLSL_TYPE_VOID:
2467 case GLSL_TYPE_STRUCT:
2468 case GLSL_TYPE_ERROR:
2469 case GLSL_TYPE_INTERFACE:
2470 case GLSL_TYPE_FUNCTION:
2471 assert(!"Should not get here.");
2472 break;
2473 }
2474
2475 _mesa_uniform_attach_driver_storage(storage,
2476 dmul * columns,
2477 dmul,
2478 format,
2479 &params->ParameterValues[i]);
2480
2481 /* After attaching the driver's storage to the uniform, propagate any
2482 * data from the linker's backing store. This will cause values from
2483 * initializers in the source code to be copied over.
2484 */
2485 _mesa_propagate_uniforms_to_driver_storage(storage,
2486 0,
2487 MAX2(1, storage->array_elements));
2488
2489 last_location = location;
2490 }
2491 }
2492 }
2493
2494 /*
2495 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2496 * channels for copy propagation and updates following instructions to
2497 * use the original versions.
2498 *
2499 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2500 * will occur. As an example, a TXP production before this pass:
2501 *
2502 * 0: MOV TEMP[1], INPUT[4].xyyy;
2503 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2504 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2505 *
2506 * and after:
2507 *
2508 * 0: MOV TEMP[1], INPUT[4].xyyy;
2509 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2510 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2511 *
2512 * which allows for dead code elimination on TEMP[1]'s writes.
2513 */
2514 void
2515 ir_to_mesa_visitor::copy_propagate(void)
2516 {
2517 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2518 ir_to_mesa_instruction *,
2519 this->next_temp * 4);
2520 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2521 int level = 0;
2522
2523 foreach_in_list(ir_to_mesa_instruction, inst, &this->instructions) {
2524 assert(inst->dst.file != PROGRAM_TEMPORARY
2525 || inst->dst.index < this->next_temp);
2526
2527 /* First, do any copy propagation possible into the src regs. */
2528 for (int r = 0; r < 3; r++) {
2529 ir_to_mesa_instruction *first = NULL;
2530 bool good = true;
2531 int acp_base = inst->src[r].index * 4;
2532
2533 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2534 inst->src[r].reladdr)
2535 continue;
2536
2537 /* See if we can find entries in the ACP consisting of MOVs
2538 * from the same src register for all the swizzled channels
2539 * of this src register reference.
2540 */
2541 for (int i = 0; i < 4; i++) {
2542 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2543 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2544
2545 if (!copy_chan) {
2546 good = false;
2547 break;
2548 }
2549
2550 assert(acp_level[acp_base + src_chan] <= level);
2551
2552 if (!first) {
2553 first = copy_chan;
2554 } else {
2555 if (first->src[0].file != copy_chan->src[0].file ||
2556 first->src[0].index != copy_chan->src[0].index) {
2557 good = false;
2558 break;
2559 }
2560 }
2561 }
2562
2563 if (good) {
2564 /* We've now validated that we can copy-propagate to
2565 * replace this src register reference. Do it.
2566 */
2567 inst->src[r].file = first->src[0].file;
2568 inst->src[r].index = first->src[0].index;
2569
2570 int swizzle = 0;
2571 for (int i = 0; i < 4; i++) {
2572 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2573 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2574 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2575 (3 * i));
2576 }
2577 inst->src[r].swizzle = swizzle;
2578 }
2579 }
2580
2581 switch (inst->op) {
2582 case OPCODE_BGNLOOP:
2583 case OPCODE_ENDLOOP:
2584 /* End of a basic block, clear the ACP entirely. */
2585 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2586 break;
2587
2588 case OPCODE_IF:
2589 ++level;
2590 break;
2591
2592 case OPCODE_ENDIF:
2593 case OPCODE_ELSE:
2594 /* Clear all channels written inside the block from the ACP, but
2595 * leaving those that were not touched.
2596 */
2597 for (int r = 0; r < this->next_temp; r++) {
2598 for (int c = 0; c < 4; c++) {
2599 if (!acp[4 * r + c])
2600 continue;
2601
2602 if (acp_level[4 * r + c] >= level)
2603 acp[4 * r + c] = NULL;
2604 }
2605 }
2606 if (inst->op == OPCODE_ENDIF)
2607 --level;
2608 break;
2609
2610 default:
2611 /* Continuing the block, clear any written channels from
2612 * the ACP.
