glsl_to_tgsi: remove unused glsl_version variable
[mesa.git] / src / mesa / state_tracker / st_glsl_to_tgsi.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 * Copyright © 2011 Bryan Cain
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24 * DEALINGS IN THE SOFTWARE.
25 */
26
27 /**
28 * \file glsl_to_tgsi.cpp
29 *
30 * Translate GLSL IR to TGSI.
31 */
32
33 #include "st_glsl_to_tgsi.h"
34
35 #include "compiler/glsl/glsl_parser_extras.h"
36 #include "compiler/glsl/ir_optimization.h"
37 #include "compiler/glsl/program.h"
38
39 #include "main/errors.h"
40 #include "main/shaderobj.h"
41 #include "main/uniforms.h"
42 #include "main/shaderapi.h"
43 #include "main/shaderimage.h"
44 #include "program/prog_instruction.h"
45
46 #include "pipe/p_context.h"
47 #include "pipe/p_screen.h"
48 #include "tgsi/tgsi_ureg.h"
49 #include "tgsi/tgsi_info.h"
50 #include "util/u_math.h"
51 #include "util/u_memory.h"
52 #include "st_glsl_types.h"
53 #include "st_program.h"
54 #include "st_mesa_to_tgsi.h"
55 #include "st_format.h"
56 #include "st_nir.h"
57 #include "st_shader_cache.h"
58 #include "st_glsl_to_tgsi_temprename.h"
59
60 #include "util/hash_table.h"
61 #include <algorithm>
62
63 #define PROGRAM_ANY_CONST ((1 << PROGRAM_STATE_VAR) | \
64 (1 << PROGRAM_CONSTANT) | \
65 (1 << PROGRAM_UNIFORM))
66
67 #define MAX_GLSL_TEXTURE_OFFSET 4
68
69 static unsigned is_precise(const ir_variable *ir)
70 {
71 if (!ir)
72 return 0;
73 return ir->data.precise || ir->data.invariant;
74 }
75
76 class variable_storage {
77 DECLARE_RZALLOC_CXX_OPERATORS(variable_storage)
78
79 public:
80 variable_storage(ir_variable *var, gl_register_file file, int index,
81 unsigned array_id = 0)
82 : file(file), index(index), component(0), var(var), array_id(array_id)
83 {
84 assert(file != PROGRAM_ARRAY || array_id != 0);
85 }
86
87 gl_register_file file;
88 int index;
89
90 /* Explicit component location. This is given in terms of the GLSL-style
91 * swizzles where each double is a single component, i.e. for 64-bit types
92 * it can only be 0 or 1.
93 */
94 int component;
95 ir_variable *var; /* variable that maps to this, if any */
96 unsigned array_id;
97 };
98
99 class immediate_storage : public exec_node {
100 public:
101 immediate_storage(gl_constant_value *values, int size32, int type)
102 {
103 memcpy(this->values, values, size32 * sizeof(gl_constant_value));
104 this->size32 = size32;
105 this->type = type;
106 }
107
108 /* doubles are stored across 2 gl_constant_values */
109 gl_constant_value values[4];
110 int size32; /**< Number of 32-bit components (1-4) */
111 int type; /**< GL_DOUBLE, GL_FLOAT, GL_INT, GL_BOOL, or GL_UNSIGNED_INT */
112 };
113
114 static const st_src_reg undef_src = st_src_reg(PROGRAM_UNDEFINED, 0, GLSL_TYPE_ERROR);
115 static const st_dst_reg undef_dst = st_dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP, GLSL_TYPE_ERROR);
116
117 struct inout_decl {
118 unsigned mesa_index;
119 unsigned array_id; /* TGSI ArrayID; 1-based: 0 means not an array */
120 unsigned size;
121 unsigned interp_loc;
122 unsigned gs_out_streams;
123 enum glsl_interp_mode interp;
124 enum glsl_base_type base_type;
125 ubyte usage_mask; /* GLSL-style usage-mask, i.e. single bit per double */
126 };
127
128 static struct inout_decl *
129 find_inout_array(struct inout_decl *decls, unsigned count, unsigned array_id)
130 {
131 assert(array_id != 0);
132
133 for (unsigned i = 0; i < count; i++) {
134 struct inout_decl *decl = &decls[i];
135
136 if (array_id == decl->array_id) {
137 return decl;
138 }
139 }
140
141 return NULL;
142 }
143
144 static enum glsl_base_type
145 find_array_type(struct inout_decl *decls, unsigned count, unsigned array_id)
146 {
147 if (!array_id)
148 return GLSL_TYPE_ERROR;
149 struct inout_decl *decl = find_inout_array(decls, count, array_id);
150 if (decl)
151 return decl->base_type;
152 return GLSL_TYPE_ERROR;
153 }
154
155 struct glsl_to_tgsi_visitor : public ir_visitor {
156 public:
157 glsl_to_tgsi_visitor();
158 ~glsl_to_tgsi_visitor();
159
160 struct gl_context *ctx;
161 struct gl_program *prog;
162 struct gl_shader_program *shader_program;
163 struct gl_linked_shader *shader;
164 struct gl_shader_compiler_options *options;
165
166 int next_temp;
167
168 unsigned *array_sizes;
169 unsigned max_num_arrays;
170 unsigned next_array;
171
172 struct inout_decl inputs[4 * PIPE_MAX_SHADER_INPUTS];
173 unsigned num_inputs;
174 unsigned num_input_arrays;
175 struct inout_decl outputs[4 * PIPE_MAX_SHADER_OUTPUTS];
176 unsigned num_outputs;
177 unsigned num_output_arrays;
178
179 int num_address_regs;
180 uint32_t samplers_used;
181 glsl_base_type sampler_types[PIPE_MAX_SAMPLERS];
182 int sampler_targets[PIPE_MAX_SAMPLERS]; /**< One of TGSI_TEXTURE_* */
183 int images_used;
184 int image_targets[PIPE_MAX_SHADER_IMAGES];
185 unsigned image_formats[PIPE_MAX_SHADER_IMAGES];
186 bool indirect_addr_consts;
187 int wpos_transform_const;
188
189 bool native_integers;
190 bool have_sqrt;
191 bool have_fma;
192 bool use_shared_memory;
193 bool has_tex_txf_lz;
194 bool precise;
195 bool need_uarl;
196
197 variable_storage *find_variable_storage(ir_variable *var);
198
199 int add_constant(gl_register_file file, gl_constant_value values[8],
200 int size, int datatype, uint16_t *swizzle_out);
201
202 st_src_reg get_temp(const glsl_type *type);
203 void reladdr_to_temp(ir_instruction *ir, st_src_reg *reg, int *num_reladdr);
204
205 st_src_reg st_src_reg_for_double(double val);
206 st_src_reg st_src_reg_for_float(float val);
207 st_src_reg st_src_reg_for_int(int val);
208 st_src_reg st_src_reg_for_int64(int64_t val);
209 st_src_reg st_src_reg_for_type(enum glsl_base_type type, int val);
210
211 /**
212 * \name Visit methods
213 *
214 * As typical for the visitor pattern, there must be one \c visit method for
215 * each concrete subclass of \c ir_instruction. Virtual base classes within
216 * the hierarchy should not have \c visit methods.
