Added few more stubs so that control reaches to DestroyDevice().
[mesa.git] / src / mesa / program / prog_execute.c
1 /*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included
14 * in all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 /**
26 * \file prog_execute.c
27 * Software interpreter for vertex/fragment programs.
28 * \author Brian Paul
29 */
30
31 /*
32 * NOTE: we do everything in single-precision floating point; we don't
33 * currently observe the single/half/fixed-precision qualifiers.
34 *
35 */
36
37
38 #include "c99_math.h"
39 #include "main/errors.h"
40 #include "main/glheader.h"
41 #include "main/macros.h"
42 #include "main/mtypes.h"
43 #include "prog_execute.h"
44 #include "prog_instruction.h"
45 #include "prog_parameter.h"
46 #include "prog_print.h"
47 #include "prog_noise.h"
48
49
50 /* debug predicate */
51 #define DEBUG_PROG 0
52
53
54 /**
55 * Set x to positive or negative infinity.
56 */
57 #define SET_POS_INFINITY(x) \
58 do { \
59 fi_type fi; \
60 fi.i = 0x7F800000; \
61 x = fi.f; \
62 } while (0)
63 #define SET_NEG_INFINITY(x) \
64 do { \
65 fi_type fi; \
66 fi.i = 0xFF800000; \
67 x = fi.f; \
68 } while (0)
69
70 #define SET_FLOAT_BITS(x, bits) ((fi_type *) (void *) &(x))->i = bits
71
72
73 static const GLfloat ZeroVec[4] = { 0.0F, 0.0F, 0.0F, 0.0F };
74
75
76 /**
77 * Return a pointer to the 4-element float vector specified by the given
78 * source register.
79 */
80 static inline const GLfloat *
81 get_src_register_pointer(const struct prog_src_register *source,
82 const struct gl_program_machine *machine)
83 {
84 const struct gl_program *prog = machine->CurProgram;
85 GLint reg = source->Index;
86
87 if (source->RelAddr) {
88 /* add address register value to src index/offset */
89 reg += machine->AddressReg[0][0];
90 if (reg < 0) {
91 return ZeroVec;
92 }
93 }
94
95 switch (source->File) {
96 case PROGRAM_TEMPORARY:
97 if (reg >= MAX_PROGRAM_TEMPS)
98 return ZeroVec;
99 return machine->Temporaries[reg];
100
101 case PROGRAM_INPUT:
102 if (prog->Target == GL_VERTEX_PROGRAM_ARB) {
103 if (reg >= VERT_ATTRIB_MAX)
104 return ZeroVec;
105 return machine->VertAttribs[reg];
106 }
107 else {
108 if (reg >= VARYING_SLOT_MAX)
109 return ZeroVec;
110 return machine->Attribs[reg][machine->CurElement];
111 }
112
113 case PROGRAM_OUTPUT:
114 if (reg >= MAX_PROGRAM_OUTPUTS)
115 return ZeroVec;
116 return machine->Outputs[reg];
117
118 case PROGRAM_STATE_VAR:
119 /* Fallthrough */
120 case PROGRAM_CONSTANT:
121 /* Fallthrough */
122 case PROGRAM_UNIFORM: {
123 if (reg >= (GLint) prog->Parameters->NumParameters)
124 return ZeroVec;
125
126 unsigned pvo = prog->Parameters->ParameterValueOffset[reg];
127 return (GLfloat *) prog->Parameters->ParameterValues + pvo;
128 }
129 case PROGRAM_SYSTEM_VALUE:
130 assert(reg < (GLint) ARRAY_SIZE(machine->SystemValues));
131 return machine->SystemValues[reg];
132
133 default:
134 _mesa_problem(NULL,
135 "Invalid src register file %d in get_src_register_pointer()",
136 source->File);
137 return ZeroVec;
138 }
139 }
140
141
142 /**
143 * Return a pointer to the 4-element float vector specified by the given
144 * destination register.
145 */
146 static inline GLfloat *
147 get_dst_register_pointer(const struct prog_dst_register *dest,
148 struct gl_program_machine *machine)
149 {
150 static GLfloat dummyReg[4];
151 GLint reg = dest->Index;
152
153 if (dest->RelAddr) {
154 /* add address register value to src index/offset */
155 reg += machine->AddressReg[0][0];
156 if (reg < 0) {
157 return dummyReg;
158 }
159 }
160
161 switch (dest->File) {
162 case PROGRAM_TEMPORARY:
163 if (reg >= MAX_PROGRAM_TEMPS)
164 return dummyReg;
165 return machine->Temporaries[reg];
166
167 case PROGRAM_OUTPUT:
168 if (reg >= MAX_PROGRAM_OUTPUTS)
169 return dummyReg;
170 return machine->Outputs[reg];
171
172 default:
173 _mesa_problem(NULL,
174 "Invalid dest register file %d in get_dst_register_pointer()",
175 dest->File);
176 return dummyReg;
177 }
178 }
179
180
181
182 /**
183 * Fetch a 4-element float vector from the given source register.
184 * Apply swizzling and negating as needed.
185 */
186 static void
187 fetch_vector4(const struct prog_src_register *source,
188 const struct gl_program_machine *machine, GLfloat result[4])
189 {
190 const GLfloat *src = get_src_register_pointer(source, machine);
191
192 if (source->Swizzle == SWIZZLE_NOOP) {
193 /* no swizzling */
194 COPY_4V(result, src);
195 }
196 else {
197 assert(GET_SWZ(source->Swizzle, 0) <= 3);
198 assert(GET_SWZ(source->Swizzle, 1) <= 3);
199 assert(GET_SWZ(source->Swizzle, 2) <= 3);
200 assert(GET_SWZ(source->Swizzle, 3) <= 3);
201 result[0] = src[GET_SWZ(source->Swizzle, 0)];
202 result[1] = src[GET_SWZ(source->Swizzle, 1)];
203 result[2] = src[GET_SWZ(source->Swizzle, 2)];
204 result[3] = src[GET_SWZ(source->Swizzle, 3)];
205 }
206
207 if (source->Negate) {
208 assert(source->Negate == NEGATE_XYZW);
209 result[0] = -result[0];
210 result[1] = -result[1];
211 result[2] = -result[2];
212 result[3] = -result[3];
213 }
214
215 #ifdef NAN_CHECK
216 assert(!util_is_inf_or_nan(result[0]));
217 assert(!util_is_inf_or_nan(result[0]));
218 assert(!util_is_inf_or_nan(result[0]));
219 assert(!util_is_inf_or_nan(result[0]));
220 #endif
221 }
222
223
224 /**
225 * Fetch the derivative with respect to X or Y for the given register.