2613 */
2614 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2615 /* Any temporary might be written, so no copy propagation
2616 * across this instruction.
2617 */
2618 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2619 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2620 inst->dst.reladdr) {
2621 /* Any output might be written, so no copy propagation
2622 * from outputs across this instruction.
2623 */
2624 for (int r = 0; r < this->next_temp; r++) {
2625 for (int c = 0; c < 4; c++) {
2626 if (!acp[4 * r + c])
2627 continue;
2628
2629 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2630 acp[4 * r + c] = NULL;
2631 }
2632 }
2633 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2634 inst->dst.file == PROGRAM_OUTPUT) {
2635 /* Clear where it's used as dst. */
2636 if (inst->dst.file == PROGRAM_TEMPORARY) {
2637 for (int c = 0; c < 4; c++) {
2638 if (inst->dst.writemask & (1 << c)) {
2639 acp[4 * inst->dst.index + c] = NULL;
2640 }
2641 }
2642 }
2643
2644 /* Clear where it's used as src. */
2645 for (int r = 0; r < this->next_temp; r++) {
2646 for (int c = 0; c < 4; c++) {
2647 if (!acp[4 * r + c])
2648 continue;
2649
2650 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2651
2652 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2653 acp[4 * r + c]->src[0].index == inst->dst.index &&
2654 inst->dst.writemask & (1 << src_chan))
2655 {
2656 acp[4 * r + c] = NULL;
2657 }
2658 }
2659 }
2660 }
2661 break;
2662 }
2663
2664 /* If this is a copy, add it to the ACP. */
2665 if (inst->op == OPCODE_MOV &&
2666 inst->dst.file == PROGRAM_TEMPORARY &&
2667 !(inst->dst.file == inst->src[0].file &&
2668 inst->dst.index == inst->src[0].index) &&
2669 !inst->dst.reladdr &&
2670 !inst->saturate &&
2671 !inst->src[0].reladdr &&
2672 !inst->src[0].negate) {
2673 for (int i = 0; i < 4; i++) {
2674 if (inst->dst.writemask & (1 << i)) {
2675 acp[4 * inst->dst.index + i] = inst;
2676 acp_level[4 * inst->dst.index + i] = level;
2677 }
2678 }
2679 }
2680 }
2681
2682 ralloc_free(acp_level);
2683 ralloc_free(acp);
2684 }
2685
2686
2687 /**
2688 * Convert a shader's GLSL IR into a Mesa gl_program.
2689 */
2690 static struct gl_program *
2691 get_mesa_program(struct gl_context *ctx,
2692 struct gl_shader_program *shader_program,
2693 struct gl_shader *shader)
2694 {
2695 ir_to_mesa_visitor v;
2696 struct prog_instruction *mesa_instructions, *mesa_inst;
2697 ir_instruction **mesa_instruction_annotation;
2698 int i;
2699 struct gl_program *prog;
2700 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
2701 const char *target_string = _mesa_shader_stage_to_string(shader->Stage);
2702 struct gl_shader_compiler_options *options =
2703 &ctx->Const.ShaderCompilerOptions[shader->Stage];
2704
2705 validate_ir_tree(shader->ir);
2706
2707 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
2708 if (!prog)
2709 return NULL;
2710 prog->Parameters = _mesa_new_parameter_list();
2711 v.ctx = ctx;
2712 v.prog = prog;
2713 v.shader_program = shader_program;
2714 v.options = options;
2715
2716 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
2717 prog->Parameters);
2718
2719 /* Emit Mesa IR for main(). */
2720 visit_exec_list(shader->ir, &v);
2721 v.emit(NULL, OPCODE_END);
2722
2723 prog->NumTemporaries = v.next_temp;
2724
2725 unsigned num_instructions = v.instructions.length();
2726
2727 mesa_instructions =
2728 (struct prog_instruction *)calloc(num_instructions,
2729 sizeof(*mesa_instructions));
2730 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2731 num_instructions);
2732
2733 v.copy_propagate();
2734
2735 /* Convert ir_mesa_instructions into prog_instructions.
