st/mesa: begin moving PBO functions into their own file
[mesa.git] / src / mesa / state_tracker / st_cb_texture.c
1 /**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include <stdio.h>
29 #include "main/bufferobj.h"
30 #include "main/enums.h"
31 #include "main/fbobject.h"
32 #include "main/formats.h"
33 #include "main/format_utils.h"
34 #include "main/glformats.h"
35 #include "main/image.h"
36 #include "main/imports.h"
37 #include "main/macros.h"
38 #include "main/mipmap.h"
39 #include "main/pack.h"
40 #include "main/pbo.h"
41 #include "main/pixeltransfer.h"
42 #include "main/texcompress.h"
43 #include "main/texcompress_etc.h"
44 #include "main/texgetimage.h"
45 #include "main/teximage.h"
46 #include "main/texobj.h"
47 #include "main/texstore.h"
48
49 #include "state_tracker/st_debug.h"
50 #include "state_tracker/st_context.h"
51 #include "state_tracker/st_cb_fbo.h"
52 #include "state_tracker/st_cb_flush.h"
53 #include "state_tracker/st_cb_texture.h"
54 #include "state_tracker/st_cb_bufferobjects.h"
55 #include "state_tracker/st_format.h"
56 #include "state_tracker/st_texture.h"
57 #include "state_tracker/st_gen_mipmap.h"
58 #include "state_tracker/st_atom.h"
59
60 #include "pipe/p_context.h"
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_upload_mgr.h"
64 #include "pipe/p_shader_tokens.h"
65 #include "util/u_tile.h"
66 #include "util/u_format.h"
67 #include "util/u_surface.h"
68 #include "util/u_sampler.h"
69 #include "util/u_math.h"
70 #include "util/u_box.h"
71 #include "util/u_simple_shaders.h"
72 #include "cso_cache/cso_context.h"
73 #include "tgsi/tgsi_ureg.h"
74
75 #define DBG if (0) printf
76
77
78 enum pipe_texture_target
79 gl_target_to_pipe(GLenum target)
80 {
81 switch (target) {
82 case GL_TEXTURE_1D:
83 case GL_PROXY_TEXTURE_1D:
84 return PIPE_TEXTURE_1D;
85 case GL_TEXTURE_2D:
86 case GL_PROXY_TEXTURE_2D:
87 case GL_TEXTURE_EXTERNAL_OES:
88 case GL_TEXTURE_2D_MULTISAMPLE:
89 case GL_PROXY_TEXTURE_2D_MULTISAMPLE:
90 return PIPE_TEXTURE_2D;
91 case GL_TEXTURE_RECTANGLE_NV:
92 case GL_PROXY_TEXTURE_RECTANGLE_NV:
93 return PIPE_TEXTURE_RECT;
94 case GL_TEXTURE_3D:
95 case GL_PROXY_TEXTURE_3D:
96 return PIPE_TEXTURE_3D;
97 case GL_TEXTURE_CUBE_MAP_ARB:
98 case GL_PROXY_TEXTURE_CUBE_MAP_ARB:
99 case GL_TEXTURE_CUBE_MAP_POSITIVE_X:
100 case GL_TEXTURE_CUBE_MAP_NEGATIVE_X:
101 case GL_TEXTURE_CUBE_MAP_POSITIVE_Y:
102 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y:
103 case GL_TEXTURE_CUBE_MAP_POSITIVE_Z:
104 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z:
105 return PIPE_TEXTURE_CUBE;
106 case GL_TEXTURE_1D_ARRAY_EXT:
107 case GL_PROXY_TEXTURE_1D_ARRAY_EXT:
108 return PIPE_TEXTURE_1D_ARRAY;
109 case GL_TEXTURE_2D_ARRAY_EXT:
110 case GL_PROXY_TEXTURE_2D_ARRAY_EXT:
111 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
112 case GL_PROXY_TEXTURE_2D_MULTISAMPLE_ARRAY:
113 return PIPE_TEXTURE_2D_ARRAY;
114 case GL_TEXTURE_BUFFER:
115 return PIPE_BUFFER;
116 case GL_TEXTURE_CUBE_MAP_ARRAY:
117 case GL_PROXY_TEXTURE_CUBE_MAP_ARRAY:
118 return PIPE_TEXTURE_CUBE_ARRAY;
119 default:
120 assert(0);
121 return 0;
122 }
123 }
124
125
126 /** called via ctx->Driver.NewTextureImage() */
127 static struct gl_texture_image *
128 st_NewTextureImage(struct gl_context * ctx)
129 {
130 DBG("%s\n", __func__);
131 (void) ctx;
132 return (struct gl_texture_image *) ST_CALLOC_STRUCT(st_texture_image);
133 }
134
135
136 /** called via ctx->Driver.DeleteTextureImage() */
137 static void
138 st_DeleteTextureImage(struct gl_context * ctx, struct gl_texture_image *img)
139 {
140 /* nothing special (yet) for st_texture_image */
141 _mesa_delete_texture_image(ctx, img);
142 }
143
144
145 /** called via ctx->Driver.NewTextureObject() */
146 static struct gl_texture_object *
147 st_NewTextureObject(struct gl_context * ctx, GLuint name, GLenum target)
148 {
149 struct st_texture_object *obj = ST_CALLOC_STRUCT(st_texture_object);
150
151 DBG("%s\n", __func__);
152 _mesa_initialize_texture_object(ctx, &obj->base, name, target);
153
154 return &obj->base;
155 }
156
157 /** called via ctx->Driver.DeleteTextureObject() */
158 static void
159 st_DeleteTextureObject(struct gl_context *ctx,
160 struct gl_texture_object *texObj)
161 {
162 struct st_context *st = st_context(ctx);
163 struct st_texture_object *stObj = st_texture_object(texObj);
164
165 pipe_resource_reference(&stObj->pt, NULL);
166 st_texture_release_all_sampler_views(st, stObj);
167 st_texture_free_sampler_views(stObj);
168 _mesa_delete_texture_object(ctx, texObj);
169 }
170
171
172 /** called via ctx->Driver.FreeTextureImageBuffer() */
173 static void
174 st_FreeTextureImageBuffer(struct gl_context *ctx,
175 struct gl_texture_image *texImage)
176 {
177 struct st_texture_image *stImage = st_texture_image(texImage);
178
179 DBG("%s\n", __func__);
180
181 if (stImage->pt) {
182 pipe_resource_reference(&stImage->pt, NULL);
183 }
184
185 free(stImage->transfer);
186 stImage->transfer = NULL;
187 stImage->num_transfers = 0;
188 }
189
190
191 /** called via ctx->Driver.MapTextureImage() */
192 static void
193 st_MapTextureImage(struct gl_context *ctx,
194 struct gl_texture_image *texImage,
195 GLuint slice, GLuint x, GLuint y, GLuint w, GLuint h,
196 GLbitfield mode,
197 GLubyte **mapOut, GLint *rowStrideOut)
198 {
199 struct st_context *st = st_context(ctx);
200 struct st_texture_image *stImage = st_texture_image(texImage);
201 unsigned pipeMode;
202 GLubyte *map;
203 struct pipe_transfer *transfer;
204
205 pipeMode = 0x0;
206 if (mode & GL_MAP_READ_BIT)
207 pipeMode |= PIPE_TRANSFER_READ;
208 if (mode & GL_MAP_WRITE_BIT)
209 pipeMode |= PIPE_TRANSFER_WRITE;
210 if (mode & GL_MAP_INVALIDATE_RANGE_BIT)
211 pipeMode |= PIPE_TRANSFER_DISCARD_RANGE;
212
213 map = st_texture_image_map(st, stImage, pipeMode, x, y, slice, w, h, 1,
214 &transfer);
215 if (map) {
216 if ((_mesa_is_format_etc2(texImage->TexFormat) && !st->has_etc2) ||
217 (texImage->TexFormat == MESA_FORMAT_ETC1_RGB8 && !st->has_etc1)) {
218 /* ETC isn't supported by gallium and it's represented
219 * by uncompressed formats. Only write transfers with precompressed
220 * data are supported by ES3, which makes this really simple.
221 *
222 * Just create a temporary storage where the ETC texture will
223 * be stored. It will be decompressed in the Unmap function.
224 */
225 unsigned z = transfer->box.z;
226 struct st_texture_image_transfer *itransfer = &stImage->transfer[z];
227
228 itransfer->temp_data =
229 malloc(_mesa_format_image_size(texImage->TexFormat, w, h, 1));
230 itransfer->temp_stride =
231 _mesa_format_row_stride(texImage->TexFormat, w);
232 itransfer->map = map;
233
234 *mapOut = itransfer->temp_data;
235 *rowStrideOut = itransfer->temp_stride;
236 }
237 else {
238 /* supported mapping */
239 *mapOut = map;
240 *rowStrideOut = transfer->stride;
241 }
242 }
243 else {
244 *mapOut = NULL;
245 *rowStrideOut = 0;
246 }
247 }
248
249
250 /** called via ctx->Driver.UnmapTextureImage() */
251 static void
252 st_UnmapTextureImage(struct gl_context *ctx,
253 struct gl_texture_image *texImage,
254 GLuint slice)
255 {
256 struct st_context *st = st_context(ctx);
257 struct st_texture_image *stImage = st_texture_image(texImage);
258
259 if ((_mesa_is_format_etc2(texImage->TexFormat) && !st->has_etc2) ||
260 (texImage->TexFormat == MESA_FORMAT_ETC1_RGB8 && !st->has_etc1)) {
261 /* Decompress the ETC texture to the mapped one. */
262 unsigned z = slice + stImage->base.Face;
263 struct st_texture_image_transfer *itransfer = &stImage->transfer[z];
264 struct pipe_transfer *transfer = itransfer->transfer;
265
266 assert(z == transfer->box.z);
267
268 if (texImage->TexFormat == MESA_FORMAT_ETC1_RGB8) {
269 _mesa_etc1_unpack_rgba8888(itransfer->map, transfer->stride,
270 itransfer->temp_data,
271 itransfer->temp_stride,
272 transfer->box.width, transfer->box.height);
273 }
274 else {
275 _mesa_unpack_etc2_format(itransfer->map, transfer->stride,
276 itransfer->temp_data, itransfer->temp_stride,
277 transfer->box.width, transfer->box.height,
278 texImage->TexFormat);
279 }
280
281 free(itransfer->temp_data);
282 itransfer->temp_data = NULL;
283 itransfer->temp_stride = 0;
284 itransfer->map = 0;
285 }
286
287 st_texture_image_unmap(st, stImage, slice);
288 }
289
290
291 /**
292 * Return default texture resource binding bitmask for the given format.
293 */
294 static GLuint
295 default_bindings(struct st_context *st, enum pipe_format format)
296 {
297 struct pipe_screen *screen = st->pipe->screen;
298 const unsigned target = PIPE_TEXTURE_2D;
299 unsigned bindings;
300
301 if (util_format_is_depth_or_stencil(format))
302 bindings = PIPE_BIND_SAMPLER_VIEW | PIPE_BIND_DEPTH_STENCIL;
303 else
304 bindings = PIPE_BIND_SAMPLER_VIEW | PIPE_BIND_RENDER_TARGET;
305
306 if (screen->is_format_supported(screen, format, target, 0, bindings))
307 return bindings;
308 else {
309 /* Try non-sRGB. */
310 format = util_format_linear(format);
311
312 if (screen->is_format_supported(screen, format, target, 0, bindings))
313 return bindings;
314 else
315 return PIPE_BIND_SAMPLER_VIEW;
316 }
317 }
318
319
320 /**
321 * Given the size of a mipmap image, try to compute the size of the level=0
322 * mipmap image.
323 *
324 * Note that this isn't always accurate for odd-sized, non-POW textures.
325 * For example, if level=1 and width=40 then the level=0 width may be 80 or 81.
326 *
327 * \return GL_TRUE for success, GL_FALSE for failure
328 */
329 static GLboolean
330 guess_base_level_size(GLenum target,
331 GLuint width, GLuint height, GLuint depth, GLuint level,
332 GLuint *width0, GLuint *height0, GLuint *depth0)
333 {
334 assert(width >= 1);
335 assert(height >= 1);
336 assert(depth >= 1);
337
338 if (level > 0) {
339 /* Guess the size of the base level.
340 * Depending on the image's size, we can't always make a guess here.
341 */
342 switch (target) {
343 case GL_TEXTURE_1D:
344 case GL_TEXTURE_1D_ARRAY:
345 width <<= level;
346 break;
347
348 case GL_TEXTURE_2D:
349 case GL_TEXTURE_2D_ARRAY:
350 /* We can't make a good guess here, because the base level dimensions
351 * can be non-square.
352 */
353 if (width == 1 || height == 1) {
354 return GL_FALSE;
355 }
356 width <<= level;
357 height <<= level;
358 break;
359
360 case GL_TEXTURE_CUBE_MAP:
361 case GL_TEXTURE_CUBE_MAP_ARRAY:
362 width <<= level;
363 height <<= level;
364 break;
365
366 case GL_TEXTURE_3D:
367 /* We can't make a good guess here, because the base level dimensions
368 * can be non-cube.
369 */
370 if (width == 1 || height == 1 || depth == 1) {
371 return GL_FALSE;
372 }
373 width <<= level;
374 height <<= level;
375 depth <<= level;
376 break;
377
378 case GL_TEXTURE_RECTANGLE:
379 break;
380
381 default:
382 assert(0);
383 }
384 }
385
386 *width0 = width;
387 *height0 = height;
388 *depth0 = depth;
389
390 return GL_TRUE;
391 }
392
393
394 /**
395 * Try to determine whether we should allocate memory for a full texture
396 * mipmap. The problem is when we get a glTexImage(level=0) call, we
397 * can't immediately know if other mipmap levels are coming next. Here
398 * we try to guess whether to allocate memory for a mipmap or just the
399 * 0th level.
400 *
401 * If we guess incorrectly here we'll later reallocate the right amount of
402 * memory either in st_AllocTextureImageBuffer() or st_finalize_texture().
403 *
404 * \param stObj the texture object we're going to allocate memory for.
405 * \param stImage describes the incoming image which we need to store.
406 */
407 static boolean
408 allocate_full_mipmap(const struct st_texture_object *stObj,
409 const struct st_texture_image *stImage)
410 {
411 switch (stObj->base.Target) {
412 case GL_TEXTURE_RECTANGLE_NV:
413 case GL_TEXTURE_BUFFER:
414 case GL_TEXTURE_EXTERNAL_OES:
415 case GL_TEXTURE_2D_MULTISAMPLE:
416 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
417 /* these texture types cannot be mipmapped */
418 return FALSE;
419 }
420
421 if (stImage->base.Level > 0 || stObj->base.GenerateMipmap)
422 return TRUE;
423
424 if (stImage->base._BaseFormat == GL_DEPTH_COMPONENT ||
425 stImage->base._BaseFormat == GL_DEPTH_STENCIL_EXT)
426 /* depth/stencil textures are seldom mipmapped */
427 return FALSE;
428
429 if (stObj->base.BaseLevel == 0 && stObj->base.MaxLevel == 0)
430 return FALSE;
431
432 if (stObj->base.Sampler.MinFilter == GL_NEAREST ||
433 stObj->base.Sampler.MinFilter == GL_LINEAR)
434 /* not a mipmap minification filter */
435 return FALSE;
436
437 if (stObj->base.Target == GL_TEXTURE_3D)
438 /* 3D textures are seldom mipmapped */
439 return FALSE;
440
441 return TRUE;
442 }
443
444
445 /**
446 * Try to allocate a pipe_resource object for the given st_texture_object.