226 * XXX this currently only works for fragment program input attribs.
227 */
228 static void
229 fetch_vector4_deriv(const struct prog_src_register *source,
230 const struct gl_program_machine *machine,
231 char xOrY, GLfloat result[4])
232 {
233 if (source->File == PROGRAM_INPUT &&
234 source->Index < (GLint) machine->NumDeriv) {
235 const GLint col = machine->CurElement;
236 const GLfloat w = machine->Attribs[VARYING_SLOT_POS][col][3];
237 const GLfloat invQ = 1.0f / w;
238 GLfloat deriv[4];
239
240 if (xOrY == 'X') {
241 deriv[0] = machine->DerivX[source->Index][0] * invQ;
242 deriv[1] = machine->DerivX[source->Index][1] * invQ;
243 deriv[2] = machine->DerivX[source->Index][2] * invQ;
244 deriv[3] = machine->DerivX[source->Index][3] * invQ;
245 }
246 else {
247 deriv[0] = machine->DerivY[source->Index][0] * invQ;
248 deriv[1] = machine->DerivY[source->Index][1] * invQ;
249 deriv[2] = machine->DerivY[source->Index][2] * invQ;
250 deriv[3] = machine->DerivY[source->Index][3] * invQ;
251 }
252
253 result[0] = deriv[GET_SWZ(source->Swizzle, 0)];
254 result[1] = deriv[GET_SWZ(source->Swizzle, 1)];
255 result[2] = deriv[GET_SWZ(source->Swizzle, 2)];
256 result[3] = deriv[GET_SWZ(source->Swizzle, 3)];
257
258 if (source->Negate) {
259 assert(source->Negate == NEGATE_XYZW);
260 result[0] = -result[0];
261 result[1] = -result[1];
262 result[2] = -result[2];
263 result[3] = -result[3];
264 }
265 }
266 else {
267 ASSIGN_4V(result, 0.0, 0.0, 0.0, 0.0);
268 }
269 }
270
271
272 /**
273 * As above, but only return result[0] element.
274 */
275 static void
276 fetch_vector1(const struct prog_src_register *source,
277 const struct gl_program_machine *machine, GLfloat result[4])
278 {
279 const GLfloat *src = get_src_register_pointer(source, machine);
280
281 result[0] = src[GET_SWZ(source->Swizzle, 0)];
282
283 if (source->Negate) {
284 result[0] = -result[0];
285 }
286 }
287
288
289 /**
290 * Fetch texel from texture. Use partial derivatives when possible.
291 */
292 static inline void
293 fetch_texel(struct gl_context *ctx,
294 const struct gl_program_machine *machine,
295 const struct prog_instruction *inst,
296 const GLfloat texcoord[4], GLfloat lodBias,
297 GLfloat color[4])
298 {
299 const GLuint unit = machine->Samplers[inst->TexSrcUnit];
300
301 /* Note: we only have the right derivatives for fragment input attribs.
302 */
303 if (machine->NumDeriv > 0 &&
304 inst->SrcReg[0].File == PROGRAM_INPUT &&
305 inst->SrcReg[0].Index == VARYING_SLOT_TEX0 + inst->TexSrcUnit) {
306 /* simple texture fetch for which we should have derivatives */
307 GLuint attr = inst->SrcReg[0].Index;
308 machine->FetchTexelDeriv(ctx, texcoord,
309 machine->DerivX[attr],
310 machine->DerivY[attr],
311 lodBias, unit, color);
312 }
313 else {
314 machine->FetchTexelLod(ctx, texcoord, lodBias, unit, color);
315 }
316 }
317
318
319 /**
320 * Store 4 floats into a register. Observe the instructions saturate and
321 * set-condition-code flags.
322 */
323 static void
324 store_vector4(const struct prog_instruction *inst,
325 struct gl_program_machine *machine, const GLfloat value[4])
326 {
327 const struct prog_dst_register *dstReg = &(inst->DstReg);
328 const GLboolean clamp = inst->Saturate;
329 GLuint writeMask = dstReg->WriteMask;
330 GLfloat clampedValue[4];
331 GLfloat *dst = get_dst_register_pointer(dstReg, machine);
332
333 #if 0
334 if (value[0] > 1.0e10 ||
335 util_is_inf_or_nan(value[0]) ||
336 util_is_inf_or_nan(value[1]) ||
337 util_is_inf_or_nan(value[2]) || util_is_inf_or_nan(value[3]))
338 printf("store %g %g %g %g\n", value[0], value[1], value[2], value[3]);
339 #endif
340
341 if (clamp) {
342 clampedValue[0] = CLAMP(value[0], 0.0F, 1.0F);
343 clampedValue[1] = CLAMP(value[1], 0.0F, 1.0F);
344 clampedValue[2] = CLAMP(value[2], 0.0F, 1.0F);
345 clampedValue[3] = CLAMP(value[3], 0.0F, 1.0F);
346 value = clampedValue;
347 }
348
349 #ifdef NAN_CHECK
350 assert(!util_is_inf_or_nan(value[0]));
351 assert(!util_is_inf_or_nan(value[0]));
352 assert(!util_is_inf_or_nan(value[0]));
353 assert(!util_is_inf_or_nan(value[0]));
354 #endif
355
356 if (writeMask & WRITEMASK_X)
357 dst[0] = value[0];
358 if (writeMask & WRITEMASK_Y)
359 dst[1] = value[1];
360 if (writeMask & WRITEMASK_Z)
361 dst[2] = value[2];
362 if (writeMask & WRITEMASK_W)
363 dst[3] = value[3];
364 }
365
366
367 /**
368 * Execute the given vertex/fragment program.
