Merge commit 'origin/gallium-master-merge'
[mesa.git] / src / mesa / shader / prog_statevars.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.1
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 /**
26 * \file prog_statevars.c
27 * Program state variable management.
28 * \author Brian Paul
29 */
30
31
32 #include "main/glheader.h"
33 #include "main/context.h"
34 #include "main/hash.h"
35 #include "main/imports.h"
36 #include "main/macros.h"
37 #include "main/mtypes.h"
38 #include "prog_statevars.h"
39 #include "prog_parameter.h"
40
41
42 /**
43 * Use the list of tokens in the state[] array to find global GL state
44 * and return it in <value>. Usually, four values are returned in <value>
45 * but matrix queries may return as many as 16 values.
46 * This function is used for ARB vertex/fragment programs.
47 * The program parser will produce the state[] values.
48 */
49 static void
50 _mesa_fetch_state(GLcontext *ctx, const gl_state_index state[],
51 GLfloat *value)
52 {
53 switch (state[0]) {
54 case STATE_MATERIAL:
55 {
56 /* state[1] is either 0=front or 1=back side */
57 const GLuint face = (GLuint) state[1];
58 const struct gl_material *mat = &ctx->Light.Material;
59 ASSERT(face == 0 || face == 1);
60 /* we rely on tokens numbered so that _BACK_ == _FRONT_+ 1 */
61 ASSERT(MAT_ATTRIB_FRONT_AMBIENT + 1 == MAT_ATTRIB_BACK_AMBIENT);
62 /* XXX we could get rid of this switch entirely with a little
63 * work in arbprogparse.c's parse_state_single_item().
64 */
65 /* state[2] is the material attribute */
66 switch (state[2]) {
67 case STATE_AMBIENT:
68 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_AMBIENT + face]);
69 return;
70 case STATE_DIFFUSE:
71 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_DIFFUSE + face]);
72 return;
73 case STATE_SPECULAR:
74 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_SPECULAR + face]);
75 return;
76 case STATE_EMISSION:
77 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_EMISSION + face]);
78 return;
79 case STATE_SHININESS:
80 value[0] = mat->Attrib[MAT_ATTRIB_FRONT_SHININESS + face][0];
81 value[1] = 0.0F;
82 value[2] = 0.0F;
83 value[3] = 1.0F;
84 return;
85 default:
86 _mesa_problem(ctx, "Invalid material state in fetch_state");
87 return;
88 }
89 }
90 case STATE_LIGHT:
91 {
92 /* state[1] is the light number */
93 const GLuint ln = (GLuint) state[1];
94 /* state[2] is the light attribute */
95 switch (state[2]) {
96 case STATE_AMBIENT:
97 COPY_4V(value, ctx->Light.Light[ln].Ambient);
98 return;
99 case STATE_DIFFUSE:
100 COPY_4V(value, ctx->Light.Light[ln].Diffuse);
101 return;
102 case STATE_SPECULAR:
103 COPY_4V(value, ctx->Light.Light[ln].Specular);
104 return;
105 case STATE_POSITION:
106 COPY_4V(value, ctx->Light.Light[ln].EyePosition);
107 return;
108 case STATE_ATTENUATION:
109 value[0] = ctx->Light.Light[ln].ConstantAttenuation;
110 value[1] = ctx->Light.Light[ln].LinearAttenuation;
111 value[2] = ctx->Light.Light[ln].QuadraticAttenuation;
112 value[3] = ctx->Light.Light[ln].SpotExponent;
113 return;
114 case STATE_SPOT_DIRECTION:
115 COPY_3V(value, ctx->Light.Light[ln].EyeDirection);
116 value[3] = ctx->Light.Light[ln]._CosCutoff;
117 return;
118 case STATE_SPOT_CUTOFF:
119 value[0] = ctx->Light.Light[ln].SpotCutoff;
120 return;
121 case STATE_HALF_VECTOR:
122 {
123 static const GLfloat eye_z[] = {0, 0, 1};
124 GLfloat p[3];
125 /* Compute infinite half angle vector:
126 * halfVector = normalize(normalize(lightPos) + (0, 0, 1))
127 * light.EyePosition.w should be 0 for infinite lights.
