Merge remote-tracking branch 'mesa-public/master' into vulkan
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/compiler.h"
34 #include "ir.h"
35 #include "ir_visitor.h"
36 #include "ir_expression_flattening.h"
37 #include "ir_uniform.h"
38 #include "glsl_types.h"
39 #include "glsl_parser_extras.h"
40 #include "../glsl/program.h"
41 #include "ir_optimization.h"
42 #include "ast.h"
43 #include "linker.h"
44
45 #include "main/mtypes.h"
46 #include "main/shaderapi.h"
47 #include "main/shaderobj.h"
48 #include "main/uniforms.h"
49
50 #include "program/hash_table.h"
51 #include "program/prog_instruction.h"
52 #include "program/prog_optimize.h"
53 #include "program/prog_print.h"
54 #include "program/program.h"
55 #include "program/prog_parameter.h"
56 #include "program/sampler.h"
57
58
59 static int swizzle_for_size(int size);
60
61 namespace {
62
63 class src_reg;
64 class dst_reg;
65
66 /**
67 * This struct is a corresponding struct to Mesa prog_src_register, with
68 * wider fields.
69 */
70 class src_reg {
71 public:
72 src_reg(gl_register_file file, int index, const glsl_type *type)
73 {
74 this->file = file;
75 this->index = index;
76 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
77 this->swizzle = swizzle_for_size(type->vector_elements);
78 else
79 this->swizzle = SWIZZLE_XYZW;
80 this->negate = 0;
81 this->reladdr = NULL;
82 }
83
84 src_reg()
85 {
86 this->file = PROGRAM_UNDEFINED;
87 this->index = 0;
88 this->swizzle = 0;
89 this->negate = 0;
90 this->reladdr = NULL;
91 }
92
93 explicit src_reg(dst_reg reg);
94
95 gl_register_file file; /**< PROGRAM_* from Mesa */
96 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
97 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
98 int negate; /**< NEGATE_XYZW mask from mesa */
99 /** Register index should be offset by the integer in this reg. */
100 src_reg *reladdr;
101 };
102
103 class dst_reg {
104 public:
105 dst_reg(gl_register_file file, int writemask)
106 {
107 this->file = file;
108 this->index = 0;
109 this->writemask = writemask;
110 this->cond_mask = COND_TR;
111 this->reladdr = NULL;
112 }
113
114 dst_reg()
115 {
116 this->file = PROGRAM_UNDEFINED;
117 this->index = 0;
118 this->writemask = 0;
119 this->cond_mask = COND_TR;
120 this->reladdr = NULL;
121 }
122
123 explicit dst_reg(src_reg reg);
124
125 gl_register_file file; /**< PROGRAM_* from Mesa */
126 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
127 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
128 GLuint cond_mask:4;
129 /** Register index should be offset by the integer in this reg. */
130 src_reg *reladdr;
131 };
132
133 } /* anonymous namespace */
134
135 src_reg::src_reg(dst_reg reg)
136 {
137 this->file = reg.file;
138 this->index = reg.index;
139 this->swizzle = SWIZZLE_XYZW;
140 this->negate = 0;
141 this->reladdr = reg.reladdr;
142 }
143
144 dst_reg::dst_reg(src_reg reg)
145 {
146 this->file = reg.file;
147 this->index = reg.index;
148 this->writemask = WRITEMASK_XYZW;
149 this->cond_mask = COND_TR;
150 this->reladdr = reg.reladdr;
151 }
152
153 namespace {
154
155 class ir_to_mesa_instruction : public exec_node {
156 public:
157 DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)
158
159 enum prog_opcode op;
160 dst_reg dst;
161 src_reg src[3];
162 /** Pointer to the ir source this tree came from for debugging */
163 ir_instruction *ir;
164 GLboolean cond_update;
165 bool saturate;
166 int sampler; /**< sampler index */
167 int tex_target; /**< One of TEXTURE_*_INDEX */
168 GLboolean tex_shadow;
169 };
170
171 class variable_storage : public exec_node {
172 public:
173 variable_storage(ir_variable *var, gl_register_file file, int index)
174 : file(file), index(index), var(var)
175 {
176 /* empty */
177 }
178
179 gl_register_file file;
180 int index;
181 ir_variable *var; /* variable that maps to this, if any */
182 };
183
184 class function_entry : public exec_node {
185 public:
186 ir_function_signature *sig;
187
188 /**
189 * identifier of this function signature used by the program.
190 *
191 * At the point that Mesa instructions for function calls are
192 * generated, we don't know the address of the first instruction of
193 * the function body. So we make the BranchTarget that is called a
194 * small integer and rewrite them during set_branchtargets().
195 */
196 int sig_id;
197
198 /**
199 * Pointer to first instruction of the function body.
200 *
201 * Set during function body emits after main() is processed.
202 */
203 ir_to_mesa_instruction *bgn_inst;
204
205 /**
206 * Index of the first instruction of the function body in actual
207 * Mesa IR.
208 *
209 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
210 */
211 int inst;
212
213 /** Storage for the return value. */
214 src_reg return_reg;
215 };
216
217 class ir_to_mesa_visitor : public ir_visitor {
218 public:
219 ir_to_mesa_visitor();
220 ~ir_to_mesa_visitor();
221
222 function_entry *current_function;
223
224 struct gl_context *ctx;
225 struct gl_program *prog;
226 struct gl_shader_program *shader_program;
227 struct gl_shader_compiler_options *options;
228
229 int next_temp;
230
231 variable_storage *find_variable_storage(const ir_variable *var);
232
233 src_reg get_temp(const glsl_type *type);
234 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
235
236 src_reg src_reg_for_float(float val);
237
238 /**
239 * \name Visit methods
240 *
241 * As typical for the visitor pattern, there must be one \c visit method for
242 * each concrete subclass of \c ir_instruction. Virtual base classes within
243 * the hierarchy should not have \c visit methods.
244 */
245 /*@{*/
246 virtual void visit(ir_variable *);
247 virtual void visit(ir_loop *);
248 virtual void visit(ir_loop_jump *);
249 virtual void visit(ir_function_signature *);
250 virtual void visit(ir_function *);
251 virtual void visit(ir_expression *);
252 virtual void visit(ir_swizzle *);
253 virtual void visit(ir_dereference_variable *);
254 virtual void visit(ir_dereference_array *);
255 virtual void visit(ir_dereference_record *);
256 virtual void visit(ir_assignment *);
257 virtual void visit(ir_constant *);
258 virtual void visit(ir_call *);
259 virtual void visit(ir_return *);
260 virtual void visit(ir_discard *);
261 virtual void visit(ir_texture *);
262 virtual void visit(ir_if *);
263 virtual void visit(ir_emit_vertex *);
264 virtual void visit(ir_end_primitive *);
265 virtual void visit(ir_barrier *);
266 /*@}*/
267
268 src_reg result;
269
270 /** List of variable_storage */
271 exec_list variables;
272
273 /** List of function_entry */
274 exec_list function_signatures;
275 int next_signature_id;
276
277 /** List of ir_to_mesa_instruction */
278 exec_list instructions;
279
280 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
281
282 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
283 dst_reg dst, src_reg src0);
284
285 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
286 dst_reg dst, src_reg src0, src_reg src1);
287
288 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
289 dst_reg dst,
290 src_reg src0, src_reg src1, src_reg src2);
291
292 /**
293 * Emit the correct dot-product instruction for the type of arguments
294 */
295 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
296 dst_reg dst,
297 src_reg src0,
298 src_reg src1,
299 unsigned elements);
300
301 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
302 dst_reg dst, src_reg src0);
303
304 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
305 dst_reg dst, src_reg src0, src_reg src1);
306
307 bool try_emit_mad(ir_expression *ir,
308 int mul_operand);
309 bool try_emit_mad_for_and_not(ir_expression *ir,
310 int mul_operand);
311
312 void emit_swz(ir_expression *ir);
313
314 bool process_move_condition(ir_rvalue *ir);
315
316 void copy_propagate(void);
317
318 void *mem_ctx;
319 };
320
321 } /* anonymous namespace */
322
323 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
324
325 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
326
327 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
328
329 static int
330 swizzle_for_size(int size)
331 {
332 static const int size_swizzles[4] = {
333 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
334 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
335 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
336 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
337 };
338
339 assert((size >= 1) && (size <= 4));
340 return size_swizzles[size - 1];
341 }
342
343 ir_to_mesa_instruction *
344 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
345 dst_reg dst,
346 src_reg src0, src_reg src1, src_reg src2)
347 {
348 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
349 int num_reladdr = 0;
350
351 /* If we have to do relative addressing, we want to load the ARL
352 * reg directly for one of the regs, and preload the other reladdr
353 * sources into temps.
354 */
355 num_reladdr += dst.reladdr != NULL;
356 num_reladdr += src0.reladdr != NULL;
357 num_reladdr += src1.reladdr != NULL;
358 num_reladdr += src2.reladdr != NULL;
359
360 reladdr_to_temp(ir, &src2, &num_reladdr);
361 reladdr_to_temp(ir, &src1, &num_reladdr);
362 reladdr_to_temp(ir, &src0, &num_reladdr);
363
364 if (dst.reladdr) {
365 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
366 num_reladdr--;
367 }
368 assert(num_reladdr == 0);
369
370 inst->op = op;
371 inst->dst = dst;
372 inst->src[0] = src0;
373 inst->src[1] = src1;
374 inst->src[2] = src2;
375 inst->ir = ir;
376
377 this->instructions.push_tail(inst);
378
379 return inst;
380 }
381
382
383 ir_to_mesa_instruction *
384 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
385 dst_reg dst, src_reg src0, src_reg src1)
386 {
387 return emit(ir, op, dst, src0, src1, undef_src);
388 }
389
390 ir_to_mesa_instruction *
391 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
392 dst_reg dst, src_reg src0)
393 {
394 assert(dst.writemask != 0);
395 return emit(ir, op, dst, src0, undef_src, undef_src);
396 }
397
398 ir_to_mesa_instruction *
399 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
400 {
401 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
402 }
403
404 ir_to_mesa_instruction *
405 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
406 dst_reg dst, src_reg src0, src_reg src1,
407 unsigned elements)
408 {
409 static const enum prog_opcode dot_opcodes[] = {
410 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
411 };
412
413 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
414 }
415
416 /**
417 * Emits Mesa scalar opcodes to produce unique answers across channels.
418 *
419 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
420 * channel determines the result across all channels. So to do a vec4
421 * of this operation, we want to emit a scalar per source channel used
422 * to produce dest channels.
423 */
424 void
425 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
426 dst_reg dst,
427 src_reg orig_src0, src_reg orig_src1)
428 {
429 int i, j;
430 int done_mask = ~dst.writemask;
431
432 /* Mesa RCP is a scalar operation splatting results to all channels,
433 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
434 * dst channels.
435 */
436 for (i = 0; i < 4; i++) {
437 GLuint this_mask = (1 << i);
438 ir_to_mesa_instruction *inst;
439 src_reg src0 = orig_src0;
440 src_reg src1 = orig_src1;
441
442 if (done_mask & this_mask)
443 continue;
444
445 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
446 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
447 for (j = i + 1; j < 4; j++) {
448 /* If there is another enabled component in the destination that is
449 * derived from the same inputs, generate its value on this pass as
450 * well.