447 *
448 * We use the given st_texture_image as a clue to determine the size of the
449 * mipmap image at level=0.
450 *
451 * \return GL_TRUE for success, GL_FALSE if out of memory.
452 */
453 static GLboolean
454 guess_and_alloc_texture(struct st_context *st,
455 struct st_texture_object *stObj,
456 const struct st_texture_image *stImage)
457 {
458 GLuint lastLevel, width, height, depth;
459 GLuint bindings;
460 GLuint ptWidth, ptHeight, ptDepth, ptLayers;
461 enum pipe_format fmt;
462
463 DBG("%s\n", __func__);
464
465 assert(!stObj->pt);
466
467 if (!guess_base_level_size(stObj->base.Target,
468 stImage->base.Width2,
469 stImage->base.Height2,
470 stImage->base.Depth2,
471 stImage->base.Level,
472 &width, &height, &depth)) {
473 /* we can't determine the image size at level=0 */
474 stObj->width0 = stObj->height0 = stObj->depth0 = 0;
475 /* this is not an out of memory error */
476 return GL_TRUE;
477 }
478
479 /* At this point, (width x height x depth) is the expected size of
480 * the level=0 mipmap image.
481 */
482
483 /* Guess a reasonable value for lastLevel. With OpenGL we have no
484 * idea how many mipmap levels will be in a texture until we start
485 * to render with it. Make an educated guess here but be prepared
486 * to re-allocating a texture buffer with space for more (or fewer)
487 * mipmap levels later.
488 */
489 if (allocate_full_mipmap(stObj, stImage)) {
490 /* alloc space for a full mipmap */
491 lastLevel = _mesa_get_tex_max_num_levels(stObj->base.Target,
492 width, height, depth) - 1;
493 }
494 else {
495 /* only alloc space for a single mipmap level */
496 lastLevel = 0;
497 }
498
499 /* Save the level=0 dimensions */
500 stObj->width0 = width;
501 stObj->height0 = height;
502 stObj->depth0 = depth;
503
504 fmt = st_mesa_format_to_pipe_format(st, stImage->base.TexFormat);
505
506 bindings = default_bindings(st, fmt);
507
508 st_gl_texture_dims_to_pipe_dims(stObj->base.Target,
509 width, height, depth,
510 &ptWidth, &ptHeight, &ptDepth, &ptLayers);
511
512 stObj->pt = st_texture_create(st,
513 gl_target_to_pipe(stObj->base.Target),
514 fmt,
515 lastLevel,
516 ptWidth,
517 ptHeight,
518 ptDepth,
519 ptLayers, 0,
520 bindings);
521
522 stObj->lastLevel = lastLevel;
523
524 DBG("%s returning %d\n", __func__, (stObj->pt != NULL));
525
526 return stObj->pt != NULL;
527 }
528
529
530 /**
531 * Called via ctx->Driver.AllocTextureImageBuffer().
532 * If the texture object/buffer already has space for the indicated image,
533 * we're done. Otherwise, allocate memory for the new texture image.
534 */
535 static GLboolean
536 st_AllocTextureImageBuffer(struct gl_context *ctx,
537 struct gl_texture_image *texImage)
538 {
539 struct st_context *st = st_context(ctx);
540 struct st_texture_image *stImage = st_texture_image(texImage);
541 struct st_texture_object *stObj = st_texture_object(texImage->TexObject);
542 const GLuint level = texImage->Level;
543 GLuint width = texImage->Width;
544 GLuint height = texImage->Height;
545 GLuint depth = texImage->Depth;
546
547 DBG("%s\n", __func__);
548
549 assert(!stImage->pt); /* xxx this might be wrong */
550
551 /* Look if the parent texture object has space for this image */
552 if (stObj->pt &&
553 level <= stObj->pt->last_level &&
554 st_texture_match_image(st, stObj->pt, texImage)) {
555 /* this image will fit in the existing texture object's memory */
556 pipe_resource_reference(&stImage->pt, stObj->pt);
557 return GL_TRUE;
558 }
559
560 /* The parent texture object does not have space for this image */
561
562 pipe_resource_reference(&stObj->pt, NULL);
563 st_texture_release_all_sampler_views(st, stObj);
564
565 if (!guess_and_alloc_texture(st, stObj, stImage)) {
566 /* Probably out of memory.
567 * Try flushing any pending rendering, then retry.
568 */
569 st_finish(st);
570 if (!guess_and_alloc_texture(st, stObj, stImage)) {
571 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexImage");
572 return GL_FALSE;
573 }
574 }
575
576 if (stObj->pt &&
577 st_texture_match_image(st, stObj->pt, texImage)) {
578 /* The image will live in the object's mipmap memory */
579 pipe_resource_reference(&stImage->pt, stObj->pt);
580 assert(stImage->pt);
581 return GL_TRUE;
582 }
583 else {
584 /* Create a new, temporary texture/resource/buffer to hold this
585 * one texture image. Note that when we later access this image
586 * (either for mapping or copying) we'll want to always specify
587 * mipmap level=0, even if the image represents some other mipmap
588 * level.
589 */
590 enum pipe_format format =
591 st_mesa_format_to_pipe_format(st, texImage->TexFormat);
592 GLuint bindings = default_bindings(st, format);
593 GLuint ptWidth, ptHeight, ptDepth, ptLayers;
594
595 st_gl_texture_dims_to_pipe_dims(stObj->base.Target,
596 width, height, depth,
597 &ptWidth, &ptHeight, &ptDepth, &ptLayers);
598
599 stImage->pt = st_texture_create(st,
600 gl_target_to_pipe(stObj->base.Target),
601 format,
602 0, /* lastLevel */
603 ptWidth,
604 ptHeight,
605 ptDepth,
606 ptLayers, 0,
607 bindings);
608 return stImage->pt != NULL;
609 }
610 }
611
612
613 /**
614 * Preparation prior to glTexImage. Basically check the 'surface_based'
615 * field and switch to a "normal" tex image if necessary.
616 */
617 static void
618 prep_teximage(struct gl_context *ctx, struct gl_texture_image *texImage,
619 GLenum format, GLenum type)
620 {
621 struct gl_texture_object *texObj = texImage->TexObject;
622 struct st_texture_object *stObj = st_texture_object(texObj);
623
624 /* switch to "normal" */
625 if (stObj->surface_based) {
626 const GLenum target = texObj->Target;
627 const GLuint level = texImage->Level;
628 mesa_format texFormat;
629
630 _mesa_clear_texture_object(ctx, texObj);
631 pipe_resource_reference(&stObj->pt, NULL);
632
633 /* oops, need to init this image again */
634 texFormat = _mesa_choose_texture_format(ctx, texObj, target, level,
635 texImage->InternalFormat, format,
636 type);
637
638 _mesa_init_teximage_fields(ctx, texImage,
639 texImage->Width, texImage->Height,
640 texImage->Depth, texImage->Border,
641 texImage->InternalFormat, texFormat);
642
643 stObj->surface_based = GL_FALSE;
644 }
645 }
646
647
648 /**
649 * Return a writemask for the gallium blit. The parameters can be base
650 * formats or "format" from glDrawPixels/glTexImage/glGetTexImage.
651 */
652 unsigned
653 st_get_blit_mask(GLenum srcFormat, GLenum dstFormat)
654 {
655 switch (dstFormat) {
656 case GL_DEPTH_STENCIL:
657 switch (srcFormat) {
658 case GL_DEPTH_STENCIL:
659 return PIPE_MASK_ZS;
660 case GL_DEPTH_COMPONENT:
661 return PIPE_MASK_Z;
662 case GL_STENCIL_INDEX:
663 return PIPE_MASK_S;
664 default:
665 assert(0);
666 return 0;
667 }
668
669 case GL_DEPTH_COMPONENT:
670 switch (srcFormat) {
671 case GL_DEPTH_STENCIL:
672 case GL_DEPTH_COMPONENT:
673 return PIPE_MASK_Z;
674 default:
675 assert(0);
676 return 0;
677 }
678
679 case GL_STENCIL_INDEX:
680 switch (srcFormat) {
681 case GL_STENCIL_INDEX:
682 return PIPE_MASK_S;
683 default:
684 assert(0);
685 return 0;
686 }
687
688 default:
689 return PIPE_MASK_RGBA;
690 }
691 }
692
693 /**
694 * Converts format to a format with the same components, types
695 * and sizes, but with the components in RGBA order.
696 */
697 static enum pipe_format
698 unswizzle_format(enum pipe_format format)
699 {
700 switch (format)
701 {
702 case PIPE_FORMAT_B8G8R8A8_UNORM:
703 case PIPE_FORMAT_A8R8G8B8_UNORM:
704 case PIPE_FORMAT_A8B8G8R8_UNORM:
705 return PIPE_FORMAT_R8G8B8A8_UNORM;
706
707 case PIPE_FORMAT_B10G10R10A2_UNORM:
708 return PIPE_FORMAT_R10G10B10A2_UNORM;
709
710 case PIPE_FORMAT_B10G10R10A2_SNORM:
711 return PIPE_FORMAT_R10G10B10A2_SNORM;
712
713 case PIPE_FORMAT_B10G10R10A2_UINT:
714 return PIPE_FORMAT_R10G10B10A2_UINT;
715
716 default:
717 return format;
718 }
719 }
720
721 /**
722 * Converts PIPE_FORMAT_A* to PIPE_FORMAT_R*.
723 */
724 static enum pipe_format
725 alpha_to_red(enum pipe_format format)
726 {
727 switch (format)
728 {
729 case PIPE_FORMAT_A8_UNORM:
730 return PIPE_FORMAT_R8_UNORM;
731 case PIPE_FORMAT_A8_SNORM:
732 return PIPE_FORMAT_R8_SNORM;
733 case PIPE_FORMAT_A8_UINT:
734 return PIPE_FORMAT_R8_UINT;
735 case PIPE_FORMAT_A8_SINT:
736 return PIPE_FORMAT_R8_SINT;
737
738 case PIPE_FORMAT_A16_UNORM:
739 return PIPE_FORMAT_R16_UNORM;
740 case PIPE_FORMAT_A16_SNORM:
741 return PIPE_FORMAT_R16_SNORM;
742 case PIPE_FORMAT_A16_UINT:
743 return PIPE_FORMAT_R16_UINT;
744 case PIPE_FORMAT_A16_SINT:
745 return PIPE_FORMAT_R16_SINT;
746 case PIPE_FORMAT_A16_FLOAT:
747 return PIPE_FORMAT_R16_FLOAT;
748
749 case PIPE_FORMAT_A32_UINT:
750 return PIPE_FORMAT_R32_UINT;
751 case PIPE_FORMAT_A32_SINT:
752 return PIPE_FORMAT_R32_SINT;
753 case PIPE_FORMAT_A32_FLOAT:
754 return PIPE_FORMAT_R32_FLOAT;
755
756 default:
757 return format;
758 }
759 }
760
761 /**
762 * Converts PIPE_FORMAT_R*A* to PIPE_FORMAT_R*G*.
763 */
764 static enum pipe_format
765 red_alpha_to_red_green(enum pipe_format format)
766 {
767 switch (format)
768 {
769 case PIPE_FORMAT_R8A8_UNORM:
770 return PIPE_FORMAT_R8G8_UNORM;
771 case PIPE_FORMAT_R8A8_SNORM:
772 return PIPE_FORMAT_R8G8_SNORM;
773 case PIPE_FORMAT_R8A8_UINT:
774 return PIPE_FORMAT_R8G8_UINT;
775 case PIPE_FORMAT_R8A8_SINT:
776 return PIPE_FORMAT_R8G8_SINT;
777
778 case PIPE_FORMAT_R16A16_UNORM:
779 return PIPE_FORMAT_R16G16_UNORM;
780 case PIPE_FORMAT_R16A16_SNORM:
781 return PIPE_FORMAT_R16G16_SNORM;
782 case PIPE_FORMAT_R16A16_UINT:
783 return PIPE_FORMAT_R16G16_UINT;
784 case PIPE_FORMAT_R16A16_SINT:
785 return PIPE_FORMAT_R16G16_SINT;
786 case PIPE_FORMAT_R16A16_FLOAT:
787 return PIPE_FORMAT_R16G16_FLOAT;
788
789 case PIPE_FORMAT_R32A32_UINT:
790 return PIPE_FORMAT_R32G32_UINT;
791 case PIPE_FORMAT_R32A32_SINT:
792 return PIPE_FORMAT_R32G32_SINT;
793 case PIPE_FORMAT_R32A32_FLOAT:
794 return PIPE_FORMAT_R32G32_FLOAT;
795
796 default:
797 return format;
798 }
799 }
800
801 /**
802 * Converts PIPE_FORMAT_L*A* to PIPE_FORMAT_R*G*.
803 */
804 static enum pipe_format
805 luminance_alpha_to_red_green(enum pipe_format format)
806 {
807 switch (format)
808 {
809 case PIPE_FORMAT_L8A8_UNORM:
810 return PIPE_FORMAT_R8G8_UNORM;
811 case PIPE_FORMAT_L8A8_SNORM:
812 return PIPE_FORMAT_R8G8_SNORM;
813 case PIPE_FORMAT_L8A8_UINT:
814 return PIPE_FORMAT_R8G8_UINT;
815 case PIPE_FORMAT_L8A8_SINT:
816 return PIPE_FORMAT_R8G8_SINT;
817
818 case PIPE_FORMAT_L16A16_UNORM:
819 return PIPE_FORMAT_R16G16_UNORM;
820 case PIPE_FORMAT_L16A16_SNORM:
821 return PIPE_FORMAT_R16G16_SNORM;
822 case PIPE_FORMAT_L16A16_UINT:
823 return PIPE_FORMAT_R16G16_UINT;
824 case PIPE_FORMAT_L16A16_SINT:
825 return PIPE_FORMAT_R16G16_SINT;
826 case PIPE_FORMAT_L16A16_FLOAT:
827 return PIPE_FORMAT_R16G16_FLOAT;
828
829 case PIPE_FORMAT_L32A32_UINT:
830 return PIPE_FORMAT_R32G32_UINT;
831 case PIPE_FORMAT_L32A32_SINT:
832 return PIPE_FORMAT_R32G32_SINT;
833 case PIPE_FORMAT_L32A32_FLOAT:
834 return PIPE_FORMAT_R32G32_FLOAT;
835
836 default:
837 return format;
838 }
839 }
840
841 /**
842 * Returns true if format is a PIPE_FORMAT_A* format, and false otherwise.
843 */
844 static bool
845 format_is_alpha(enum pipe_format format)
846 {
847 const struct util_format_description *desc = util_format_description(format);
848
849 if (desc->nr_channels == 1 &&
850 desc->swizzle[0] == PIPE_SWIZZLE_0 &&
851 desc->swizzle[1] == PIPE_SWIZZLE_0 &&
852 desc->swizzle[2] == PIPE_SWIZZLE_0 &&
853 desc->swizzle[3] == PIPE_SWIZZLE_X)
854 return true;
855
856 return false;
857 }
858
859 /**
860 * Returns true if format is a PIPE_FORMAT_R* format, and false otherwise.