128 */
129 COPY_3V(p, ctx->Light.Light[ln].EyePosition);
130 NORMALIZE_3FV(p);
131 ADD_3V(value, p, eye_z);
132 NORMALIZE_3FV(value);
133 value[3] = 1.0;
134 }
135 return;
136 default:
137 _mesa_problem(ctx, "Invalid light state in fetch_state");
138 return;
139 }
140 }
141 case STATE_LIGHTMODEL_AMBIENT:
142 COPY_4V(value, ctx->Light.Model.Ambient);
143 return;
144 case STATE_LIGHTMODEL_SCENECOLOR:
145 if (state[1] == 0) {
146 /* front */
147 GLint i;
148 for (i = 0; i < 3; i++) {
149 value[i] = ctx->Light.Model.Ambient[i]
150 * ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT][i]
151 + ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_EMISSION][i];
152 }
153 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3];
154 }
155 else {
156 /* back */
157 GLint i;
158 for (i = 0; i < 3; i++) {
159 value[i] = ctx->Light.Model.Ambient[i]
160 * ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_AMBIENT][i]
161 + ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_EMISSION][i];
162 }
163 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_DIFFUSE][3];
164 }
165 return;
166 case STATE_LIGHTPROD:
167 {
168 const GLuint ln = (GLuint) state[1];
169 const GLuint face = (GLuint) state[2];
170 GLint i;
171 ASSERT(face == 0 || face == 1);
172 switch (state[3]) {
173 case STATE_AMBIENT:
174 for (i = 0; i < 3; i++) {
175 value[i] = ctx->Light.Light[ln].Ambient[i] *
176 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][i];
177 }
178 /* [3] = material alpha */
179 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][3];
180 return;
181 case STATE_DIFFUSE:
182 for (i = 0; i < 3; i++) {
183 value[i] = ctx->Light.Light[ln].Diffuse[i] *
184 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][i];
185 }
186 /* [3] = material alpha */
187 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][3];
188 return;
189 case STATE_SPECULAR:
190 for (i = 0; i < 3; i++) {
191 value[i] = ctx->Light.Light[ln].Specular[i] *
192 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][i];
193 }
194 /* [3] = material alpha */
195 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][3];
196 return;
197 default:
198 _mesa_problem(ctx, "Invalid lightprod state in fetch_state");
199 return;
200 }
201 }
202 case STATE_TEXGEN:
203 {
204 /* state[1] is the texture unit */
205 const GLuint unit = (GLuint) state[1];
206 /* state[2] is the texgen attribute */
207 switch (state[2]) {
208 case STATE_TEXGEN_EYE_S:
209 COPY_4V(value, ctx->Texture.Unit[unit].EyePlaneS);
210 return;
211 case STATE_TEXGEN_EYE_T:
212 COPY_4V(value, ctx->Texture.Unit[unit].EyePlaneT);
213 return;
214 case STATE_TEXGEN_EYE_R:
215 COPY_4V(value, ctx->Texture.Unit[unit].EyePlaneR);
216 return;
217 case STATE_TEXGEN_EYE_Q:
218 COPY_4V(value, ctx->Texture.Unit[unit].EyePlaneQ);
219 return;
220 case STATE_TEXGEN_OBJECT_S:
221 COPY_4V(value, ctx->Texture.Unit[unit].ObjectPlaneS);
222 return;
223 case STATE_TEXGEN_OBJECT_T:
224 COPY_4V(value, ctx->Texture.Unit[unit].ObjectPlaneT);
225 return;
226 case STATE_TEXGEN_OBJECT_R:
227 COPY_4V(value, ctx->Texture.Unit[unit].ObjectPlaneR);
228 return;
229 case STATE_TEXGEN_OBJECT_Q:
230 COPY_4V(value, ctx->Texture.Unit[unit].ObjectPlaneQ);
231 return;
232 default:
233 _mesa_problem(ctx, "Invalid texgen state in fetch_state");
234 return;
235 }
236 }
237 case STATE_TEXENV_COLOR:
238 {
239 /* state[1] is the texture unit */
240 const GLuint unit = (GLuint) state[1];
241 COPY_4V(value, ctx->Texture.Unit[unit].EnvColor);
242 }
243 return;
244 case STATE_FOG_COLOR:
245 COPY_4V(value, ctx->Fog.Color);
246 return;
247 case STATE_FOG_PARAMS:
248 value[0] = ctx->Fog.Density;
249 value[1] = ctx->Fog.Start;
250 value[2] = ctx->Fog.End;
251 value[3] = (ctx->Fog.End == ctx->Fog.Start)
252 ? 1.0f : (GLfloat)(1.0 / (ctx->Fog.End - ctx->Fog.Start));