451 */
452 if (!(done_mask & (1 << j)) &&
453 GET_SWZ(src0.swizzle, j) == src0_swiz &&
454 GET_SWZ(src1.swizzle, j) == src1_swiz) {
455 this_mask |= (1 << j);
456 }
457 }
458 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
459 src0_swiz, src0_swiz);
460 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
461 src1_swiz, src1_swiz);
462
463 inst = emit(ir, op, dst, src0, src1);
464 inst->dst.writemask = this_mask;
465 done_mask |= this_mask;
466 }
467 }
468
469 void
470 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
471 dst_reg dst, src_reg src0)
472 {
473 src_reg undef = undef_src;
474
475 undef.swizzle = SWIZZLE_XXXX;
476
477 emit_scalar(ir, op, dst, src0, undef);
478 }
479
480 src_reg
481 ir_to_mesa_visitor::src_reg_for_float(float val)
482 {
483 src_reg src(PROGRAM_CONSTANT, -1, NULL);
484
485 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
486 (const gl_constant_value *)&val, 1, &src.swizzle);
487
488 return src;
489 }
490
491 static int
492 type_size(const struct glsl_type *type)
493 {
494 unsigned int i;
495 int size;
496
497 switch (type->base_type) {
498 case GLSL_TYPE_UINT:
499 case GLSL_TYPE_INT:
500 case GLSL_TYPE_FLOAT:
501 case GLSL_TYPE_BOOL:
502 if (type->is_matrix()) {
503 return type->matrix_columns;
504 } else {
505 /* Regardless of size of vector, it gets a vec4. This is bad
506 * packing for things like floats, but otherwise arrays become a
507 * mess. Hopefully a later pass over the code can pack scalars
508 * down if appropriate.
509 */
510 return 1;
511 }
512 break;
513 case GLSL_TYPE_DOUBLE:
514 if (type->is_matrix()) {
515 if (type->vector_elements > 2)
516 return type->matrix_columns * 2;
517 else
518 return type->matrix_columns;
519 } else {
520 if (type->vector_elements > 2)
521 return 2;
522 else
523 return 1;
524 }
525 break;
526 case GLSL_TYPE_ARRAY:
527 assert(type->length > 0);
528 return type_size(type->fields.array) * type->length;
529 case GLSL_TYPE_STRUCT:
530 size = 0;
531 for (i = 0; i < type->length; i++) {
532 size += type_size(type->fields.structure[i].type);
533 }
534 return size;
535 case GLSL_TYPE_SAMPLER:
536 case GLSL_TYPE_IMAGE:
537 case GLSL_TYPE_SUBROUTINE:
538 /* Samplers take up one slot in UNIFORMS[], but they're baked in
539 * at link time.
540 */
541 return 1;
542 case GLSL_TYPE_ATOMIC_UINT:
543 case GLSL_TYPE_VOID:
544 case GLSL_TYPE_ERROR:
545 case GLSL_TYPE_INTERFACE:
546 case GLSL_TYPE_FUNCTION:
547 assert(!"Invalid type in type_size");
548 break;
549 }
550
551 return 0;
552 }
553
554 /**
555 * In the initial pass of codegen, we assign temporary numbers to
556 * intermediate results. (not SSA -- variable assignments will reuse
557 * storage). Actual register allocation for the Mesa VM occurs in a
558 * pass over the Mesa IR later.
559 */
560 src_reg
561 ir_to_mesa_visitor::get_temp(const glsl_type *type)
562 {
563 src_reg src;
564
565 src.file = PROGRAM_TEMPORARY;
566 src.index = next_temp;
567 src.reladdr = NULL;
568 next_temp += type_size(type);
569
570 if (type->is_array() || type->is_record()) {
571 src.swizzle = SWIZZLE_NOOP;
572 } else {
573 src.swizzle = swizzle_for_size(type->vector_elements);
574 }
575 src.negate = 0;
576
577 return src;
578 }
579
580 variable_storage *
581 ir_to_mesa_visitor::find_variable_storage(const ir_variable *var)
582 {
583 foreach_in_list(variable_storage, entry, &this->variables) {
584 if (entry->var == var)
585 return entry;
586 }
587
588 return NULL;
589 }
590
591 void
592 ir_to_mesa_visitor::visit(ir_variable *ir)
593 {
594 if (strcmp(ir->name, "gl_FragCoord") == 0) {
595 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
596
597 fp->OriginUpperLeft = ir->data.origin_upper_left;
598 fp->PixelCenterInteger = ir->data.pixel_center_integer;
599 }
600
601 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
602 unsigned int i;
603 const ir_state_slot *const slots = ir->get_state_slots();
604 assert(slots != NULL);
605
606 /* Check if this statevar's setup in the STATE file exactly
607 * matches how we'll want to reference it as a
608 * struct/array/whatever. If not, then we need to move it into
609 * temporary storage and hope that it'll get copy-propagated
610 * out.
611 */
612 for (i = 0; i < ir->get_num_state_slots(); i++) {
613 if (slots[i].swizzle != SWIZZLE_XYZW) {
614 break;
615 }
616 }
617
618 variable_storage *storage;
619 dst_reg dst;
620 if (i == ir->get_num_state_slots()) {
621 /* We'll set the index later. */
622 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
623 this->variables.push_tail(storage);
624
625 dst = undef_dst;
626 } else {
627 /* The variable_storage constructor allocates slots based on the size
628 * of the type. However, this had better match the number of state
629 * elements that we're going to copy into the new temporary.
630 */
631 assert((int) ir->get_num_state_slots() == type_size(ir->type));
632
633 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
634 this->next_temp);
635 this->variables.push_tail(storage);
636 this->next_temp += type_size(ir->type);
637
638 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
639 }
640
641
642 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
643 int index = _mesa_add_state_reference(this->prog->Parameters,
644 (gl_state_index *)slots[i].tokens);
645
646 if (storage->file == PROGRAM_STATE_VAR) {
647 if (storage->index == -1) {
648 storage->index = index;
649 } else {
650 assert(index == storage->index + (int)i);
651 }
652 } else {
653 src_reg src(PROGRAM_STATE_VAR, index, NULL);
654 src.swizzle = slots[i].swizzle;
655 emit(ir, OPCODE_MOV, dst, src);
656 /* even a float takes up a whole vec4 reg in a struct/array. */
657 dst.index++;
658 }
659 }
660
661 if (storage->file == PROGRAM_TEMPORARY &&
662 dst.index != storage->index + (int) ir->get_num_state_slots()) {
663 linker_error(this->shader_program,
664 "failed to load builtin uniform `%s' "
665 "(%d/%d regs loaded)\n",
666 ir->name, dst.index - storage->index,
667 type_size(ir->type));
668 }
669 }
670 }
671
672 void
673 ir_to_mesa_visitor::visit(ir_loop *ir)
674 {
675 emit(NULL, OPCODE_BGNLOOP);
676
677 visit_exec_list(&ir->body_instructions, this);
678
679 emit(NULL, OPCODE_ENDLOOP);
680 }
681
682 void
683 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
684 {
685 switch (ir->mode) {
686 case ir_loop_jump::jump_break:
687 emit(NULL, OPCODE_BRK);
688 break;
689 case ir_loop_jump::jump_continue:
690 emit(NULL, OPCODE_CONT);
691 break;
692 }
693 }
694
695
696 void
697 ir_to_mesa_visitor::visit(ir_function_signature *ir)
698 {
699 assert(0);
700 (void)ir;
701 }
702
703 void
704 ir_to_mesa_visitor::visit(ir_function *ir)
705 {
706 /* Ignore function bodies other than main() -- we shouldn't see calls to
707 * them since they should all be inlined before we get to ir_to_mesa.
708 */
709 if (strcmp(ir->name, "main") == 0) {
710 const ir_function_signature *sig;
711 exec_list empty;
712
713 sig = ir->matching_signature(NULL, &empty, false);
714
715 assert(sig);
716
717 foreach_in_list(ir_instruction, ir, &sig->body) {
718 ir->accept(this);
719 }
720 }
721 }
722
723 bool
724 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
725 {
726 int nonmul_operand = 1 - mul_operand;
727 src_reg a, b, c;
728
729 ir_expression *expr = ir->operands[mul_operand]->as_expression();
730 if (!expr || expr->operation != ir_binop_mul)
731 return false;
732
733 expr->operands[0]->accept(this);
734 a = this->result;
735 expr->operands[1]->accept(this);
736 b = this->result;
737 ir->operands[nonmul_operand]->accept(this);
738 c = this->result;
739
740 this->result = get_temp(ir->type);
741 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
742
743 return true;
744 }
745
746 /**
747 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
748 *
749 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
750 * implemented using multiplication, and logical-or is implemented using
751 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
752 * As result, the logical expression (a & !b) can be rewritten as:
753 *
754 * - a * !b
755 * - a * (1 - b)
756 * - (a * 1) - (a * b)
757 * - a + -(a * b)
758 * - a + (a * -b)
759 *
760 * This final expression can be implemented as a single MAD(a, -b, a)
761 * instruction.
762 */
763 bool
764 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
765 {
766 const int other_operand = 1 - try_operand;
767 src_reg a, b;
768
769 ir_expression *expr = ir->operands[try_operand]->as_expression();
770 if (!expr || expr->operation != ir_unop_logic_not)
771 return false;
772
773 ir->operands[other_operand]->accept(this);
774 a = this->result;
775 expr->operands[0]->accept(this);
776 b = this->result;
777
778 b.negate = ~b.negate;
779
780 this->result = get_temp(ir->type);
781 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
782
783 return true;
784 }
785
786 void
787 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
788 src_reg *reg, int *num_reladdr)
789 {
790 if (!reg->reladdr)
791 return;
792
793 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
794
795 if (*num_reladdr != 1) {
796 src_reg temp = get_temp(glsl_type::vec4_type);
797
798 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
799 *reg = temp;
800 }
801
802 (*num_reladdr)--;
803 }
804
805 void
806 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
807 {
808 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
809 * This means that each of the operands is either an immediate value of -1,
810 * 0, or 1, or is a component from one source register (possibly with
811 * negation).