217 */
218 /*@{*/
219 virtual void visit(ir_variable *);
220 virtual void visit(ir_loop *);
221 virtual void visit(ir_loop_jump *);
222 virtual void visit(ir_function_signature *);
223 virtual void visit(ir_function *);
224 virtual void visit(ir_expression *);
225 virtual void visit(ir_swizzle *);
226 virtual void visit(ir_dereference_variable *);
227 virtual void visit(ir_dereference_array *);
228 virtual void visit(ir_dereference_record *);
229 virtual void visit(ir_assignment *);
230 virtual void visit(ir_constant *);
231 virtual void visit(ir_call *);
232 virtual void visit(ir_return *);
233 virtual void visit(ir_discard *);
234 virtual void visit(ir_texture *);
235 virtual void visit(ir_if *);
236 virtual void visit(ir_emit_vertex *);
237 virtual void visit(ir_end_primitive *);
238 virtual void visit(ir_barrier *);
239 /*@}*/
240
241 void visit_expression(ir_expression *, st_src_reg *) ATTRIBUTE_NOINLINE;
242
243 void visit_atomic_counter_intrinsic(ir_call *);
244 void visit_ssbo_intrinsic(ir_call *);
245 void visit_membar_intrinsic(ir_call *);
246 void visit_shared_intrinsic(ir_call *);
247 void visit_image_intrinsic(ir_call *);
248 void visit_generic_intrinsic(ir_call *, unsigned op);
249
250 st_src_reg result;
251
252 /** List of variable_storage */
253 struct hash_table *variables;
254
255 /** List of immediate_storage */
256 exec_list immediates;
257 unsigned num_immediates;
258
259 /** List of glsl_to_tgsi_instruction */
260 exec_list instructions;
261
262 glsl_to_tgsi_instruction *emit_asm(ir_instruction *ir, unsigned op,
263 st_dst_reg dst = undef_dst,
264 st_src_reg src0 = undef_src,
265 st_src_reg src1 = undef_src,
266 st_src_reg src2 = undef_src,
267 st_src_reg src3 = undef_src);
268
269 glsl_to_tgsi_instruction *emit_asm(ir_instruction *ir, unsigned op,
270 st_dst_reg dst, st_dst_reg dst1,
271 st_src_reg src0 = undef_src,
272 st_src_reg src1 = undef_src,
273 st_src_reg src2 = undef_src,
274 st_src_reg src3 = undef_src);
275
276 unsigned get_opcode(unsigned op,
277 st_dst_reg dst,
278 st_src_reg src0, st_src_reg src1);
279
280 /**
281 * Emit the correct dot-product instruction for the type of arguments
282 */
283 glsl_to_tgsi_instruction *emit_dp(ir_instruction *ir,
284 st_dst_reg dst,
285 st_src_reg src0,
286 st_src_reg src1,
287 unsigned elements);
288
289 void emit_scalar(ir_instruction *ir, unsigned op,
290 st_dst_reg dst, st_src_reg src0);
291
292 void emit_scalar(ir_instruction *ir, unsigned op,
293 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
294
295 void emit_arl(ir_instruction *ir, st_dst_reg dst, st_src_reg src0);
296
297 void get_deref_offsets(ir_dereference *ir,
298 unsigned *array_size,
299 unsigned *base,
300 uint16_t *index,
301 st_src_reg *reladdr,
302 bool opaque);
303 void calc_deref_offsets(ir_dereference *tail,
304 unsigned *array_elements,
305 uint16_t *index,
306 st_src_reg *indirect,
307 unsigned *location);
308 st_src_reg canonicalize_gather_offset(st_src_reg offset);
309
310 bool try_emit_mad(ir_expression *ir,
311 int mul_operand);
312 bool try_emit_mad_for_and_not(ir_expression *ir,
313 int mul_operand);
314
315 void emit_swz(ir_expression *ir);
316
317 bool process_move_condition(ir_rvalue *ir);
318
319 void simplify_cmp(void);
320
321 void rename_temp_registers(struct rename_reg_pair *renames);
322 void get_first_temp_read(int *first_reads);
323 void get_first_temp_write(int *first_writes);
324 void get_last_temp_read_first_temp_write(int *last_reads, int *first_writes);
325 void get_last_temp_write(int *last_writes);
326
327 void copy_propagate(void);
328 int eliminate_dead_code(void);
329
330 void merge_two_dsts(void);
331 void merge_registers(void);
332 void renumber_registers(void);
333
334 void emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
335 st_dst_reg *l, st_src_reg *r,
336 st_src_reg *cond, bool cond_swap);
337
338 void *mem_ctx;
339 };
340
341 static st_dst_reg address_reg = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 0);
342 static st_dst_reg address_reg2 = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 1);
343 static st_dst_reg sampler_reladdr = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 2);
344
345 static void
346 fail_link(struct gl_shader_program *prog, const char *fmt, ...) PRINTFLIKE(2, 3);
347
348 static void
349 fail_link(struct gl_shader_program *prog, const char *fmt, ...)
350 {
351 va_list args;
352 va_start(args, fmt);
353 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, args);
354 va_end(args);
355
356 prog->data->LinkStatus = linking_failure;
357 }
358
359 int
360 swizzle_for_size(int size)
361 {
362 static const int size_swizzles[4] = {
363 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
364 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
365 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
366 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
367 };
368
369 assert((size >= 1) && (size <= 4));
370 return size_swizzles[size - 1];
371 }
372
373
374 glsl_to_tgsi_instruction *
375 glsl_to_tgsi_visitor::emit_asm(ir_instruction *ir, unsigned op,
376 st_dst_reg dst, st_dst_reg dst1,
377 st_src_reg src0, st_src_reg src1,
378 st_src_reg src2, st_src_reg src3)
379 {
380 glsl_to_tgsi_instruction *inst = new(mem_ctx) glsl_to_tgsi_instruction();
381 int num_reladdr = 0, i, j;
382 bool dst_is_64bit[2];
383
384 op = get_opcode(op, dst, src0, src1);
385
386 /* If we have to do relative addressing, we want to load the ARL
387 * reg directly for one of the regs, and preload the other reladdr
388 * sources into temps.
389 */
390 num_reladdr += dst.reladdr != NULL || dst.reladdr2;
391 assert(!dst1.reladdr); /* should be lowered in earlier passes */
392 num_reladdr += src0.reladdr != NULL || src0.reladdr2 != NULL;
393 num_reladdr += src1.reladdr != NULL || src1.reladdr2 != NULL;
394 num_reladdr += src2.reladdr != NULL || src2.reladdr2 != NULL;
395 num_reladdr += src3.reladdr != NULL || src3.reladdr2 != NULL;
396
397 reladdr_to_temp(ir, &src3, &num_reladdr);
398 reladdr_to_temp(ir, &src2, &num_reladdr);
399 reladdr_to_temp(ir, &src1, &num_reladdr);
400 reladdr_to_temp(ir, &src0, &num_reladdr);
401
402 if (dst.reladdr || dst.reladdr2) {
403 if (dst.reladdr)
404 emit_arl(ir, address_reg, *dst.reladdr);
405 if (dst.reladdr2)
406 emit_arl(ir, address_reg2, *dst.reladdr2);
407 num_reladdr--;
408 }
409
410 assert(num_reladdr == 0);
411
412 /* inst->op has only 8 bits. */
413 STATIC_ASSERT(TGSI_OPCODE_LAST <= 255);
414
415 inst->op = op;
416 inst->precise = this->precise;
417 inst->info = tgsi_get_opcode_info(op);
418 inst->dst[0] = dst;
419 inst->dst[1] = dst1;
420 inst->src[0] = src0;
421 inst->src[1] = src1;
422 inst->src[2] = src2;
423 inst->src[3] = src3;
424 inst->is_64bit_expanded = false;
425 inst->ir = ir;
426 inst->dead_mask = 0;
427 inst->tex_offsets = NULL;
428 inst->tex_offset_num_offset = 0;
429 inst->saturate = 0;
430 inst->tex_shadow = 0;
431 /* default to float, for paths where this is not initialized
432 * (since 0==UINT which is likely wrong):
433 */
434 inst->tex_type = GLSL_TYPE_FLOAT;
435
436 /* Update indirect addressing status used by TGSI */
437 if (dst.reladdr || dst.reladdr2) {
438 switch(dst.file) {
439 case PROGRAM_STATE_VAR:
440 case PROGRAM_CONSTANT:
441 case PROGRAM_UNIFORM:
442 this->indirect_addr_consts = true;
443 break;
444 case PROGRAM_IMMEDIATE:
445 assert(!"immediates should not have indirect addressing");
446 break;
447 default:
448 break;
449 }
450 }
451 else {
452 for (i = 0; i < 4; i++) {
453 if(inst->src[i].reladdr) {
454 switch(inst->src[i].file) {
455 case PROGRAM_STATE_VAR:
456 case PROGRAM_CONSTANT:
457 case PROGRAM_UNIFORM:
458 this->indirect_addr_consts = true;
459 break;
460 case PROGRAM_IMMEDIATE:
461 assert(!"immediates should not have indirect addressing");
462 break;
463 default:
464 break;
465 }
466 }
467 }
468 }
469
470 /*
471 * This section contains the double processing.