253 return;
254 case STATE_CLIPPLANE:
255 {
256 const GLuint plane = (GLuint) state[1];
257 COPY_4V(value, ctx->Transform.EyeUserPlane[plane]);
258 }
259 return;
260 case STATE_POINT_SIZE:
261 value[0] = ctx->Point.Size;
262 value[1] = ctx->Point.MinSize;
263 value[2] = ctx->Point.MaxSize;
264 value[3] = ctx->Point.Threshold;
265 return;
266 case STATE_POINT_ATTENUATION:
267 value[0] = ctx->Point.Params[0];
268 value[1] = ctx->Point.Params[1];
269 value[2] = ctx->Point.Params[2];
270 value[3] = 1.0F;
271 return;
272 case STATE_MODELVIEW_MATRIX:
273 case STATE_PROJECTION_MATRIX:
274 case STATE_MVP_MATRIX:
275 case STATE_TEXTURE_MATRIX:
276 case STATE_PROGRAM_MATRIX:
277 case STATE_COLOR_MATRIX:
278 {
279 /* state[0] = modelview, projection, texture, etc. */
280 /* state[1] = which texture matrix or program matrix */
281 /* state[2] = first row to fetch */
282 /* state[3] = last row to fetch */
283 /* state[4] = transpose, inverse or invtrans */
284 const GLmatrix *matrix;
285 const gl_state_index mat = state[0];
286 const GLuint index = (GLuint) state[1];
287 const GLuint firstRow = (GLuint) state[2];
288 const GLuint lastRow = (GLuint) state[3];
289 const gl_state_index modifier = state[4];
290 const GLfloat *m;
291 GLuint row, i;
292 ASSERT(firstRow >= 0);
293 ASSERT(firstRow < 4);
294 ASSERT(lastRow >= 0);
295 ASSERT(lastRow < 4);
296 if (mat == STATE_MODELVIEW_MATRIX) {
297 matrix = ctx->ModelviewMatrixStack.Top;
298 }
299 else if (mat == STATE_PROJECTION_MATRIX) {
300 matrix = ctx->ProjectionMatrixStack.Top;
301 }
302 else if (mat == STATE_MVP_MATRIX) {
303 matrix = &ctx->_ModelProjectMatrix;
304 }
305 else if (mat == STATE_TEXTURE_MATRIX) {
306 matrix = ctx->TextureMatrixStack[index].Top;
307 }
308 else if (mat == STATE_PROGRAM_MATRIX) {
309 matrix = ctx->ProgramMatrixStack[index].Top;
310 }
311 else if (mat == STATE_COLOR_MATRIX) {
312 matrix = ctx->ColorMatrixStack.Top;
313 }
314 else {
315 _mesa_problem(ctx, "Bad matrix name in _mesa_fetch_state()");
316 return;
317 }
318 if (modifier == STATE_MATRIX_INVERSE ||
319 modifier == STATE_MATRIX_INVTRANS) {
320 /* Be sure inverse is up to date:
321 */
322 _math_matrix_alloc_inv( (GLmatrix *) matrix );
323 _math_matrix_analyse( (GLmatrix*) matrix );
324 m = matrix->inv;
325 }
326 else {
327 m = matrix->m;
328 }
329 if (modifier == STATE_MATRIX_TRANSPOSE ||
330 modifier == STATE_MATRIX_INVTRANS) {
331 for (i = 0, row = firstRow; row <= lastRow; row++) {
332 value[i++] = m[row * 4 + 0];
333 value[i++] = m[row * 4 + 1];
334 value[i++] = m[row * 4 + 2];
335 value[i++] = m[row * 4 + 3];
336 }
337 }
338 else {
339 for (i = 0, row = firstRow; row <= lastRow; row++) {
340 value[i++] = m[row + 0];
341 value[i++] = m[row + 4];
342 value[i++] = m[row + 8];
343 value[i++] = m[row + 12];
344 }
345 }
346 }
347 return;
348 case STATE_DEPTH_RANGE:
349 value[0] = ctx->Viewport.Near; /* near */
350 value[1] = ctx->Viewport.Far; /* far */
351 value[2] = ctx->Viewport.Far - ctx->Viewport.Near; /* far - near */
352 value[3] = 1.0;
353 return;
354 case STATE_FRAGMENT_PROGRAM:
355 {
356 /* state[1] = {STATE_ENV, STATE_LOCAL} */
357 /* state[2] = parameter index */
358 const int idx = (int) state[2];
359 switch (state[1]) {
360 case STATE_ENV:
361 COPY_4V(value, ctx->FragmentProgram.Parameters[idx]);
362 break;
363 case STATE_LOCAL:
364 COPY_4V(value, ctx->FragmentProgram.Current->Base.LocalParams[idx]);
365 break;
366 default:
367 _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
368 return;
369 }
370 }
371 return;
372
373 case STATE_VERTEX_PROGRAM:
374 {
375 /* state[1] = {STATE_ENV, STATE_LOCAL} */
376 /* state[2] = parameter index */
377 const int idx = (int) state[2];
378 switch (state[1]) {
379 case STATE_ENV:
380 COPY_4V(value, ctx->VertexProgram.Parameters[idx]);