812 */
813 uint8_t components[4] = { 0 };
814 bool negate[4] = { false };
815 ir_variable *var = NULL;
816
817 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
818 ir_rvalue *op = ir->operands[i];
819
820 assert(op->type->is_scalar());
821
822 while (op != NULL) {
823 switch (op->ir_type) {
824 case ir_type_constant: {
825
826 assert(op->type->is_scalar());
827
828 const ir_constant *const c = op->as_constant();
829 if (c->is_one()) {
830 components[i] = SWIZZLE_ONE;
831 } else if (c->is_zero()) {
832 components[i] = SWIZZLE_ZERO;
833 } else if (c->is_negative_one()) {
834 components[i] = SWIZZLE_ONE;
835 negate[i] = true;
836 } else {
837 assert(!"SWZ constant must be 0.0 or 1.0.");
838 }
839
840 op = NULL;
841 break;
842 }
843
844 case ir_type_dereference_variable: {
845 ir_dereference_variable *const deref =
846 (ir_dereference_variable *) op;
847
848 assert((var == NULL) || (deref->var == var));
849 components[i] = SWIZZLE_X;
850 var = deref->var;
851 op = NULL;
852 break;
853 }
854
855 case ir_type_expression: {
856 ir_expression *const expr = (ir_expression *) op;
857
858 assert(expr->operation == ir_unop_neg);
859 negate[i] = true;
860
861 op = expr->operands[0];
862 break;
863 }
864
865 case ir_type_swizzle: {
866 ir_swizzle *const swiz = (ir_swizzle *) op;
867
868 components[i] = swiz->mask.x;
869 op = swiz->val;
870 break;
871 }
872
873 default:
874 assert(!"Should not get here.");
875 return;
876 }
877 }
878 }
879
880 assert(var != NULL);
881
882 ir_dereference_variable *const deref =
883 new(mem_ctx) ir_dereference_variable(var);
884
885 this->result.file = PROGRAM_UNDEFINED;
886 deref->accept(this);
887 if (this->result.file == PROGRAM_UNDEFINED) {
888 printf("Failed to get tree for expression operand:\n");
889 deref->print();
890 printf("\n");
891 exit(1);
892 }
893
894 src_reg src;
895
896 src = this->result;
897 src.swizzle = MAKE_SWIZZLE4(components[0],
898 components[1],
899 components[2],
900 components[3]);
901 src.negate = ((unsigned(negate[0]) << 0)
902 | (unsigned(negate[1]) << 1)
903 | (unsigned(negate[2]) << 2)
904 | (unsigned(negate[3]) << 3));
905
906 /* Storage for our result. Ideally for an assignment we'd be using the
907 * actual storage for the result here, instead.
908 */
909 const src_reg result_src = get_temp(ir->type);
910 dst_reg result_dst = dst_reg(result_src);
911
912 /* Limit writes to the channels that will be used by result_src later.
913 * This does limit this temp's use as a temporary for multi-instruction
914 * sequences.
915 */
916 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
917
918 emit(ir, OPCODE_SWZ, result_dst, src);
919 this->result = result_src;
920 }
921
922 void
923 ir_to_mesa_visitor::visit(ir_expression *ir)
924 {
925 unsigned int operand;
926 src_reg op[ARRAY_SIZE(ir->operands)];
927 src_reg result_src;
928 dst_reg result_dst;
929
930 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
931 */
932 if (ir->operation == ir_binop_add) {
933 if (try_emit_mad(ir, 1))
934 return;
935 if (try_emit_mad(ir, 0))
936 return;
937 }
938
939 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
940 */
941 if (ir->operation == ir_binop_logic_and) {
942 if (try_emit_mad_for_and_not(ir, 1))
943 return;
944 if (try_emit_mad_for_and_not(ir, 0))
945 return;
946 }
947
948 if (ir->operation == ir_quadop_vector) {
949 this->emit_swz(ir);
950 return;
951 }
952
953 for (operand = 0; operand < ir->get_num_operands(); operand++) {
954 this->result.file = PROGRAM_UNDEFINED;
955 ir->operands[operand]->accept(this);
956 if (this->result.file == PROGRAM_UNDEFINED) {
957 printf("Failed to get tree for expression operand:\n");
958 ir->operands[operand]->print();
959 printf("\n");
960 exit(1);
961 }
962 op[operand] = this->result;
963
964 /* Matrix expression operands should have been broken down to vector
965 * operations already.
966 */
967 assert(!ir->operands[operand]->type->is_matrix());
968 }
969
970 int vector_elements = ir->operands[0]->type->vector_elements;
971 if (ir->operands[1]) {
972 vector_elements = MAX2(vector_elements,
973 ir->operands[1]->type->vector_elements);
974 }
975
976 this->result.file = PROGRAM_UNDEFINED;
977
978 /* Storage for our result. Ideally for an assignment we'd be using
979 * the actual storage for the result here, instead.
980 */
981 result_src = get_temp(ir->type);
982 /* convenience for the emit functions below. */
983 result_dst = dst_reg(result_src);
984 /* Limit writes to the channels that will be used by result_src later.
985 * This does limit this temp's use as a temporary for multi-instruction
986 * sequences.
987 */
988 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
989
990 switch (ir->operation) {
991 case ir_unop_logic_not:
992 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
993 * older GPUs implement SEQ using multiple instructions (i915 uses two
994 * SGE instructions and a MUL instruction). Since our logic values are
995 * 0.0 and 1.0, 1-x also implements !x.
996 */
997 op[0].negate = ~op[0].negate;
998 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
999 break;
1000 case ir_unop_neg:
1001 op[0].negate = ~op[0].negate;
1002 result_src = op[0];
1003 break;
1004 case ir_unop_abs:
1005 emit(ir, OPCODE_ABS, result_dst, op[0]);
1006 break;
1007 case ir_unop_sign:
1008 emit(ir, OPCODE_SSG, result_dst, op[0]);
1009 break;
1010 case ir_unop_rcp:
1011 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1012 break;
1013
1014 case ir_unop_exp2:
1015 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1016 break;
1017 case ir_unop_exp:
1018 case ir_unop_log:
1019 assert(!"not reached: should be handled by ir_explog_to_explog2");
1020 break;
1021 case ir_unop_log2:
1022 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1023 break;
1024 case ir_unop_sin:
1025 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1026 break;
1027 case ir_unop_cos:
1028 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1029 break;
1030
1031 case ir_unop_dFdx:
1032 emit(ir, OPCODE_DDX, result_dst, op[0]);
1033 break;
1034 case ir_unop_dFdy:
1035 emit(ir, OPCODE_DDY, result_dst, op[0]);
1036 break;
1037
1038 case ir_unop_saturate: {
1039 ir_to_mesa_instruction *inst = emit(ir, OPCODE_MOV,
1040 result_dst, op[0]);
1041 inst->saturate = true;
1042 break;
1043 }
1044 case ir_unop_noise: {
1045 const enum prog_opcode opcode =
1046 prog_opcode(OPCODE_NOISE1
1047 + (ir->operands[0]->type->vector_elements) - 1);
1048 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1049
1050 emit(ir, opcode, result_dst, op[0]);
1051 break;
1052 }
1053
1054 case ir_binop_add:
1055 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1056 break;
1057 case ir_binop_sub:
1058 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1059 break;
1060
1061 case ir_binop_mul:
1062 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1063 break;
1064 case ir_binop_div:
1065 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1066 break;
1067 case ir_binop_mod:
1068 /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
1069 assert(ir->type->is_integer());
1070 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1071 break;
1072
1073 case ir_binop_less:
1074 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1075 break;
1076 case ir_binop_greater:
1077 emit(ir, OPCODE_SGT, result_dst, op[0], op[1]);
1078 break;
1079 case ir_binop_lequal:
1080 emit(ir, OPCODE_SLE, result_dst, op[0], op[1]);
1081 break;
1082 case ir_binop_gequal:
1083 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1084 break;
1085 case ir_binop_equal:
1086 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1087 break;
1088 case ir_binop_nequal:
1089 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1090 break;
1091 case ir_binop_all_equal:
1092 /* "==" operator producing a scalar boolean. */
1093 if (ir->operands[0]->type->is_vector() ||
1094 ir->operands[1]->type->is_vector()) {
1095 src_reg temp = get_temp(glsl_type::vec4_type);
1096 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1097
1098 /* After the dot-product, the value will be an integer on the
1099 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1100 */
1101 emit_dp(ir, result_dst, temp, temp, vector_elements);
1102
1103 /* Negating the result of the dot-product gives values on the range
1104 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1105 * achieved using SGE.
1106 */
1107 src_reg sge_src = result_src;
1108 sge_src.negate = ~sge_src.negate;
1109 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1110 } else {
1111 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1112 }
1113 break;
1114 case ir_binop_any_nequal:
1115 /* "!=" operator producing a scalar boolean. */
1116 if (ir->operands[0]->type->is_vector() ||
1117 ir->operands[1]->type->is_vector()) {
1118 src_reg temp = get_temp(glsl_type::vec4_type);
1119 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1120
1121 /* After the dot-product, the value will be an integer on the
1122 * range [0,4]. Zero stays zero, and positive values become 1.0.
1123 */
1124 ir_to_mesa_instruction *const dp =
1125 emit_dp(ir, result_dst, temp, temp, vector_elements);
1126 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1127 /* The clamping to [0,1] can be done for free in the fragment
1128 * shader with a saturate.
1129 */
1130 dp->saturate = true;
1131 } else {
1132 /* Negating the result of the dot-product gives values on the range
1133 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1134 * achieved using SLT.
1135 */
1136 src_reg slt_src = result_src;
1137 slt_src.negate = ~slt_src.negate;
1138 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1139 }
1140 } else {
1141 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1142 }
1143 break;
1144
1145 case ir_unop_any: {
1146 assert(ir->operands[0]->type->is_vector());
1147
1148 /* After the dot-product, the value will be an integer on the
1149 * range [0,4]. Zero stays zero, and positive values become 1.0.
1150 */
1151 ir_to_mesa_instruction *const dp =
1152 emit_dp(ir, result_dst, op[0], op[0],
1153 ir->operands[0]->type->vector_elements);
1154 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1155 /* The clamping to [0,1] can be done for free in the fragment
1156 * shader with a saturate.
1157 */
1158 dp->saturate = true;
1159 } else {
1160 /* Negating the result of the dot-product gives values on the range
1161 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1162 * is achieved using SLT.
1163 */
1164 src_reg slt_src = result_src;
1165 slt_src.negate = ~slt_src.negate;
1166 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1167 }
1168 break;
1169 }
1170
1171 case ir_binop_logic_xor:
1172 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1173 break;
1174
1175 case ir_binop_logic_or: {
1176 /* After the addition, the value will be an integer on the
1177 * range [0,2]. Zero stays zero, and positive values become 1.0.
1178 */
1179 ir_to_mesa_instruction *add =
1180 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1181 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1182 /* The clamping to [0,1] can be done for free in the fragment
1183 * shader with a saturate.
1184 */
1185 add->saturate = true;
1186 } else {
1187 /* Negating the result of the addition gives values on the range
1188 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1189 * is achieved using SLT.