2736 */
2737 mesa_inst = mesa_instructions;
2738 i = 0;
2739 foreach_in_list(const ir_to_mesa_instruction, inst, &v.instructions) {
2740 mesa_inst->Opcode = inst->op;
2741 mesa_inst->CondUpdate = inst->cond_update;
2742 if (inst->saturate)
2743 mesa_inst->Saturate = GL_TRUE;
2744 mesa_inst->DstReg.File = inst->dst.file;
2745 mesa_inst->DstReg.Index = inst->dst.index;
2746 mesa_inst->DstReg.CondMask = inst->dst.cond_mask;
2747 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2748 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2749 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2750 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2751 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2752 mesa_inst->TexSrcUnit = inst->sampler;
2753 mesa_inst->TexSrcTarget = inst->tex_target;
2754 mesa_inst->TexShadow = inst->tex_shadow;
2755 mesa_instruction_annotation[i] = inst->ir;
2756
2757 /* Set IndirectRegisterFiles. */
2758 if (mesa_inst->DstReg.RelAddr)
2759 prog->IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2760
2761 /* Update program's bitmask of indirectly accessed register files */
2762 for (unsigned src = 0; src < 3; src++)
2763 if (mesa_inst->SrcReg[src].RelAddr)
2764 prog->IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2765
2766 switch (mesa_inst->Opcode) {
2767 case OPCODE_IF:
2768 if (options->MaxIfDepth == 0) {
2769 linker_warning(shader_program,
2770 "Couldn't flatten if-statement. "
2771 "This will likely result in software "
2772 "rasterization.\n");
2773 }
2774 break;
2775 case OPCODE_BGNLOOP:
2776 if (options->EmitNoLoops) {
2777 linker_warning(shader_program,
2778 "Couldn't unroll loop. "
2779 "This will likely result in software "
2780 "rasterization.\n");
2781 }
2782 break;
2783 case OPCODE_CONT:
2784 if (options->EmitNoCont) {
2785 linker_warning(shader_program,
2786 "Couldn't lower continue-statement. "
2787 "This will likely result in software "
2788 "rasterization.\n");
2789 }
2790 break;
2791 case OPCODE_ARL:
2792 prog->NumAddressRegs = 1;
2793 break;
2794 default:
2795 break;
2796 }
2797
2798 mesa_inst++;
2799 i++;
2800
2801 if (!shader_program->LinkStatus)
2802 break;
2803 }
2804
2805 if (!shader_program->LinkStatus) {
2806 goto fail_exit;
2807 }
2808
2809 set_branchtargets(&v, mesa_instructions, num_instructions);
2810
2811 if (ctx->_Shader->Flags & GLSL_DUMP) {
2812 fprintf(stderr, "\n");
2813 fprintf(stderr, "GLSL IR for linked %s program %d:\n", target_string,
2814 shader_program->Name);
2815 _mesa_print_ir(stderr, shader->ir, NULL);
2816 fprintf(stderr, "\n");
2817 fprintf(stderr, "\n");
2818 fprintf(stderr, "Mesa IR for linked %s program %d:\n", target_string,
2819 shader_program->Name);
2820 print_program(mesa_instructions, mesa_instruction_annotation,
2821 num_instructions);
2822 fflush(stderr);
2823 }
2824
2825 prog->Instructions = mesa_instructions;
2826 prog->NumInstructions = num_instructions;
2827
2828 /* Setting this to NULL prevents a possible double free in the fail_exit
2829 * path (far below).
2830 */
2831 mesa_instructions = NULL;
2832
2833 do_set_program_inouts(shader->ir, prog, shader->Stage);
2834
2835 prog->SamplersUsed = shader->active_samplers;
2836 prog->ShadowSamplers = shader->shadow_samplers;
2837 _mesa_update_shader_textures_used(shader_program, prog);
2838
2839 /* Set the gl_FragDepth layout. */
2840 if (target == GL_FRAGMENT_PROGRAM_ARB) {
2841 struct gl_fragment_program *fp = (struct gl_fragment_program *)prog;
2842 fp->FragDepthLayout = shader_program->FragDepthLayout;
2843 }
2844
2845 _mesa_reference_program(ctx, &shader->Program, prog);
2846
2847 if ((ctx->_Shader->Flags & GLSL_NO_OPT) == 0) {
2848 _mesa_optimize_program(ctx, prog);
2849 }
2850
2851 /* This has to be done last. Any operation that can cause
2852 * prog->ParameterValues to get reallocated (e.g., anything that adds a
2853 * program constant) has to happen before creating this linkage.
2854 */
2855 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
2856 if (!shader_program->LinkStatus) {
2857 goto fail_exit;
2858 }
2859
2860 return prog;
2861
2862 fail_exit:
2863 free(mesa_instructions);
2864 _mesa_reference_program(ctx, &shader->Program, NULL);
2865 return NULL;
2866 }
2867
2868 extern "C" {
2869
2870 /**
2871 * Link a shader.