381 break;
382 case STATE_LOCAL:
383 COPY_4V(value, ctx->VertexProgram.Current->Base.LocalParams[idx]);
384 break;
385 default:
386 _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
387 return;
388 }
389 }
390 return;
391
392 case STATE_NORMAL_SCALE:
393 ASSIGN_4V(value, ctx->_ModelViewInvScale, 0, 0, 1);
394 return;
395
396 case STATE_INTERNAL:
397 switch (state[1]) {
398 case STATE_CURRENT_ATTRIB: {
399 const GLuint idx = (GLuint) state[2];
400 COPY_4V(value, ctx->Current.Attrib[idx]);
401 return;
402 }
403
404 case STATE_NORMAL_SCALE:
405 ASSIGN_4V(value,
406 ctx->_ModelViewInvScale,
407 ctx->_ModelViewInvScale,
408 ctx->_ModelViewInvScale,
409 1);
410 return;
411 case STATE_TEXRECT_SCALE:
412 {
413 const int unit = (int) state[2];
414 const struct gl_texture_object *texObj
415 = ctx->Texture.Unit[unit]._Current;
416 if (texObj) {
417 struct gl_texture_image *texImage = texObj->Image[0][0];
418 ASSIGN_4V(value, (GLfloat) (1.0 / texImage->Width),
419 (GLfloat)(1.0 / texImage->Height),
420 0.0f, 1.0f);
421 }
422 }
423 return;
424 case STATE_FOG_PARAMS_OPTIMIZED:
425 /* for simpler per-vertex/pixel fog calcs. POW (for EXP/EXP2 fog)
426 * might be more expensive than EX2 on some hw, plus it needs
427 * another constant (e) anyway. Linear fog can now be done with a
428 * single MAD.
429 * linear: fogcoord * -1/(end-start) + end/(end-start)
430 * exp: 2^-(density/ln(2) * fogcoord)
431 * exp2: 2^-((density/(ln(2)^2) * fogcoord)^2)
432 */
433 value[0] = (ctx->Fog.End == ctx->Fog.Start)
434 ? 1.0f : (GLfloat)(-1.0F / (ctx->Fog.End - ctx->Fog.Start));
435 value[1] = ctx->Fog.End * -value[0];
436 value[2] = (GLfloat)(ctx->Fog.Density * ONE_DIV_LN2);
437 value[3] = (GLfloat)(ctx->Fog.Density * ONE_DIV_SQRT_LN2);
438 return;
439
440 case STATE_LIGHT_SPOT_DIR_NORMALIZED: {
441 /* here, state[2] is the light number */
442 /* pre-normalize spot dir */
443 const GLuint ln = (GLuint) state[2];
444 COPY_3V(value, ctx->Light.Light[ln]._NormDirection);
445 value[3] = ctx->Light.Light[ln]._CosCutoff;
446 return;
447 }
448
449 case STATE_LIGHT_POSITION: {
450 const GLuint ln = (GLuint) state[2];
451 COPY_4V(value, ctx->Light.Light[ln]._Position);
452 return;
453 }
454
455 case STATE_LIGHT_POSITION_NORMALIZED: {
456 const GLuint ln = (GLuint) state[2];
457 COPY_4V(value, ctx->Light.Light[ln]._Position);
458 NORMALIZE_3FV( value );
459 return;
460 }
461
462 case STATE_LIGHT_HALF_VECTOR: {
463 const GLuint ln = (GLuint) state[2];
464 GLfloat p[3];
465 /* Compute infinite half angle vector:
466 * halfVector = normalize(normalize(lightPos) + (0, 0, 1))
467 * light.EyePosition.w should be 0 for infinite lights.
468 */
469 COPY_3V(p, ctx->Light.Light[ln]._Position);
470 NORMALIZE_3FV(p);
471 ADD_3V(value, p, ctx->_EyeZDir);
472 NORMALIZE_3FV(value);
473 value[3] = 1.0;
474 return;
475 }
476
477
478 case STATE_PT_SCALE:
479 value[0] = ctx->Pixel.RedScale;
480 value[1] = ctx->Pixel.GreenScale;
481 value[2] = ctx->Pixel.BlueScale;
482 value[3] = ctx->Pixel.AlphaScale;
483 break;
484 case STATE_PT_BIAS:
485 value[0] = ctx->Pixel.RedBias;
486 value[1] = ctx->Pixel.GreenBias;
487 value[2] = ctx->Pixel.BlueBias;
488 value[3] = ctx->Pixel.AlphaBias;
489 break;
490 case STATE_PCM_SCALE:
491 COPY_4V(value, ctx->Pixel.PostColorMatrixScale);
492 break;
493 case STATE_PCM_BIAS:
494 COPY_4V(value, ctx->Pixel.PostColorMatrixBias);
495 break;
496 case STATE_SHADOW_AMBIENT:
497 {
498 const int unit = (int) state[2];
499 const struct gl_texture_object *texObj
500 = ctx->Texture.Unit[unit]._Current;
501 if (texObj) {
502 value[0] =
503 value[1] =
504 value[2] =
505 value[3] = texObj->CompareFailValue;
506 }
507 }
508 return;
509
510 /* XXX: make sure new tokens added here are also handled in the
511 * _mesa_program_state_flags() switch, below.