861 */
862 static bool
863 format_is_red(enum pipe_format format)
864 {
865 const struct util_format_description *desc = util_format_description(format);
866
867 if (desc->nr_channels == 1 &&
868 desc->swizzle[0] == PIPE_SWIZZLE_X &&
869 desc->swizzle[1] == PIPE_SWIZZLE_0 &&
870 desc->swizzle[2] == PIPE_SWIZZLE_0 &&
871 desc->swizzle[3] == PIPE_SWIZZLE_1)
872 return true;
873
874 return false;
875 }
876
877
878 /**
879 * Returns true if format is a PIPE_FORMAT_L* format, and false otherwise.
880 */
881 static bool
882 format_is_luminance(enum pipe_format format)
883 {
884 const struct util_format_description *desc = util_format_description(format);
885
886 if (desc->nr_channels == 1 &&
887 desc->swizzle[0] == PIPE_SWIZZLE_X &&
888 desc->swizzle[1] == PIPE_SWIZZLE_X &&
889 desc->swizzle[2] == PIPE_SWIZZLE_X &&
890 desc->swizzle[3] == PIPE_SWIZZLE_1)
891 return true;
892
893 return false;
894 }
895
896 /**
897 * Returns true if format is a PIPE_FORMAT_R*A* format, and false otherwise.
898 */
899 static bool
900 format_is_red_alpha(enum pipe_format format)
901 {
902 const struct util_format_description *desc = util_format_description(format);
903
904 if (desc->nr_channels == 2 &&
905 desc->swizzle[0] == PIPE_SWIZZLE_X &&
906 desc->swizzle[1] == PIPE_SWIZZLE_0 &&
907 desc->swizzle[2] == PIPE_SWIZZLE_0 &&
908 desc->swizzle[3] == PIPE_SWIZZLE_Y)
909 return true;
910
911 return false;
912 }
913
914 static bool
915 format_is_swizzled_rgba(enum pipe_format format)
916 {
917 const struct util_format_description *desc = util_format_description(format);
918
919 if ((desc->swizzle[0] == TGSI_SWIZZLE_X || desc->swizzle[0] == PIPE_SWIZZLE_0) &&
920 (desc->swizzle[1] == TGSI_SWIZZLE_Y || desc->swizzle[1] == PIPE_SWIZZLE_0) &&
921 (desc->swizzle[2] == TGSI_SWIZZLE_Z || desc->swizzle[2] == PIPE_SWIZZLE_0) &&
922 (desc->swizzle[3] == TGSI_SWIZZLE_W || desc->swizzle[3] == PIPE_SWIZZLE_1))
923 return false;
924
925 return true;
926 }
927
928 struct format_table
929 {
930 unsigned char swizzle[4];
931 enum pipe_format format;
932 };
933
934 static const struct format_table table_8888_unorm[] = {
935 { { 0, 1, 2, 3 }, PIPE_FORMAT_R8G8B8A8_UNORM },
936 { { 2, 1, 0, 3 }, PIPE_FORMAT_B8G8R8A8_UNORM },
937 { { 3, 0, 1, 2 }, PIPE_FORMAT_A8R8G8B8_UNORM },
938 { { 3, 2, 1, 0 }, PIPE_FORMAT_A8B8G8R8_UNORM }
939 };
940
941 static const struct format_table table_1010102_unorm[] = {
942 { { 0, 1, 2, 3 }, PIPE_FORMAT_R10G10B10A2_UNORM },
943 { { 2, 1, 0, 3 }, PIPE_FORMAT_B10G10R10A2_UNORM }
944 };
945
946 static const struct format_table table_1010102_snorm[] = {
947 { { 0, 1, 2, 3 }, PIPE_FORMAT_R10G10B10A2_SNORM },
948 { { 2, 1, 0, 3 }, PIPE_FORMAT_B10G10R10A2_SNORM }
949 };
950
951 static const struct format_table table_1010102_uint[] = {
952 { { 0, 1, 2, 3 }, PIPE_FORMAT_R10G10B10A2_UINT },
953 { { 2, 1, 0, 3 }, PIPE_FORMAT_B10G10R10A2_UINT }
954 };
955
956 static enum pipe_format
957 swizzle_format(enum pipe_format format, const int * const swizzle)
958 {
959 unsigned i;
960
961 switch (format) {
962 case PIPE_FORMAT_R8G8B8A8_UNORM:
963 case PIPE_FORMAT_B8G8R8A8_UNORM:
964 case PIPE_FORMAT_A8R8G8B8_UNORM:
965 case PIPE_FORMAT_A8B8G8R8_UNORM:
966 for (i = 0; i < ARRAY_SIZE(table_8888_unorm); i++) {
967 if (swizzle[0] == table_8888_unorm[i].swizzle[0] &&
968 swizzle[1] == table_8888_unorm[i].swizzle[1] &&
969 swizzle[2] == table_8888_unorm[i].swizzle[2] &&
970 swizzle[3] == table_8888_unorm[i].swizzle[3])
971 return table_8888_unorm[i].format;
972 }
973 break;
974
975 case PIPE_FORMAT_R10G10B10A2_UNORM:
976 case PIPE_FORMAT_B10G10R10A2_UNORM:
977 for (i = 0; i < ARRAY_SIZE(table_1010102_unorm); i++) {
978 if (swizzle[0] == table_1010102_unorm[i].swizzle[0] &&
979 swizzle[1] == table_1010102_unorm[i].swizzle[1] &&
980 swizzle[2] == table_1010102_unorm[i].swizzle[2] &&
981 swizzle[3] == table_1010102_unorm[i].swizzle[3])
982 return table_1010102_unorm[i].format;
983 }
984 break;
985
986 case PIPE_FORMAT_R10G10B10A2_SNORM:
987 case PIPE_FORMAT_B10G10R10A2_SNORM:
988 for (i = 0; i < ARRAY_SIZE(table_1010102_snorm); i++) {
989 if (swizzle[0] == table_1010102_snorm[i].swizzle[0] &&
990 swizzle[1] == table_1010102_snorm[i].swizzle[1] &&
991 swizzle[2] == table_1010102_snorm[i].swizzle[2] &&
992 swizzle[3] == table_1010102_snorm[i].swizzle[3])
993 return table_1010102_snorm[i].format;
994 }
995 break;
996
997 case PIPE_FORMAT_R10G10B10A2_UINT:
998 case PIPE_FORMAT_B10G10R10A2_UINT:
999 for (i = 0; i < ARRAY_SIZE(table_1010102_uint); i++) {
1000 if (swizzle[0] == table_1010102_uint[i].swizzle[0] &&
1001 swizzle[1] == table_1010102_uint[i].swizzle[1] &&
1002 swizzle[2] == table_1010102_uint[i].swizzle[2] &&
1003 swizzle[3] == table_1010102_uint[i].swizzle[3])
1004 return table_1010102_uint[i].format;
1005 }
1006 break;
1007
1008 default:
1009 break;
1010 }
1011
1012 return PIPE_FORMAT_NONE;
1013 }
1014
1015 static bool
1016 reinterpret_formats(enum pipe_format *src_format, enum pipe_format *dst_format)
1017 {
1018 enum pipe_format src = *src_format;
1019 enum pipe_format dst = *dst_format;
1020
1021 /* Note: dst_format has already been transformed from luminance/intensity
1022 * to red when this function is called. The source format will never
1023 * be an intensity format, because GL_INTENSITY is not a legal value
1024 * for the format parameter in glTex(Sub)Image(). */
1025
1026 if (format_is_alpha(src)) {
1027 if (!format_is_alpha(dst))
1028 return false;
1029
1030 src = alpha_to_red(src);
1031 dst = alpha_to_red(dst);
1032 } else if (format_is_luminance(src)) {
1033 if (!format_is_red(dst) && !format_is_red_alpha(dst))
1034 return false;
1035
1036 src = util_format_luminance_to_red(src);
1037 } else if (util_format_is_luminance_alpha(src)) {
1038 src = luminance_alpha_to_red_green(src);
1039
1040 if (format_is_red_alpha(dst)) {
1041 dst = red_alpha_to_red_green(dst);
1042 } else if (!format_is_red(dst))
1043 return false;
1044 } else if (format_is_swizzled_rgba(src)) {
1045 const struct util_format_description *src_desc = util_format_description(src);
1046 const struct util_format_description *dst_desc = util_format_description(dst);
1047 int swizzle[4];
1048 unsigned i;
1049
1050 /* Make sure the format is an RGBA and not an RGBX format */
1051 if (src_desc->nr_channels != 4 || src_desc->swizzle[3] == PIPE_SWIZZLE_1)
1052 return false;
1053
1054 if (dst_desc->nr_channels != 4 || dst_desc->swizzle[3] == PIPE_SWIZZLE_1)
1055 return false;
1056
1057 for (i = 0; i < 4; i++)
1058 swizzle[i] = dst_desc->swizzle[src_desc->swizzle[i]];
1059
1060 dst = swizzle_format(dst, swizzle);
1061 if (dst == PIPE_FORMAT_NONE)
1062 return false;
1063
1064 src = unswizzle_format(src);
1065 }
1066
1067 *src_format = src;
1068 *dst_format = dst;
1069 return true;
1070 }
1071
1072 static void *
1073 create_pbo_upload_vs(struct st_context *st)
1074 {
1075 struct ureg_program *ureg;
1076 struct ureg_src in_pos;
1077 struct ureg_src in_instanceid;
1078 struct ureg_dst out_pos;
1079 struct ureg_dst out_layer;
1080
1081 ureg = ureg_create(PIPE_SHADER_VERTEX);
1082 if (!ureg)
1083 return NULL;
1084
1085 in_pos = ureg_DECL_vs_input(ureg, TGSI_SEMANTIC_POSITION);
1086
1087 out_pos = ureg_DECL_output(ureg, TGSI_SEMANTIC_POSITION, 0);
1088
1089 if (st->pbo_upload.upload_layers) {
1090 in_instanceid = ureg_DECL_system_value(ureg, TGSI_SEMANTIC_INSTANCEID, 0);
1091
1092 if (!st->pbo_upload.use_gs)
1093 out_layer = ureg_DECL_output(ureg, TGSI_SEMANTIC_LAYER, 0);
1094 }
1095
1096 /* out_pos = in_pos */
1097 ureg_MOV(ureg, out_pos, in_pos);
1098
1099 if (st->pbo_upload.upload_layers) {
1100 if (st->pbo_upload.use_gs) {
1101 /* out_pos.z = i2f(gl_InstanceID) */
1102 ureg_I2F(ureg, ureg_writemask(out_pos, TGSI_WRITEMASK_Z),
1103 ureg_scalar(in_instanceid, TGSI_SWIZZLE_X));
1104 } else {
1105 /* out_layer = gl_InstanceID */
1106 ureg_MOV(ureg, out_layer, in_instanceid);
1107 }
1108 }
1109
1110 ureg_END(ureg);
1111
1112 return ureg_create_shader_and_destroy(ureg, st->pipe);
1113 }
1114
1115 static void *
1116 create_pbo_upload_gs(struct st_context *st)
1117 {
1118 static const int zero = 0;
1119 struct ureg_program *ureg;
1120 struct ureg_dst out_pos;
1121 struct ureg_dst out_layer;
1122 struct ureg_src in_pos;
1123 struct ureg_src imm;
1124 unsigned i;
1125
1126 ureg = ureg_create(PIPE_SHADER_GEOMETRY);
1127 if (!ureg)
1128 return NULL;
1129
1130 ureg_property(ureg, TGSI_PROPERTY_GS_INPUT_PRIM, PIPE_PRIM_TRIANGLES);
1131 ureg_property(ureg, TGSI_PROPERTY_GS_OUTPUT_PRIM, PIPE_PRIM_TRIANGLE_STRIP);
1132 ureg_property(ureg, TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES, 3);
1133
1134 out_pos = ureg_DECL_output(ureg, TGSI_SEMANTIC_POSITION, 0);
1135 out_layer = ureg_DECL_output(ureg, TGSI_SEMANTIC_LAYER, 0);
1136
1137 in_pos = ureg_DECL_input(ureg, TGSI_SEMANTIC_POSITION, 0, 0, 1);
1138
1139 imm = ureg_DECL_immediate_int(ureg, &zero, 1);
1140
1141 for (i = 0; i < 3; ++i) {
1142 struct ureg_src in_pos_vertex = ureg_src_dimension(in_pos, i);
1143
1144 /* out_pos = in_pos[i] */
1145 ureg_MOV(ureg, out_pos, in_pos_vertex);
1146
1147 /* out_layer.x = f2i(in_pos[i].z) */
1148 ureg_F2I(ureg, ureg_writemask(out_layer, TGSI_WRITEMASK_X),
1149 ureg_scalar(in_pos_vertex, TGSI_SWIZZLE_Z));
1150
1151 ureg_EMIT(ureg, ureg_scalar(imm, TGSI_SWIZZLE_X));
1152 }
1153
1154 ureg_END(ureg);
1155
1156 return ureg_create_shader_and_destroy(ureg, st->pipe);
1157 }
1158
1159 static void *
1160 create_pbo_upload_fs(struct st_context *st)
1161 {
1162 struct pipe_context *pipe = st->pipe;
1163 struct pipe_screen *screen = pipe->screen;
1164 struct ureg_program *ureg;
1165 struct ureg_dst out;
1166 struct ureg_src sampler;
1167 struct ureg_src pos;
1168 struct ureg_src layer;
1169 struct ureg_src const0;
1170 struct ureg_dst temp0;
1171
1172 ureg = ureg_create(PIPE_SHADER_FRAGMENT);
1173 if (!ureg)
1174 return NULL;
1175
1176 out = ureg_DECL_output(ureg, TGSI_SEMANTIC_COLOR, 0);
1177 sampler = ureg_DECL_sampler(ureg, 0);
1178 if (screen->get_param(screen, PIPE_CAP_TGSI_FS_POSITION_IS_SYSVAL)) {
1179 pos = ureg_DECL_system_value(ureg, TGSI_SEMANTIC_POSITION, 0);
1180 } else {
1181 pos = ureg_DECL_fs_input(ureg, TGSI_SEMANTIC_POSITION, 0,
1182 TGSI_INTERPOLATE_LINEAR);
1183 }
1184 if (st->pbo_upload.upload_layers) {
1185 layer = ureg_DECL_fs_input(ureg, TGSI_SEMANTIC_LAYER, 0,
1186 TGSI_INTERPOLATE_CONSTANT);
1187 }
1188 const0 = ureg_DECL_constant(ureg, 0);
1189 temp0 = ureg_DECL_temporary(ureg);
1190
1191 /* Note: const0 = [ -xoffset + skip_pixels, -yoffset, stride, image_height ] */
1192
1193 /* temp0.xy = f2i(temp0.xy) */
1194 ureg_F2I(ureg, ureg_writemask(temp0, TGSI_WRITEMASK_XY),
1195 ureg_swizzle(pos,
1196 TGSI_SWIZZLE_X, TGSI_SWIZZLE_Y,
1197 TGSI_SWIZZLE_Y, TGSI_SWIZZLE_Y));
1198
1199 /* temp0.xy = temp0.xy + const0.xy */
1200 ureg_UADD(ureg, ureg_writemask(temp0, TGSI_WRITEMASK_XY),
1201 ureg_swizzle(ureg_src(temp0),
1202 TGSI_SWIZZLE_X, TGSI_SWIZZLE_Y,
1203 TGSI_SWIZZLE_Y, TGSI_SWIZZLE_Y),
1204 ureg_swizzle(const0,
1205 TGSI_SWIZZLE_X, TGSI_SWIZZLE_Y,
1206 TGSI_SWIZZLE_Y, TGSI_SWIZZLE_Y));
1207
1208 /* temp0.x = const0.z * temp0.y + temp0.x */
1209 ureg_UMAD(ureg, ureg_writemask(temp0, TGSI_WRITEMASK_X),