369 *
370 * \param ctx rendering context
371 * \param program the program to execute
372 * \param machine machine state (must be initialized)
373 * \return GL_TRUE if program completed or GL_FALSE if program executed KIL.
374 */
375 GLboolean
376 _mesa_execute_program(struct gl_context * ctx,
377 const struct gl_program *program,
378 struct gl_program_machine *machine)
379 {
380 const GLuint numInst = program->arb.NumInstructions;
381 const GLuint maxExec = 65536;
382 GLuint pc, numExec = 0;
383
384 machine->CurProgram = program;
385
386 if (DEBUG_PROG) {
387 printf("execute program %u --------------------\n", program->Id);
388 }
389
390 if (program->Target == GL_VERTEX_PROGRAM_ARB) {
391 machine->EnvParams = ctx->VertexProgram.Parameters;
392 }
393 else {
394 machine->EnvParams = ctx->FragmentProgram.Parameters;
395 }
396
397 for (pc = 0; pc < numInst; pc++) {
398 const struct prog_instruction *inst = program->arb.Instructions + pc;
399
400 if (DEBUG_PROG) {
401 _mesa_print_instruction(inst);
402 }
403
404 switch (inst->Opcode) {
405 case OPCODE_ABS:
406 {
407 GLfloat a[4], result[4];
408 fetch_vector4(&inst->SrcReg[0], machine, a);
409 result[0] = fabsf(a[0]);
410 result[1] = fabsf(a[1]);
411 result[2] = fabsf(a[2]);
412 result[3] = fabsf(a[3]);
413 store_vector4(inst, machine, result);
414 }
415 break;
416 case OPCODE_ADD:
417 {
418 GLfloat a[4], b[4], result[4];
419 fetch_vector4(&inst->SrcReg[0], machine, a);
420 fetch_vector4(&inst->SrcReg[1], machine, b);
421 result[0] = a[0] + b[0];
422 result[1] = a[1] + b[1];
423 result[2] = a[2] + b[2];
424 result[3] = a[3] + b[3];
425 store_vector4(inst, machine, result);
426 if (DEBUG_PROG) {
427 printf("ADD (%g %g %g %g) = (%g %g %g %g) + (%g %g %g %g)\n",
428 result[0], result[1], result[2], result[3],
429 a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]);
430 }
431 }
432 break;
433 case OPCODE_ARL:
434 {
435 GLfloat t[4];
436 fetch_vector4(&inst->SrcReg[0], machine, t);
437 machine->AddressReg[0][0] = util_ifloor(t[0]);
438 if (DEBUG_PROG) {
439 printf("ARL %d\n", machine->AddressReg[0][0]);
440 }
441 }
442 break;
443 case OPCODE_BGNLOOP:
444 /* no-op */
445 assert(program->arb.Instructions[inst->BranchTarget].Opcode
446 == OPCODE_ENDLOOP);
447 break;
448 case OPCODE_ENDLOOP:
449 /* subtract 1 here since pc is incremented by for(pc) loop */
450 assert(program->arb.Instructions[inst->BranchTarget].Opcode
451 == OPCODE_BGNLOOP);
452 pc = inst->BranchTarget - 1; /* go to matching BNGLOOP */
453 break;
454 case OPCODE_BGNSUB: /* begin subroutine */
455 break;
456 case OPCODE_ENDSUB: /* end subroutine */
457 break;
458 case OPCODE_BRK: /* break out of loop (conditional) */
459 assert(program->arb.Instructions[inst->BranchTarget].Opcode
460 == OPCODE_ENDLOOP);
461 /* break out of loop */
462 /* pc++ at end of for-loop will put us after the ENDLOOP inst */
463 pc = inst->BranchTarget;
464 break;
465 case OPCODE_CONT: /* continue loop (conditional) */
466 assert(program->arb.Instructions[inst->BranchTarget].Opcode
467 == OPCODE_ENDLOOP);
468 /* continue at ENDLOOP */
469 /* Subtract 1 here since we'll do pc++ at end of for-loop */
470 pc = inst->BranchTarget - 1;
471 break;
472 case OPCODE_CAL: /* Call subroutine (conditional) */
473 /* call the subroutine */
474 if (machine->StackDepth >= MAX_PROGRAM_CALL_DEPTH) {
475 return GL_TRUE; /* Per GL_NV_vertex_program2 spec */
476 }
477 machine->CallStack[machine->StackDepth++] = pc + 1; /* next inst */
478 /* Subtract 1 here since we'll do pc++ at end of for-loop */
479 pc = inst->BranchTarget - 1;
480 break;
481 case OPCODE_CMP:
482 {
483 GLfloat a[4], b[4], c[4], result[4];