512 */
513 default:
514 /* unknown state indexes are silently ignored
515 * should be handled by the driver.
516 */
517 return;
518 }
519 return;
520
521 default:
522 _mesa_problem(ctx, "Invalid state in _mesa_fetch_state");
523 return;
524 }
525 }
526
527
528 /**
529 * Return a bitmask of the Mesa state flags (_NEW_* values) which would
530 * indicate that the given context state may have changed.
531 * The bitmask is used during validation to determine if we need to update
532 * vertex/fragment program parameters (like "state.material.color") when
533 * some GL state has changed.
534 */
535 GLbitfield
536 _mesa_program_state_flags(const gl_state_index state[STATE_LENGTH])
537 {
538 switch (state[0]) {
539 case STATE_MATERIAL:
540 case STATE_LIGHT:
541 case STATE_LIGHTMODEL_AMBIENT:
542 case STATE_LIGHTMODEL_SCENECOLOR:
543 case STATE_LIGHTPROD:
544 return _NEW_LIGHT;
545
546 case STATE_TEXGEN:
547 case STATE_TEXENV_COLOR:
548 return _NEW_TEXTURE;
549
550 case STATE_FOG_COLOR:
551 case STATE_FOG_PARAMS:
552 return _NEW_FOG;
553
554 case STATE_CLIPPLANE:
555 return _NEW_TRANSFORM;
556
557 case STATE_POINT_SIZE:
558 case STATE_POINT_ATTENUATION:
559 return _NEW_POINT;
560
561 case STATE_MODELVIEW_MATRIX:
562 return _NEW_MODELVIEW;
563 case STATE_PROJECTION_MATRIX:
564 return _NEW_PROJECTION;
565 case STATE_MVP_MATRIX:
566 return _NEW_MODELVIEW | _NEW_PROJECTION;
567 case STATE_TEXTURE_MATRIX:
568 return _NEW_TEXTURE_MATRIX;
569 case STATE_PROGRAM_MATRIX:
570 return _NEW_TRACK_MATRIX;
571 case STATE_COLOR_MATRIX:
572 return _NEW_COLOR_MATRIX;
573
574 case STATE_DEPTH_RANGE:
575 return _NEW_VIEWPORT;
576
577 case STATE_FRAGMENT_PROGRAM:
578 case STATE_VERTEX_PROGRAM:
579 return _NEW_PROGRAM;
580
581 case STATE_NORMAL_SCALE:
582 return _NEW_MODELVIEW;
583
584 case STATE_INTERNAL:
585 switch (state[1]) {
586 case STATE_CURRENT_ATTRIB:
587 return _NEW_CURRENT_ATTRIB;
588
589 case STATE_NORMAL_SCALE:
590 return _NEW_MODELVIEW;
591
592 case STATE_TEXRECT_SCALE:
593 case STATE_SHADOW_AMBIENT:
594 return _NEW_TEXTURE;
595 case STATE_FOG_PARAMS_OPTIMIZED:
596 return _NEW_FOG;
597 case STATE_LIGHT_SPOT_DIR_NORMALIZED:
598 case STATE_LIGHT_POSITION:
599 case STATE_LIGHT_POSITION_NORMALIZED:
600 case STATE_LIGHT_HALF_VECTOR:
601 return _NEW_LIGHT;
602
603 case STATE_PT_SCALE:
604 case STATE_PT_BIAS:
605 case STATE_PCM_SCALE:
606 case STATE_PCM_BIAS:
607 return _NEW_PIXEL;
608
609 default:
610 /* unknown state indexes are silently ignored and
611 * no flag set, since it is handled by the driver.
612 */
613 return 0;
614 }
615
616 default:
617 _mesa_problem(NULL, "unexpected state[0] in make_state_flags()");
618 return 0;
619 }
620 }
621
622
623 static void
624 append(char *dst, const char *src)
625 {
626 while (*dst)
627 dst++;
628 while (*src)
629 *dst++ = *src++;
630 *dst = 0;
631 }
632
633
634 /**
635 * Convert token 'k' to a string, append it onto 'dst' string.