1210 ureg_scalar(const0, TGSI_SWIZZLE_Z),
1211 ureg_scalar(ureg_src(temp0), TGSI_SWIZZLE_Y),
1212 ureg_scalar(ureg_src(temp0), TGSI_SWIZZLE_X));
1213
1214 if (st->pbo_upload.upload_layers) {
1215 /* temp0.x = const0.w * layer + temp0.x */
1216 ureg_UMAD(ureg, ureg_writemask(temp0, TGSI_WRITEMASK_X),
1217 ureg_scalar(const0, TGSI_SWIZZLE_W),
1218 ureg_scalar(layer, TGSI_SWIZZLE_X),
1219 ureg_scalar(ureg_src(temp0), TGSI_SWIZZLE_X));
1220 }
1221
1222 /* temp0.w = 0 */
1223 ureg_MOV(ureg, ureg_writemask(temp0, TGSI_WRITEMASK_W), ureg_imm1u(ureg, 0));
1224
1225 /* out = txf(sampler, temp0.x) */
1226 ureg_TXF(ureg, out, TGSI_TEXTURE_BUFFER, ureg_src(temp0), sampler);
1227
1228 ureg_release_temporary(ureg, temp0);
1229
1230 ureg_END(ureg);
1231
1232 return ureg_create_shader_and_destroy(ureg, pipe);
1233 }
1234
1235 static bool
1236 try_pbo_upload_common(struct gl_context *ctx,
1237 struct pipe_surface *surface,
1238 int xoffset, int yoffset,
1239 unsigned upload_width, unsigned upload_height,
1240 struct pipe_resource *buffer,
1241 enum pipe_format src_format,
1242 intptr_t buf_offset,
1243 unsigned bytes_per_pixel,
1244 unsigned stride,
1245 unsigned image_height)
1246 {
1247 struct st_context *st = st_context(ctx);
1248 struct cso_context *cso = st->cso_context;
1249 struct pipe_context *pipe = st->pipe;
1250 unsigned depth = surface->u.tex.last_layer - surface->u.tex.first_layer + 1;
1251 unsigned skip_pixels = 0;
1252 bool success = false;
1253
1254 /* Check alignment. */
1255 {
1256 unsigned ofs = (buf_offset * bytes_per_pixel) % ctx->Const.TextureBufferOffsetAlignment;
1257 if (ofs != 0) {
1258 if (ofs % bytes_per_pixel != 0)
1259 return false;
1260
1261 skip_pixels = ofs / bytes_per_pixel;
1262 buf_offset -= skip_pixels;
1263 }
1264 }
1265
1266 /* Create the shaders */
1267 if (!st->pbo_upload.vs) {
1268 st->pbo_upload.vs = create_pbo_upload_vs(st);
1269 if (!st->pbo_upload.vs)
1270 return false;
1271 }
1272
1273 if (depth != 1 && st->pbo_upload.use_gs && !st->pbo_upload.gs) {
1274 st->pbo_upload.gs = create_pbo_upload_gs(st);
1275 if (!st->pbo_upload.gs)
1276 return false;
1277 }
1278
1279 if (!st->pbo_upload.fs) {
1280 st->pbo_upload.fs = create_pbo_upload_fs(st);
1281 if (!st->pbo_upload.fs)
1282 return false;
1283 }
1284
1285 cso_save_state(cso, (CSO_BIT_FRAGMENT_SAMPLER_VIEWS |
1286 CSO_BIT_FRAGMENT_SAMPLERS |
1287 CSO_BIT_VERTEX_ELEMENTS |
1288 CSO_BIT_AUX_VERTEX_BUFFER_SLOT |
1289 CSO_BIT_FRAMEBUFFER |
1290 CSO_BIT_VIEWPORT |
1291 CSO_BIT_BLEND |
1292 CSO_BIT_DEPTH_STENCIL_ALPHA |
1293 CSO_BIT_RASTERIZER |
1294 CSO_BIT_STREAM_OUTPUTS |
1295 CSO_BIT_PAUSE_QUERIES |
1296 CSO_BITS_ALL_SHADERS));
1297 cso_save_constant_buffer_slot0(cso, PIPE_SHADER_FRAGMENT);
1298
1299
1300 /* Set up the sampler_view */
1301 {
1302 unsigned first_element = buf_offset;
1303 unsigned last_element = buf_offset + skip_pixels + upload_width - 1
1304 + (upload_height - 1 + (depth - 1) * image_height) * stride;
1305 struct pipe_sampler_view templ;
1306 struct pipe_sampler_view *sampler_view;
1307 struct pipe_sampler_state sampler = {0};
1308 const struct pipe_sampler_state *samplers[1] = {&sampler};
1309
1310 /* This should be ensured by Mesa before calling our callbacks */
1311 assert((last_element + 1) * bytes_per_pixel <= buffer->width0);
1312
1313 if (last_element - first_element > ctx->Const.MaxTextureBufferSize - 1)
1314 goto fail;
1315
1316 memset(&templ, 0, sizeof(templ));
1317 templ.target = PIPE_BUFFER;
1318 templ.format = src_format;
1319 templ.u.buf.first_element = first_element;
1320 templ.u.buf.last_element = last_element;
1321 templ.swizzle_r = PIPE_SWIZZLE_X;
1322 templ.swizzle_g = PIPE_SWIZZLE_Y;
1323 templ.swizzle_b = PIPE_SWIZZLE_Z;
1324 templ.swizzle_a = PIPE_SWIZZLE_W;
1325
1326 sampler_view = pipe->create_sampler_view(pipe, buffer, &templ);
1327 if (sampler_view == NULL)
1328 goto fail;
1329
1330 cso_set_sampler_views(cso, PIPE_SHADER_FRAGMENT, 1, &sampler_view);
1331
1332 pipe_sampler_view_reference(&sampler_view, NULL);
1333
1334 cso_set_samplers(cso, PIPE_SHADER_FRAGMENT, 1, samplers);
1335 }
1336
1337 /* Upload vertices */
1338 {
1339 struct pipe_vertex_buffer vbo;
1340 struct pipe_vertex_element velem;
1341
1342 float x0 = (float) xoffset / surface->width * 2.0f - 1.0f;
1343 float y0 = (float) yoffset / surface->height * 2.0f - 1.0f;
1344 float x1 = (float) (xoffset + upload_width) / surface->width * 2.0f - 1.0f;
1345 float y1 = (float) (yoffset + upload_height) / surface->height * 2.0f - 1.0f;
1346
1347 float *verts = NULL;
1348
1349 vbo.user_buffer = NULL;
1350 vbo.buffer = NULL;
1351 vbo.stride = 2 * sizeof(float);
1352
1353 u_upload_alloc(st->uploader, 0, 8 * sizeof(float), 4,
1354 &vbo.buffer_offset, &vbo.buffer, (void **) &verts);
1355 if (!verts)
1356 goto fail;
1357
1358 verts[0] = x0;
1359 verts[1] = y0;
1360 verts[2] = x0;
1361 verts[3] = y1;
1362 verts[4] = x1;
1363 verts[5] = y0;
1364 verts[6] = x1;
1365 verts[7] = y1;
1366
1367 u_upload_unmap(st->uploader);
1368
1369 velem.src_offset = 0;
1370 velem.instance_divisor = 0;
1371 velem.vertex_buffer_index = cso_get_aux_vertex_buffer_slot(cso);
1372 velem.src_format = PIPE_FORMAT_R32G32_FLOAT;
1373
1374 cso_set_vertex_elements(cso, 1, &velem);
1375
1376 cso_set_vertex_buffers(cso, velem.vertex_buffer_index, 1, &vbo);
1377
1378 pipe_resource_reference(&vbo.buffer, NULL);
1379 }
1380
1381 /* Upload constants */
1382 /* Note: the user buffer must be valid until draw time */
1383 struct {
1384 int32_t xoffset;
1385 int32_t yoffset;
1386 int32_t stride;
1387 int32_t image_size;
1388 } constants;
1389
1390 {
1391 struct pipe_constant_buffer cb;
1392
1393 constants.xoffset = -xoffset + skip_pixels;
1394 constants.yoffset = -yoffset;
1395 constants.stride = stride;
1396 constants.image_size = stride * image_height;
1397
1398 if (st->constbuf_uploader) {
1399 cb.buffer = NULL;
1400 cb.user_buffer = NULL;
1401 u_upload_data(st->constbuf_uploader, 0, sizeof(constants),
1402 ctx->Const.UniformBufferOffsetAlignment,
1403 &constants, &cb.buffer_offset, &cb.buffer);
1404 if (!cb.buffer)
1405 goto fail;
1406
1407 u_upload_unmap(st->constbuf_uploader);
1408 } else {
1409 cb.buffer = NULL;
1410 cb.user_buffer = &constants;
1411 cb.buffer_offset = 0;
1412 }
1413 cb.buffer_size = sizeof(constants);
1414
1415 cso_set_constant_buffer(cso, PIPE_SHADER_FRAGMENT, 0, &cb);
1416
1417 pipe_resource_reference(&cb.buffer, NULL);
1418 }
1419
1420 /* Framebuffer_state */
1421 {
1422 struct pipe_framebuffer_state fb;
1423 memset(&fb, 0, sizeof(fb));
1424 fb.width = surface->width;
1425 fb.height = surface->height;
1426 fb.nr_cbufs = 1;
1427 pipe_surface_reference(&fb.cbufs[0], surface);
1428
1429 cso_set_framebuffer(cso, &fb);
1430
1431 pipe_surface_reference(&fb.cbufs[0], NULL);
1432 }
1433
1434 cso_set_viewport_dims(cso, surface->width, surface->height, FALSE);
1435
1436 /* Blend state */
1437 cso_set_blend(cso, &st->pbo_upload.blend);
1438
1439 /* Depth/stencil/alpha state */
1440 {
1441 struct pipe_depth_stencil_alpha_state dsa;
1442 memset(&dsa, 0, sizeof(dsa));
1443 cso_set_depth_stencil_alpha(cso, &dsa);
1444 }
1445
1446 /* Rasterizer state */
1447 cso_set_rasterizer(cso, &st->pbo_upload.raster);
1448
1449 /* Set up the shaders */
1450 cso_set_vertex_shader_handle(cso, st->pbo_upload.vs);
1451
1452 cso_set_geometry_shader_handle(cso, depth != 1 ? st->pbo_upload.gs : NULL);
1453
1454 cso_set_tessctrl_shader_handle(cso, NULL);
1455
1456 cso_set_tesseval_shader_handle(cso, NULL);
1457
1458 cso_set_fragment_shader_handle(cso, st->pbo_upload.fs);
1459
1460 /* Disable stream output */
1461 cso_set_stream_outputs(cso, 0, NULL, 0);
1462
1463 if (depth == 1) {
1464 cso_draw_arrays(cso, PIPE_PRIM_TRIANGLE_STRIP, 0, 4);
1465 } else {
1466 cso_draw_arrays_instanced(cso, PIPE_PRIM_TRIANGLE_STRIP,
1467 0, 4, 0, depth);
1468 }
1469
1470 success = true;
1471
1472 fail:
1473 cso_restore_state(cso);
1474 cso_restore_constant_buffer_slot0(cso, PIPE_SHADER_FRAGMENT);
1475
1476 return success;
1477 }
1478
1479 static bool
1480 try_pbo_upload(struct gl_context *ctx, GLuint dims,
1481 struct gl_texture_image *texImage,
1482 GLenum format, GLenum type,
1483 enum pipe_format dst_format,
1484 GLint xoffset, GLint yoffset, GLint zoffset,
1485 GLint width, GLint height, GLint depth,
1486 const void *pixels,
1487 const struct gl_pixelstore_attrib *unpack)
1488 {
1489 struct st_context *st = st_context(ctx);
1490 struct st_texture_image *stImage = st_texture_image(texImage);
1491 struct st_texture_object *stObj = st_texture_object(texImage->TexObject);
1492 struct pipe_resource *texture = stImage->pt;
1493 struct pipe_context *pipe = st->pipe;
1494 struct pipe_screen *screen = pipe->screen;
1495 struct pipe_surface *surface = NULL;
1496 enum pipe_format src_format;
1497 const struct util_format_description *desc;
1498 GLenum gl_target = texImage->TexObject->Target;
1499 intptr_t buf_offset;
1500 unsigned bytes_per_pixel;
1501 unsigned stride, image_height;
1502 bool success;
1503
1504 if (!st->pbo_upload.enabled)
1505 return false;
1506
1507 /* From now on, we need the gallium representation of dimensions. */
1508 if (gl_target == GL_TEXTURE_1D_ARRAY) {
1509 depth = height;
1510 height = 1;
1511 zoffset = yoffset;
1512 yoffset = 0;
1513 image_height = 1;
1514 } else {
1515 image_height = unpack->ImageHeight > 0 ? unpack->ImageHeight : height;
1516 }
1517
1518 if (depth != 1 && !st->pbo_upload.upload_layers)
1519 return false;
1520
1521 /* Choose the source format. Initially, we do so without checking driver
1522 * support at all because of the remapping we later perform and because
1523 * at least the Radeon driver actually supports some formats for texture
1524 * buffers which it doesn't support for regular textures. */
1525 src_format = st_choose_matching_format(st, 0, format, type, unpack->SwapBytes);
1526 if (!src_format) {
1527 return false;
1528 }
1529
1530 src_format = util_format_linear(src_format);
1531 desc = util_format_description(src_format);
1532
1533 if (desc->layout != UTIL_FORMAT_LAYOUT_PLAIN)
1534 return false;
1535
1536 if (desc->colorspace != UTIL_FORMAT_COLORSPACE_RGB)
1537 return false;
1538
1539 if (st->pbo_upload.rgba_only) {
1540 enum pipe_format orig_dst_format = dst_format;
1541
1542 if (!reinterpret_formats(&src_format, &dst_format)) {
1543 return false;
1544 }
1545
1546 if (dst_format != orig_dst_format &&
1547 !screen->is_format_supported(screen, dst_format, PIPE_TEXTURE_2D, 0,
1548 PIPE_BIND_RENDER_TARGET)) {
1549 return false;
1550 }
1551 }
1552
1553 if (!src_format ||
1554 !screen->is_format_supported(screen, src_format, PIPE_BUFFER, 0,
1555 PIPE_BIND_SAMPLER_VIEW)) {
1556 return false;
1557 }
1558
1559 /* Check if the offset satisfies the alignment requirements */
1560 buf_offset = (intptr_t) pixels;
1561 bytes_per_pixel = desc->block.bits / 8;
1562
1563 if (buf_offset % bytes_per_pixel) {
1564 return false;
1565 }
1566
1567 /* Convert to texels */
1568 buf_offset = buf_offset / bytes_per_pixel;
1569
1570 /* Compute the stride, taking unpack->Alignment into account */
1571 {
1572 unsigned pixels_per_row = unpack->RowLength > 0 ?