472 * GLSL just represents doubles as single channel values,
473 * however most HW and TGSI represent doubles as pairs of register channels.
474 *
475 * so we have to fixup destination writemask/index and src swizzle/indexes.
476 * dest writemasks need to translate from single channel write mask
477 * to a dual-channel writemask, but also need to modify the index,
478 * if we are touching the Z,W fields in the pre-translated writemask.
479 *
480 * src channels have similiar index modifications along with swizzle
481 * changes to we pick the XY, ZW pairs from the correct index.
482 *
483 * GLSL [0].x -> TGSI [0].xy
484 * GLSL [0].y -> TGSI [0].zw
485 * GLSL [0].z -> TGSI [1].xy
486 * GLSL [0].w -> TGSI [1].zw
487 */
488 for (j = 0; j < 2; j++) {
489 dst_is_64bit[j] = glsl_base_type_is_64bit(inst->dst[j].type);
490 if (!dst_is_64bit[j] && inst->dst[j].file == PROGRAM_OUTPUT && inst->dst[j].type == GLSL_TYPE_ARRAY) {
491 enum glsl_base_type type = find_array_type(this->outputs, this->num_outputs, inst->dst[j].array_id);
492 if (glsl_base_type_is_64bit(type))
493 dst_is_64bit[j] = true;
494 }
495 }
496
497 if (dst_is_64bit[0] || dst_is_64bit[1] ||
498 glsl_base_type_is_64bit(inst->src[0].type)) {
499 glsl_to_tgsi_instruction *dinst = NULL;
500 int initial_src_swz[4], initial_src_idx[4];
501 int initial_dst_idx[2], initial_dst_writemask[2];
502 /* select the writemask for dst0 or dst1 */
503 unsigned writemask = inst->dst[1].file == PROGRAM_UNDEFINED ? inst->dst[0].writemask : inst->dst[1].writemask;
504
505 /* copy out the writemask, index and swizzles for all src/dsts. */
506 for (j = 0; j < 2; j++) {
507 initial_dst_writemask[j] = inst->dst[j].writemask;
508 initial_dst_idx[j] = inst->dst[j].index;
509 }
510
511 for (j = 0; j < 4; j++) {
512 initial_src_swz[j] = inst->src[j].swizzle;
513 initial_src_idx[j] = inst->src[j].index;
514 }
515
516 /*
517 * scan all the components in the dst writemask
518 * generate an instruction for each of them if required.
519 */
520 st_src_reg addr;
521 while (writemask) {
522
523 int i = u_bit_scan(&writemask);
524
525 /* before emitting the instruction, see if we have to adjust load / store
526 * address */
527 if (i > 1 && (inst->op == TGSI_OPCODE_LOAD || inst->op == TGSI_OPCODE_STORE) &&
528 addr.file == PROGRAM_UNDEFINED) {
529 /* We have to advance the buffer address by 16 */
530 addr = get_temp(glsl_type::uint_type);
531 emit_asm(ir, TGSI_OPCODE_UADD, st_dst_reg(addr),
532 inst->src[0], st_src_reg_for_int(16));
533 }
534
535 /* first time use previous instruction */
536 if (dinst == NULL) {
537 dinst = inst;
538 } else {
539 /* create a new instructions for subsequent attempts */
540 dinst = new(mem_ctx) glsl_to_tgsi_instruction();
541 *dinst = *inst;
542 dinst->next = NULL;
543 dinst->prev = NULL;
544 }
545 this->instructions.push_tail(dinst);
546 dinst->is_64bit_expanded = true;
547
548 /* modify the destination if we are splitting */
549 for (j = 0; j < 2; j++) {
550 if (dst_is_64bit[j]) {
551 dinst->dst[j].writemask = (i & 1) ? WRITEMASK_ZW : WRITEMASK_XY;
552 dinst->dst[j].index = initial_dst_idx[j];
553 if (i > 1) {
554 if (dinst->op == TGSI_OPCODE_LOAD || dinst->op == TGSI_OPCODE_STORE)
555 dinst->src[0] = addr;
556 if (dinst->op != TGSI_OPCODE_STORE)
557 dinst->dst[j].index++;
558 }
559 } else {
560 /* if we aren't writing to a double, just get the bit of the initial writemask
561 for this channel */
562 dinst->dst[j].writemask = initial_dst_writemask[j] & (1 << i);
563 }
564 }
565
566 /* modify the src registers */
567 for (j = 0; j < 4; j++) {
568 int swz = GET_SWZ(initial_src_swz[j], i);
569
570 if (glsl_base_type_is_64bit(dinst->src[j].type)) {
571 dinst->src[j].index = initial_src_idx[j];
572 if (swz > 1) {
573 dinst->src[j].double_reg2 = true;
574 dinst->src[j].index++;
575 }
576
577 if (swz & 1)
578 dinst->src[j].swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W);
579 else
580 dinst->src[j].swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
581
582 } else {
583 /* some opcodes are special case in what they use as sources
584 - [FUI]2D/[UI]2I64 is a float/[u]int src0, (D)LDEXP is integer src1 */
585 if (op == TGSI_OPCODE_F2D || op == TGSI_OPCODE_U2D || op == TGSI_OPCODE_I2D ||
586 op == TGSI_OPCODE_I2I64 || op == TGSI_OPCODE_U2I64 ||
587 op == TGSI_OPCODE_DLDEXP || op == TGSI_OPCODE_LDEXP ||
588 (op == TGSI_OPCODE_UCMP && dst_is_64bit[0])) {
589 dinst->src[j].swizzle = MAKE_SWIZZLE4(swz, swz, swz, swz);
590 }
591 }
592 }
593 }
594 inst = dinst;
595 } else {
596 this->instructions.push_tail(inst);
597 }
598
599
600 return inst;
601 }
602
603 glsl_to_tgsi_instruction *
604 glsl_to_tgsi_visitor::emit_asm(ir_instruction *ir, unsigned op,
605 st_dst_reg dst,
606 st_src_reg src0, st_src_reg src1,
607 st_src_reg src2, st_src_reg src3)
608 {
609 return emit_asm(ir, op, dst, undef_dst, src0, src1, src2, src3);
610 }
611
612 /**
613 * Determines whether to use an integer, unsigned integer, or float opcode
614 * based on the operands and input opcode, then emits the result.