636 */
637 static void
638 append_token(char *dst, gl_state_index k)
639 {
640 switch (k) {
641 case STATE_MATERIAL:
642 append(dst, "material");
643 break;
644 case STATE_LIGHT:
645 append(dst, "light");
646 break;
647 case STATE_LIGHTMODEL_AMBIENT:
648 append(dst, "lightmodel.ambient");
649 break;
650 case STATE_LIGHTMODEL_SCENECOLOR:
651 break;
652 case STATE_LIGHTPROD:
653 append(dst, "lightprod");
654 break;
655 case STATE_TEXGEN:
656 append(dst, "texgen");
657 break;
658 case STATE_FOG_COLOR:
659 append(dst, "fog.color");
660 break;
661 case STATE_FOG_PARAMS:
662 append(dst, "fog.params");
663 break;
664 case STATE_CLIPPLANE:
665 append(dst, "clip");
666 break;
667 case STATE_POINT_SIZE:
668 append(dst, "point.size");
669 break;
670 case STATE_POINT_ATTENUATION:
671 append(dst, "point.attenuation");
672 break;
673 case STATE_MODELVIEW_MATRIX:
674 append(dst, "matrix.modelview");
675 break;
676 case STATE_PROJECTION_MATRIX:
677 append(dst, "matrix.projection");
678 break;
679 case STATE_MVP_MATRIX:
680 append(dst, "matrix.mvp");
681 break;
682 case STATE_TEXTURE_MATRIX:
683 append(dst, "matrix.texture");
684 break;
685 case STATE_PROGRAM_MATRIX:
686 append(dst, "matrix.program");
687 break;
688 case STATE_COLOR_MATRIX:
689 append(dst, "matrix.color");
690 break;
691 case STATE_MATRIX_INVERSE:
692 append(dst, ".inverse");
693 break;
694 case STATE_MATRIX_TRANSPOSE:
695 append(dst, ".transpose");
696 break;
697 case STATE_MATRIX_INVTRANS:
698 append(dst, ".invtrans");
699 break;
700 case STATE_AMBIENT:
701 append(dst, ".ambient");
702 break;
703 case STATE_DIFFUSE:
704 append(dst, ".diffuse");
705 break;
706 case STATE_SPECULAR:
707 append(dst, ".specular");
708 break;
709 case STATE_EMISSION:
710 append(dst, ".emission");
711 break;
712 case STATE_SHININESS:
713 append(dst, "lshininess");
714 break;
715 case STATE_HALF_VECTOR:
716 append(dst, ".half");
717 break;
718 case STATE_POSITION:
719 append(dst, ".position");
720 break;
721 case STATE_ATTENUATION:
722 append(dst, ".attenuation");
723 break;
724 case STATE_SPOT_DIRECTION:
725 append(dst, ".spot.direction");
726 break;
727 case STATE_SPOT_CUTOFF:
728 append(dst, ".spot.cutoff");
729 break;
730 case STATE_TEXGEN_EYE_S:
731 append(dst, "eye.s");
732 break;
733 case STATE_TEXGEN_EYE_T:
734 append(dst, "eye.t");
735 break;
736 case STATE_TEXGEN_EYE_R:
737 append(dst, "eye.r");
738 break;
739 case STATE_TEXGEN_EYE_Q:
740 append(dst, "eye.q");
741 break;
742 case STATE_TEXGEN_OBJECT_S:
743 append(dst, "object.s");
744 break;
745 case STATE_TEXGEN_OBJECT_T:
746 append(dst, "object.t");
747 break;
748 case STATE_TEXGEN_OBJECT_R:
749 append(dst, "object.r");
750 break;
751 case STATE_TEXGEN_OBJECT_Q:
752 append(dst, "object.q");
753 break;
754 case STATE_TEXENV_COLOR:
755 append(dst, "texenv");
756 break;
757 case STATE_DEPTH_RANGE:
758 append(dst, "depth.range");
759 break;
760 case STATE_VERTEX_PROGRAM:
761 case STATE_FRAGMENT_PROGRAM:
762 break;
763 case STATE_ENV:
764 append(dst, "env");
765 break;
766 case STATE_LOCAL:
767 append(dst, "local");
768 break;
769 /* BEGIN internal state vars */
770 case STATE_INTERNAL:
771 append(dst, "(internal)");
772 break;
773 case STATE_NORMAL_SCALE:
774 append(dst, "normalScale");
775 break;
776 case STATE_TEXRECT_SCALE:
777 append(dst, "texrectScale");
778 break;
779 case STATE_FOG_PARAMS_OPTIMIZED:
780 append(dst, "fogParamsOptimized");
781 break;
782 case STATE_LIGHT_SPOT_DIR_NORMALIZED:
783 append(dst, "lightSpotDirNormalized");
784 break;
785 case STATE_LIGHT_POSITION:
786 append(dst, "lightPosition");
787 break;
788 case STATE_LIGHT_POSITION_NORMALIZED:
789 append(dst, "light.position.normalized");
790 break;
791 case STATE_LIGHT_HALF_VECTOR:
792 append(dst, "lightHalfVector");
793 break;
794 case STATE_PT_SCALE:
795 append(dst, "PTscale");
796 break;
797 case STATE_PT_BIAS:
798 append(dst, "PTbias");
799 break;
800 case STATE_PCM_SCALE:
801 append(dst, "PCMscale");
802 break;
803 case STATE_PCM_BIAS:
804 append(dst, "PCMbias");
805 break;
806 case STATE_SHADOW_AMBIENT:
807 append(dst, "CompareFailValue");
808 break;
809 default:
810 /* probably STATE_INTERNAL_DRIVER+i (driver private state) */
811 append(dst, "driverState");
812 }
813 }
814
815 static void
816 append_face(char *dst, GLint face)
817 {
818 if (face == 0)
819 append(dst, "front.");
820 else
821 append(dst, "back.");
822 }
823
824 static void
825 append_index(char *dst, GLint index)
826 {
827 char s[20];
828 _mesa_sprintf(s, "[%d]", index);
829 append(dst, s);
830 }
831
832 /**
833 * Make a string from the given state vector.