1573 unpack->RowLength : width;
1574 unsigned bytes_per_row = pixels_per_row * bytes_per_pixel;
1575 unsigned remainder = bytes_per_row % unpack->Alignment;
1576 unsigned offset_rows;
1577
1578 if (remainder > 0)
1579 bytes_per_row += (unpack->Alignment - remainder);
1580
1581 if (bytes_per_row % bytes_per_pixel) {
1582 return false;
1583 }
1584
1585 stride = bytes_per_row / bytes_per_pixel;
1586
1587 offset_rows = unpack->SkipRows;
1588 if (dims == 3)
1589 offset_rows += image_height * unpack->SkipImages;
1590
1591 buf_offset += unpack->SkipPixels + stride * offset_rows;
1592 }
1593
1594 /* Set up the surface */
1595 {
1596 unsigned level = stObj->pt != stImage->pt ? 0 : texImage->TexObject->MinLevel + texImage->Level;
1597 unsigned max_layer = util_max_layer(texture, level);
1598
1599 zoffset += texImage->Face + texImage->TexObject->MinLayer;
1600
1601 struct pipe_surface templ;
1602 memset(&templ, 0, sizeof(templ));
1603 templ.format = dst_format;
1604 templ.u.tex.level = level;
1605 templ.u.tex.first_layer = MIN2(zoffset, max_layer);
1606 templ.u.tex.last_layer = MIN2(zoffset + depth - 1, max_layer);
1607
1608 surface = pipe->create_surface(pipe, texture, &templ);
1609 if (!surface)
1610 return false;
1611 }
1612
1613 success = try_pbo_upload_common(ctx, surface,
1614 xoffset, yoffset, width, height,
1615 st_buffer_object(unpack->BufferObj)->buffer,
1616 src_format,
1617 buf_offset,
1618 bytes_per_pixel, stride, image_height);
1619
1620 pipe_surface_reference(&surface, NULL);
1621
1622 return success;
1623 }
1624
1625 static void
1626 st_TexSubImage(struct gl_context *ctx, GLuint dims,
1627 struct gl_texture_image *texImage,
1628 GLint xoffset, GLint yoffset, GLint zoffset,
1629 GLint width, GLint height, GLint depth,
1630 GLenum format, GLenum type, const void *pixels,
1631 const struct gl_pixelstore_attrib *unpack)
1632 {
1633 struct st_context *st = st_context(ctx);
1634 struct st_texture_image *stImage = st_texture_image(texImage);
1635 struct st_texture_object *stObj = st_texture_object(texImage->TexObject);
1636 struct pipe_context *pipe = st->pipe;
1637 struct pipe_screen *screen = pipe->screen;
1638 struct pipe_resource *dst = stImage->pt;
1639 struct pipe_resource *src = NULL;
1640 struct pipe_resource src_templ;
1641 struct pipe_transfer *transfer;
1642 struct pipe_blit_info blit;
1643 enum pipe_format src_format, dst_format;
1644 mesa_format mesa_src_format;
1645 GLenum gl_target = texImage->TexObject->Target;
1646 unsigned bind;
1647 GLubyte *map;
1648 unsigned dstz = texImage->Face + texImage->TexObject->MinLayer;
1649 unsigned dst_level = 0;
1650
1651 if (stObj->pt == stImage->pt)
1652 dst_level = texImage->TexObject->MinLevel + texImage->Level;
1653
1654 assert(!_mesa_is_format_etc2(texImage->TexFormat) &&
1655 texImage->TexFormat != MESA_FORMAT_ETC1_RGB8);
1656
1657 if (!dst)
1658 goto fallback;
1659
1660 /* Try transfer_inline_write, which should be the fastest memcpy path. */
1661 if (pixels &&
1662 !_mesa_is_bufferobj(unpack->BufferObj) &&
1663 _mesa_texstore_can_use_memcpy(ctx, texImage->_BaseFormat,
1664 texImage->TexFormat, format, type,
1665 unpack)) {
1666 struct pipe_box box;
1667 unsigned stride, layer_stride;
1668 void *data;
1669
1670 stride = _mesa_image_row_stride(unpack, width, format, type);
1671 layer_stride = _mesa_image_image_stride(unpack, width, height, format,
1672 type);
1673 data = _mesa_image_address(dims, unpack, pixels, width, height, format,
1674 type, 0, 0, 0);
1675
1676 /* Convert to Gallium coordinates. */
1677 if (gl_target == GL_TEXTURE_1D_ARRAY) {
1678 zoffset = yoffset;
1679 yoffset = 0;
1680 depth = height;
1681 height = 1;
1682 layer_stride = stride;
1683 }
1684
1685 u_box_3d(xoffset, yoffset, zoffset + dstz, width, height, depth, &box);
1686 pipe->transfer_inline_write(pipe, dst, dst_level, 0,
1687 &box, data, stride, layer_stride);
1688 return;
1689 }
1690
1691 if (!st->prefer_blit_based_texture_transfer) {
1692 goto fallback;
1693 }
1694
1695 /* XXX Fallback for depth-stencil formats due to an incomplete stencil
1696 * blit implementation in some drivers. */
1697 if (format == GL_DEPTH_STENCIL) {
1698 goto fallback;
1699 }
1700
1701 /* If the base internal format and the texture format don't match,
1702 * we can't use blit-based TexSubImage. */
1703 if (texImage->_BaseFormat !=
1704 _mesa_get_format_base_format(texImage->TexFormat)) {
1705 goto fallback;
1706 }
1707
1708
1709 /* See if the destination format is supported. */
1710 if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL)
1711 bind = PIPE_BIND_DEPTH_STENCIL;
1712 else
1713 bind = PIPE_BIND_RENDER_TARGET;
1714
1715 /* For luminance and intensity, only the red channel is stored
1716 * in the destination. */
1717 dst_format = util_format_linear(dst->format);
1718 dst_format = util_format_luminance_to_red(dst_format);
1719 dst_format = util_format_intensity_to_red(dst_format);
1720
1721 if (!dst_format ||
1722 !screen->is_format_supported(screen, dst_format, dst->target,
1723 dst->nr_samples, bind)) {
1724 goto fallback;
1725 }
1726
1727 if (_mesa_is_bufferobj(unpack->BufferObj)) {
1728 if (try_pbo_upload(ctx, dims, texImage, format, type, dst_format,
1729 xoffset, yoffset, zoffset,
1730 width, height, depth, pixels, unpack))
1731 return;
1732 }
1733
1734 /* See if the texture format already matches the format and type,
1735 * in which case the memcpy-based fast path will likely be used and
1736 * we don't have to blit. */
1737 if (_mesa_format_matches_format_and_type(texImage->TexFormat, format,
1738 type, unpack->SwapBytes, NULL)) {
1739 goto fallback;
1740 }
1741
1742 /* Choose the source format. */
1743 src_format = st_choose_matching_format(st, PIPE_BIND_SAMPLER_VIEW,
1744 format, type, unpack->SwapBytes);
1745 if (!src_format) {
1746 goto fallback;
1747 }
1748
1749 mesa_src_format = st_pipe_format_to_mesa_format(src_format);
1750
1751 /* There is no reason to do this if we cannot use memcpy for the temporary
1752 * source texture at least. This also takes transfer ops into account,
1753 * etc. */
1754 if (!_mesa_texstore_can_use_memcpy(ctx,
1755 _mesa_get_format_base_format(mesa_src_format),
1756 mesa_src_format, format, type, unpack)) {
1757 goto fallback;
1758 }
1759
1760 /* TexSubImage only sets a single cubemap face. */
1761 if (gl_target == GL_TEXTURE_CUBE_MAP) {
1762 gl_target = GL_TEXTURE_2D;
1763 }
1764 /* TexSubImage can specify subsets of cube map array faces
1765 * so we need to upload via 2D array instead */
1766 if (gl_target == GL_TEXTURE_CUBE_MAP_ARRAY) {
1767 gl_target = GL_TEXTURE_2D_ARRAY;
1768 }
1769
1770 /* Initialize the source texture description. */
1771 memset(&src_templ, 0, sizeof(src_templ));
1772 src_templ.target = gl_target_to_pipe(gl_target);
1773 src_templ.format = src_format;
1774 src_templ.bind = PIPE_BIND_SAMPLER_VIEW;
1775 src_templ.usage = PIPE_USAGE_STAGING;
1776
1777 st_gl_texture_dims_to_pipe_dims(gl_target, width, height, depth,
1778 &src_templ.width0, &src_templ.height0,
1779 &src_templ.depth0, &src_templ.array_size);
1780
1781 /* Check for NPOT texture support. */
1782 if (!screen->get_param(screen, PIPE_CAP_NPOT_TEXTURES) &&
1783 (!util_is_power_of_two(src_templ.width0) ||
1784 !util_is_power_of_two(src_templ.height0) ||
1785 !util_is_power_of_two(src_templ.depth0))) {
1786 goto fallback;
1787 }
1788
1789 /* Create the source texture. */
1790 src = screen->resource_create(screen, &src_templ);
1791 if (!src) {
1792 goto fallback;
1793 }
1794
1795 /* Map source pixels. */
1796 pixels = _mesa_validate_pbo_teximage(ctx, dims, width, height, depth,
1797 format, type, pixels, unpack,
1798 "glTexSubImage");
1799 if (!pixels) {
1800 /* This is a GL error. */
1801 pipe_resource_reference(&src, NULL);
1802 return;
1803 }
1804
1805 /* From now on, we need the gallium representation of dimensions. */
1806 if (gl_target == GL_TEXTURE_1D_ARRAY) {
1807 zoffset = yoffset;
1808 yoffset = 0;
1809 depth = height;
1810 height = 1;
1811 }
1812
1813 map = pipe_transfer_map_3d(pipe, src, 0, PIPE_TRANSFER_WRITE, 0, 0, 0,
1814 width, height, depth, &transfer);
1815 if (!map) {
1816 _mesa_unmap_teximage_pbo(ctx, unpack);
1817 pipe_resource_reference(&src, NULL);
1818 goto fallback;
1819 }
1820
1821 /* Upload pixels (just memcpy). */
1822 {
1823 const uint bytesPerRow = width * util_format_get_blocksize(src_format);
1824 GLuint row, slice;
1825
1826 for (slice = 0; slice < (unsigned) depth; slice++) {
1827 if (gl_target == GL_TEXTURE_1D_ARRAY) {
1828 /* 1D array textures.
1829 * We need to convert gallium coords to GL coords.
1830 */
1831 void *src = _mesa_image_address2d(unpack, pixels,
1832 width, depth, format,
1833 type, slice, 0);
1834 memcpy(map, src, bytesPerRow);
1835 }
1836 else {
1837 ubyte *slice_map = map;
1838
1839 for (row = 0; row < (unsigned) height; row++) {
1840 void *src = _mesa_image_address(dims, unpack, pixels,
1841 width, height, format,
1842 type, slice, row, 0);
1843 memcpy(slice_map, src, bytesPerRow);
1844 slice_map += transfer->stride;
1845 }
1846 }
1847 map += transfer->layer_stride;
1848 }
1849 }
1850
1851 pipe_transfer_unmap(pipe, transfer);
1852 _mesa_unmap_teximage_pbo(ctx, unpack);
1853
1854 /* Blit. */
1855 memset(&blit, 0, sizeof(blit));
1856 blit.src.resource = src;
1857 blit.src.level = 0;
1858 blit.src.format = src_format;
1859 blit.dst.resource = dst;
1860 blit.dst.level = dst_level;
1861 blit.dst.format = dst_format;
1862 blit.src.box.x = blit.src.box.y = blit.src.box.z = 0;
1863 blit.dst.box.x = xoffset;
1864 blit.dst.box.y = yoffset;
1865 blit.dst.box.z = zoffset + dstz;
1866 blit.src.box.width = blit.dst.box.width = width;
1867 blit.src.box.height = blit.dst.box.height = height;
1868 blit.src.box.depth = blit.dst.box.depth = depth;
1869 blit.mask = st_get_blit_mask(format, texImage->_BaseFormat);
1870 blit.filter = PIPE_TEX_FILTER_NEAREST;
1871 blit.scissor_enable = FALSE;
1872
1873 st->pipe->blit(st->pipe, &blit);
1874
1875 pipe_resource_reference(&src, NULL);
1876 return;
1877
1878 fallback:
1879 _mesa_store_texsubimage(ctx, dims, texImage, xoffset, yoffset, zoffset,
1880 width, height, depth, format, type, pixels,
1881 unpack);
1882 }
1883
1884 static void
1885 st_TexImage(struct gl_context * ctx, GLuint dims,
1886 struct gl_texture_image *texImage,
1887 GLenum format, GLenum type, const void *pixels,
1888 const struct gl_pixelstore_attrib *unpack)
1889 {
1890 assert(dims == 1 || dims == 2 || dims == 3);
1891
1892 prep_teximage(ctx, texImage, format, type);
1893
1894 if (texImage->Width == 0 || texImage->Height == 0 || texImage->Depth == 0)
1895 return;
1896
1897 /* allocate storage for texture data */
1898 if (!ctx->Driver.AllocTextureImageBuffer(ctx, texImage)) {
1899 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexImage%uD", dims);
1900 return;
1901 }
1902
1903 st_TexSubImage(ctx, dims, texImage, 0, 0, 0,
1904 texImage->Width, texImage->Height, texImage->Depth,
1905 format, type, pixels, unpack);
1906 }
1907
1908
1909 static void
1910 st_CompressedTexSubImage(struct gl_context *ctx, GLuint dims,
1911 struct gl_texture_image *texImage,
1912 GLint x, GLint y, GLint z,
1913 GLsizei w, GLsizei h, GLsizei d,
1914 GLenum format, GLsizei imageSize, const void *data)
1915 {
1916 struct st_context *st = st_context(ctx);
1917 struct st_texture_image *stImage = st_texture_image(texImage);
1918 struct st_texture_object *stObj = st_texture_object(texImage->TexObject);
1919 struct pipe_resource *texture = stImage->pt;
1920 struct pipe_context *pipe = st->pipe;
1921 struct pipe_screen *screen = pipe->screen;
1922 struct pipe_resource *dst = stImage->pt;
1923 struct pipe_surface *surface = NULL;
1924 struct compressed_pixelstore store;
1925 enum pipe_format copy_format;
1926 unsigned bytes_per_block;
1927 unsigned bw, bh;
1928 intptr_t buf_offset;
1929 bool success = false;
1930
1931 /* Check basic pre-conditions for PBO upload */
1932 if (!st->prefer_blit_based_texture_transfer) {
1933 goto fallback;
1934 }
1935
1936 if (!_mesa_is_bufferobj(ctx->Unpack.BufferObj))
1937 goto fallback;
1938
1939 if ((_mesa_is_format_etc2(texImage->TexFormat) && !st->has_etc2) ||
1940 (texImage->TexFormat == MESA_FORMAT_ETC1_RGB8 && !st->has_etc1)) {
1941 /* ETC isn't supported and is represented by uncompressed formats. */
1942 goto fallback;
1943 }
1944
1945 if (!dst) {
1946 goto fallback;
1947 }
1948
1949 if (!st->pbo_upload.enabled ||
1950 !screen->get_param(screen, PIPE_CAP_SURFACE_REINTERPRET_BLOCKS)) {
1951 goto fallback;
1952 }
1953
1954 /* Choose the pipe format for the upload. */
1955 bytes_per_block = util_format_get_blocksize(dst->format);
1956 bw = util_format_get_blockwidth(dst->format);
1957 bh = util_format_get_blockheight(dst->format);
1958
1959 switch (bytes_per_block) {
1960 case 8:
1961 copy_format = PIPE_FORMAT_R16G16B16A16_UINT;
1962 break;
1963 case 16:
1964 copy_format = PIPE_FORMAT_R32G32B32A32_UINT;
1965 break;
1966 default:
1967 goto fallback;
1968 }
1969
1970 if (!screen->is_format_supported(screen, copy_format, PIPE_BUFFER, 0,
1971 PIPE_BIND_SAMPLER_VIEW)) {
1972 goto fallback;
1973 }
1974
1975 if (!screen->is_format_supported(screen, copy_format, dst->target,
1976 dst->nr_samples, PIPE_BIND_RENDER_TARGET)) {
1977 goto fallback;
1978 }
1979
1980 /* Interpret the pixelstore settings. */
1981 _mesa_compute_compressed_pixelstore(dims, texImage->TexFormat, w, h, d,
1982 &ctx->Unpack, &store);
1983 assert(store.CopyBytesPerRow % bytes_per_block == 0);
1984 assert(store.SkipBytes % bytes_per_block == 0);
1985
1986 /* Compute the offset into the buffer */
1987 buf_offset = (intptr_t)data + store.SkipBytes;
1988
1989 if (buf_offset % bytes_per_block) {
1990 goto fallback;
1991 }
1992
1993 buf_offset = buf_offset / bytes_per_block;
1994
1995 /* Set up the surface. */
1996 {
1997 unsigned level = stObj->pt != stImage->pt ? 0 : texImage->TexObject->MinLevel + texImage->Level;
1998 unsigned max_layer = util_max_layer(texture, level);
1999
2000 z += texImage->Face + texImage->TexObject->MinLayer;
2001
2002 struct pipe_surface templ;
2003 memset(&templ, 0, sizeof(templ));
2004 templ.format = copy_format;
2005 templ.u.tex.level = level;
2006 templ.u.tex.first_layer = MIN2(z, max_layer);
2007 templ.u.tex.last_layer = MIN2(z + d - 1, max_layer);
2008
2009 surface = pipe->create_surface(pipe, texture, &templ);
2010 if (!surface)
2011 goto fallback;
2012 }
2013
2014 success = try_pbo_upload_common(ctx, surface,
2015 x / bw, y / bh,
2016 store.CopyBytesPerRow / bytes_per_block,
2017 store.CopyRowsPerSlice,
2018 st_buffer_object(ctx->Unpack.BufferObj)->buffer,
2019 copy_format,
2020 buf_offset,
2021 bytes_per_block,
2022 store.TotalBytesPerRow / bytes_per_block,
2023 store.TotalRowsPerSlice);
2024
2025 pipe_surface_reference(&surface, NULL);
2026
2027 if (success)
2028 return;
2029
2030 fallback:
2031 _mesa_store_compressed_texsubimage(ctx, dims, texImage,
2032 x, y, z, w, h, d,
2033 format, imageSize, data);
2034 }
2035
2036 static void
2037 st_CompressedTexImage(struct gl_context *ctx, GLuint dims,
2038 struct gl_texture_image *texImage,
2039 GLsizei imageSize, const void *data)
2040 {
2041 prep_teximage(ctx, texImage, GL_NONE, GL_NONE);
2042
2043 /* only 2D and 3D compressed images are supported at this time */
2044 if (dims == 1) {
2045 _mesa_problem(ctx, "Unexpected glCompressedTexImage1D call");
2046 return;
2047 }
2048
2049 /* This is pretty simple, because unlike the general texstore path we don't
2050 * have to worry about the usual image unpacking or image transfer
2051 * operations.