484 fetch_vector4(&inst->SrcReg[0], machine, a);
485 fetch_vector4(&inst->SrcReg[1], machine, b);
486 fetch_vector4(&inst->SrcReg[2], machine, c);
487 result[0] = a[0] < 0.0F ? b[0] : c[0];
488 result[1] = a[1] < 0.0F ? b[1] : c[1];
489 result[2] = a[2] < 0.0F ? b[2] : c[2];
490 result[3] = a[3] < 0.0F ? b[3] : c[3];
491 store_vector4(inst, machine, result);
492 if (DEBUG_PROG) {
493 printf("CMP (%g %g %g %g) = (%g %g %g %g) < 0 ? (%g %g %g %g) : (%g %g %g %g)\n",
494 result[0], result[1], result[2], result[3],
495 a[0], a[1], a[2], a[3],
496 b[0], b[1], b[2], b[3],
497 c[0], c[1], c[2], c[3]);
498 }
499 }
500 break;
501 case OPCODE_COS:
502 {
503 GLfloat a[4], result[4];
504 fetch_vector1(&inst->SrcReg[0], machine, a);
505 result[0] = result[1] = result[2] = result[3]
506 = cosf(a[0]);
507 store_vector4(inst, machine, result);
508 }
509 break;
510 case OPCODE_DDX: /* Partial derivative with respect to X */
511 {
512 GLfloat result[4];
513 fetch_vector4_deriv(&inst->SrcReg[0], machine, 'X', result);
514 store_vector4(inst, machine, result);
515 }
516 break;
517 case OPCODE_DDY: /* Partial derivative with respect to Y */
518 {
519 GLfloat result[4];
520 fetch_vector4_deriv(&inst->SrcReg[0], machine, 'Y', result);
521 store_vector4(inst, machine, result);
522 }
523 break;
524 case OPCODE_DP2:
525 {
526 GLfloat a[4], b[4], result[4];
527 fetch_vector4(&inst->SrcReg[0], machine, a);
528 fetch_vector4(&inst->SrcReg[1], machine, b);
529 result[0] = result[1] = result[2] = result[3] = DOT2(a, b);
530 store_vector4(inst, machine, result);
531 if (DEBUG_PROG) {
532 printf("DP2 %g = (%g %g) . (%g %g)\n",
533 result[0], a[0], a[1], b[0], b[1]);
534 }
535 }
536 break;
537 case OPCODE_DP3:
538 {
539 GLfloat a[4], b[4], result[4];
540 fetch_vector4(&inst->SrcReg[0], machine, a);
541 fetch_vector4(&inst->SrcReg[1], machine, b);
542 result[0] = result[1] = result[2] = result[3] = DOT3(a, b);
543 store_vector4(inst, machine, result);
544 if (DEBUG_PROG) {
545 printf("DP3 %g = (%g %g %g) . (%g %g %g)\n",
546 result[0], a[0], a[1], a[2], b[0], b[1], b[2]);
547 }
548 }
549 break;
550 case OPCODE_DP4:
551 {
552 GLfloat a[4], b[4], result[4];
553 fetch_vector4(&inst->SrcReg[0], machine, a);
554 fetch_vector4(&inst->SrcReg[1], machine, b);
555 result[0] = result[1] = result[2] = result[3] = DOT4(a, b);
556 store_vector4(inst, machine, result);
557 if (DEBUG_PROG) {
558 printf("DP4 %g = (%g, %g %g %g) . (%g, %g %g %g)\n",
559 result[0], a[0], a[1], a[2], a[3],
560 b[0], b[1], b[2], b[3]);
561 }
562 }
563 break;
564 case OPCODE_DPH:
565 {
566 GLfloat a[4], b[4], result[4];
567 fetch_vector4(&inst->SrcReg[0], machine, a);
568 fetch_vector4(&inst->SrcReg[1], machine, b);
569 result[0] = result[1] = result[2] = result[3] = DOT3(a, b) + b[3];
570 store_vector4(inst, machine, result);
571 }
572 break;
573 case OPCODE_DST: /* Distance vector */
574 {
575 GLfloat a[4], b[4], result[4];
576 fetch_vector4(&inst->SrcReg[0], machine, a);
577 fetch_vector4(&inst->SrcReg[1], machine, b);
578 result[0] = 1.0F;
579 result[1] = a[1] * b[1];
580 result[2] = a[2];
581 result[3] = b[3];
582 store_vector4(inst, machine, result);
583 }
584 break;
585 case OPCODE_EXP:
586 {
587 GLfloat t[4], q[4], floor_t0;
588 fetch_vector1(&inst->SrcReg[0], machine, t);
589 floor_t0 = floorf(t[0]);
590 if (floor_t0 > FLT_MAX_EXP) {
591 SET_POS_INFINITY(q[0]);
592 SET_POS_INFINITY(q[2]);
593 }
594 else if (floor_t0 < FLT_MIN_EXP) {
595 q[0] = 0.0F;
596 q[2] = 0.0F;
597 }
598 else {
599 q[0] = ldexpf(1.0, (int) floor_t0);
600 /* Note: GL_NV_vertex_program expects
601 * result.z = result.x * APPX(result.y)
602 * We do what the ARB extension says.