834 * For example, return "state.matrix.texture[2].inverse".
835 * Use _mesa_free() to deallocate the string.
836 */
837 char *
838 _mesa_program_state_string(const gl_state_index state[STATE_LENGTH])
839 {
840 char str[1000] = "";
841 char tmp[30];
842
843 append(str, "state.");
844 append_token(str, state[0]);
845
846 switch (state[0]) {
847 case STATE_MATERIAL:
848 append_face(str, state[1]);
849 append_token(str, state[2]);
850 break;
851 case STATE_LIGHT:
852 append_index(str, state[1]); /* light number [i]. */
853 append_token(str, state[2]); /* coefficients */
854 break;
855 case STATE_LIGHTMODEL_AMBIENT:
856 append(str, "lightmodel.ambient");
857 break;
858 case STATE_LIGHTMODEL_SCENECOLOR:
859 if (state[1] == 0) {
860 append(str, "lightmodel.front.scenecolor");
861 }
862 else {
863 append(str, "lightmodel.back.scenecolor");
864 }
865 break;
866 case STATE_LIGHTPROD:
867 append_index(str, state[1]); /* light number [i]. */
868 append_face(str, state[2]);
869 append_token(str, state[3]);
870 break;
871 case STATE_TEXGEN:
872 append_index(str, state[1]); /* tex unit [i] */
873 append_token(str, state[2]); /* plane coef */
874 break;
875 case STATE_TEXENV_COLOR:
876 append_index(str, state[1]); /* tex unit [i] */
877 append(str, "color");
878 break;
879 case STATE_CLIPPLANE:
880 append_index(str, state[1]); /* plane [i] */
881 append(str, ".plane");
882 break;
883 case STATE_MODELVIEW_MATRIX:
884 case STATE_PROJECTION_MATRIX:
885 case STATE_MVP_MATRIX:
886 case STATE_TEXTURE_MATRIX:
887 case STATE_PROGRAM_MATRIX:
888 case STATE_COLOR_MATRIX:
889 {
890 /* state[0] = modelview, projection, texture, etc. */
891 /* state[1] = which texture matrix or program matrix */
892 /* state[2] = first row to fetch */
893 /* state[3] = last row to fetch */
894 /* state[4] = transpose, inverse or invtrans */
895 const gl_state_index mat = state[0];
896 const GLuint index = (GLuint) state[1];
897 const GLuint firstRow = (GLuint) state[2];
898 const GLuint lastRow = (GLuint) state[3];
899 const gl_state_index modifier = state[4];
900 if (index ||
901 mat == STATE_TEXTURE_MATRIX ||
902 mat == STATE_PROGRAM_MATRIX)
903 append_index(str, index);
904 if (modifier)
905 append_token(str, modifier);
906 if (firstRow == lastRow)
907 _mesa_sprintf(tmp, ".row[%d]", firstRow);
908 else
909 _mesa_sprintf(tmp, ".row[%d..%d]", firstRow, lastRow);
910 append(str, tmp);
911 }
912 break;
913 case STATE_POINT_SIZE:
914 break;
915 case STATE_POINT_ATTENUATION:
916 break;
917 case STATE_FOG_PARAMS:
918 break;
919 case STATE_FOG_COLOR:
920 break;
921 case STATE_DEPTH_RANGE:
922 break;
923 case STATE_FRAGMENT_PROGRAM:
924 case STATE_VERTEX_PROGRAM:
925 /* state[1] = {STATE_ENV, STATE_LOCAL} */
926 /* state[2] = parameter index */
927 append_token(str, state[1]);
928 append_index(str, state[2]);
929 break;
930 case STATE_INTERNAL:
931 append_token(str, state[1]);
932 break;
933 default:
934 _mesa_problem(NULL, "Invalid state in _mesa_program_state_string");
935 break;
936 }
937
938 return _mesa_strdup(str);
939 }
940
941
942 /**
943 * Loop over all the parameters in a parameter list. If the parameter
944 * is a GL state reference, look up the current value of that state
945 * variable and put it into the parameter's Value[4] array.