2052 */
2053 assert(texImage);
2054 assert(texImage->Width > 0);
2055 assert(texImage->Height > 0);
2056 assert(texImage->Depth > 0);
2057
2058 /* allocate storage for texture data */
2059 if (!st_AllocTextureImageBuffer(ctx, texImage)) {
2060 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCompressedTexImage%uD", dims);
2061 return;
2062 }
2063
2064 st_CompressedTexSubImage(ctx, dims, texImage,
2065 0, 0, 0,
2066 texImage->Width, texImage->Height, texImage->Depth,
2067 texImage->TexFormat,
2068 imageSize, data);
2069 }
2070
2071
2072
2073
2074 /**
2075 * Called via ctx->Driver.GetTexSubImage()
2076 *
2077 * This uses a blit to copy the texture to a texture format which matches
2078 * the format and type combo and then a fast read-back is done using memcpy.
2079 * We can do arbitrary X/Y/Z/W/0/1 swizzling here as long as there is
2080 * a format which matches the swizzling.
2081 *
2082 * If such a format isn't available, it falls back to _mesa_GetTexImage_sw.
2083 *
2084 * NOTE: Drivers usually do a blit to convert between tiled and linear
2085 * texture layouts during texture uploads/downloads, so the blit
2086 * we do here should be free in such cases.
2087 */
2088 static void
2089 st_GetTexSubImage(struct gl_context * ctx,
2090 GLint xoffset, GLint yoffset, GLint zoffset,
2091 GLsizei width, GLsizei height, GLint depth,
2092 GLenum format, GLenum type, void * pixels,
2093 struct gl_texture_image *texImage)
2094 {
2095 struct st_context *st = st_context(ctx);
2096 struct pipe_context *pipe = st->pipe;
2097 struct pipe_screen *screen = pipe->screen;
2098 struct st_texture_image *stImage = st_texture_image(texImage);
2099 struct st_texture_object *stObj = st_texture_object(texImage->TexObject);
2100 struct pipe_resource *src = stObj->pt;
2101 struct pipe_resource *dst = NULL;
2102 struct pipe_resource dst_templ;
2103 enum pipe_format dst_format, src_format;
2104 mesa_format mesa_format;
2105 GLenum gl_target = texImage->TexObject->Target;
2106 enum pipe_texture_target pipe_target;
2107 struct pipe_blit_info blit;
2108 unsigned bind = PIPE_BIND_TRANSFER_READ;
2109 struct pipe_transfer *tex_xfer;
2110 ubyte *map = NULL;
2111 boolean done = FALSE;
2112
2113 assert(!_mesa_is_format_etc2(texImage->TexFormat) &&
2114 texImage->TexFormat != MESA_FORMAT_ETC1_RGB8);
2115
2116 if (!st->prefer_blit_based_texture_transfer &&
2117 !_mesa_is_format_compressed(texImage->TexFormat)) {
2118 /* Try to avoid the fallback if we're doing texture decompression here */
2119 goto fallback;
2120 }
2121
2122 /* Handle non-finalized textures. */
2123 if (!stImage->pt || stImage->pt != stObj->pt || !src) {
2124 goto fallback;
2125 }
2126
2127 /* XXX Fallback to _mesa_GetTexImage_sw for depth-stencil formats
2128 * due to an incomplete stencil blit implementation in some drivers. */
2129 if (format == GL_DEPTH_STENCIL || format == GL_STENCIL_INDEX) {
2130 goto fallback;
2131 }
2132
2133 /* If the base internal format and the texture format don't match, we have
2134 * to fall back to _mesa_GetTexImage_sw. */
2135 if (texImage->_BaseFormat !=
2136 _mesa_get_format_base_format(texImage->TexFormat)) {
2137 goto fallback;
2138 }
2139
2140 /* See if the texture format already matches the format and type,
2141 * in which case the memcpy-based fast path will be used. */
2142 if (_mesa_format_matches_format_and_type(texImage->TexFormat, format,
2143 type, ctx->Pack.SwapBytes, NULL)) {
2144 goto fallback;
2145 }
2146
2147 /* Convert the source format to what is expected by GetTexImage
2148 * and see if it's supported.
2149 *
2150 * This only applies to glGetTexImage:
2151 * - Luminance must be returned as (L,0,0,1).
2152 * - Luminance alpha must be returned as (L,0,0,A).
2153 * - Intensity must be returned as (I,0,0,1)
2154 */
2155 if (stObj->surface_based)
2156 src_format = util_format_linear(stObj->surface_format);
2157 else
2158 src_format = util_format_linear(src->format);
2159 src_format = util_format_luminance_to_red(src_format);
2160 src_format = util_format_intensity_to_red(src_format);
2161
2162 if (!src_format ||
2163 !screen->is_format_supported(screen, src_format, src->target,
2164 src->nr_samples,
2165 PIPE_BIND_SAMPLER_VIEW)) {
2166 goto fallback;
2167 }
2168
2169 if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL)
2170 bind |= PIPE_BIND_DEPTH_STENCIL;
2171 else
2172 bind |= PIPE_BIND_RENDER_TARGET;
2173
2174 /* GetTexImage only returns a single face for cubemaps. */
2175 if (gl_target == GL_TEXTURE_CUBE_MAP) {
2176 gl_target = GL_TEXTURE_2D;
2177 }
2178 pipe_target = gl_target_to_pipe(gl_target);
2179
2180 /* Choose the destination format by finding the best match
2181 * for the format+type combo. */
2182 dst_format = st_choose_matching_format(st, bind, format, type,
2183 ctx->Pack.SwapBytes);
2184
2185 if (dst_format == PIPE_FORMAT_NONE) {
2186 GLenum dst_glformat;
2187
2188 /* Fall back to _mesa_GetTexImage_sw except for compressed formats,
2189 * where decompression with a blit is always preferred. */
2190 if (!util_format_is_compressed(src->format)) {
2191 goto fallback;
2192 }
2193
2194 /* Set the appropriate format for the decompressed texture.
2195 * Luminance and sRGB formats shouldn't appear here.*/
2196 switch (src_format) {
2197 case PIPE_FORMAT_DXT1_RGB:
2198 case PIPE_FORMAT_DXT1_RGBA:
2199 case PIPE_FORMAT_DXT3_RGBA:
2200 case PIPE_FORMAT_DXT5_RGBA:
2201 case PIPE_FORMAT_RGTC1_UNORM:
2202 case PIPE_FORMAT_RGTC2_UNORM:
2203 case PIPE_FORMAT_ETC1_RGB8:
2204 case PIPE_FORMAT_BPTC_RGBA_UNORM:
2205 dst_glformat = GL_RGBA8;
2206 break;
2207 case PIPE_FORMAT_RGTC1_SNORM:
2208 case PIPE_FORMAT_RGTC2_SNORM:
2209 if (!ctx->Extensions.EXT_texture_snorm)
2210 goto fallback;
2211 dst_glformat = GL_RGBA8_SNORM;
2212 break;
2213 case PIPE_FORMAT_BPTC_RGB_FLOAT:
2214 case PIPE_FORMAT_BPTC_RGB_UFLOAT:
2215 if (!ctx->Extensions.ARB_texture_float)
2216 goto fallback;
2217 dst_glformat = GL_RGBA32F;
2218 break;
2219 default:
2220 assert(0);
2221 goto fallback;
2222 }
2223
2224 dst_format = st_choose_format(st, dst_glformat, format, type,
2225 pipe_target, 0, bind, FALSE);
2226
2227 if (dst_format == PIPE_FORMAT_NONE) {
2228 /* unable to get an rgba format!?! */
2229 goto fallback;
2230 }
2231 }
2232
2233 /* create the destination texture of size (width X height X depth) */
2234 memset(&dst_templ, 0, sizeof(dst_templ));
2235 dst_templ.target = pipe_target;
2236 dst_templ.format = dst_format;
2237 dst_templ.bind = bind;
2238 dst_templ.usage = PIPE_USAGE_STAGING;
2239
2240 st_gl_texture_dims_to_pipe_dims(gl_target, width, height, depth,
2241 &dst_templ.width0, &dst_templ.height0,
2242 &dst_templ.depth0, &dst_templ.array_size);
2243
2244 dst = screen->resource_create(screen, &dst_templ);
2245 if (!dst) {
2246 goto fallback;
2247 }
2248
2249 /* From now on, we need the gallium representation of dimensions. */
2250 if (gl_target == GL_TEXTURE_1D_ARRAY) {
2251 zoffset = yoffset;
2252 yoffset = 0;
2253 depth = height;
2254 height = 1;
2255 }
2256
2257 assert(texImage->Face == 0 ||
2258 texImage->TexObject->MinLayer == 0 ||
2259 zoffset == 0);
2260
2261 memset(&blit, 0, sizeof(blit));
2262 blit.src.resource = src;
2263 blit.src.level = texImage->Level + texImage->TexObject->MinLevel;
2264 blit.src.format = src_format;
2265 blit.dst.resource = dst;
2266 blit.dst.level = 0;
2267 blit.dst.format = dst->format;
2268 blit.src.box.x = xoffset;
2269 blit.dst.box.x = 0;
2270 blit.src.box.y = yoffset;
2271 blit.dst.box.y = 0;
2272 blit.src.box.z = texImage->Face + texImage->TexObject->MinLayer + zoffset;
2273 blit.dst.box.z = 0;
2274 blit.src.box.width = blit.dst.box.width = width;
2275 blit.src.box.height = blit.dst.box.height = height;
2276 blit.src.box.depth = blit.dst.box.depth = depth;
2277 blit.mask = st_get_blit_mask(texImage->_BaseFormat, format);
2278 blit.filter = PIPE_TEX_FILTER_NEAREST;
2279 blit.scissor_enable = FALSE;
2280
2281 /* blit/render/decompress */
2282 st->pipe->blit(st->pipe, &blit);
2283
2284 pixels = _mesa_map_pbo_dest(ctx, &ctx->Pack, pixels);
2285
2286 map = pipe_transfer_map_3d(pipe, dst, 0, PIPE_TRANSFER_READ,
2287 0, 0, 0, width, height, depth, &tex_xfer);
2288 if (!map) {
2289 goto end;
2290 }
2291
2292 mesa_format = st_pipe_format_to_mesa_format(dst_format);
2293
2294 /* copy/pack data into user buffer */
2295 if (_mesa_format_matches_format_and_type(mesa_format, format, type,
2296 ctx->Pack.SwapBytes, NULL)) {
2297 /* memcpy */
2298 const uint bytesPerRow = width * util_format_get_blocksize(dst_format);
2299 GLuint row, slice;
2300
2301 for (slice = 0; slice < depth; slice++) {
2302 if (gl_target == GL_TEXTURE_1D_ARRAY) {
2303 /* 1D array textures.
2304 * We need to convert gallium coords to GL coords.
2305 */
2306 void *dest = _mesa_image_address3d(&ctx->Pack, pixels,
2307 width, depth, format,
2308 type, 0, slice, 0);
2309 memcpy(dest, map, bytesPerRow);
2310 }
2311 else {
2312 ubyte *slice_map = map;
2313
2314 for (row = 0; row < height; row++) {
2315 void *dest = _mesa_image_address3d(&ctx->Pack, pixels,
2316 width, height, format,
2317 type, slice, row, 0);
2318 memcpy(dest, slice_map, bytesPerRow);
2319 slice_map += tex_xfer->stride;
2320 }
2321 }
2322 map += tex_xfer->layer_stride;
2323 }
2324 }
2325 else {
2326 /* format translation via floats */
2327 GLuint row, slice;
2328 GLfloat *rgba;
2329 uint32_t dstMesaFormat;
2330 int dstStride, srcStride;
2331
2332 assert(util_format_is_compressed(src->format));
2333
2334 rgba = malloc(width * 4 * sizeof(GLfloat));
2335 if (!rgba) {
2336 goto end;
2337 }
2338
2339 if (ST_DEBUG & DEBUG_FALLBACK)
2340 debug_printf("%s: fallback format translation\n", __func__);
2341
2342 dstMesaFormat = _mesa_format_from_format_and_type(format, type);
2343 dstStride = _mesa_image_row_stride(&ctx->Pack, width, format, type);
2344 srcStride = 4 * width * sizeof(GLfloat);
2345 for (slice = 0; slice < depth; slice++) {
2346 if (gl_target == GL_TEXTURE_1D_ARRAY) {
2347 /* 1D array textures.
2348 * We need to convert gallium coords to GL coords.