2872 * Called via ctx->Driver.LinkShader()
2873 * This actually involves converting GLSL IR into Mesa gl_programs with
2874 * code lowering and other optimizations.
2875 */
2876 GLboolean
2877 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
2878 {
2879 assert(prog->LinkStatus);
2880
2881 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2882 if (prog->_LinkedShaders[i] == NULL)
2883 continue;
2884
2885 bool progress;
2886 exec_list *ir = prog->_LinkedShaders[i]->ir;
2887 const struct gl_shader_compiler_options *options =
2888 &ctx->Const.ShaderCompilerOptions[prog->_LinkedShaders[i]->Stage];
2889
2890 do {
2891 progress = false;
2892
2893 /* Lowering */
2894 do_mat_op_to_vec(ir);
2895 lower_instructions(ir, (MOD_TO_FLOOR | DIV_TO_MUL_RCP | EXP_TO_EXP2
2896 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
2897 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
2898
2899 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
2900
2901 progress = do_common_optimization(ir, true, true,
2902 options, ctx->Const.NativeIntegers)
2903 || progress;
2904
2905 progress = lower_quadop_vector(ir, true) || progress;
2906
2907 if (options->MaxIfDepth == 0)
2908 progress = lower_discard(ir) || progress;
2909
2910 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
2911
2912 if (options->EmitNoNoise)
2913 progress = lower_noise(ir) || progress;
2914
2915 /* If there are forms of indirect addressing that the driver
2916 * cannot handle, perform the lowering pass.
2917 */
2918 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
2919 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
2920 progress =
2921 lower_variable_index_to_cond_assign(prog->_LinkedShaders[i]->Stage, ir,
2922 options->EmitNoIndirectInput,
2923 options->EmitNoIndirectOutput,
2924 options->EmitNoIndirectTemp,
2925 options->EmitNoIndirectUniform)
2926 || progress;
2927
2928 progress = do_vec_index_to_cond_assign(ir) || progress;
2929 progress = lower_vector_insert(ir, true) || progress;
2930 } while (progress);
2931
2932 validate_ir_tree(ir);
2933 }
2934
2935 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2936 struct gl_program *linked_prog;
2937
2938 if (prog->_LinkedShaders[i] == NULL)
2939 continue;
2940
2941 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
2942
2943 if (linked_prog) {
2944 _mesa_copy_linked_program_data((gl_shader_stage) i, prog, linked_prog);
2945
2946 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
2947 linked_prog);
2948 if (!ctx->Driver.ProgramStringNotify(ctx,
2949 _mesa_shader_stage_to_program(i),
2950 linked_prog)) {
2951 return GL_FALSE;
2952 }
2953 }
2954
2955 _mesa_reference_program(ctx, &linked_prog, NULL);
2956 }
2957
2958 return prog->LinkStatus;
2959 }
2960
2961 /**
2962 * Link a GLSL shader program. Called via glLinkProgram().
2963 */
2964 void
2965 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
2966 {
2967 unsigned int i;
2968
2969 _mesa_clear_shader_program_data(prog);
2970
2971 prog->LinkStatus = GL_TRUE;
2972
2973 for (i = 0; i < prog->NumShaders; i++) {
2974 if (!prog->Shaders[i]->CompileStatus) {
2975 linker_error(prog, "linking with uncompiled shader");
2976 }
2977 }
2978
2979 if (prog->LinkStatus) {
2980 link_shaders(ctx, prog);
2981 }
2982
2983 if (prog->LinkStatus) {
2984 if (!ctx->Driver.LinkShader(ctx, prog)) {
2985 prog->LinkStatus = GL_FALSE;
2986 } else {
2987 build_program_resource_list(prog);
2988 }
2989 }
2990
2991 if (ctx->_Shader->Flags & GLSL_DUMP) {
2992 if (!prog->LinkStatus) {
2993 fprintf(stderr, "GLSL shader program %d failed to link\n", prog->Name);
2994 }
2995
2996 if (prog->InfoLog && prog->InfoLog[0] != 0) {
2997 fprintf(stderr, "GLSL shader program %d info log:\n", prog->Name);
2998 fprintf(stderr, "%s\n", prog->InfoLog);
2999 }
3000 }
3001 }
3002
3003 } /* extern "C" */