603 */
604 q[2] = exp2f(t[0]);
605 }
606 q[1] = t[0] - floor_t0;
607 q[3] = 1.0F;
608 store_vector4( inst, machine, q );
609 }
610 break;
611 case OPCODE_EX2: /* Exponential base 2 */
612 {
613 GLfloat a[4], result[4], val;
614 fetch_vector1(&inst->SrcReg[0], machine, a);
615 val = exp2f(a[0]);
616 /*
617 if (util_is_inf_or_nan(val))
618 val = 1.0e10;
619 */
620 result[0] = result[1] = result[2] = result[3] = val;
621 store_vector4(inst, machine, result);
622 }
623 break;
624 case OPCODE_FLR:
625 {
626 GLfloat a[4], result[4];
627 fetch_vector4(&inst->SrcReg[0], machine, a);
628 result[0] = floorf(a[0]);
629 result[1] = floorf(a[1]);
630 result[2] = floorf(a[2]);
631 result[3] = floorf(a[3]);
632 store_vector4(inst, machine, result);
633 }
634 break;
635 case OPCODE_FRC:
636 {
637 GLfloat a[4], result[4];
638 fetch_vector4(&inst->SrcReg[0], machine, a);
639 result[0] = a[0] - floorf(a[0]);
640 result[1] = a[1] - floorf(a[1]);
641 result[2] = a[2] - floorf(a[2]);
642 result[3] = a[3] - floorf(a[3]);
643 store_vector4(inst, machine, result);
644 }
645 break;
646 case OPCODE_IF:
647 {
648 GLboolean cond;
649 assert(program->arb.Instructions[inst->BranchTarget].Opcode
650 == OPCODE_ELSE ||
651 program->arb.Instructions[inst->BranchTarget].Opcode
652 == OPCODE_ENDIF);
653 /* eval condition */
654 GLfloat a[4];
655 fetch_vector1(&inst->SrcReg[0], machine, a);
656 cond = (a[0] != 0.0F);
657 if (DEBUG_PROG) {
658 printf("IF: %d\n", cond);
659 }
660 /* do if/else */
661 if (cond) {
662 /* do if-clause (just continue execution) */
663 }
664 else {
665 /* go to the instruction after ELSE or ENDIF */
666 assert(inst->BranchTarget >= 0);
667 pc = inst->BranchTarget;
668 }
669 }
670 break;
671 case OPCODE_ELSE:
672 /* goto ENDIF */
673 assert(program->arb.Instructions[inst->BranchTarget].Opcode
674 == OPCODE_ENDIF);
675 assert(inst->BranchTarget >= 0);
676 pc = inst->BranchTarget;
677 break;
678 case OPCODE_ENDIF:
679 /* nothing */
680 break;
681 case OPCODE_KIL: /* ARB_f_p only */
682 {
683 GLfloat a[4];
684 fetch_vector4(&inst->SrcReg[0], machine, a);
685 if (DEBUG_PROG) {
686 printf("KIL if (%g %g %g %g) <= 0.0\n",
687 a[0], a[1], a[2], a[3]);
688 }
689
690 if (a[0] < 0.0F || a[1] < 0.0F || a[2] < 0.0F || a[3] < 0.0F) {
691 return GL_FALSE;
692 }
693 }
694 break;
695 case OPCODE_LG2: /* log base 2 */
696 {
697 GLfloat a[4], result[4], val;
698 fetch_vector1(&inst->SrcReg[0], machine, a);
699 /* The fast LOG2 macro doesn't meet the precision requirements.
700 */
701 if (a[0] == 0.0F) {
702 val = -FLT_MAX;
703 }
704 else {
705 val = logf(a[0]) * 1.442695F;
706 }
707 result[0] = result[1] = result[2] = result[3] = val;
708 store_vector4(inst, machine, result);
709 }
710 break;
711 case OPCODE_LIT:
712 {
713 const GLfloat epsilon = 1.0F / 256.0F; /* from NV VP spec */
714 GLfloat a[4], result[4];
715 fetch_vector4(&inst->SrcReg[0], machine, a);
716 a[0] = MAX2(a[0], 0.0F);
717 a[1] = MAX2(a[1], 0.0F);
718 /* XXX ARB version clamps a[3], NV version doesn't */
719 a[3] = CLAMP(a[3], -(128.0F - epsilon), (128.0F - epsilon));
720 result[0] = 1.0F;
721 result[1] = a[0];
722 /* XXX we could probably just use pow() here */
723 if (a[0] > 0.0F) {
724 if (a[1] == 0.0F && a[3] == 0.0F)
725 result[2] = 1.0F;
726 else
727 result[2] = powf(a[1], a[3]);
728 }
729 else {
730 result[2] = 0.0F;
731 }
732 result[3] = 1.0F;
733 store_vector4(inst, machine, result);
734 if (DEBUG_PROG) {
735 printf("LIT (%g %g %g %g) : (%g %g %g %g)\n",
736 result[0], result[1], result[2], result[3],
737 a[0], a[1], a[2], a[3]);
738 }
739 }
740 break;
741 case OPCODE_LOG:
742 {
743 GLfloat t[4], q[4], abs_t0;
744 fetch_vector1(&inst->SrcReg[0], machine, t);
745 abs_t0 = fabsf(t[0]);
746 if (abs_t0 != 0.0F) {
747 if (util_is_inf_or_nan(abs_t0))
748 {
749 SET_POS_INFINITY(q[0]);
750 q[1] = 1.0F;
751 SET_POS_INFINITY(q[2]);
752 }
753 else {
754 int exponent;
755 GLfloat mantissa = frexpf(t[0], &exponent);
756 q[0] = (GLfloat) (exponent - 1);
757 q[1] = 2.0F * mantissa; /* map [.5, 1) -> [1, 2) */
758
759 /* The fast LOG2 macro doesn't meet the precision
760 * requirements.