2349 */
2350 void *dest = _mesa_image_address3d(&ctx->Pack, pixels,
2351 width, depth, format,
2352 type, 0, slice, 0);
2353
2354 /* get float[4] rgba row from surface */
2355 pipe_get_tile_rgba_format(tex_xfer, map, 0, 0, width, 1,
2356 dst_format, rgba);
2357
2358 _mesa_format_convert(dest, dstMesaFormat, dstStride,
2359 rgba, RGBA32_FLOAT, srcStride,
2360 width, 1, NULL);
2361 }
2362 else {
2363 for (row = 0; row < height; row++) {
2364 void *dest = _mesa_image_address3d(&ctx->Pack, pixels,
2365 width, height, format,
2366 type, slice, row, 0);
2367
2368 /* get float[4] rgba row from surface */
2369 pipe_get_tile_rgba_format(tex_xfer, map, 0, row, width, 1,
2370 dst_format, rgba);
2371
2372 _mesa_format_convert(dest, dstMesaFormat, dstStride,
2373 rgba, RGBA32_FLOAT, srcStride,
2374 width, 1, NULL);
2375 }
2376 }
2377 map += tex_xfer->layer_stride;
2378 }
2379
2380 free(rgba);
2381 }
2382 done = TRUE;
2383
2384 end:
2385 if (map)
2386 pipe_transfer_unmap(pipe, tex_xfer);
2387
2388 _mesa_unmap_pbo_dest(ctx, &ctx->Pack);
2389 pipe_resource_reference(&dst, NULL);
2390
2391 fallback:
2392 if (!done) {
2393 _mesa_GetTexSubImage_sw(ctx, xoffset, yoffset, zoffset,
2394 width, height, depth,
2395 format, type, pixels, texImage);
2396 }
2397 }
2398
2399
2400 /**
2401 * Do a CopyTexSubImage operation using a read transfer from the source,
2402 * a write transfer to the destination and get_tile()/put_tile() to access
2403 * the pixels/texels.
2404 *
2405 * Note: srcY=0=TOP of renderbuffer
2406 */
2407 static void
2408 fallback_copy_texsubimage(struct gl_context *ctx,
2409 struct st_renderbuffer *strb,
2410 struct st_texture_image *stImage,
2411 GLenum baseFormat,
2412 GLint destX, GLint destY, GLint slice,
2413 GLint srcX, GLint srcY,
2414 GLsizei width, GLsizei height)
2415 {
2416 struct st_context *st = st_context(ctx);
2417 struct pipe_context *pipe = st->pipe;
2418 struct pipe_transfer *src_trans;
2419 GLubyte *texDest;
2420 enum pipe_transfer_usage transfer_usage;
2421 void *map;
2422 unsigned dst_width = width;
2423 unsigned dst_height = height;
2424 unsigned dst_depth = 1;
2425 struct pipe_transfer *transfer;
2426
2427 if (ST_DEBUG & DEBUG_FALLBACK)
2428 debug_printf("%s: fallback processing\n", __func__);
2429
2430 if (st_fb_orientation(ctx->ReadBuffer) == Y_0_TOP) {
2431 srcY = strb->Base.Height - srcY - height;
2432 }
2433
2434 map = pipe_transfer_map(pipe,
2435 strb->texture,
2436 strb->surface->u.tex.level,
2437 strb->surface->u.tex.first_layer,
2438 PIPE_TRANSFER_READ,
2439 srcX, srcY,
2440 width, height, &src_trans);
2441
2442 if ((baseFormat == GL_DEPTH_COMPONENT ||
2443 baseFormat == GL_DEPTH_STENCIL) &&
2444 util_format_is_depth_and_stencil(stImage->pt->format))
2445 transfer_usage = PIPE_TRANSFER_READ_WRITE;
2446 else
2447 transfer_usage = PIPE_TRANSFER_WRITE;
2448
2449 texDest = st_texture_image_map(st, stImage, transfer_usage,
2450 destX, destY, slice,
2451 dst_width, dst_height, dst_depth,
2452 &transfer);
2453
2454 if (baseFormat == GL_DEPTH_COMPONENT ||
2455 baseFormat == GL_DEPTH_STENCIL) {
2456 const GLboolean scaleOrBias = (ctx->Pixel.DepthScale != 1.0F ||
2457 ctx->Pixel.DepthBias != 0.0F);
2458 GLint row, yStep;
2459 uint *data;
2460
2461 /* determine bottom-to-top vs. top-to-bottom order for src buffer */
2462 if (st_fb_orientation(ctx->ReadBuffer) == Y_0_TOP) {
2463 srcY = height - 1;
2464 yStep = -1;
2465 }
2466 else {
2467 srcY = 0;
2468 yStep = 1;
2469 }
2470
2471 data = malloc(width * sizeof(uint));
2472
2473 if (data) {
2474 /* To avoid a large temp memory allocation, do copy row by row */
2475 for (row = 0; row < height; row++, srcY += yStep) {
2476 pipe_get_tile_z(src_trans, map, 0, srcY, width, 1, data);
2477 if (scaleOrBias) {
2478 _mesa_scale_and_bias_depth_uint(ctx, width, data);
2479 }
2480
2481 if (stImage->pt->target == PIPE_TEXTURE_1D_ARRAY) {
2482 pipe_put_tile_z(transfer, texDest + row*transfer->layer_stride,
2483 0, 0, width, 1, data);
2484 }
2485 else {
2486 pipe_put_tile_z(transfer, texDest, 0, row, width, 1, data);
2487 }
2488 }
2489 }
2490 else {
2491 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyTexSubImage()");
2492 }
2493
2494 free(data);
2495 }
2496 else {
2497 /* RGBA format */
2498 GLfloat *tempSrc =
2499 malloc(width * height * 4 * sizeof(GLfloat));
2500
2501 if (tempSrc && texDest) {
2502 const GLint dims = 2;
2503 GLint dstRowStride;
2504 struct gl_texture_image *texImage = &stImage->base;
2505 struct gl_pixelstore_attrib unpack = ctx->DefaultPacking;
2506
2507 if (st_fb_orientation(ctx->ReadBuffer) == Y_0_TOP) {
2508 unpack.Invert = GL_TRUE;
2509 }
2510
2511 if (stImage->pt->target == PIPE_TEXTURE_1D_ARRAY) {
2512 dstRowStride = transfer->layer_stride;
2513 }
2514 else {
2515 dstRowStride = transfer->stride;
2516 }
2517
2518 /* get float/RGBA image from framebuffer */
2519 /* XXX this usually involves a lot of int/float conversion.
2520 * try to avoid that someday.
2521 */
2522 pipe_get_tile_rgba_format(src_trans, map, 0, 0, width, height,
2523 util_format_linear(strb->texture->format),
2524 tempSrc);
2525
2526 /* Store into texture memory.
2527 * Note that this does some special things such as pixel transfer
2528 * ops and format conversion. In particular, if the dest tex format
2529 * is actually RGBA but the user created the texture as GL_RGB we
2530 * need to fill-in/override the alpha channel with 1.0.
2531 */
2532 _mesa_texstore(ctx, dims,
2533 texImage->_BaseFormat,
2534 texImage->TexFormat,
2535 dstRowStride,
2536 &texDest,
2537 width, height, 1,
2538 GL_RGBA, GL_FLOAT, tempSrc, /* src */
2539 &unpack);
2540 }
2541 else {
2542 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexSubImage");
2543 }
2544
2545 free(tempSrc);
2546 }
2547
2548 st_texture_image_unmap(st, stImage, slice);
2549 pipe->transfer_unmap(pipe, src_trans);
2550 }
2551
2552
2553 /**
2554 * Do a CopyTex[Sub]Image1/2/3D() using a hardware (blit) path if possible.
2555 * Note that the region to copy has already been clipped so we know we
2556 * won't read from outside the source renderbuffer's bounds.
2557 *
2558 * Note: srcY=0=Bottom of renderbuffer (GL convention)
2559 */
2560 static void
2561 st_CopyTexSubImage(struct gl_context *ctx, GLuint dims,
2562 struct gl_texture_image *texImage,
2563 GLint destX, GLint destY, GLint slice,
2564 struct gl_renderbuffer *rb,
2565 GLint srcX, GLint srcY, GLsizei width, GLsizei height)
2566 {
2567 struct st_texture_image *stImage = st_texture_image(texImage);
2568 struct st_texture_object *stObj = st_texture_object(texImage->TexObject);
2569 struct st_renderbuffer *strb = st_renderbuffer(rb);
2570 struct st_context *st = st_context(ctx);
2571 struct pipe_context *pipe = st->pipe;
2572 struct pipe_screen *screen = pipe->screen;
2573 struct pipe_blit_info blit;
2574 enum pipe_format dst_format;
2575 GLboolean do_flip = (st_fb_orientation(ctx->ReadBuffer) == Y_0_TOP);
2576 unsigned bind;
2577 GLint srcY0, srcY1;
2578
2579 assert(!_mesa_is_format_etc2(texImage->TexFormat) &&
2580 texImage->TexFormat != MESA_FORMAT_ETC1_RGB8);
2581
2582 if (!strb || !strb->surface || !stImage->pt) {
2583 debug_printf("%s: null strb or stImage\n", __func__);
2584 return;
2585 }
2586
2587 if (_mesa_texstore_needs_transfer_ops(ctx, texImage->_BaseFormat,
2588 texImage->TexFormat)) {
2589 goto fallback;
2590 }
2591
2592 /* The base internal format must match the mesa format, so make sure
2593 * e.g. an RGB internal format is really allocated as RGB and not as RGBA.
2594 */
2595 if (texImage->_BaseFormat !=
2596 _mesa_get_format_base_format(texImage->TexFormat) ||
2597 rb->_BaseFormat != _mesa_get_format_base_format(rb->Format)) {
2598 goto fallback;
2599 }
2600
2601 /* Choose the destination format to match the TexImage behavior. */
2602 dst_format = util_format_linear(stImage->pt->format);
2603 dst_format = util_format_luminance_to_red(dst_format);
2604 dst_format = util_format_intensity_to_red(dst_format);
2605
2606 /* See if the destination format is supported. */
2607 if (texImage->_BaseFormat == GL_DEPTH_STENCIL ||
2608 texImage->_BaseFormat == GL_DEPTH_COMPONENT) {
2609 bind = PIPE_BIND_DEPTH_STENCIL;
2610 }
2611 else {
2612 bind = PIPE_BIND_RENDER_TARGET;
2613 }
2614
2615 if (!dst_format ||
2616 !screen->is_format_supported(screen, dst_format, stImage->pt->target,
2617 stImage->pt->nr_samples, bind)) {
2618 goto fallback;
2619 }
2620
2621 /* Y flipping for the main framebuffer. */
2622 if (do_flip) {
2623 srcY1 = strb->Base.Height - srcY - height;
2624 srcY0 = srcY1 + height;
2625 }
2626 else {
2627 srcY0 = srcY;
2628 srcY1 = srcY0 + height;
2629 }
2630
2631 /* Blit the texture.
2632 * This supports flipping, format conversions, and downsampling.
2633 */
2634 memset(&blit, 0, sizeof(blit));
2635 blit.src.resource = strb->texture;
2636 blit.src.format = util_format_linear(strb->surface->format);
2637 blit.src.level = strb->surface->u.tex.level;
2638 blit.src.box.x = srcX;
2639 blit.src.box.y = srcY0;
2640 blit.src.box.z = strb->surface->u.tex.first_layer;
2641 blit.src.box.width = width;
2642 blit.src.box.height = srcY1 - srcY0;
2643 blit.src.box.depth = 1;
2644 blit.dst.resource = stImage->pt;
2645 blit.dst.format = dst_format;
2646 blit.dst.level = stObj->pt != stImage->pt ? 0 : texImage->Level + texImage->TexObject->MinLevel;
2647 blit.dst.box.x = destX;
2648 blit.dst.box.y = destY;
2649 blit.dst.box.z = stImage->base.Face + slice + texImage->TexObject->MinLayer;
2650 blit.dst.box.width = width;
2651 blit.dst.box.height = height;
2652 blit.dst.box.depth = 1;
2653 blit.mask = st_get_blit_mask(rb->_BaseFormat, texImage->_BaseFormat);
2654 blit.filter = PIPE_TEX_FILTER_NEAREST;
2655 pipe->blit(pipe, &blit);
2656 return;
2657
2658 fallback:
2659 /* software fallback */
2660 fallback_copy_texsubimage(ctx,
2661 strb, stImage, texImage->_BaseFormat,
2662 destX, destY, slice,
2663 srcX, srcY, width, height);
2664 }
2665
2666
2667 /**
2668 * Copy image data from stImage into the texture object 'stObj' at level
2669 * 'dstLevel'.
2670 */
2671 static void
2672 copy_image_data_to_texture(struct st_context *st,
2673 struct st_texture_object *stObj,
2674 GLuint dstLevel,
2675 struct st_texture_image *stImage)
2676 {
2677 /* debug checks */
2678 {
2679 const struct gl_texture_image *dstImage =
2680 stObj->base.Image[stImage->base.Face][dstLevel];
2681 assert(dstImage);
2682 assert(dstImage->Width == stImage->base.Width);
2683 assert(dstImage->Height == stImage->base.Height);
2684 assert(dstImage->Depth == stImage->base.Depth);
2685 }
2686
2687 if (stImage->pt) {
2688 /* Copy potentially with the blitter:
2689 */
2690 GLuint src_level;
2691 if (stImage->pt->last_level == 0)
2692 src_level = 0;
2693 else
2694 src_level = stImage->base.Level;
2695
2696 assert(src_level <= stImage->pt->last_level);
2697 assert(u_minify(stImage->pt->width0, src_level) == stImage->base.Width);
2698 assert(stImage->pt->target == PIPE_TEXTURE_1D_ARRAY ||
2699 u_minify(stImage->pt->height0, src_level) == stImage->base.Height);
2700 assert(stImage->pt->target == PIPE_TEXTURE_2D_ARRAY ||
2701 stImage->pt->target == PIPE_TEXTURE_CUBE_ARRAY ||
2702 u_minify(stImage->pt->depth0, src_level) == stImage->base.Depth);
2703
2704 st_texture_image_copy(st->pipe,
2705 stObj->pt, dstLevel, /* dest texture, level */
2706 stImage->pt, src_level, /* src texture, level */
2707 stImage->base.Face);
2708
2709 pipe_resource_reference(&stImage->pt, NULL);
2710 }
2711 pipe_resource_reference(&stImage->pt, stObj->pt);
2712 }
2713
2714
2715 /**
2716 * Called during state validation. When this function is finished,
2717 * the texture object should be ready for rendering.
2718 * \return GL_TRUE for success, GL_FALSE for failure (out of mem)
2719 */
2720 GLboolean
2721 st_finalize_texture(struct gl_context *ctx,
2722 struct pipe_context *pipe,
2723 struct gl_texture_object *tObj)
2724 {
2725 struct st_context *st = st_context(ctx);
2726 struct st_texture_object *stObj = st_texture_object(tObj);
2727 const GLuint nr_faces = _mesa_num_tex_faces(stObj->base.Target);
2728 GLuint face;
2729 const struct st_texture_image *firstImage;
2730 enum pipe_format firstImageFormat;
2731 GLuint ptWidth, ptHeight, ptDepth, ptLayers, ptNumSamples;
2732
2733 if (tObj->Immutable)
2734 return GL_TRUE;
2735
2736 if (_mesa_is_texture_complete(tObj, &tObj->Sampler)) {
2737 /* The texture is complete and we know exactly how many mipmap levels
2738 * are present/needed. This is conditional because we may be called
2739 * from the st_generate_mipmap() function when the texture object is
2740 * incomplete. In that case, we'll have set stObj->lastLevel before
2741 * we get here.