615 */
616 unsigned
617 glsl_to_tgsi_visitor::get_opcode(unsigned op,
618 st_dst_reg dst,
619 st_src_reg src0, st_src_reg src1)
620 {
621 enum glsl_base_type type = GLSL_TYPE_FLOAT;
622
623 if (op == TGSI_OPCODE_MOV)
624 return op;
625
626 assert(src0.type != GLSL_TYPE_ARRAY);
627 assert(src0.type != GLSL_TYPE_STRUCT);
628 assert(src1.type != GLSL_TYPE_ARRAY);
629 assert(src1.type != GLSL_TYPE_STRUCT);
630
631 if (is_resource_instruction(op))
632 type = src1.type;
633 else if (src0.type == GLSL_TYPE_INT64 || src1.type == GLSL_TYPE_INT64)
634 type = GLSL_TYPE_INT64;
635 else if (src0.type == GLSL_TYPE_UINT64 || src1.type == GLSL_TYPE_UINT64)
636 type = GLSL_TYPE_UINT64;
637 else if (src0.type == GLSL_TYPE_DOUBLE || src1.type == GLSL_TYPE_DOUBLE)
638 type = GLSL_TYPE_DOUBLE;
639 else if (src0.type == GLSL_TYPE_FLOAT || src1.type == GLSL_TYPE_FLOAT)
640 type = GLSL_TYPE_FLOAT;
641 else if (native_integers)
642 type = src0.type == GLSL_TYPE_BOOL ? GLSL_TYPE_INT : src0.type;
643
644 #define case7(c, f, i, u, d, i64, ui64) \
645 case TGSI_OPCODE_##c: \
646 if (type == GLSL_TYPE_UINT64) \
647 op = TGSI_OPCODE_##ui64; \
648 else if (type == GLSL_TYPE_INT64) \
649 op = TGSI_OPCODE_##i64; \
650 else if (type == GLSL_TYPE_DOUBLE) \
651 op = TGSI_OPCODE_##d; \
652 else if (type == GLSL_TYPE_INT) \
653 op = TGSI_OPCODE_##i; \
654 else if (type == GLSL_TYPE_UINT) \
655 op = TGSI_OPCODE_##u; \
656 else \
657 op = TGSI_OPCODE_##f; \
658 break;
659
660 #define casecomp(c, f, i, u, d, i64, ui64) \
661 case TGSI_OPCODE_##c: \
662 if (type == GLSL_TYPE_INT64) \
663 op = TGSI_OPCODE_##i64; \
664 else if (type == GLSL_TYPE_UINT64) \
665 op = TGSI_OPCODE_##ui64; \
666 else if (type == GLSL_TYPE_DOUBLE) \
667 op = TGSI_OPCODE_##d; \
668 else if (type == GLSL_TYPE_INT || type == GLSL_TYPE_SUBROUTINE) \
669 op = TGSI_OPCODE_##i; \
670 else if (type == GLSL_TYPE_UINT) \
671 op = TGSI_OPCODE_##u; \
672 else if (native_integers) \
673 op = TGSI_OPCODE_##f; \
674 else \
675 op = TGSI_OPCODE_##c; \
676 break;
677
678 switch(op) {
679 /* Some instructions are initially selected without considering the type.
680 * This fixes the type:
681 *
682 * INIT FLOAT SINT UINT DOUBLE SINT64 UINT64
683 */
684 case7(ADD, ADD, UADD, UADD, DADD, U64ADD, U64ADD);
685 case7(CEIL, CEIL, LAST, LAST, DCEIL, LAST, LAST);
686 case7(DIV, DIV, IDIV, UDIV, DDIV, I64DIV, U64DIV);
687 case7(FMA, FMA, UMAD, UMAD, DFMA, LAST, LAST);
688 case7(FLR, FLR, LAST, LAST, DFLR, LAST, LAST);
689 case7(FRC, FRC, LAST, LAST, DFRAC, LAST, LAST);
690 case7(MUL, MUL, UMUL, UMUL, DMUL, U64MUL, U64MUL);
691 case7(MAD, MAD, UMAD, UMAD, DMAD, LAST, LAST);
692 case7(MAX, MAX, IMAX, UMAX, DMAX, I64MAX, U64MAX);
693 case7(MIN, MIN, IMIN, UMIN, DMIN, I64MIN, U64MIN);
694 case7(RCP, RCP, LAST, LAST, DRCP, LAST, LAST);
695 case7(ROUND, ROUND,LAST, LAST, DROUND, LAST, LAST);
696 case7(RSQ, RSQ, LAST, LAST, DRSQ, LAST, LAST);
697 case7(SQRT, SQRT, LAST, LAST, DSQRT, LAST, LAST);
698 case7(SSG, SSG, ISSG, ISSG, DSSG, I64SSG, I64SSG);
699 case7(TRUNC, TRUNC,LAST, LAST, DTRUNC, LAST, LAST);
700
701 case7(MOD, LAST, MOD, UMOD, LAST, I64MOD, U64MOD);
702 case7(SHL, LAST, SHL, SHL, LAST, U64SHL, U64SHL);
703 case7(IBFE, LAST, IBFE, UBFE, LAST, LAST, LAST);
704 case7(IMSB, LAST, IMSB, UMSB, LAST, LAST, LAST);
705 case7(IMUL_HI, LAST, IMUL_HI, UMUL_HI, LAST, LAST, LAST);
706 case7(ISHR, LAST, ISHR, USHR, LAST, I64SHR, U64SHR);
707 case7(ATOMIMAX,LAST, ATOMIMAX,ATOMUMAX,LAST, LAST, LAST);
708 case7(ATOMIMIN,LAST, ATOMIMIN,ATOMUMIN,LAST, LAST, LAST);
709
710 casecomp(SEQ, FSEQ, USEQ, USEQ, DSEQ, U64SEQ, U64SEQ);
711 casecomp(SNE, FSNE, USNE, USNE, DSNE, U64SNE, U64SNE);
712 casecomp(SGE, FSGE, ISGE, USGE, DSGE, I64SGE, U64SGE);
713 casecomp(SLT, FSLT, ISLT, USLT, DSLT, I64SLT, U64SLT);
714
715 default: break;
716 }
717
718 assert(op != TGSI_OPCODE_LAST);
719 return op;
720 }
721
722 glsl_to_tgsi_instruction *
723 glsl_to_tgsi_visitor::emit_dp(ir_instruction *ir,
724 st_dst_reg dst, st_src_reg src0, st_src_reg src1,
725 unsigned elements)
726 {
727 static const unsigned dot_opcodes[] = {
728 TGSI_OPCODE_DP2, TGSI_OPCODE_DP3, TGSI_OPCODE_DP4
729 };
730
731 return emit_asm(ir, dot_opcodes[elements - 2], dst, src0, src1);
732 }
733
734 /**
735 * Emits TGSI scalar opcodes to produce unique answers across channels.
736 *
737 * Some TGSI opcodes are scalar-only, like ARB_fp/vp. The src X
738 * channel determines the result across all channels. So to do a vec4
739 * of this operation, we want to emit a scalar per source channel used
740 * to produce dest channels.
741 */
742 void
743 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
744 st_dst_reg dst,
745 st_src_reg orig_src0, st_src_reg orig_src1)
746 {
747 int i, j;
748 int done_mask = ~dst.writemask;
749
750 /* TGSI RCP is a scalar operation splatting results to all channels,
751 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
752 * dst channels.
753 */
754 for (i = 0; i < 4; i++) {
755 GLuint this_mask = (1 << i);
756 st_src_reg src0 = orig_src0;
757 st_src_reg src1 = orig_src1;
758
759 if (done_mask & this_mask)
760 continue;
761
762 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
763 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
764 for (j = i + 1; j < 4; j++) {
765 /* If there is another enabled component in the destination that is
766 * derived from the same inputs, generate its value on this pass as
767 * well.