761 */
762 q[2] = logf(t[0]) * 1.442695F;
763 }
764 }
765 else {
766 SET_NEG_INFINITY(q[0]);
767 q[1] = 1.0F;
768 SET_NEG_INFINITY(q[2]);
769 }
770 q[3] = 1.0;
771 store_vector4(inst, machine, q);
772 }
773 break;
774 case OPCODE_LRP:
775 {
776 GLfloat a[4], b[4], c[4], result[4];
777 fetch_vector4(&inst->SrcReg[0], machine, a);
778 fetch_vector4(&inst->SrcReg[1], machine, b);
779 fetch_vector4(&inst->SrcReg[2], machine, c);
780 result[0] = a[0] * b[0] + (1.0F - a[0]) * c[0];
781 result[1] = a[1] * b[1] + (1.0F - a[1]) * c[1];
782 result[2] = a[2] * b[2] + (1.0F - a[2]) * c[2];
783 result[3] = a[3] * b[3] + (1.0F - a[3]) * c[3];
784 store_vector4(inst, machine, result);
785 if (DEBUG_PROG) {
786 printf("LRP (%g %g %g %g) = (%g %g %g %g), "
787 "(%g %g %g %g), (%g %g %g %g)\n",
788 result[0], result[1], result[2], result[3],
789 a[0], a[1], a[2], a[3],
790 b[0], b[1], b[2], b[3], c[0], c[1], c[2], c[3]);
791 }
792 }
793 break;
794 case OPCODE_MAD:
795 {
796 GLfloat a[4], b[4], c[4], result[4];
797 fetch_vector4(&inst->SrcReg[0], machine, a);
798 fetch_vector4(&inst->SrcReg[1], machine, b);
799 fetch_vector4(&inst->SrcReg[2], machine, c);
800 result[0] = a[0] * b[0] + c[0];
801 result[1] = a[1] * b[1] + c[1];
802 result[2] = a[2] * b[2] + c[2];
803 result[3] = a[3] * b[3] + c[3];
804 store_vector4(inst, machine, result);
805 if (DEBUG_PROG) {
806 printf("MAD (%g %g %g %g) = (%g %g %g %g) * "
807 "(%g %g %g %g) + (%g %g %g %g)\n",
808 result[0], result[1], result[2], result[3],
809 a[0], a[1], a[2], a[3],
810 b[0], b[1], b[2], b[3], c[0], c[1], c[2], c[3]);
811 }
812 }
813 break;
814 case OPCODE_MAX:
815 {
816 GLfloat a[4], b[4], result[4];
817 fetch_vector4(&inst->SrcReg[0], machine, a);
818 fetch_vector4(&inst->SrcReg[1], machine, b);
819 result[0] = MAX2(a[0], b[0]);
820 result[1] = MAX2(a[1], b[1]);
821 result[2] = MAX2(a[2], b[2]);
822 result[3] = MAX2(a[3], b[3]);
823 store_vector4(inst, machine, result);
824 if (DEBUG_PROG) {
825 printf("MAX (%g %g %g %g) = (%g %g %g %g), (%g %g %g %g)\n",
826 result[0], result[1], result[2], result[3],
827 a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]);
828 }
829 }
830 break;
831 case OPCODE_MIN:
832 {
833 GLfloat a[4], b[4], result[4];
834 fetch_vector4(&inst->SrcReg[0], machine, a);
835 fetch_vector4(&inst->SrcReg[1], machine, b);
836 result[0] = MIN2(a[0], b[0]);
837 result[1] = MIN2(a[1], b[1]);
838 result[2] = MIN2(a[2], b[2]);
839 result[3] = MIN2(a[3], b[3]);
840 store_vector4(inst, machine, result);
841 }
842 break;
843 case OPCODE_MOV:
844 {
845 GLfloat result[4];
846 fetch_vector4(&inst->SrcReg[0], machine, result);
847 store_vector4(inst, machine, result);
848 if (DEBUG_PROG) {
849 printf("MOV (%g %g %g %g)\n",
850 result[0], result[1], result[2], result[3]);
851 }
852 }
853 break;
854 case OPCODE_MUL:
855 {
856 GLfloat a[4], b[4], result[4];
857 fetch_vector4(&inst->SrcReg[0], machine, a);
858 fetch_vector4(&inst->SrcReg[1], machine, b);
859 result[0] = a[0] * b[0];
860 result[1] = a[1] * b[1];
861 result[2] = a[2] * b[2];
862 result[3] = a[3] * b[3];
863 store_vector4(inst, machine, result);
864 if (DEBUG_PROG) {
865 printf("MUL (%g %g %g %g) = (%g %g %g %g) * (%g %g %g %g)\n",
866 result[0], result[1], result[2], result[3],
867 a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]);
868 }
869 }
870 break;
871 case OPCODE_NOISE1:
872 {
873 GLfloat a[4], result[4];
874 fetch_vector1(&inst->SrcReg[0], machine, a);
875 result[0] =
876 result[1] =
877 result[2] =
878 result[3] = _mesa_noise1(a[0]);
879 store_vector4(inst, machine, result);
880 }
881 break;
882 case OPCODE_NOISE2:
883 {
884 GLfloat a[4], result[4];
885 fetch_vector4(&inst->SrcReg[0], machine, a);
886 result[0] =
887 result[1] =
888 result[2] = result[3] = _mesa_noise2(a[0], a[1]);
889 store_vector4(inst, machine, result);
890 }
891 break;
892 case OPCODE_NOISE3:
893 {
894 GLfloat a[4], result[4];
895 fetch_vector4(&inst->SrcReg[0], machine, a);
896 result[0] =
897 result[1] =
898 result[2] =
899 result[3] = _mesa_noise3(a[0], a[1], a[2]);
900 store_vector4(inst, machine, result);
901 }
902 break;
903 case OPCODE_NOISE4:
904 {
905 GLfloat a[4], result[4];
906 fetch_vector4(&inst->SrcReg[0], machine, a);
907 result[0] =
908 result[1] =
909 result[2] =
910 result[3] = _mesa_noise4(a[0], a[1], a[2], a[3]);
911 store_vector4(inst, machine, result);
912 }
913 break;
914 case OPCODE_NOP:
915 break;
916 case OPCODE_POW:
917 {
918 GLfloat a[4], b[4], result[4];
919 fetch_vector1(&inst->SrcReg[0], machine, a);
920 fetch_vector1(&inst->SrcReg[1], machine, b);
921 result[0] = result[1] = result[2] = result[3]
922 = powf(a[0], b[0]);
923 store_vector4(inst, machine, result);
924 }
925 break;
926
927 case OPCODE_RCP:
928 {