1190 */
1191 src_reg slt_src = result_src;
1192 slt_src.negate = ~slt_src.negate;
1193 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1194 }
1195 break;
1196 }
1197
1198 case ir_binop_logic_and:
1199 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1200 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1201 break;
1202
1203 case ir_binop_dot:
1204 assert(ir->operands[0]->type->is_vector());
1205 assert(ir->operands[0]->type == ir->operands[1]->type);
1206 emit_dp(ir, result_dst, op[0], op[1],
1207 ir->operands[0]->type->vector_elements);
1208 break;
1209
1210 case ir_unop_sqrt:
1211 /* sqrt(x) = x * rsq(x). */
1212 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1213 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1214 /* For incoming channels <= 0, set the result to 0. */
1215 op[0].negate = ~op[0].negate;
1216 emit(ir, OPCODE_CMP, result_dst,
1217 op[0], result_src, src_reg_for_float(0.0));
1218 break;
1219 case ir_unop_rsq:
1220 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1221 break;
1222 case ir_unop_i2f:
1223 case ir_unop_u2f:
1224 case ir_unop_b2f:
1225 case ir_unop_b2i:
1226 case ir_unop_i2u:
1227 case ir_unop_u2i:
1228 /* Mesa IR lacks types, ints are stored as truncated floats. */
1229 result_src = op[0];
1230 break;
1231 case ir_unop_f2i:
1232 case ir_unop_f2u:
1233 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1234 break;
1235 case ir_unop_f2b:
1236 case ir_unop_i2b:
1237 emit(ir, OPCODE_SNE, result_dst,
1238 op[0], src_reg_for_float(0.0));
1239 break;
1240 case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1241 case ir_unop_bitcast_f2u:
1242 case ir_unop_bitcast_i2f:
1243 case ir_unop_bitcast_u2f:
1244 break;
1245 case ir_unop_trunc:
1246 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1247 break;
1248 case ir_unop_ceil:
1249 op[0].negate = ~op[0].negate;
1250 emit(ir, OPCODE_FLR, result_dst, op[0]);
1251 result_src.negate = ~result_src.negate;
1252 break;
1253 case ir_unop_floor:
1254 emit(ir, OPCODE_FLR, result_dst, op[0]);
1255 break;
1256 case ir_unop_fract:
1257 emit(ir, OPCODE_FRC, result_dst, op[0]);
1258 break;
1259 case ir_unop_pack_snorm_2x16:
1260 case ir_unop_pack_snorm_4x8:
1261 case ir_unop_pack_unorm_2x16:
1262 case ir_unop_pack_unorm_4x8:
1263 case ir_unop_pack_half_2x16:
1264 case ir_unop_pack_double_2x32:
1265 case ir_unop_unpack_snorm_2x16:
1266 case ir_unop_unpack_snorm_4x8:
1267 case ir_unop_unpack_unorm_2x16:
1268 case ir_unop_unpack_unorm_4x8:
1269 case ir_unop_unpack_half_2x16:
1270 case ir_unop_unpack_half_2x16_split_x:
1271 case ir_unop_unpack_half_2x16_split_y:
1272 case ir_unop_unpack_double_2x32:
1273 case ir_binop_pack_half_2x16_split:
1274 case ir_unop_bitfield_reverse:
1275 case ir_unop_bit_count:
1276 case ir_unop_find_msb:
1277 case ir_unop_find_lsb:
1278 case ir_unop_d2f:
1279 case ir_unop_f2d:
1280 case ir_unop_d2i:
1281 case ir_unop_i2d:
1282 case ir_unop_d2u:
1283 case ir_unop_u2d:
1284 case ir_unop_d2b:
1285 case ir_unop_frexp_sig:
1286 case ir_unop_frexp_exp:
1287 assert(!"not supported");
1288 break;
1289 case ir_binop_min:
1290 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1291 break;
1292 case ir_binop_max:
1293 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1294 break;
1295 case ir_binop_pow:
1296 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1297 break;
1298
1299 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1300 * hardware backends have no way to avoid Mesa IR generation
1301 * even if they don't use it, we need to emit "something" and
1302 * continue.
1303 */
1304 case ir_binop_lshift:
1305 case ir_binop_rshift:
1306 case ir_binop_bit_and:
1307 case ir_binop_bit_xor:
1308 case ir_binop_bit_or:
1309 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1310 break;
1311
1312 case ir_unop_bit_not:
1313 case ir_unop_round_even:
1314 emit(ir, OPCODE_MOV, result_dst, op[0]);
1315 break;
1316
1317 case ir_binop_ubo_load:
1318 assert(!"not supported");
1319 break;
1320
1321 case ir_triop_lrp:
1322 /* ir_triop_lrp operands are (x, y, a) while
1323 * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1324 */
1325 emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1326 break;
1327
1328 case ir_binop_vector_extract:
1329 case ir_binop_bfm:
1330 case ir_triop_fma:
1331 case ir_triop_bfi:
1332 case ir_triop_bitfield_extract:
1333 case ir_triop_vector_insert:
1334 case ir_quadop_bitfield_insert:
1335 case ir_binop_ldexp:
1336 case ir_triop_csel:
1337 case ir_binop_carry:
1338 case ir_binop_borrow:
1339 case ir_binop_imul_high:
1340 case ir_unop_interpolate_at_centroid:
1341 case ir_binop_interpolate_at_offset:
1342 case ir_binop_interpolate_at_sample:
1343 case ir_unop_dFdx_coarse:
1344 case ir_unop_dFdx_fine:
1345 case ir_unop_dFdy_coarse:
1346 case ir_unop_dFdy_fine:
1347 case ir_unop_subroutine_to_int:
1348 assert(!"not supported");
1349 break;
1350
1351 case ir_quadop_vector:
1352 /* This operation should have already been handled.
1353 */
1354 assert(!"Should not get here.");
1355 break;
1356 }
1357
1358 this->result = result_src;
1359 }
1360
1361
1362 void
1363 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1364 {
1365 src_reg src;
1366 int i;
1367 int swizzle[4];
1368
1369 /* Note that this is only swizzles in expressions, not those on the left
1370 * hand side of an assignment, which do write masking. See ir_assignment
1371 * for that.
1372 */
1373
1374 ir->val->accept(this);
1375 src = this->result;
1376 assert(src.file != PROGRAM_UNDEFINED);
1377 assert(ir->type->vector_elements > 0);
1378
1379 for (i = 0; i < 4; i++) {
1380 if (i < ir->type->vector_elements) {
1381 switch (i) {
1382 case 0:
1383 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1384 break;
1385 case 1:
1386 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1387 break;
1388 case 2:
1389 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1390 break;
1391 case 3:
1392 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1393 break;
1394 }
1395 } else {
1396 /* If the type is smaller than a vec4, replicate the last
1397 * channel out.
1398 */
1399 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1400 }
1401 }
1402
1403 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1404
1405 this->result = src;
1406 }
1407
1408 void
1409 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1410 {
1411 variable_storage *entry = find_variable_storage(ir->var);
1412 ir_variable *var = ir->var;
1413
1414 if (!entry) {
1415 switch (var->data.mode) {
1416 case ir_var_uniform:
1417 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1418 var->data.location);
1419 this->variables.push_tail(entry);
1420 break;
1421 case ir_var_shader_in:
1422 /* The linker assigns locations for varyings and attributes,
1423 * including deprecated builtins (like gl_Color),
1424 * user-assigned generic attributes (glBindVertexLocation),
1425 * and user-defined varyings.
1426 */
1427 assert(var->data.location != -1);
1428 entry = new(mem_ctx) variable_storage(var,
1429 PROGRAM_INPUT,
1430 var->data.location);
1431 break;
1432 case ir_var_shader_out:
1433 assert(var->data.location != -1);
1434 entry = new(mem_ctx) variable_storage(var,
1435 PROGRAM_OUTPUT,
1436 var->data.location);
1437 break;
1438 case ir_var_system_value:
1439 entry = new(mem_ctx) variable_storage(var,
1440 PROGRAM_SYSTEM_VALUE,
1441 var->data.location);
1442 break;
1443 case ir_var_auto:
1444 case ir_var_temporary:
1445 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1446 this->next_temp);
1447 this->variables.push_tail(entry);
1448
1449 next_temp += type_size(var->type);
1450 break;
1451 }
1452
1453 if (!entry) {
1454 printf("Failed to make storage for %s\n", var->name);
1455 exit(1);
1456 }
1457 }
1458
1459 this->result = src_reg(entry->file, entry->index, var->type);
1460 }
1461
1462 void
1463 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1464 {
1465 ir_constant *index;
1466 src_reg src;
1467 int element_size = type_size(ir->type);
1468
1469 index = ir->array_index->constant_expression_value();
1470
1471 ir->array->accept(this);
1472 src = this->result;
1473
1474 if (index) {
1475 src.index += index->value.i[0] * element_size;
1476 } else {
1477 /* Variable index array dereference. It eats the "vec4" of the
1478 * base of the array and an index that offsets the Mesa register
1479 * index.
1480 */
1481 ir->array_index->accept(this);
1482
1483 src_reg index_reg;
1484
1485 if (element_size == 1) {
1486 index_reg = this->result;
1487 } else {
1488 index_reg = get_temp(glsl_type::float_type);
1489
1490 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1491 this->result, src_reg_for_float(element_size));
1492 }
1493
1494 /* If there was already a relative address register involved, add the
1495 * new and the old together to get the new offset.
1496 */
1497 if (src.reladdr != NULL) {
1498 src_reg accum_reg = get_temp(glsl_type::float_type);
1499
1500 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1501 index_reg, *src.reladdr);
1502
1503 index_reg = accum_reg;
1504 }
1505
1506 src.reladdr = ralloc(mem_ctx, src_reg);
1507 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1508 }
1509
1510 /* If the type is smaller than a vec4, replicate the last channel out. */
1511 if (ir->type->is_scalar() || ir->type->is_vector())
1512 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1513 else
1514 src.swizzle = SWIZZLE_NOOP;
1515
1516 this->result = src;
1517 }
1518
1519 void
1520 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1521 {
1522 unsigned int i;
1523 const glsl_type *struct_type = ir->record->type;
1524 int offset = 0;
1525
1526 ir->record->accept(this);
1527
1528 for (i = 0; i < struct_type->length; i++) {
1529 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1530 break;
1531 offset += type_size(struct_type->fields.structure[i].type);
1532 }
1533
1534 /* If the type is smaller than a vec4, replicate the last channel out. */
1535 if (ir->type->is_scalar() || ir->type->is_vector())
1536 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1537 else
1538 this->result.swizzle = SWIZZLE_NOOP;
1539
1540 this->result.index += offset;
1541 }
1542
1543 /**
1544 * We want to be careful in assignment setup to hit the actual storage
1545 * instead of potentially using a temporary like we might with the
1546 * ir_dereference handler.
1547 */
1548 static dst_reg
1549 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1550 {
1551 /* The LHS must be a dereference. If the LHS is a variable indexed array
1552 * access of a vector, it must be separated into a series conditional moves
1553 * before reaching this point (see ir_vec_index_to_cond_assign).
1554 */
1555 assert(ir->as_dereference());
1556 ir_dereference_array *deref_array = ir->as_dereference_array();
1557 if (deref_array) {
1558 assert(!deref_array->array->type->is_vector());
1559 }
1560
1561 /* Use the rvalue deref handler for the most part. We'll ignore
1562 * swizzles in it and write swizzles using writemask, though.
1563 */
1564 ir->accept(v);
1565 return dst_reg(v->result);
1566 }
1567
1568 /**
1569 * Process the condition of a conditional assignment
1570 *
1571 * Examines the condition of a conditional assignment to generate the optimal
1572 * first operand of a \c CMP instruction. If the condition is a relational
1573 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1574 * used as the source for the \c CMP instruction. Otherwise the comparison
1575 * is processed to a boolean result, and the boolean result is used as the
1576 * operand to the CMP instruction.
1577 */
1578 bool
1579 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1580 {
1581 ir_rvalue *src_ir = ir;
1582 bool negate = true;
1583 bool switch_order = false;
1584
1585 ir_expression *const expr = ir->as_expression();
1586 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1587 bool zero_on_left = false;
1588
1589 if (expr->operands[0]->is_zero()) {
1590 src_ir = expr->operands[1];
1591 zero_on_left = true;
1592 } else if (expr->operands[1]->is_zero()) {
1593 src_ir = expr->operands[0];
1594 zero_on_left = false;
1595 }
1596
1597 /* a is - 0 + - 0 +
1598 * (a < 0) T F F ( a < 0) T F F
1599 * (0 < a) F F T (-a < 0) F F T
1600 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
1601 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
1602 * (a > 0) F F T (-a < 0) F F T
1603 * (0 > a) T F F ( a < 0) T F F
1604 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1605 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1606 *
1607 * Note that exchanging the order of 0 and 'a' in the comparison simply
1608 * means that the value of 'a' should be negated.