768 */
769 if (!(done_mask & (1 << j)) &&
770 GET_SWZ(src0.swizzle, j) == src0_swiz &&
771 GET_SWZ(src1.swizzle, j) == src1_swiz) {
772 this_mask |= (1 << j);
773 }
774 }
775 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
776 src0_swiz, src0_swiz);
777 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
778 src1_swiz, src1_swiz);
779
780 dst.writemask = this_mask;
781 emit_asm(ir, op, dst, src0, src1);
782 done_mask |= this_mask;
783 }
784 }
785
786 void
787 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
788 st_dst_reg dst, st_src_reg src0)
789 {
790 st_src_reg undef = undef_src;
791
792 undef.swizzle = SWIZZLE_XXXX;
793
794 emit_scalar(ir, op, dst, src0, undef);
795 }
796
797 void
798 glsl_to_tgsi_visitor::emit_arl(ir_instruction *ir,
799 st_dst_reg dst, st_src_reg src0)
800 {
801 int op = TGSI_OPCODE_ARL;
802
803 if (src0.type == GLSL_TYPE_INT || src0.type == GLSL_TYPE_UINT) {
804 if (!this->need_uarl && src0.is_legal_tgsi_address_operand())
805 return;
806
807 op = TGSI_OPCODE_UARL;
808 }
809
810 assert(dst.file == PROGRAM_ADDRESS);
811 if (dst.index >= this->num_address_regs)
812 this->num_address_regs = dst.index + 1;
813
814 emit_asm(NULL, op, dst, src0);
815 }
816
817 int
818 glsl_to_tgsi_visitor::add_constant(gl_register_file file,
819 gl_constant_value values[8], int size, int datatype,
820 uint16_t *swizzle_out)
821 {
822 if (file == PROGRAM_CONSTANT) {
823 GLuint swizzle = swizzle_out ? *swizzle_out : 0;
824 int result = _mesa_add_typed_unnamed_constant(this->prog->Parameters, values,
825 size, datatype, &swizzle);
826 if (swizzle_out)
827 *swizzle_out = swizzle;
828 return result;
829 }
830
831 assert(file == PROGRAM_IMMEDIATE);
832
833 int index = 0;
834 immediate_storage *entry;
835 int size32 = size * ((datatype == GL_DOUBLE ||
836 datatype == GL_INT64_ARB ||
837 datatype == GL_UNSIGNED_INT64_ARB)? 2 : 1);
838 int i;
839
840 /* Search immediate storage to see if we already have an identical
841 * immediate that we can use instead of adding a duplicate entry.
842 */
843 foreach_in_list(immediate_storage, entry, &this->immediates) {
844 immediate_storage *tmp = entry;
845
846 for (i = 0; i * 4 < size32; i++) {
847 int slot_size = MIN2(size32 - (i * 4), 4);
848 if (tmp->type != datatype || tmp->size32 != slot_size)
849 break;
850 if (memcmp(tmp->values, &values[i * 4],
851 slot_size * sizeof(gl_constant_value)))
852 break;
853
854 /* Everything matches, keep going until the full size is matched */
855 tmp = (immediate_storage *)tmp->next;
856 }
857
858 /* The full value matched */
859 if (i * 4 >= size32)
860 return index;
861
862 index++;
863 }
864
865 for (i = 0; i * 4 < size32; i++) {
866 int slot_size = MIN2(size32 - (i * 4), 4);
867 /* Add this immediate to the list. */
868 entry = new(mem_ctx) immediate_storage(&values[i * 4], slot_size, datatype);
869 this->immediates.push_tail(entry);
870 this->num_immediates++;
871 }
872 return index;
873 }
874
875 st_src_reg
876 glsl_to_tgsi_visitor::st_src_reg_for_float(float val)
877 {
878 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_FLOAT);
879 union gl_constant_value uval;
880
881 uval.f = val;
882 src.index = add_constant(src.file, &uval, 1, GL_FLOAT, &src.swizzle);
883
884 return src;
885 }
886
887 st_src_reg
888 glsl_to_tgsi_visitor::st_src_reg_for_double(double val)
889 {
890 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_DOUBLE);
891 union gl_constant_value uval[2];
892
893 memcpy(uval, &val, sizeof(uval));
894 src.index = add_constant(src.file, uval, 1, GL_DOUBLE, &src.swizzle);
895 src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
896 return src;
897 }
898
899 st_src_reg
900 glsl_to_tgsi_visitor::st_src_reg_for_int(int val)
901 {
902 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT);
903 union gl_constant_value uval;
904
905 assert(native_integers);
906
907 uval.i = val;
908 src.index = add_constant(src.file, &uval, 1, GL_INT, &src.swizzle);
909
910 return src;
911 }
912
913 st_src_reg
914 glsl_to_tgsi_visitor::st_src_reg_for_int64(int64_t val)
915 {
916 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT64);
917 union gl_constant_value uval[2];
918
919 memcpy(uval, &val, sizeof(uval));
920 src.index = add_constant(src.file, uval, 1, GL_DOUBLE, &src.swizzle);
921 src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
922
923 return src;
924 }
925
926 st_src_reg
927 glsl_to_tgsi_visitor::st_src_reg_for_type(enum glsl_base_type type, int val)
928 {
929 if (native_integers)
930 return type == GLSL_TYPE_FLOAT ? st_src_reg_for_float(val) :
931 st_src_reg_for_int(val);
932 else
933 return st_src_reg_for_float(val);
934 }
935
936 static int
937 attrib_type_size(const struct glsl_type *type, bool is_vs_input)
938 {
939 return type->count_attribute_slots(is_vs_input);
940 }
941
942 static int
943 type_size(const struct glsl_type *type)
944 {
945 return type->count_attribute_slots(false);
946 }
947
948 static void
949 add_buffer_to_load_and_stores(glsl_to_tgsi_instruction *inst, st_src_reg *buf,
950 exec_list *instructions, ir_constant *access)
951 {
952 /**
953 * emit_asm() might have actually split the op into pieces, e.g. for
954 * double stores. We have to go back and fix up all the generated ops.
955 */
956 unsigned op = inst->op;
957 do {
958 inst->resource = *buf;
959 if (access)
960 inst->buffer_access = access->value.u[0];
961
962 if (inst == instructions->get_head_raw())
963 break;
964 inst = (glsl_to_tgsi_instruction *)inst->get_prev();
965
966 if (inst->op == TGSI_OPCODE_UADD) {
967 if (inst == instructions->get_head_raw())
968 break;
969 inst = (glsl_to_tgsi_instruction *)inst->get_prev();
970 }
971 } while (inst->op == op && inst->resource.file == PROGRAM_UNDEFINED);
972 }
973
974 /**
975 * If the given GLSL type is an array or matrix or a structure containing
976 * an array/matrix member, return true. Else return false.
977 *
978 * This is used to determine which kind of temp storage (PROGRAM_TEMPORARY
979 * or PROGRAM_ARRAY) should be used for variables of this type. Anytime
980 * we have an array that might be indexed with a variable, we need to use
981 * the later storage type.
982 */
983 static bool
984 type_has_array_or_matrix(const glsl_type *type)
985 {
986 if (type->is_array() || type->is_matrix())
987 return true;
988
989 if (type->is_record()) {
990 for (unsigned i = 0; i < type->length; i++) {
991 if (type_has_array_or_matrix(type->fields.structure[i].type)) {
992 return true;
993 }
994 }
995 }
996
997 return false;
998 }
999
1000
1001 /**
1002 * In the initial pass of codegen, we assign temporary numbers to
1003 * intermediate results. (not SSA -- variable assignments will reuse
1004 * storage).