2742 */
2743 if (stObj->base.Sampler.MinFilter == GL_LINEAR ||
2744 stObj->base.Sampler.MinFilter == GL_NEAREST)
2745 stObj->lastLevel = stObj->base.BaseLevel;
2746 else
2747 stObj->lastLevel = stObj->base._MaxLevel;
2748 }
2749
2750 if (tObj->Target == GL_TEXTURE_BUFFER) {
2751 struct st_buffer_object *st_obj = st_buffer_object(tObj->BufferObject);
2752
2753 if (!st_obj) {
2754 pipe_resource_reference(&stObj->pt, NULL);
2755 st_texture_release_all_sampler_views(st, stObj);
2756 return GL_TRUE;
2757 }
2758
2759 if (st_obj->buffer != stObj->pt) {
2760 pipe_resource_reference(&stObj->pt, st_obj->buffer);
2761 st_texture_release_all_sampler_views(st, stObj);
2762 stObj->width0 = stObj->pt->width0 / _mesa_get_format_bytes(tObj->_BufferObjectFormat);
2763 stObj->height0 = 1;
2764 stObj->depth0 = 1;
2765 }
2766 return GL_TRUE;
2767
2768 }
2769
2770 firstImage = st_texture_image_const(_mesa_base_tex_image(&stObj->base));
2771 assert(firstImage);
2772
2773 /* If both firstImage and stObj point to a texture which can contain
2774 * all active images, favour firstImage. Note that because of the
2775 * completeness requirement, we know that the image dimensions
2776 * will match.
2777 */
2778 if (firstImage->pt &&
2779 firstImage->pt != stObj->pt &&
2780 (!stObj->pt || firstImage->pt->last_level >= stObj->pt->last_level)) {
2781 pipe_resource_reference(&stObj->pt, firstImage->pt);
2782 st_texture_release_all_sampler_views(st, stObj);
2783 }
2784
2785 /* If this texture comes from a window system, there is nothing else to do. */
2786 if (stObj->surface_based) {
2787 return GL_TRUE;
2788 }
2789
2790 /* Find gallium format for the Mesa texture */
2791 firstImageFormat =
2792 st_mesa_format_to_pipe_format(st, firstImage->base.TexFormat);
2793
2794 /* Find size of level=0 Gallium mipmap image, plus number of texture layers */
2795 {
2796 GLuint width, height, depth;
2797 if (!guess_base_level_size(stObj->base.Target,
2798 firstImage->base.Width2,
2799 firstImage->base.Height2,
2800 firstImage->base.Depth2,
2801 firstImage->base.Level,
2802 &width, &height, &depth)) {
2803 width = stObj->width0;
2804 height = stObj->height0;
2805 depth = stObj->depth0;
2806 } else {
2807 /* The width/height/depth may have been previously reset in
2808 * guess_and_alloc_texture. */
2809 stObj->width0 = width;
2810 stObj->height0 = height;
2811 stObj->depth0 = depth;
2812 }
2813 /* convert GL dims to Gallium dims */
2814 st_gl_texture_dims_to_pipe_dims(stObj->base.Target, width, height, depth,
2815 &ptWidth, &ptHeight, &ptDepth, &ptLayers);
2816 ptNumSamples = firstImage->base.NumSamples;
2817 }
2818
2819 /* If we already have a gallium texture, check that it matches the texture
2820 * object's format, target, size, num_levels, etc.
2821 */
2822 if (stObj->pt) {
2823 if (stObj->pt->target != gl_target_to_pipe(stObj->base.Target) ||
2824 stObj->pt->format != firstImageFormat ||
2825 stObj->pt->last_level < stObj->lastLevel ||
2826 stObj->pt->width0 != ptWidth ||
2827 stObj->pt->height0 != ptHeight ||
2828 stObj->pt->depth0 != ptDepth ||
2829 stObj->pt->nr_samples != ptNumSamples ||
2830 stObj->pt->array_size != ptLayers)
2831 {
2832 /* The gallium texture does not match the Mesa texture so delete the
2833 * gallium texture now. We'll make a new one below.
2834 */
2835 pipe_resource_reference(&stObj->pt, NULL);
2836 st_texture_release_all_sampler_views(st, stObj);
2837 st->dirty.st |= ST_NEW_FRAMEBUFFER;
2838 }
2839 }
2840
2841 /* May need to create a new gallium texture:
2842 */
2843 if (!stObj->pt) {
2844 GLuint bindings = default_bindings(st, firstImageFormat);
2845
2846 stObj->pt = st_texture_create(st,
2847 gl_target_to_pipe(stObj->base.Target),
2848 firstImageFormat,
2849 stObj->lastLevel,
2850 ptWidth,
2851 ptHeight,
2852 ptDepth,
2853 ptLayers, ptNumSamples,
2854 bindings);
2855
2856 if (!stObj->pt) {
2857 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glTexImage");
2858 return GL_FALSE;
2859 }
2860 }
2861
2862 /* Pull in any images not in the object's texture:
2863 */
2864 for (face = 0; face < nr_faces; face++) {
2865 GLuint level;
2866 for (level = stObj->base.BaseLevel; level <= stObj->lastLevel; level++) {
2867 struct st_texture_image *stImage =
2868 st_texture_image(stObj->base.Image[face][level]);
2869
2870 /* Need to import images in main memory or held in other textures.
2871 */
2872 if (stImage && stObj->pt != stImage->pt) {
2873 GLuint height = stObj->height0;
2874 GLuint depth = stObj->depth0;
2875
2876 if (stObj->base.Target != GL_TEXTURE_1D_ARRAY)
2877 height = u_minify(height, level);
2878 if (stObj->base.Target == GL_TEXTURE_3D)
2879 depth = u_minify(depth, level);
2880
2881 if (level == 0 ||
2882 (stImage->base.Width == u_minify(stObj->width0, level) &&
2883 stImage->base.Height == height &&
2884 stImage->base.Depth == depth)) {
2885 /* src image fits expected dest mipmap level size */
2886 copy_image_data_to_texture(st, stObj, level, stImage);
2887 }
2888 }
2889 }
2890 }
2891
2892 return GL_TRUE;
2893 }
2894
2895
2896 /**
2897 * Called via ctx->Driver.AllocTextureStorage() to allocate texture memory
2898 * for a whole mipmap stack.
2899 */
2900 static GLboolean
2901 st_AllocTextureStorage(struct gl_context *ctx,
2902 struct gl_texture_object *texObj,
2903 GLsizei levels, GLsizei width,
2904 GLsizei height, GLsizei depth)
2905 {
2906 const GLuint numFaces = _mesa_num_tex_faces(texObj->Target);
2907 struct gl_texture_image *texImage = texObj->Image[0][0];
2908 struct st_context *st = st_context(ctx);
2909 struct st_texture_object *stObj = st_texture_object(texObj);
2910 struct pipe_screen *screen = st->pipe->screen;
2911 GLuint ptWidth, ptHeight, ptDepth, ptLayers, bindings;
2912 enum pipe_format fmt;
2913 GLint level;
2914 GLuint num_samples = texImage->NumSamples;
2915
2916 assert(levels > 0);
2917
2918 /* Save the level=0 dimensions */
2919 stObj->width0 = width;
2920 stObj->height0 = height;
2921 stObj->depth0 = depth;
2922 stObj->lastLevel = levels - 1;
2923
2924 fmt = st_mesa_format_to_pipe_format(st, texImage->TexFormat);
2925
2926 bindings = default_bindings(st, fmt);
2927
2928 /* Raise the sample count if the requested one is unsupported. */
2929 if (num_samples > 1) {
2930 boolean found = FALSE;
2931
2932 for (; num_samples <= ctx->Const.MaxSamples; num_samples++) {
2933 if (screen->is_format_supported(screen, fmt, PIPE_TEXTURE_2D,
2934 num_samples,
2935 PIPE_BIND_SAMPLER_VIEW)) {
2936 /* Update the sample count in gl_texture_image as well. */
2937 texImage->NumSamples = num_samples;
2938 found = TRUE;
2939 break;
2940 }
2941 }
2942
2943 if (!found) {
2944 return GL_FALSE;
2945 }
2946 }
2947
2948 st_gl_texture_dims_to_pipe_dims(texObj->Target,
2949 width, height, depth,
2950 &ptWidth, &ptHeight, &ptDepth, &ptLayers);
2951
2952 stObj->pt = st_texture_create(st,
2953 gl_target_to_pipe(texObj->Target),
2954 fmt,
2955 levels - 1,
2956 ptWidth,
2957 ptHeight,
2958 ptDepth,
2959 ptLayers, num_samples,
2960 bindings);
2961 if (!stObj->pt)
2962 return GL_FALSE;
2963
2964 /* Set image resource pointers */
2965 for (level = 0; level < levels; level++) {
2966 GLuint face;
2967 for (face = 0; face < numFaces; face++) {
2968 struct st_texture_image *stImage =
2969 st_texture_image(texObj->Image[face][level]);
2970 pipe_resource_reference(&stImage->pt, stObj->pt);
2971 }
2972 }
2973
2974 return GL_TRUE;
2975 }
2976
2977
2978 static GLboolean
2979 st_TestProxyTexImage(struct gl_context *ctx, GLenum target,
2980 GLint level, mesa_format format,
2981 GLint width, GLint height,
2982 GLint depth, GLint border)
2983 {
2984 struct st_context *st = st_context(ctx);
2985 struct pipe_context *pipe = st->pipe;
2986
2987 if (width == 0 || height == 0 || depth == 0) {
2988 /* zero-sized images are legal, and always fit! */
2989 return GL_TRUE;
2990 }
2991
2992 if (pipe->screen->can_create_resource) {
2993 /* Ask the gallium driver if the texture is too large */
2994 struct gl_texture_object *texObj =
2995 _mesa_get_current_tex_object(ctx, target);
2996 struct pipe_resource pt;
2997
2998 /* Setup the pipe_resource object
2999 */
3000 memset(&pt, 0, sizeof(pt));
3001
3002 pt.target = gl_target_to_pipe(target);
3003 pt.format = st_mesa_format_to_pipe_format(st, format);
3004
3005 st_gl_texture_dims_to_pipe_dims(target,
3006 width, height, depth,
3007 &pt.width0, &pt.height0,
3008 &pt.depth0, &pt.array_size);
3009
3010 if (level == 0 && (texObj->Sampler.MinFilter == GL_LINEAR ||
3011 texObj->Sampler.MinFilter == GL_NEAREST)) {
3012 /* assume just one mipmap level */
3013 pt.last_level = 0;
3014 }
3015 else {
3016 /* assume a full set of mipmaps */
3017 pt.last_level = _mesa_logbase2(MAX3(width, height, depth));
3018 }
3019
3020 return pipe->screen->can_create_resource(pipe->screen, &pt);
3021 }
3022 else {
3023 /* Use core Mesa fallback */
3024 return _mesa_test_proxy_teximage(ctx, target, level, format,
3025 width, height, depth, border);
3026 }
3027 }
3028
3029 static GLboolean
3030 st_TextureView(struct gl_context *ctx,
3031 struct gl_texture_object *texObj,
3032 struct gl_texture_object *origTexObj)
3033 {
3034 struct st_texture_object *orig = st_texture_object(origTexObj);
3035 struct st_texture_object *tex = st_texture_object(texObj);
3036 struct gl_texture_image *image = texObj->Image[0][0];
3037
3038 const int numFaces = _mesa_num_tex_faces(texObj->Target);
3039 const int numLevels = texObj->NumLevels;
3040
3041 int face;
3042 int level;
3043
3044 pipe_resource_reference(&tex->pt, orig->pt);
3045
3046 /* Set image resource pointers */
3047 for (level = 0; level < numLevels; level++) {
3048 for (face = 0; face < numFaces; face++) {
3049 struct st_texture_image *stImage =
3050 st_texture_image(texObj->Image[face][level]);
3051 pipe_resource_reference(&stImage->pt, tex->pt);
3052 }
3053 }
3054
3055 tex->surface_based = GL_TRUE;
3056 tex->surface_format =
3057 st_mesa_format_to_pipe_format(st_context(ctx), image->TexFormat);
3058
3059 tex->width0 = image->Width;
3060 tex->height0 = image->Height;
3061 tex->depth0 = image->Depth;
3062 tex->lastLevel = numLevels - 1;
3063
3064 return GL_TRUE;
3065 }
3066
3067 static void
3068 st_ClearTexSubImage(struct gl_context *ctx,
3069 struct gl_texture_image *texImage,
3070 GLint xoffset, GLint yoffset, GLint zoffset,
3071 GLsizei width, GLsizei height, GLsizei depth,
3072 const void *clearValue)
3073 {
3074 static const char zeros[16] = {0};
3075 struct st_texture_image *stImage = st_texture_image(texImage);
3076 struct pipe_resource *pt = stImage->pt;
3077 struct st_context *st = st_context(ctx);
3078 struct pipe_context *pipe = st->pipe;
3079 unsigned level = texImage->Level;
3080 struct pipe_box box;
3081
3082 if (!pt)
3083 return;
3084
3085 u_box_3d(xoffset, yoffset, zoffset + texImage->Face,
3086 width, height, depth, &box);
3087 if (texImage->TexObject->Immutable) {
3088 level += texImage->TexObject->MinLevel;
3089 box.z += texImage->TexObject->MinLayer;
3090 }
3091
3092 pipe->clear_texture(pipe, pt, level, &box, clearValue ? clearValue : zeros);
3093 }
3094
3095 void
3096 st_init_texture_functions(struct dd_function_table *functions)
3097 {
3098 functions->ChooseTextureFormat = st_ChooseTextureFormat;
3099 functions->QueryInternalFormat = st_QueryInternalFormat;
3100 functions->TexImage = st_TexImage;
3101 functions->TexSubImage = st_TexSubImage;
3102 functions->CompressedTexSubImage = st_CompressedTexSubImage;
3103 functions->CopyTexSubImage = st_CopyTexSubImage;
3104 functions->GenerateMipmap = st_generate_mipmap;
3105
3106 functions->GetTexSubImage = st_GetTexSubImage;
3107
3108 /* compressed texture functions */
3109 functions->CompressedTexImage = st_CompressedTexImage;
3110 functions->GetCompressedTexSubImage = _mesa_GetCompressedTexSubImage_sw;
3111
3112 functions->NewTextureObject = st_NewTextureObject;
3113 functions->NewTextureImage = st_NewTextureImage;
3114 functions->DeleteTextureImage = st_DeleteTextureImage;
3115 functions->DeleteTexture = st_DeleteTextureObject;
3116 functions->AllocTextureImageBuffer = st_AllocTextureImageBuffer;
3117 functions->FreeTextureImageBuffer = st_FreeTextureImageBuffer;
3118 functions->MapTextureImage = st_MapTextureImage;
3119 functions->UnmapTextureImage = st_UnmapTextureImage;
3120
3121 /* XXX Temporary until we can query pipe's texture sizes */
3122 functions->TestProxyTexImage = st_TestProxyTexImage;
3123
3124 functions->AllocTextureStorage = st_AllocTextureStorage;
3125 functions->TextureView = st_TextureView;
3126 functions->ClearTexSubImage = st_ClearTexSubImage;
3127 }