1609 */
1610 if (src_ir != ir) {
1611 switch (expr->operation) {
1612 case ir_binop_less:
1613 switch_order = false;
1614 negate = zero_on_left;
1615 break;
1616
1617 case ir_binop_greater:
1618 switch_order = false;
1619 negate = !zero_on_left;
1620 break;
1621
1622 case ir_binop_lequal:
1623 switch_order = true;
1624 negate = !zero_on_left;
1625 break;
1626
1627 case ir_binop_gequal:
1628 switch_order = true;
1629 negate = zero_on_left;
1630 break;
1631
1632 default:
1633 /* This isn't the right kind of comparison afterall, so make sure
1634 * the whole condition is visited.
1635 */
1636 src_ir = ir;
1637 break;
1638 }
1639 }
1640 }
1641
1642 src_ir->accept(this);
1643
1644 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1645 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1646 * choose which value OPCODE_CMP produces without an extra instruction
1647 * computing the condition.
1648 */
1649 if (negate)
1650 this->result.negate = ~this->result.negate;
1651
1652 return switch_order;
1653 }
1654
1655 void
1656 ir_to_mesa_visitor::visit(ir_assignment *ir)
1657 {
1658 dst_reg l;
1659 src_reg r;
1660 int i;
1661
1662 ir->rhs->accept(this);
1663 r = this->result;
1664
1665 l = get_assignment_lhs(ir->lhs, this);
1666
1667 /* FINISHME: This should really set to the correct maximal writemask for each
1668 * FINISHME: component written (in the loops below). This case can only
1669 * FINISHME: occur for matrices, arrays, and structures.
1670 */
1671 if (ir->write_mask == 0) {
1672 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1673 l.writemask = WRITEMASK_XYZW;
1674 } else if (ir->lhs->type->is_scalar()) {
1675 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1676 * FINISHME: W component of fragment shader output zero, work correctly.
1677 */
1678 l.writemask = WRITEMASK_XYZW;
1679 } else {
1680 int swizzles[4];
1681 int first_enabled_chan = 0;
1682 int rhs_chan = 0;
1683
1684 assert(ir->lhs->type->is_vector());
1685 l.writemask = ir->write_mask;
1686
1687 for (int i = 0; i < 4; i++) {
1688 if (l.writemask & (1 << i)) {
1689 first_enabled_chan = GET_SWZ(r.swizzle, i);
1690 break;
1691 }
1692 }
1693
1694 /* Swizzle a small RHS vector into the channels being written.
1695 *
1696 * glsl ir treats write_mask as dictating how many channels are
1697 * present on the RHS while Mesa IR treats write_mask as just
1698 * showing which channels of the vec4 RHS get written.
1699 */
1700 for (int i = 0; i < 4; i++) {
1701 if (l.writemask & (1 << i))
1702 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1703 else
1704 swizzles[i] = first_enabled_chan;
1705 }
1706 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1707 swizzles[2], swizzles[3]);
1708 }
1709
1710 assert(l.file != PROGRAM_UNDEFINED);
1711 assert(r.file != PROGRAM_UNDEFINED);
1712
1713 if (ir->condition) {
1714 const bool switch_order = this->process_move_condition(ir->condition);
1715 src_reg condition = this->result;
1716
1717 for (i = 0; i < type_size(ir->lhs->type); i++) {
1718 if (switch_order) {
1719 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1720 } else {
1721 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1722 }
1723
1724 l.index++;
1725 r.index++;
1726 }
1727 } else {
1728 for (i = 0; i < type_size(ir->lhs->type); i++) {
1729 emit(ir, OPCODE_MOV, l, r);
1730 l.index++;
1731 r.index++;
1732 }
1733 }
1734 }
1735
1736
1737 void
1738 ir_to_mesa_visitor::visit(ir_constant *ir)
1739 {
1740 src_reg src;
1741 GLfloat stack_vals[4] = { 0 };
1742 GLfloat *values = stack_vals;
1743 unsigned int i;
1744
1745 /* Unfortunately, 4 floats is all we can get into
1746 * _mesa_add_unnamed_constant. So, make a temp to store an
1747 * aggregate constant and move each constant value into it. If we
1748 * get lucky, copy propagation will eliminate the extra moves.
1749 */
1750
1751 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1752 src_reg temp_base = get_temp(ir->type);
1753 dst_reg temp = dst_reg(temp_base);
1754
1755 foreach_in_list(ir_constant, field_value, &ir->components) {
1756 int size = type_size(field_value->type);
1757
1758 assert(size > 0);
1759
1760 field_value->accept(this);
1761 src = this->result;
1762
1763 for (i = 0; i < (unsigned int)size; i++) {
1764 emit(ir, OPCODE_MOV, temp, src);
1765
1766 src.index++;
1767 temp.index++;
1768 }
1769 }
1770 this->result = temp_base;
1771 return;
1772 }
1773
1774 if (ir->type->is_array()) {
1775 src_reg temp_base = get_temp(ir->type);
1776 dst_reg temp = dst_reg(temp_base);
1777 int size = type_size(ir->type->fields.array);
1778
1779 assert(size > 0);
1780
1781 for (i = 0; i < ir->type->length; i++) {
1782 ir->array_elements[i]->accept(this);
1783 src = this->result;
1784 for (int j = 0; j < size; j++) {
1785 emit(ir, OPCODE_MOV, temp, src);
1786
1787 src.index++;
1788 temp.index++;
1789 }
1790 }
1791 this->result = temp_base;
1792 return;
1793 }
1794
1795 if (ir->type->is_matrix()) {
1796 src_reg mat = get_temp(ir->type);
1797 dst_reg mat_column = dst_reg(mat);
1798
1799 for (i = 0; i < ir->type->matrix_columns; i++) {
1800 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
1801 values = &ir->value.f[i * ir->type->vector_elements];
1802
1803 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1804 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1805 (gl_constant_value *) values,
1806 ir->type->vector_elements,
1807 &src.swizzle);
1808 emit(ir, OPCODE_MOV, mat_column, src);
1809
1810 mat_column.index++;
1811 }
1812
1813 this->result = mat;
1814 return;
1815 }
1816
1817 src.file = PROGRAM_CONSTANT;
1818 switch (ir->type->base_type) {
1819 case GLSL_TYPE_FLOAT:
1820 values = &ir->value.f[0];
1821 break;
1822 case GLSL_TYPE_UINT:
1823 for (i = 0; i < ir->type->vector_elements; i++) {
1824 values[i] = ir->value.u[i];
1825 }
1826 break;
1827 case GLSL_TYPE_INT:
1828 for (i = 0; i < ir->type->vector_elements; i++) {
1829 values[i] = ir->value.i[i];
1830 }
1831 break;
1832 case GLSL_TYPE_BOOL:
1833 for (i = 0; i < ir->type->vector_elements; i++) {
1834 values[i] = ir->value.b[i];
1835 }
1836 break;
1837 default:
1838 assert(!"Non-float/uint/int/bool constant");
1839 }
1840
1841 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1842 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1843 (gl_constant_value *) values,
1844 ir->type->vector_elements,
1845 &this->result.swizzle);
1846 }
1847
1848 void
1849 ir_to_mesa_visitor::visit(ir_call *)
1850 {
1851 assert(!"ir_to_mesa: All function calls should have been inlined by now.");
1852 }
1853
1854 void
1855 ir_to_mesa_visitor::visit(ir_texture *ir)
1856 {
1857 src_reg result_src, coord, lod_info, projector, dx, dy;
1858 dst_reg result_dst, coord_dst;
1859 ir_to_mesa_instruction *inst = NULL;
1860 prog_opcode opcode = OPCODE_NOP;
1861
1862 if (ir->op == ir_txs)
1863 this->result = src_reg_for_float(0.0);
1864 else
1865 ir->coordinate->accept(this);
1866
1867 /* Put our coords in a temp. We'll need to modify them for shadow,
1868 * projection, or LOD, so the only case we'd use it as is is if
1869 * we're doing plain old texturing. Mesa IR optimization should
1870 * handle cleaning up our mess in that case.
1871 */
1872 coord = get_temp(glsl_type::vec4_type);
1873 coord_dst = dst_reg(coord);
1874 emit(ir, OPCODE_MOV, coord_dst, this->result);
1875
1876 if (ir->projector) {
1877 ir->projector->accept(this);
1878 projector = this->result;
1879 }
1880
1881 /* Storage for our result. Ideally for an assignment we'd be using
1882 * the actual storage for the result here, instead.
1883 */
1884 result_src = get_temp(glsl_type::vec4_type);
1885 result_dst = dst_reg(result_src);
1886
1887 switch (ir->op) {
1888 case ir_tex:
1889 case ir_txs:
1890 opcode = OPCODE_TEX;
1891 break;
1892 case ir_txb:
1893 opcode = OPCODE_TXB;
1894 ir->lod_info.bias->accept(this);
1895 lod_info = this->result;
1896 break;
1897 case ir_txf:
1898 /* Pretend to be TXL so the sampler, coordinate, lod are available */
1899 case ir_txl:
1900 opcode = OPCODE_TXL;
1901 ir->lod_info.lod->accept(this);
1902 lod_info = this->result;
1903 break;
1904 case ir_txd:
1905 opcode = OPCODE_TXD;
1906 ir->lod_info.grad.dPdx->accept(this);
1907 dx = this->result;
1908 ir->lod_info.grad.dPdy->accept(this);
1909 dy = this->result;
1910 break;
1911 case ir_txf_ms:
1912 assert(!"Unexpected ir_txf_ms opcode");
1913 break;
1914 case ir_lod:
1915 assert(!"Unexpected ir_lod opcode");
1916 break;
1917 case ir_tg4:
1918 assert(!"Unexpected ir_tg4 opcode");
1919 break;
1920 case ir_query_levels:
1921 assert(!"Unexpected ir_query_levels opcode");
1922 break;
1923 }
1924
1925 const glsl_type *sampler_type = ir->sampler->type;
1926
1927 if (ir->projector) {
1928 if (opcode == OPCODE_TEX) {
1929 /* Slot the projector in as the last component of the coord. */
1930 coord_dst.writemask = WRITEMASK_W;
1931 emit(ir, OPCODE_MOV, coord_dst, projector);
1932 coord_dst.writemask = WRITEMASK_XYZW;
1933 opcode = OPCODE_TXP;
1934 } else {
1935 src_reg coord_w = coord;
1936 coord_w.swizzle = SWIZZLE_WWWW;
1937
1938 /* For the other TEX opcodes there's no projective version
1939 * since the last slot is taken up by lod info. Do the
1940 * projective divide now.
1941 */
1942 coord_dst.writemask = WRITEMASK_W;
1943 emit(ir, OPCODE_RCP, coord_dst, projector);
1944
1945 /* In the case where we have to project the coordinates "by hand,"
1946 * the shadow comparitor value must also be projected.
1947 */
1948 src_reg tmp_src = coord;
1949 if (ir->shadow_comparitor) {
1950 /* Slot the shadow value in as the second to last component of the
1951 * coord.