1005 */
1006 st_src_reg
1007 glsl_to_tgsi_visitor::get_temp(const glsl_type *type)
1008 {
1009 st_src_reg src;
1010
1011 src.type = native_integers ? type->base_type : GLSL_TYPE_FLOAT;
1012 src.reladdr = NULL;
1013 src.negate = 0;
1014 src.abs = 0;
1015
1016 if (!options->EmitNoIndirectTemp && type_has_array_or_matrix(type)) {
1017 if (next_array >= max_num_arrays) {
1018 max_num_arrays += 32;
1019 array_sizes = (unsigned*)
1020 realloc(array_sizes, sizeof(array_sizes[0]) * max_num_arrays);
1021 }
1022
1023 src.file = PROGRAM_ARRAY;
1024 src.index = 0;
1025 src.array_id = next_array + 1;
1026 array_sizes[next_array] = type_size(type);
1027 ++next_array;
1028
1029 } else {
1030 src.file = PROGRAM_TEMPORARY;
1031 src.index = next_temp;
1032 next_temp += type_size(type);
1033 }
1034
1035 if (type->is_array() || type->is_record()) {
1036 src.swizzle = SWIZZLE_NOOP;
1037 } else {
1038 src.swizzle = swizzle_for_size(type->vector_elements);
1039 }
1040
1041 return src;
1042 }
1043
1044 variable_storage *
1045 glsl_to_tgsi_visitor::find_variable_storage(ir_variable *var)
1046 {
1047 struct hash_entry *entry;
1048
1049 entry = _mesa_hash_table_search(this->variables, var);
1050 if (!entry)
1051 return NULL;
1052
1053 return (variable_storage *)entry->data;
1054 }
1055
1056 void
1057 glsl_to_tgsi_visitor::visit(ir_variable *ir)
1058 {
1059 if (strcmp(ir->name, "gl_FragCoord") == 0) {
1060 this->prog->OriginUpperLeft = ir->data.origin_upper_left;
1061 this->prog->PixelCenterInteger = ir->data.pixel_center_integer;
1062 }
1063
1064 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
1065 unsigned int i;
1066 const ir_state_slot *const slots = ir->get_state_slots();
1067 assert(slots != NULL);
1068
1069 /* Check if this statevar's setup in the STATE file exactly
1070 * matches how we'll want to reference it as a
1071 * struct/array/whatever. If not, then we need to move it into
1072 * temporary storage and hope that it'll get copy-propagated
1073 * out.
1074 */
1075 for (i = 0; i < ir->get_num_state_slots(); i++) {
1076 if (slots[i].swizzle != SWIZZLE_XYZW) {
1077 break;
1078 }
1079 }
1080
1081 variable_storage *storage;
1082 st_dst_reg dst;
1083 if (i == ir->get_num_state_slots()) {
1084 /* We'll set the index later. */
1085 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
1086
1087 _mesa_hash_table_insert(this->variables, ir, storage);
1088
1089 dst = undef_dst;
1090 } else {
1091 /* The variable_storage constructor allocates slots based on the size
1092 * of the type. However, this had better match the number of state
1093 * elements that we're going to copy into the new temporary.
1094 */
1095 assert((int) ir->get_num_state_slots() == type_size(ir->type));
1096
1097 dst = st_dst_reg(get_temp(ir->type));
1098
1099 storage = new(mem_ctx) variable_storage(ir, dst.file, dst.index,
1100 dst.array_id);
1101
1102 _mesa_hash_table_insert(this->variables, ir, storage);
1103 }
1104
1105
1106 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
1107 int index = _mesa_add_state_reference(this->prog->Parameters,
1108 (gl_state_index *)slots[i].tokens);
1109
1110 if (storage->file == PROGRAM_STATE_VAR) {
1111 if (storage->index == -1) {
1112 storage->index = index;
1113 } else {
1114 assert(index == storage->index + (int)i);
1115 }
1116 } else {
1117 /* We use GLSL_TYPE_FLOAT here regardless of the actual type of
1118 * the data being moved since MOV does not care about the type of
1119 * data it is moving, and we don't want to declare registers with
1120 * array or struct types.
1121 */
1122 st_src_reg src(PROGRAM_STATE_VAR, index, GLSL_TYPE_FLOAT);
1123 src.swizzle = slots[i].swizzle;
1124 emit_asm(ir, TGSI_OPCODE_MOV, dst, src);
1125 /* even a float takes up a whole vec4 reg in a struct/array. */
1126 dst.index++;
1127 }
1128 }
1129
1130 if (storage->file == PROGRAM_TEMPORARY &&
1131 dst.index != storage->index + (int) ir->get_num_state_slots()) {
1132 fail_link(this->shader_program,
1133 "failed to load builtin uniform `%s' (%d/%d regs loaded)\n",
1134 ir->name, dst.index - storage->index,
1135 type_size(ir->type));
1136 }
1137 }
1138 }
1139
1140 void
1141 glsl_to_tgsi_visitor::visit(ir_loop *ir)
1142 {
1143 emit_asm(NULL, TGSI_OPCODE_BGNLOOP);
1144
1145 visit_exec_list(&ir->body_instructions, this);
1146
1147 emit_asm(NULL, TGSI_OPCODE_ENDLOOP);
1148 }
1149
1150 void
1151 glsl_to_tgsi_visitor::visit(ir_loop_jump *ir)
1152 {
1153 switch (ir->mode) {
1154 case ir_loop_jump::jump_break:
1155 emit_asm(NULL, TGSI_OPCODE_BRK);
1156 break;
1157 case ir_loop_jump::jump_continue:
1158 emit_asm(NULL, TGSI_OPCODE_CONT);
1159 break;
1160 }
1161 }
1162
1163
1164 void
1165 glsl_to_tgsi_visitor::visit(ir_function_signature *ir)
1166 {
1167 assert(0);
1168 (void)ir;
1169 }
1170
1171 void
1172 glsl_to_tgsi_visitor::visit(ir_function *ir)
1173 {
1174 /* Ignore function bodies other than main() -- we shouldn't see calls to
1175 * them since they should all be inlined before we get to glsl_to_tgsi.
1176 */
1177 if (strcmp(ir->name, "main") == 0) {
1178 const ir_function_signature *sig;
1179 exec_list empty;
1180
1181 sig = ir->matching_signature(NULL, &empty, false);
1182
1183 assert(sig);
1184
1185 foreach_in_list(ir_instruction, ir, &sig->body) {
1186 ir->accept(this);
1187 }
1188 }
1189 }
1190
1191 bool
1192 glsl_to_tgsi_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
1193 {
1194 int nonmul_operand = 1 - mul_operand;
1195 st_src_reg a, b, c;
1196 st_dst_reg result_dst;
1197
1198 ir_expression *expr = ir->operands[mul_operand]->as_expression();
1199 if (!expr || expr->operation != ir_binop_mul)
1200 return false;
1201
1202 expr->operands[0]->accept(this);
1203 a = this->result;
1204 expr->operands[1]->accept(this);
1205 b = this->result;
1206 ir->operands[nonmul_operand]->accept(this);
1207 c = this->result;
1208
1209 this->result = get_temp(ir->type);
1210 result_dst = st_dst_reg(this->result);
1211 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1212 emit_asm(ir, TGSI_OPCODE_MAD, result_dst, a, b, c);
1213
1214 return true;
1215 }
1216
1217 /**
1218 * Emit MAD(a, -b, a) instead of AND(a, NOT(b))
1219 *
1220 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
1221 * implemented using multiplication, and logical-or is implemented using
1222 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
1223 * As result, the logical expression (a & !b) can be rewritten as:
1224 *
1225 * - a * !b
1226 * - a * (1 - b)
1227 * - (a * 1) - (a * b)
1228 * - a + -(a * b)
1229 * - a + (a * -b)
1230 *
1231 * This final expression can be implemented as a single MAD(a, -b, a)
1232 * instruction.