929 GLfloat a[4], result[4];
930 fetch_vector1(&inst->SrcReg[0], machine, a);
931 if (DEBUG_PROG) {
932 if (a[0] == 0)
933 printf("RCP(0)\n");
934 else if (util_is_inf_or_nan(a[0]))
935 printf("RCP(inf)\n");
936 }
937 result[0] = result[1] = result[2] = result[3] = 1.0F / a[0];
938 store_vector4(inst, machine, result);
939 }
940 break;
941 case OPCODE_RET: /* return from subroutine (conditional) */
942 if (machine->StackDepth == 0) {
943 return GL_TRUE; /* Per GL_NV_vertex_program2 spec */
944 }
945 /* subtract one because of pc++ in the for loop */
946 pc = machine->CallStack[--machine->StackDepth] - 1;
947 break;
948 case OPCODE_RSQ: /* 1 / sqrt() */
949 {
950 GLfloat a[4], result[4];
951 fetch_vector1(&inst->SrcReg[0], machine, a);
952 a[0] = fabsf(a[0]);
953 result[0] = result[1] = result[2] = result[3] = 1.0f / sqrtf(a[0]);
954 store_vector4(inst, machine, result);
955 if (DEBUG_PROG) {
956 printf("RSQ %g = 1/sqrt(|%g|)\n", result[0], a[0]);
957 }
958 }
959 break;
960 case OPCODE_SCS: /* sine and cos */
961 {
962 GLfloat a[4], result[4];
963 fetch_vector1(&inst->SrcReg[0], machine, a);
964 result[0] = cosf(a[0]);
965 result[1] = sinf(a[0]);
966 result[2] = 0.0F; /* undefined! */
967 result[3] = 0.0F; /* undefined! */
968 store_vector4(inst, machine, result);
969 }
970 break;
971 case OPCODE_SGE: /* set on greater or equal */
972 {
973 GLfloat a[4], b[4], result[4];
974 fetch_vector4(&inst->SrcReg[0], machine, a);
975 fetch_vector4(&inst->SrcReg[1], machine, b);
976 result[0] = (a[0] >= b[0]) ? 1.0F : 0.0F;
977 result[1] = (a[1] >= b[1]) ? 1.0F : 0.0F;
978 result[2] = (a[2] >= b[2]) ? 1.0F : 0.0F;
979 result[3] = (a[3] >= b[3]) ? 1.0F : 0.0F;
980 store_vector4(inst, machine, result);
981 if (DEBUG_PROG) {
982 printf("SGE (%g %g %g %g) = (%g %g %g %g) >= (%g %g %g %g)\n",
983 result[0], result[1], result[2], result[3],
984 a[0], a[1], a[2], a[3],
985 b[0], b[1], b[2], b[3]);
986 }
987 }
988 break;
989 case OPCODE_SIN:
990 {
991 GLfloat a[4], result[4];
992 fetch_vector1(&inst->SrcReg[0], machine, a);
993 result[0] = result[1] = result[2] = result[3]
994 = sinf(a[0]);
995 store_vector4(inst, machine, result);
996 }
997 break;
998 case OPCODE_SLT: /* set on less */
999 {
1000 GLfloat a[4], b[4], result[4];
1001 fetch_vector4(&inst->SrcReg[0], machine, a);
1002 fetch_vector4(&inst->SrcReg[1], machine, b);
1003 result[0] = (a[0] < b[0]) ? 1.0F : 0.0F;
1004 result[1] = (a[1] < b[1]) ? 1.0F : 0.0F;
1005 result[2] = (a[2] < b[2]) ? 1.0F : 0.0F;
1006 result[3] = (a[3] < b[3]) ? 1.0F : 0.0F;
1007 store_vector4(inst, machine, result);
1008 if (DEBUG_PROG) {
1009 printf("SLT (%g %g %g %g) = (%g %g %g %g) < (%g %g %g %g)\n",
1010 result[0], result[1], result[2], result[3],
1011 a[0], a[1], a[2], a[3],
1012 b[0], b[1], b[2], b[3]);
1013 }
1014 }
1015 break;
1016 case OPCODE_SSG: /* set sign (-1, 0 or +1) */
1017 {
1018 GLfloat a[4], result[4];
1019 fetch_vector4(&inst->SrcReg[0], machine, a);
1020 result[0] = (GLfloat) ((a[0] > 0.0F) - (a[0] < 0.0F));
1021 result[1] = (GLfloat) ((a[1] > 0.0F) - (a[1] < 0.0F));
1022 result[2] = (GLfloat) ((a[2] > 0.0F) - (a[2] < 0.0F));
1023 result[3] = (GLfloat) ((a[3] > 0.0F) - (a[3] < 0.0F));
1024 store_vector4(inst, machine, result);
1025 }
1026 break;
1027 case OPCODE_SUB:
1028 {
1029 GLfloat a[4], b[4], result[4];
1030 fetch_vector4(&inst->SrcReg[0], machine, a);
1031 fetch_vector4(&inst->SrcReg[1], machine, b);
1032 result[0] = a[0] - b[0];
1033 result[1] = a[1] - b[1];
1034 result[2] = a[2] - b[2];
1035 result[3] = a[3] - b[3];
1036 store_vector4(inst, machine, result);
1037 if (DEBUG_PROG) {
1038 printf("SUB (%g %g %g %g) = (%g %g %g %g) - (%g %g %g %g)\n",
1039 result[0], result[1], result[2], result[3],
1040 a[0], a[1], a[2], a[3], b[0], b[1], b[2], b[3]);
1041 }
1042 }
1043 break;
1044 case OPCODE_SWZ: /* extended swizzle */
1045 {
1046 const struct prog_src_register *source = &inst->SrcReg[0];
1047 const GLfloat *src = get_src_register_pointer(source, machine);
1048 GLfloat result[4];
1049 GLuint i;
1050 for (i = 0; i < 4; i++) {
1051 const GLuint swz = GET_SWZ(source->Swizzle, i);
1052 if (swz == SWIZZLE_ZERO)
1053 result[i] = 0.0;
1054 else if (swz == SWIZZLE_ONE)
1055 result[i] = 1.0;
1056 else {
1057 assert(swz <= 3);
1058 result[i] = src[swz];
1059 }
1060 if (source->Negate & (1 << i))
1061 result[i] = -result[i];
1062 }
1063 store_vector4(inst, machine, result);
1064 }
1065 break;
1066 case OPCODE_TEX: /* Both ARB and NV frag prog */
1067 /* Simple texel lookup */
1068 {
1069 GLfloat texcoord[4], color[4];
1070 fetch_vector4(&inst->SrcReg[0], machine, texcoord);
1071
1072 /* For TEX, texcoord.Q should not be used and its value should not
1073 * matter (at most, we pass coord.xyz to texture3D() in GLSL).