1952 */
1953 ir->shadow_comparitor->accept(this);
1954
1955 tmp_src = get_temp(glsl_type::vec4_type);
1956 dst_reg tmp_dst = dst_reg(tmp_src);
1957
1958 /* Projective division not allowed for array samplers. */
1959 assert(!sampler_type->sampler_array);
1960
1961 tmp_dst.writemask = WRITEMASK_Z;
1962 emit(ir, OPCODE_MOV, tmp_dst, this->result);
1963
1964 tmp_dst.writemask = WRITEMASK_XY;
1965 emit(ir, OPCODE_MOV, tmp_dst, coord);
1966 }
1967
1968 coord_dst.writemask = WRITEMASK_XYZ;
1969 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
1970
1971 coord_dst.writemask = WRITEMASK_XYZW;
1972 coord.swizzle = SWIZZLE_XYZW;
1973 }
1974 }
1975
1976 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
1977 * comparitor was put in the correct place (and projected) by the code,
1978 * above, that handles by-hand projection.
1979 */
1980 if (ir->shadow_comparitor && (!ir->projector || opcode == OPCODE_TXP)) {
1981 /* Slot the shadow value in as the second to last component of the
1982 * coord.
1983 */
1984 ir->shadow_comparitor->accept(this);
1985
1986 /* XXX This will need to be updated for cubemap array samplers. */
1987 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
1988 sampler_type->sampler_array) {
1989 coord_dst.writemask = WRITEMASK_W;
1990 } else {
1991 coord_dst.writemask = WRITEMASK_Z;
1992 }
1993
1994 emit(ir, OPCODE_MOV, coord_dst, this->result);
1995 coord_dst.writemask = WRITEMASK_XYZW;
1996 }
1997
1998 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
1999 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2000 coord_dst.writemask = WRITEMASK_W;
2001 emit(ir, OPCODE_MOV, coord_dst, lod_info);
2002 coord_dst.writemask = WRITEMASK_XYZW;
2003 }
2004
2005 if (opcode == OPCODE_TXD)
2006 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2007 else
2008 inst = emit(ir, opcode, result_dst, coord);
2009
2010 if (ir->shadow_comparitor)
2011 inst->tex_shadow = GL_TRUE;
2012
2013 inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2014 this->shader_program,
2015 this->prog);
2016
2017 switch (sampler_type->sampler_dimensionality) {
2018 case GLSL_SAMPLER_DIM_1D:
2019 inst->tex_target = (sampler_type->sampler_array)
2020 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2021 break;
2022 case GLSL_SAMPLER_DIM_2D:
2023 inst->tex_target = (sampler_type->sampler_array)
2024 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2025 break;
2026 case GLSL_SAMPLER_DIM_3D:
2027 inst->tex_target = TEXTURE_3D_INDEX;
2028 break;
2029 case GLSL_SAMPLER_DIM_CUBE:
2030 inst->tex_target = TEXTURE_CUBE_INDEX;
2031 break;
2032 case GLSL_SAMPLER_DIM_RECT:
2033 inst->tex_target = TEXTURE_RECT_INDEX;
2034 break;
2035 case GLSL_SAMPLER_DIM_BUF:
2036 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2037 break;
2038 case GLSL_SAMPLER_DIM_EXTERNAL:
2039 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2040 break;
2041 default:
2042 assert(!"Should not get here.");
2043 }
2044
2045 this->result = result_src;
2046 }
2047
2048 void
2049 ir_to_mesa_visitor::visit(ir_return *ir)
2050 {
2051 /* Non-void functions should have been inlined. We may still emit RETs
2052 * from main() unless the EmitNoMainReturn option is set.
2053 */
2054 assert(!ir->get_value());
2055 emit(ir, OPCODE_RET);
2056 }
2057
2058 void
2059 ir_to_mesa_visitor::visit(ir_discard *ir)
2060 {
2061 if (ir->condition) {
2062 ir->condition->accept(this);
2063 this->result.negate = ~this->result.negate;
2064 emit(ir, OPCODE_KIL, undef_dst, this->result);
2065 } else {
2066 emit(ir, OPCODE_KIL_NV);
2067 }
2068 }
2069
2070 void
2071 ir_to_mesa_visitor::visit(ir_if *ir)
2072 {
2073 ir_to_mesa_instruction *cond_inst, *if_inst;
2074 ir_to_mesa_instruction *prev_inst;
2075
2076 prev_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2077
2078 ir->condition->accept(this);
2079 assert(this->result.file != PROGRAM_UNDEFINED);
2080
2081 if (this->options->EmitCondCodes) {
2082 cond_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2083
2084 /* See if we actually generated any instruction for generating
2085 * the condition. If not, then cook up a move to a temp so we
2086 * have something to set cond_update on.
2087 */
2088 if (cond_inst == prev_inst) {
2089 src_reg temp = get_temp(glsl_type::bool_type);
2090 cond_inst = emit(ir->condition, OPCODE_MOV, dst_reg(temp), result);
2091 }
2092 cond_inst->cond_update = GL_TRUE;
2093
2094 if_inst = emit(ir->condition, OPCODE_IF);
2095 if_inst->dst.cond_mask = COND_NE;
2096 } else {
2097 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2098 }
2099
2100 this->instructions.push_tail(if_inst);
2101
2102 visit_exec_list(&ir->then_instructions, this);
2103
2104 if (!ir->else_instructions.is_empty()) {
2105 emit(ir->condition, OPCODE_ELSE);
2106 visit_exec_list(&ir->else_instructions, this);
2107 }
2108
2109 emit(ir->condition, OPCODE_ENDIF);
2110 }
2111
2112 void
2113 ir_to_mesa_visitor::visit(ir_emit_vertex *)
2114 {
2115 assert(!"Geometry shaders not supported.");
2116 }
2117
2118 void
2119 ir_to_mesa_visitor::visit(ir_end_primitive *)
2120 {
2121 assert(!"Geometry shaders not supported.");
2122 }
2123
2124 void
2125 ir_to_mesa_visitor::visit(ir_barrier *)
2126 {
2127 unreachable("GLSL barrier() not supported.");
2128 }
2129
2130 ir_to_mesa_visitor::ir_to_mesa_visitor()
2131 {
2132 result.file = PROGRAM_UNDEFINED;
2133 next_temp = 1;
2134 next_signature_id = 1;
2135 current_function = NULL;
2136 mem_ctx = ralloc_context(NULL);
2137 }
2138
2139 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2140 {
2141 ralloc_free(mem_ctx);
2142 }
2143
2144 static struct prog_src_register
2145 mesa_src_reg_from_ir_src_reg(src_reg reg)
2146 {
2147 struct prog_src_register mesa_reg;
2148
2149 mesa_reg.File = reg.file;
2150 assert(reg.index < (1 << INST_INDEX_BITS));
2151 mesa_reg.Index = reg.index;
2152 mesa_reg.Swizzle = reg.swizzle;
2153 mesa_reg.RelAddr = reg.reladdr != NULL;
2154 mesa_reg.Negate = reg.negate;
2155 mesa_reg.Abs = 0;
2156 mesa_reg.HasIndex2 = GL_FALSE;
2157 mesa_reg.RelAddr2 = 0;
2158 mesa_reg.Index2 = 0;
2159
2160 return mesa_reg;
2161 }
2162
2163 static void
2164 set_branchtargets(ir_to_mesa_visitor *v,
2165 struct prog_instruction *mesa_instructions,
2166 int num_instructions)
2167 {
2168 int if_count = 0, loop_count = 0;
2169 int *if_stack, *loop_stack;
2170 int if_stack_pos = 0, loop_stack_pos = 0;
2171 int i, j;
2172
2173 for (i = 0; i < num_instructions; i++) {
2174 switch (mesa_instructions[i].Opcode) {
2175 case OPCODE_IF:
2176 if_count++;
2177 break;
2178 case OPCODE_BGNLOOP:
2179 loop_count++;
2180 break;
2181 case OPCODE_BRK:
2182 case OPCODE_CONT:
2183 mesa_instructions[i].BranchTarget = -1;
2184 break;
2185 default:
2186 break;
2187 }
2188 }
2189
2190 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2191 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2192
2193 for (i = 0; i < num_instructions; i++) {
2194 switch (mesa_instructions[i].Opcode) {
2195 case OPCODE_IF:
2196 if_stack[if_stack_pos] = i;
2197 if_stack_pos++;
2198 break;
2199 case OPCODE_ELSE:
2200 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2201 if_stack[if_stack_pos - 1] = i;
2202 break;
2203 case OPCODE_ENDIF:
2204 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2205 if_stack_pos--;
2206 break;
2207 case OPCODE_BGNLOOP:
2208 loop_stack[loop_stack_pos] = i;
2209 loop_stack_pos++;
2210 break;
2211 case OPCODE_ENDLOOP:
2212 loop_stack_pos--;
2213 /* Rewrite any breaks/conts at this nesting level (haven't
2214 * already had a BranchTarget assigned) to point to the end
2215 * of the loop.
2216 */
2217 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2218 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2219 mesa_instructions[j].Opcode == OPCODE_CONT) {
2220 if (mesa_instructions[j].BranchTarget == -1) {
2221 mesa_instructions[j].BranchTarget = i;
2222 }
2223 }
2224 }
2225 /* The loop ends point at each other. */
2226 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2227 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2228 break;
2229 case OPCODE_CAL:
2230 foreach_in_list(function_entry, entry, &v->function_signatures) {
2231 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2232 mesa_instructions[i].BranchTarget = entry->inst;
2233 break;
2234 }
2235 }
2236 break;
2237 default:
2238 break;
2239 }
2240 }
2241 }
2242
2243 static void
2244 print_program(struct prog_instruction *mesa_instructions,
2245 ir_instruction **mesa_instruction_annotation,
2246 int num_instructions)
2247 {
2248 ir_instruction *last_ir = NULL;
2249 int i;
2250 int indent = 0;
2251
2252 for (i = 0; i < num_instructions; i++) {
2253 struct prog_instruction *mesa_inst = mesa_instructions + i;
2254 ir_instruction *ir = mesa_instruction_annotation[i];
2255
2256 fprintf(stdout, "%3d: ", i);
2257
2258 if (last_ir != ir && ir) {
2259 int j;
2260
2261 for (j = 0; j < indent; j++) {
2262 fprintf(stdout, " ");
2263 }
2264 ir->print();
2265 printf("\n");
2266 last_ir = ir;
2267
2268 fprintf(stdout, " "); /* line number spacing. */
2269 }
2270
2271 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2272 PROG_PRINT_DEBUG, NULL);
2273 }
2274 }
2275
2276 namespace {
2277
2278 class add_uniform_to_shader : public program_resource_visitor {
2279 public:
2280 add_uniform_to_shader(struct gl_shader_program *shader_program,
2281 struct gl_program_parameter_list *params,
2282 gl_shader_stage shader_type)
2283 : shader_program(shader_program), params(params), idx(-1),
2284 shader_type(shader_type)
2285 {
2286 /* empty */
2287 }
2288
2289 void process(ir_variable *var)
2290 {
2291 this->idx = -1;
2292 this->program_resource_visitor::process(var);
2293
2294 var->data.location = this->idx;
2295 }
2296
2297 private:
2298 virtual void visit_field(const glsl_type *type, const char *name,
2299 bool row_major);
2300
2301 struct gl_shader_program *shader_program;
2302 struct gl_program_parameter_list *params;
2303 int idx;
2304 gl_shader_stage shader_type;
2305 };
2306
2307 } /* anonymous namespace */
2308
2309 void
2310 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2311 bool row_major)
2312 {
2313 unsigned int size;
2314
2315 (void) row_major;
2316
2317 if (type->is_vector() || type->is_scalar()) {
2318 size = type->vector_elements;
2319 if (type->is_double())
2320 size *= 2;
2321 } else {
2322 size = type_size(type) * 4;
2323 }
2324
2325 gl_register_file file;
2326 if (type->without_array()->is_sampler()) {
2327 file = PROGRAM_SAMPLER;
2328 } else {
2329 file = PROGRAM_UNIFORM;
2330 }
2331
2332 int index = _mesa_lookup_parameter_index(params, -1, name);
2333 if (index < 0) {
2334 index = _mesa_add_parameter(params, file, name, size, type->gl_type,
2335 NULL, NULL);
2336
2337 /* Sampler uniform values are stored in prog->SamplerUnits,
2338 * and the entry in that array is selected by this index we
2339 * store in ParameterValues[].