1233 */
1234 bool
1235 glsl_to_tgsi_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
1236 {
1237 const int other_operand = 1 - try_operand;
1238 st_src_reg a, b;
1239
1240 ir_expression *expr = ir->operands[try_operand]->as_expression();
1241 if (!expr || expr->operation != ir_unop_logic_not)
1242 return false;
1243
1244 ir->operands[other_operand]->accept(this);
1245 a = this->result;
1246 expr->operands[0]->accept(this);
1247 b = this->result;
1248
1249 b.negate = ~b.negate;
1250
1251 this->result = get_temp(ir->type);
1252 emit_asm(ir, TGSI_OPCODE_MAD, st_dst_reg(this->result), a, b, a);
1253
1254 return true;
1255 }
1256
1257 void
1258 glsl_to_tgsi_visitor::reladdr_to_temp(ir_instruction *ir,
1259 st_src_reg *reg, int *num_reladdr)
1260 {
1261 if (!reg->reladdr && !reg->reladdr2)
1262 return;
1263
1264 if (reg->reladdr) emit_arl(ir, address_reg, *reg->reladdr);
1265 if (reg->reladdr2) emit_arl(ir, address_reg2, *reg->reladdr2);
1266
1267 if (*num_reladdr != 1) {
1268 st_src_reg temp = get_temp(glsl_type::get_instance(reg->type, 4, 1));
1269
1270 emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), *reg);
1271 *reg = temp;
1272 }
1273
1274 (*num_reladdr)--;
1275 }
1276
1277 void
1278 glsl_to_tgsi_visitor::visit(ir_expression *ir)
1279 {
1280 st_src_reg op[ARRAY_SIZE(ir->operands)];
1281
1282 /* Quick peephole: Emit MAD(a, b, c) instead of ADD(MUL(a, b), c)
1283 */
1284 if (!this->precise && ir->operation == ir_binop_add) {
1285 if (try_emit_mad(ir, 1))
1286 return;
1287 if (try_emit_mad(ir, 0))
1288 return;
1289 }
1290
1291 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1292 */
1293 if (!native_integers && ir->operation == ir_binop_logic_and) {
1294 if (try_emit_mad_for_and_not(ir, 1))
1295 return;
1296 if (try_emit_mad_for_and_not(ir, 0))
1297 return;
1298 }
1299
1300 if (ir->operation == ir_quadop_vector)
1301 assert(!"ir_quadop_vector should have been lowered");
1302
1303 for (unsigned int operand = 0; operand < ir->num_operands; operand++) {
1304 this->result.file = PROGRAM_UNDEFINED;
1305 ir->operands[operand]->accept(this);
1306 if (this->result.file == PROGRAM_UNDEFINED) {
1307 printf("Failed to get tree for expression operand:\n");
1308 ir->operands[operand]->print();
1309 printf("\n");
1310 exit(1);
1311 }
1312 op[operand] = this->result;
1313
1314 /* Matrix expression operands should have been broken down to vector
1315 * operations already.
1316 */
1317 assert(!ir->operands[operand]->type->is_matrix());
1318 }
1319
1320 visit_expression(ir, op);
1321 }
1322
1323 /* The non-recursive part of the expression visitor lives in a separate
1324 * function and should be prevented from being inlined, to avoid a stack
1325 * explosion when deeply nested expressions are visited.
1326 */
1327 void
1328 glsl_to_tgsi_visitor::visit_expression(ir_expression* ir, st_src_reg *op)
1329 {
1330 st_src_reg result_src;
1331 st_dst_reg result_dst;
1332
1333 int vector_elements = ir->operands[0]->type->vector_elements;
1334 if (ir->operands[1]) {
1335 vector_elements = MAX2(vector_elements,
1336 ir->operands[1]->type->vector_elements);
1337 }
1338
1339 this->result.file = PROGRAM_UNDEFINED;
1340
1341 /* Storage for our result. Ideally for an assignment we'd be using
1342 * the actual storage for the result here, instead.
1343 */
1344 result_src = get_temp(ir->type);
1345 /* convenience for the emit functions below. */
1346 result_dst = st_dst_reg(result_src);
1347 /* Limit writes to the channels that will be used by result_src later.
1348 * This does limit this temp's use as a temporary for multi-instruction
1349 * sequences.
1350 */
1351 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1352
1353 switch (ir->operation) {
1354 case ir_unop_logic_not:
1355 if (result_dst.type != GLSL_TYPE_FLOAT)
1356 emit_asm(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1357 else {
1358 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1359 * older GPUs implement SEQ using multiple instructions (i915 uses two
1360 * SGE instructions and a MUL instruction). Since our logic values are
1361 * 0.0 and 1.0, 1-x also implements !x.
1362 */
1363 op[0].negate = ~op[0].negate;
1364 emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], st_src_reg_for_float(1.0));
1365 }
1366 break;
1367 case ir_unop_neg:
1368 if (result_dst.type == GLSL_TYPE_INT64 || result_dst.type == GLSL_TYPE_UINT64)
1369 emit_asm(ir, TGSI_OPCODE_I64NEG, result_dst, op[0]);
1370 else if (result_dst.type == GLSL_TYPE_INT || result_dst.type == GLSL_TYPE_UINT)
1371 emit_asm(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1372 else if (result_dst.type == GLSL_TYPE_DOUBLE)
1373 emit_asm(ir, TGSI_OPCODE_DNEG, result_dst, op[0]);
1374 else {
1375 op[0].negate = ~op[0].negate;
1376 result_src = op[0];
1377 }
1378 break;
1379 case ir_unop_subroutine_to_int:
1380 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
1381 break;
1382 case ir_unop_abs:
1383 if (result_dst.type == GLSL_TYPE_FLOAT)
1384 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0].get_abs());
1385 else if (result_dst.type == GLSL_TYPE_DOUBLE)
1386 emit_asm(ir, TGSI_OPCODE_DABS, result_dst, op[0]);
1387 else if (result_dst.type == GLSL_TYPE_INT64 || result_dst.type == GLSL_TYPE_UINT64)
1388 emit_asm(ir, TGSI_OPCODE_I64ABS, result_dst, op[0]);
1389 else
1390 emit_asm(ir, TGSI_OPCODE_IABS, result_dst, op[0]);
1391 break;
1392 case ir_unop_sign:
1393 emit_asm(ir, TGSI_OPCODE_SSG, result_dst, op[0]);
1394 break;
1395 case ir_unop_rcp:
1396 emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, op[0]);
1397 break;
1398
1399 case ir_unop_exp2:
1400 emit_scalar(ir, TGSI_OPCODE_EX2, result_dst, op[0]);
1401 break;
1402 case ir_unop_exp:
1403 assert(!"not reached: should be handled by exp_to_exp2");
1404 break;
1405 case ir_unop_log:
1406 assert(!"not reached: should be handled by log_to_log2");
1407 break;
1408 case ir_unop_log2:
1409 emit_scalar(ir, TGSI_OPCODE_LG2, result_dst, op[0]);
1410 break;
1411 case ir_unop_sin:
1412 emit_scalar(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1413 break;
1414 case ir_unop_cos:
1415 emit_scalar(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1416 break;
1417 case ir_unop_saturate: {
1418 glsl_to_tgsi_instruction *inst;
1419 inst = emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
1420 inst->saturate = true;
1421 break;
1422 }
1423
1424 case ir_unop_dFdx:
1425 case ir_unop_dFdx_coarse:
1426 emit_asm(ir, TGSI_OPCODE_DDX, result_dst, op[0]);
1427 break;
1428 case ir_unop_dFdx_fine:
1429 emit_asm(ir, TGSI_OPCODE_DDX_FINE, result_dst, op[0]);
1430 break;
1431 case ir_unop_dFdy:
1432 case ir_unop_dFdy_coarse:
1433 case ir_unop_dFdy_fine:
1434 {
1435 /* The X component contains 1 or -1 depending on whether the framebuffer
1436 * is a FBO or the window system buffer, respectively.
1437 * It is then multiplied with the source operand of DDY.
1438 */
1439 static const gl_state_index transform_y_state[STATE_LENGTH]
1440 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM };
1441
1442 unsigned transform_y_index =
1443 _mesa_add_state_reference(this->prog->Parameters,
1444 transform_y_state);
1445
1446 st_src_reg transform_y = st_src_reg(PROGRAM_STATE_VAR,
1447 transform_y_index,
1448 glsl_type::vec4_type);
1449 transform_y.swizzle = SWIZZLE_XXXX;
1450
1451 st_src_reg temp = get_temp(glsl_type::vec4_type);
1452
1453 emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(temp), transform_y, op[0]);
1454 emit_asm(ir, ir->operation == ir_unop_dFdy_fine ?