946 * This would be called at glBegin time when using a fragment program.
947 */
948 void
949 _mesa_load_state_parameters(GLcontext *ctx,
950 struct gl_program_parameter_list *paramList)
951 {
952 GLuint i;
953
954 if (!paramList)
955 return;
956
957 /*assert(ctx->Driver.NeedFlush == 0);*/
958
959 for (i = 0; i < paramList->NumParameters; i++) {
960 if (paramList->Parameters[i].Type == PROGRAM_STATE_VAR) {
961 _mesa_fetch_state(ctx,
962 (gl_state_index *) paramList->Parameters[i].StateIndexes,
963 paramList->ParameterValues[i]);
964 }
965 }
966 }
967
968
969 /**
970 * Copy the 16 elements of a matrix into four consecutive program
971 * registers starting at 'pos'.
972 */
973 static void
974 load_matrix(GLfloat registers[][4], GLuint pos, const GLfloat mat[16])
975 {
976 GLuint i;
977 for (i = 0; i < 4; i++) {
978 registers[pos + i][0] = mat[0 + i];
979 registers[pos + i][1] = mat[4 + i];
980 registers[pos + i][2] = mat[8 + i];
981 registers[pos + i][3] = mat[12 + i];
982 }
983 }
984
985
986 /**
987 * As above, but transpose the matrix.
988 */
989 static void
990 load_transpose_matrix(GLfloat registers[][4], GLuint pos,
991 const GLfloat mat[16])
992 {
993 MEMCPY(registers[pos], mat, 16 * sizeof(GLfloat));
994 }
995
996
997 /**
998 * Load current vertex program's parameter registers with tracked
999 * matrices (if NV program). This only needs to be done per
1000 * glBegin/glEnd, not per-vertex.
1001 */
1002 void
1003 _mesa_load_tracked_matrices(GLcontext *ctx)
1004 {
1005 GLuint i;
1006
1007 for (i = 0; i < MAX_NV_VERTEX_PROGRAM_PARAMS / 4; i++) {
1008 /* point 'mat' at source matrix */
1009 GLmatrix *mat;
1010 if (ctx->VertexProgram.TrackMatrix[i] == GL_MODELVIEW) {
1011 mat = ctx->ModelviewMatrixStack.Top;
1012 }
1013 else if (ctx->VertexProgram.TrackMatrix[i] == GL_PROJECTION) {
1014 mat = ctx->ProjectionMatrixStack.Top;
1015 }
1016 else if (ctx->VertexProgram.TrackMatrix[i] == GL_TEXTURE) {
1017 mat = ctx->TextureMatrixStack[ctx->Texture.CurrentUnit].Top;
1018 }
1019 else if (ctx->VertexProgram.TrackMatrix[i] == GL_COLOR) {
1020 mat = ctx->ColorMatrixStack.Top;
1021 }
1022 else if (ctx->VertexProgram.TrackMatrix[i]==GL_MODELVIEW_PROJECTION_NV) {
1023 /* XXX verify the combined matrix is up to date */
1024 mat = &ctx->_ModelProjectMatrix;
1025 }
1026 else if (ctx->VertexProgram.TrackMatrix[i] >= GL_MATRIX0_NV &&
1027 ctx->VertexProgram.TrackMatrix[i] <= GL_MATRIX7_NV) {
1028 GLuint n = ctx->VertexProgram.TrackMatrix[i] - GL_MATRIX0_NV;
1029 ASSERT(n < MAX_PROGRAM_MATRICES);
1030 mat = ctx->ProgramMatrixStack[n].Top;
1031 }
1032 else {
1033 /* no matrix is tracked, but we leave the register values as-is */
1034 assert(ctx->VertexProgram.TrackMatrix[i] == GL_NONE);
1035 continue;
1036 }
1037
1038 /* load the matrix values into sequential registers */
1039 if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_IDENTITY_NV) {
1040 load_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
1041 }
1042 else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_INVERSE_NV) {
1043 _math_matrix_analyse(mat); /* update the inverse */
1044 ASSERT(!_math_matrix_is_dirty(mat));
1045 load_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
1046 }
1047 else if (ctx->VertexProgram.TrackMatrixTransform[i] == GL_TRANSPOSE_NV) {
1048 load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->m);
1049 }
1050 else {
1051 assert(ctx->VertexProgram.TrackMatrixTransform[i]
1052 == GL_INVERSE_TRANSPOSE_NV);
1053 _math_matrix_analyse(mat); /* update the inverse */
1054 ASSERT(!_math_matrix_is_dirty(mat));
1055 load_transpose_matrix(ctx->VertexProgram.Parameters, i*4, mat->inv);
1056 }
1057 }
1058 }