2340 */
2341 if (file == PROGRAM_SAMPLER) {
2342 unsigned location;
2343 const bool found =
2344 this->shader_program->UniformHash->get(location,
2345 params->Parameters[index].Name);
2346 assert(found);
2347
2348 if (!found)
2349 return;
2350
2351 struct gl_uniform_storage *storage =
2352 &this->shader_program->UniformStorage[location];
2353
2354 assert(storage->sampler[shader_type].active);
2355
2356 for (unsigned int j = 0; j < size / 4; j++)
2357 params->ParameterValues[index + j][0].f =
2358 storage->sampler[shader_type].index + j;
2359 }
2360 }
2361
2362 /* The first part of the uniform that's processed determines the base
2363 * location of the whole uniform (for structures).
2364 */
2365 if (this->idx < 0)
2366 this->idx = index;
2367 }
2368
2369 /**
2370 * Generate the program parameters list for the user uniforms in a shader
2371 *
2372 * \param shader_program Linked shader program. This is only used to
2373 * emit possible link errors to the info log.
2374 * \param sh Shader whose uniforms are to be processed.
2375 * \param params Parameter list to be filled in.
2376 */
2377 void
2378 _mesa_generate_parameters_list_for_uniforms(struct gl_shader_program
2379 *shader_program,
2380 struct gl_shader *sh,
2381 struct gl_program_parameter_list
2382 *params)
2383 {
2384 add_uniform_to_shader add(shader_program, params, sh->Stage);
2385
2386 foreach_in_list(ir_instruction, node, sh->ir) {
2387 ir_variable *var = node->as_variable();
2388
2389 if ((var == NULL) || (var->data.mode != ir_var_uniform)
2390 || var->is_in_buffer_block() || (strncmp(var->name, "gl_", 3) == 0))
2391 continue;
2392
2393 add.process(var);
2394 }
2395 }
2396
2397 void
2398 _mesa_associate_uniform_storage(struct gl_context *ctx,
2399 struct gl_shader_program *shader_program,
2400 struct gl_program_parameter_list *params)
2401 {
2402 /* After adding each uniform to the parameter list, connect the storage for
2403 * the parameter with the tracking structure used by the API for the
2404 * uniform.
2405 */
2406 unsigned last_location = unsigned(~0);
2407 for (unsigned i = 0; i < params->NumParameters; i++) {
2408 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2409 continue;
2410
2411 unsigned location;
2412 const bool found =
2413 shader_program->UniformHash->get(location, params->Parameters[i].Name);
2414 assert(found);
2415
2416 if (!found)
2417 continue;
2418
2419 struct gl_uniform_storage *storage =
2420 &shader_program->UniformStorage[location];
2421
2422 /* Do not associate any uniform storage to built-in uniforms */
2423 if (storage->builtin)
2424 continue;
2425
2426 if (location != last_location) {
2427 enum gl_uniform_driver_format format = uniform_native;
2428
2429 unsigned columns = 0;
2430 int dmul = 4 * sizeof(float);
2431 switch (storage->type->base_type) {
2432 case GLSL_TYPE_UINT:
2433 assert(ctx->Const.NativeIntegers);
2434 format = uniform_native;
2435 columns = 1;
2436 break;
2437 case GLSL_TYPE_INT:
2438 format =
2439 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2440 columns = 1;
2441 break;
2442
2443 case GLSL_TYPE_DOUBLE:
2444 if (storage->type->vector_elements > 2)
2445 dmul *= 2;
2446 /* fallthrough */
2447 case GLSL_TYPE_FLOAT:
2448 format = uniform_native;
2449 columns = storage->type->matrix_columns;
2450 break;
2451 case GLSL_TYPE_BOOL:
2452 format = uniform_native;
2453 columns = 1;
2454 break;
2455 case GLSL_TYPE_SAMPLER:
2456 case GLSL_TYPE_IMAGE:
2457 case GLSL_TYPE_SUBROUTINE:
2458 format = uniform_native;
2459 columns = 1;
2460 break;
2461 case GLSL_TYPE_ATOMIC_UINT:
2462 case GLSL_TYPE_ARRAY:
2463 case GLSL_TYPE_VOID:
2464 case GLSL_TYPE_STRUCT:
2465 case GLSL_TYPE_ERROR:
2466 case GLSL_TYPE_INTERFACE:
2467 case GLSL_TYPE_FUNCTION:
2468 assert(!"Should not get here.");
2469 break;
2470 }
2471
2472 _mesa_uniform_attach_driver_storage(storage,
2473 dmul * columns,
2474 dmul,
2475 format,
2476 &params->ParameterValues[i]);
2477
2478 /* After attaching the driver's storage to the uniform, propagate any
2479 * data from the linker's backing store. This will cause values from
2480 * initializers in the source code to be copied over.
2481 */
2482 _mesa_propagate_uniforms_to_driver_storage(storage,
2483 0,
2484 MAX2(1, storage->array_elements));
2485
2486 last_location = location;
2487 }
2488 }
2489 }
2490
2491 /*
2492 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2493 * channels for copy propagation and updates following instructions to
2494 * use the original versions.
2495 *
2496 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2497 * will occur. As an example, a TXP production before this pass:
2498 *
2499 * 0: MOV TEMP[1], INPUT[4].xyyy;
2500 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2501 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2502 *
2503 * and after:
2504 *
2505 * 0: MOV TEMP[1], INPUT[4].xyyy;
2506 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2507 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2508 *
2509 * which allows for dead code elimination on TEMP[1]'s writes.
2510 */
2511 void
2512 ir_to_mesa_visitor::copy_propagate(void)
2513 {
2514 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2515 ir_to_mesa_instruction *,
2516 this->next_temp * 4);
2517 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2518 int level = 0;
2519
2520 foreach_in_list(ir_to_mesa_instruction, inst, &this->instructions) {
2521 assert(inst->dst.file != PROGRAM_TEMPORARY
2522 || inst->dst.index < this->next_temp);
2523
2524 /* First, do any copy propagation possible into the src regs. */
2525 for (int r = 0; r < 3; r++) {
2526 ir_to_mesa_instruction *first = NULL;
2527 bool good = true;
2528 int acp_base = inst->src[r].index * 4;
2529
2530 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2531 inst->src[r].reladdr)
2532 continue;
2533
2534 /* See if we can find entries in the ACP consisting of MOVs
2535 * from the same src register for all the swizzled channels
2536 * of this src register reference.
2537 */
2538 for (int i = 0; i < 4; i++) {
2539 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2540 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2541
2542 if (!copy_chan) {
2543 good = false;
2544 break;
2545 }
2546
2547 assert(acp_level[acp_base + src_chan] <= level);
2548
2549 if (!first) {
2550 first = copy_chan;
2551 } else {
2552 if (first->src[0].file != copy_chan->src[0].file ||
2553 first->src[0].index != copy_chan->src[0].index) {
2554 good = false;
2555 break;
2556 }
2557 }
2558 }
2559
2560 if (good) {
2561 /* We've now validated that we can copy-propagate to
2562 * replace this src register reference. Do it.
2563 */
2564 inst->src[r].file = first->src[0].file;
2565 inst->src[r].index = first->src[0].index;
2566
2567 int swizzle = 0;
2568 for (int i = 0; i < 4; i++) {
2569 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2570 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2571 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2572 (3 * i));
2573 }
2574 inst->src[r].swizzle = swizzle;
2575 }
2576 }
2577
2578 switch (inst->op) {
2579 case OPCODE_BGNLOOP:
2580 case OPCODE_ENDLOOP:
2581 /* End of a basic block, clear the ACP entirely. */
2582 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2583 break;
2584
2585 case OPCODE_IF:
2586 ++level;
2587 break;
2588
2589 case OPCODE_ENDIF:
2590 case OPCODE_ELSE:
2591 /* Clear all channels written inside the block from the ACP, but
2592 * leaving those that were not touched.
2593 */
2594 for (int r = 0; r < this->next_temp; r++) {
2595 for (int c = 0; c < 4; c++) {
2596 if (!acp[4 * r + c])
2597 continue;
2598
2599 if (acp_level[4 * r + c] >= level)
2600 acp[4 * r + c] = NULL;
2601 }
2602 }
2603 if (inst->op == OPCODE_ENDIF)
2604 --level;
2605 break;
2606
2607 default:
2608 /* Continuing the block, clear any written channels from
2609 * the ACP.
2610 */
2611 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2612 /* Any temporary might be written, so no copy propagation
2613 * across this instruction.
2614 */
2615 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2616 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2617 inst->dst.reladdr) {
2618 /* Any output might be written, so no copy propagation
2619 * from outputs across this instruction.
2620 */
2621 for (int r = 0; r < this->next_temp; r++) {
2622 for (int c = 0; c < 4; c++) {
2623 if (!acp[4 * r + c])
2624 continue;
2625
2626 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2627 acp[4 * r + c] = NULL;
2628 }
2629 }
2630 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2631 inst->dst.file == PROGRAM_OUTPUT) {
2632 /* Clear where it's used as dst. */
2633 if (inst->dst.file == PROGRAM_TEMPORARY) {
2634 for (int c = 0; c < 4; c++) {
2635 if (inst->dst.writemask & (1 << c)) {
2636 acp[4 * inst->dst.index + c] = NULL;
2637 }
2638 }
2639 }
2640
2641 /* Clear where it's used as src. */
2642 for (int r = 0; r < this->next_temp; r++) {
2643 for (int c = 0; c < 4; c++) {
2644 if (!acp[4 * r + c])
2645 continue;
2646
2647 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2648
2649 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2650 acp[4 * r + c]->src[0].index == inst->dst.index &&
2651 inst->dst.writemask & (1 << src_chan))
2652 {
2653 acp[4 * r + c] = NULL;
2654 }
2655 }
2656 }
2657 }
2658 break;
2659 }
2660
2661 /* If this is a copy, add it to the ACP. */
2662 if (inst->op == OPCODE_MOV &&
2663 inst->dst.file == PROGRAM_TEMPORARY &&
2664 !(inst->dst.file == inst->src[0].file &&
2665 inst->dst.index == inst->src[0].index) &&
2666 !inst->dst.reladdr &&
2667 !inst->saturate &&
2668 !inst->src[0].reladdr &&
2669 !inst->src[0].negate) {
2670 for (int i = 0; i < 4; i++) {
2671 if (inst->dst.writemask & (1 << i)) {
2672 acp[4 * inst->dst.index + i] = inst;
2673 acp_level[4 * inst->dst.index + i] = level;
2674 }
2675 }
2676 }
2677 }
2678
2679 ralloc_free(acp_level);
2680 ralloc_free(acp);
2681 }
2682
2683
2684 /**
2685 * Convert a shader's GLSL IR into a Mesa gl_program.