1074 * Set Q=1 so that FetchTexelDeriv() doesn't get a garbage value
1075 * which is effectively what happens when the texcoord swizzle
1076 * is .xyzz
1077 */
1078 texcoord[3] = 1.0f;
1079
1080 fetch_texel(ctx, machine, inst, texcoord, 0.0, color);
1081
1082 if (DEBUG_PROG) {
1083 printf("TEX (%g, %g, %g, %g) = texture[%d][%g, %g, %g, %g]\n",
1084 color[0], color[1], color[2], color[3],
1085 inst->TexSrcUnit,
1086 texcoord[0], texcoord[1], texcoord[2], texcoord[3]);
1087 }
1088 store_vector4(inst, machine, color);
1089 }
1090 break;
1091 case OPCODE_TXB: /* GL_ARB_fragment_program only */
1092 /* Texel lookup with LOD bias */
1093 {
1094 GLfloat texcoord[4], color[4], lodBias;
1095
1096 fetch_vector4(&inst->SrcReg[0], machine, texcoord);
1097
1098 /* texcoord[3] is the bias to add to lambda */
1099 lodBias = texcoord[3];
1100
1101 fetch_texel(ctx, machine, inst, texcoord, lodBias, color);
1102
1103 if (DEBUG_PROG) {
1104 printf("TXB (%g, %g, %g, %g) = texture[%d][%g %g %g %g]"
1105 " bias %g\n",
1106 color[0], color[1], color[2], color[3],
1107 inst->TexSrcUnit,
1108 texcoord[0],
1109 texcoord[1],
1110 texcoord[2],
1111 texcoord[3],
1112 lodBias);
1113 }
1114
1115 store_vector4(inst, machine, color);
1116 }
1117 break;
1118 case OPCODE_TXD:
1119 /* Texture lookup w/ partial derivatives for LOD */
1120 {
1121 GLfloat texcoord[4], dtdx[4], dtdy[4], color[4];
1122 fetch_vector4(&inst->SrcReg[0], machine, texcoord);
1123 fetch_vector4(&inst->SrcReg[1], machine, dtdx);
1124 fetch_vector4(&inst->SrcReg[2], machine, dtdy);
1125 machine->FetchTexelDeriv(ctx, texcoord, dtdx, dtdy,
1126 0.0, /* lodBias */
1127 inst->TexSrcUnit, color);
1128 store_vector4(inst, machine, color);
1129 }
1130 break;
1131 case OPCODE_TXL:
1132 /* Texel lookup with explicit LOD */
1133 {
1134 GLfloat texcoord[4], color[4], lod;
1135
1136 fetch_vector4(&inst->SrcReg[0], machine, texcoord);
1137
1138 /* texcoord[3] is the LOD */
1139 lod = texcoord[3];
1140
1141 machine->FetchTexelLod(ctx, texcoord, lod,
1142 machine->Samplers[inst->TexSrcUnit], color);
1143
1144 store_vector4(inst, machine, color);
1145 }
1146 break;
1147 case OPCODE_TXP: /* GL_ARB_fragment_program only */
1148 /* Texture lookup w/ projective divide */
1149 {
1150 GLfloat texcoord[4], color[4];
1151
1152 fetch_vector4(&inst->SrcReg[0], machine, texcoord);
1153 /* Not so sure about this test - if texcoord[3] is
1154 * zero, we'd probably be fine except for an assert in
1155 * IROUND_POS() which gets triggered by the inf values created.
1156 */
1157 if (texcoord[3] != 0.0F) {
1158 texcoord[0] /= texcoord[3];
1159 texcoord[1] /= texcoord[3];
1160 texcoord[2] /= texcoord[3];
1161 }
1162
1163 fetch_texel(ctx, machine, inst, texcoord, 0.0, color);
1164
1165 store_vector4(inst, machine, color);
1166 }
1167 break;
1168 case OPCODE_TRUNC: /* truncate toward zero */
1169 {
1170 GLfloat a[4], result[4];
1171 fetch_vector4(&inst->SrcReg[0], machine, a);
1172 result[0] = (GLfloat) (GLint) a[0];
1173 result[1] = (GLfloat) (GLint) a[1];
1174 result[2] = (GLfloat) (GLint) a[2];
1175 result[3] = (GLfloat) (GLint) a[3];
1176 store_vector4(inst, machine, result);
1177 }
1178 break;
1179 case OPCODE_XPD: /* cross product */
1180 {
1181 GLfloat a[4], b[4], result[4];
1182 fetch_vector4(&inst->SrcReg[0], machine, a);
1183 fetch_vector4(&inst->SrcReg[1], machine, b);
1184 result[0] = a[1] * b[2] - a[2] * b[1];
1185 result[1] = a[2] * b[0] - a[0] * b[2];
1186 result[2] = a[0] * b[1] - a[1] * b[0];
1187 result[3] = 1.0;
1188 store_vector4(inst, machine, result);
1189 if (DEBUG_PROG) {
1190 printf("XPD (%g %g %g %g) = (%g %g %g) X (%g %g %g)\n",
1191 result[0], result[1], result[2], result[3],
1192 a[0], a[1], a[2], b[0], b[1], b[2]);
1193 }
1194 }
1195 break;
1196 case OPCODE_END:
1197 return GL_TRUE;
1198 default:
1199 _mesa_problem(ctx, "Bad opcode %d in _mesa_execute_program",
1200 inst->Opcode);
1201 return GL_TRUE; /* return value doesn't matter */
1202 }
1203
1204 numExec++;
1205 if (numExec > maxExec) {
1206 static GLboolean reported = GL_FALSE;
1207 if (!reported) {
1208 _mesa_problem(ctx, "Infinite loop detected in fragment program");
1209 reported = GL_TRUE;
1210 }
1211 return GL_TRUE;
1212 }
1213
1214 } /* for pc */
1215
1216 return GL_TRUE;
1217 }