2686 */
2687 static struct gl_program *
2688 get_mesa_program(struct gl_context *ctx,
2689 struct gl_shader_program *shader_program,
2690 struct gl_shader *shader)
2691 {
2692 ir_to_mesa_visitor v;
2693 struct prog_instruction *mesa_instructions, *mesa_inst;
2694 ir_instruction **mesa_instruction_annotation;
2695 int i;
2696 struct gl_program *prog;
2697 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
2698 const char *target_string = _mesa_shader_stage_to_string(shader->Stage);
2699 struct gl_shader_compiler_options *options =
2700 &ctx->Const.ShaderCompilerOptions[shader->Stage];
2701
2702 validate_ir_tree(shader->ir);
2703
2704 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
2705 if (!prog)
2706 return NULL;
2707 prog->Parameters = _mesa_new_parameter_list();
2708 v.ctx = ctx;
2709 v.prog = prog;
2710 v.shader_program = shader_program;
2711 v.options = options;
2712
2713 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
2714 prog->Parameters);
2715
2716 /* Emit Mesa IR for main(). */
2717 visit_exec_list(shader->ir, &v);
2718 v.emit(NULL, OPCODE_END);
2719
2720 prog->NumTemporaries = v.next_temp;
2721
2722 unsigned num_instructions = v.instructions.length();
2723
2724 mesa_instructions =
2725 (struct prog_instruction *)calloc(num_instructions,
2726 sizeof(*mesa_instructions));
2727 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2728 num_instructions);
2729
2730 v.copy_propagate();
2731
2732 /* Convert ir_mesa_instructions into prog_instructions.
2733 */
2734 mesa_inst = mesa_instructions;
2735 i = 0;
2736 foreach_in_list(const ir_to_mesa_instruction, inst, &v.instructions) {
2737 mesa_inst->Opcode = inst->op;
2738 mesa_inst->CondUpdate = inst->cond_update;
2739 if (inst->saturate)
2740 mesa_inst->Saturate = GL_TRUE;
2741 mesa_inst->DstReg.File = inst->dst.file;
2742 mesa_inst->DstReg.Index = inst->dst.index;
2743 mesa_inst->DstReg.CondMask = inst->dst.cond_mask;
2744 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2745 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2746 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2747 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2748 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2749 mesa_inst->TexSrcUnit = inst->sampler;
2750 mesa_inst->TexSrcTarget = inst->tex_target;
2751 mesa_inst->TexShadow = inst->tex_shadow;
2752 mesa_instruction_annotation[i] = inst->ir;
2753
2754 /* Set IndirectRegisterFiles. */
2755 if (mesa_inst->DstReg.RelAddr)
2756 prog->IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2757
2758 /* Update program's bitmask of indirectly accessed register files */
2759 for (unsigned src = 0; src < 3; src++)
2760 if (mesa_inst->SrcReg[src].RelAddr)
2761 prog->IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2762
2763 switch (mesa_inst->Opcode) {
2764 case OPCODE_IF:
2765 if (options->MaxIfDepth == 0) {
2766 linker_warning(shader_program,
2767 "Couldn't flatten if-statement. "
2768 "This will likely result in software "
2769 "rasterization.\n");
2770 }
2771 break;
2772 case OPCODE_BGNLOOP:
2773 if (options->EmitNoLoops) {
2774 linker_warning(shader_program,
2775 "Couldn't unroll loop. "
2776 "This will likely result in software "
2777 "rasterization.\n");
2778 }
2779 break;
2780 case OPCODE_CONT:
2781 if (options->EmitNoCont) {
2782 linker_warning(shader_program,
2783 "Couldn't lower continue-statement. "
2784 "This will likely result in software "
2785 "rasterization.\n");
2786 }
2787 break;
2788 case OPCODE_ARL:
2789 prog->NumAddressRegs = 1;
2790 break;
2791 default:
2792 break;
2793 }
2794
2795 mesa_inst++;
2796 i++;
2797
2798 if (!shader_program->LinkStatus)
2799 break;
2800 }
2801
2802 if (!shader_program->LinkStatus) {
2803 goto fail_exit;
2804 }
2805
2806 set_branchtargets(&v, mesa_instructions, num_instructions);
2807
2808 if (ctx->_Shader->Flags & GLSL_DUMP) {
2809 fprintf(stderr, "\n");
2810 fprintf(stderr, "GLSL IR for linked %s program %d:\n", target_string,
2811 shader_program->Name);
2812 _mesa_print_ir(stderr, shader->ir, NULL);
2813 fprintf(stderr, "\n");
2814 fprintf(stderr, "\n");
2815 fprintf(stderr, "Mesa IR for linked %s program %d:\n", target_string,
2816 shader_program->Name);
2817 print_program(mesa_instructions, mesa_instruction_annotation,
2818 num_instructions);
2819 fflush(stderr);
2820 }
2821
2822 prog->Instructions = mesa_instructions;
2823 prog->NumInstructions = num_instructions;
2824
2825 /* Setting this to NULL prevents a possible double free in the fail_exit
2826 * path (far below).
2827 */
2828 mesa_instructions = NULL;
2829
2830 do_set_program_inouts(shader->ir, prog, shader->Stage);
2831
2832 prog->SamplersUsed = shader->active_samplers;
2833 prog->ShadowSamplers = shader->shadow_samplers;
2834 _mesa_update_shader_textures_used(shader_program, prog);
2835
2836 /* Set the gl_FragDepth layout. */
2837 if (target == GL_FRAGMENT_PROGRAM_ARB) {
2838 struct gl_fragment_program *fp = (struct gl_fragment_program *)prog;
2839 fp->FragDepthLayout = shader_program->FragDepthLayout;
2840 }
2841
2842 _mesa_reference_program(ctx, &shader->Program, prog);
2843
2844 if ((ctx->_Shader->Flags & GLSL_NO_OPT) == 0) {
2845 _mesa_optimize_program(ctx, prog);
2846 }
2847
2848 /* This has to be done last. Any operation that can cause
2849 * prog->ParameterValues to get reallocated (e.g., anything that adds a
2850 * program constant) has to happen before creating this linkage.
2851 */
2852 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
2853 if (!shader_program->LinkStatus) {
2854 goto fail_exit;
2855 }
2856
2857 return prog;
2858
2859 fail_exit:
2860 free(mesa_instructions);
2861 _mesa_reference_program(ctx, &shader->Program, NULL);
2862 return NULL;
2863 }
2864
2865 extern "C" {
2866
2867 /**
2868 * Link a shader.
2869 * Called via ctx->Driver.LinkShader()
2870 * This actually involves converting GLSL IR into Mesa gl_programs with
2871 * code lowering and other optimizations.
2872 */
2873 GLboolean
2874 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
2875 {
2876 assert(prog->LinkStatus);
2877
2878 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2879 if (prog->_LinkedShaders[i] == NULL)
2880 continue;
2881
2882 bool progress;
2883 exec_list *ir = prog->_LinkedShaders[i]->ir;
2884 const struct gl_shader_compiler_options *options =
2885 &ctx->Const.ShaderCompilerOptions[prog->_LinkedShaders[i]->Stage];
2886
2887 do {
2888 progress = false;
2889
2890 /* Lowering */
2891 do_mat_op_to_vec(ir);
2892 lower_instructions(ir, (MOD_TO_FLOOR | DIV_TO_MUL_RCP | EXP_TO_EXP2
2893 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
2894 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
2895
2896 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
2897
2898 progress = do_common_optimization(ir, true, true,
2899 options, ctx->Const.NativeIntegers)
2900 || progress;
2901
2902 progress = lower_quadop_vector(ir, true) || progress;
2903
2904 if (options->MaxIfDepth == 0)
2905 progress = lower_discard(ir) || progress;
2906
2907 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
2908
2909 if (options->EmitNoNoise)
2910 progress = lower_noise(ir) || progress;
2911
2912 /* If there are forms of indirect addressing that the driver
2913 * cannot handle, perform the lowering pass.
2914 */
2915 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
2916 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
2917 progress =
2918 lower_variable_index_to_cond_assign(prog->_LinkedShaders[i]->Stage, ir,
2919 options->EmitNoIndirectInput,
2920 options->EmitNoIndirectOutput,
2921 options->EmitNoIndirectTemp,
2922 options->EmitNoIndirectUniform)
2923 || progress;
2924
2925 progress = do_vec_index_to_cond_assign(ir) || progress;
2926 progress = lower_vector_insert(ir, true) || progress;
2927 } while (progress);
2928
2929 validate_ir_tree(ir);
2930 }
2931
2932 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2933 struct gl_program *linked_prog;
2934
2935 if (prog->_LinkedShaders[i] == NULL)
2936 continue;
2937
2938 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
2939
2940 if (linked_prog) {
2941 _mesa_copy_linked_program_data((gl_shader_stage) i, prog, linked_prog);
2942
2943 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
2944 linked_prog);
2945 if (!ctx->Driver.ProgramStringNotify(ctx,
2946 _mesa_shader_stage_to_program(i),
2947 linked_prog)) {
2948 return GL_FALSE;
2949 }
2950 }
2951
2952 _mesa_reference_program(ctx, &linked_prog, NULL);
2953 }
2954
2955 return prog->LinkStatus;
2956 }
2957
2958 /**
2959 * Link a GLSL shader program. Called via glLinkProgram().
2960 */
2961 void
2962 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
2963 {
2964 unsigned int i;
2965
2966 _mesa_clear_shader_program_data(prog);
2967
2968 prog->LinkStatus = GL_TRUE;
2969
2970 for (i = 0; i < prog->NumShaders; i++) {
2971 if (!prog->Shaders[i]->CompileStatus) {
2972 linker_error(prog, "linking with uncompiled shader");
2973 }
2974 }
2975
2976 if (prog->LinkStatus) {
2977 link_shaders(ctx, prog);
2978 }
2979
2980 if (prog->LinkStatus) {
2981 if (!ctx->Driver.LinkShader(ctx, prog)) {
2982 prog->LinkStatus = GL_FALSE;
2983 } else {
2984 build_program_resource_list(ctx, prog);
2985 }
2986 }
2987
2988 if (ctx->_Shader->Flags & GLSL_DUMP) {
2989 if (!prog->LinkStatus) {
2990 fprintf(stderr, "GLSL shader program %d failed to link\n", prog->Name);
2991 }
2992
2993 if (prog->InfoLog && prog->InfoLog[0] != 0) {
2994 fprintf(stderr, "GLSL shader program %d info log:\n", prog->Name);
2995 fprintf(stderr, "%s\n", prog->InfoLog);
2996 }
2997 }
2998 }
2999
3000 } /* extern "C" */