1455 TGSI_OPCODE_DDY_FINE : TGSI_OPCODE_DDY, result_dst, temp);
1456 break;
1457 }
1458
1459 case ir_unop_frexp_sig:
1460 emit_asm(ir, TGSI_OPCODE_DFRACEXP, result_dst, undef_dst, op[0]);
1461 break;
1462
1463 case ir_unop_frexp_exp:
1464 emit_asm(ir, TGSI_OPCODE_DFRACEXP, undef_dst, result_dst, op[0]);
1465 break;
1466
1467 case ir_unop_noise: {
1468 /* At some point, a motivated person could add a better
1469 * implementation of noise. Currently not even the nvidia
1470 * binary drivers do anything more than this. In any case, the
1471 * place to do this is in the GL state tracker, not the poor
1472 * driver.
1473 */
1474 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, st_src_reg_for_float(0.5));
1475 break;
1476 }
1477
1478 case ir_binop_add:
1479 emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1480 break;
1481 case ir_binop_sub:
1482 op[1].negate = ~op[1].negate;
1483 emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1484 break;
1485
1486 case ir_binop_mul:
1487 emit_asm(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1488 break;
1489 case ir_binop_div:
1490 emit_asm(ir, TGSI_OPCODE_DIV, result_dst, op[0], op[1]);
1491 break;
1492 case ir_binop_mod:
1493 if (result_dst.type == GLSL_TYPE_FLOAT)
1494 assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1495 else
1496 emit_asm(ir, TGSI_OPCODE_MOD, result_dst, op[0], op[1]);
1497 break;
1498
1499 case ir_binop_less:
1500 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, op[0], op[1]);
1501 break;
1502 case ir_binop_greater:
1503 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, op[1], op[0]);
1504 break;
1505 case ir_binop_lequal:
1506 emit_asm(ir, TGSI_OPCODE_SGE, result_dst, op[1], op[0]);
1507 break;
1508 case ir_binop_gequal:
1509 emit_asm(ir, TGSI_OPCODE_SGE, result_dst, op[0], op[1]);
1510 break;
1511 case ir_binop_equal:
1512 emit_asm(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1513 break;
1514 case ir_binop_nequal:
1515 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1516 break;
1517 case ir_binop_all_equal:
1518 /* "==" operator producing a scalar boolean. */
1519 if (ir->operands[0]->type->is_vector() ||
1520 ir->operands[1]->type->is_vector()) {
1521 st_src_reg temp = get_temp(native_integers ?
1522 glsl_type::uvec4_type :
1523 glsl_type::vec4_type);
1524
1525 if (native_integers) {
1526 st_dst_reg temp_dst = st_dst_reg(temp);
1527 st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1528
1529 if (ir->operands[0]->type->is_boolean() &&
1530 ir->operands[1]->as_constant() &&
1531 ir->operands[1]->as_constant()->is_one()) {
1532 emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), op[0]);
1533 } else {
1534 emit_asm(ir, TGSI_OPCODE_SEQ, st_dst_reg(temp), op[0], op[1]);
1535 }
1536
1537 /* Emit 1-3 AND operations to combine the SEQ results. */
1538 switch (ir->operands[0]->type->vector_elements) {
1539 case 2:
1540 break;
1541 case 3:
1542 temp_dst.writemask = WRITEMASK_Y;
1543 temp1.swizzle = SWIZZLE_YYYY;
1544 temp2.swizzle = SWIZZLE_ZZZZ;
1545 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1546 break;
1547 case 4:
1548 temp_dst.writemask = WRITEMASK_X;
1549 temp1.swizzle = SWIZZLE_XXXX;
1550 temp2.swizzle = SWIZZLE_YYYY;
1551 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1552 temp_dst.writemask = WRITEMASK_Y;
1553 temp1.swizzle = SWIZZLE_ZZZZ;
1554 temp2.swizzle = SWIZZLE_WWWW;
1555 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1556 }
1557
1558 temp1.swizzle = SWIZZLE_XXXX;
1559 temp2.swizzle = SWIZZLE_YYYY;
1560 emit_asm(ir, TGSI_OPCODE_AND, result_dst, temp1, temp2);
1561 } else {
1562 emit_asm(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1563
1564 /* After the dot-product, the value will be an integer on the
1565 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1566 */
1567 emit_dp(ir, result_dst, temp, temp, vector_elements);
1568
1569 /* Negating the result of the dot-product gives values on the range
1570 * [-4, 0]. Zero becomes 1.0, and negative values become zero.
1571 * This is achieved using SGE.
1572 */
1573 st_src_reg sge_src = result_src;
1574 sge_src.negate = ~sge_src.negate;
1575 emit_asm(ir, TGSI_OPCODE_SGE, result_dst, sge_src, st_src_reg_for_float(0.0));
1576 }
1577 } else {
1578 emit_asm(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1579 }
1580 break;
1581 case ir_binop_any_nequal:
1582 /* "!=" operator producing a scalar boolean. */
1583 if (ir->operands[0]->type->is_vector() ||
1584 ir->operands[1]->type->is_vector()) {
1585 st_src_reg temp = get_temp(native_integers ?
1586 glsl_type::uvec4_type :
1587 glsl_type::vec4_type);
1588 if (ir->operands[0]->type->is_boolean() &&
1589 ir->operands[1]->as_constant() &&
1590 ir->operands[1]->as_constant()->is_zero()) {
1591 emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), op[0]);
1592 } else {
1593 emit_asm(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1594 }
1595
1596 if (native_integers) {
1597 st_dst_reg temp_dst = st_dst_reg(temp);
1598 st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1599
1600 /* Emit 1-3 OR operations to combine the SNE results. */
1601 switch (ir->operands[0]->type->vector_elements) {
1602 case 2:
1603 break;
1604 case 3:
1605 temp_dst.writemask = WRITEMASK_Y;
1606 temp1.swizzle = SWIZZLE_YYYY;
1607 temp2.swizzle = SWIZZLE_ZZZZ;
1608 emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1609 break;
1610 case 4:
1611 temp_dst.writemask = WRITEMASK_X;
1612 temp1.swizzle = SWIZZLE_XXXX;
1613 temp2.swizzle = SWIZZLE_YYYY;
1614 emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1615 temp_dst.writemask = WRITEMASK_Y;
1616 temp1.swizzle = SWIZZLE_ZZZZ;
1617 temp2.swizzle = SWIZZLE_WWWW;
1618 emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1619 }
1620
1621 temp1.swizzle = SWIZZLE_XXXX;
1622 temp2.swizzle = SWIZZLE_YYYY;
1623 emit_asm(ir, TGSI_OPCODE_OR, result_dst, temp1, temp2);
1624 } else {
1625 /* After the dot-product, the value will be an integer on the
1626 * range [0,4]. Zero stays zero, and positive values become 1.0.
1627 */
1628 glsl_to_tgsi_instruction *const dp =
1629 emit_dp(ir, result_dst, temp, temp, vector_elements);
1630 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1631 /* The clamping to [0,1] can be done for free in the fragment
1632 * shader with a saturate.
1633 */
1634 dp->saturate = true;
1635 } else {
1636 /* Negating the result of the dot-product gives values on the range
1637 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1638 * achieved using SLT.
1639 */
1640 st_src_reg slt_src = result_src;
1641 slt_src.negate = ~slt_src.negate;
1642 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1643 }
1644 }
1645 } else {
1646 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1647 }
1648 break;
1649
1650 case ir_binop_logic_xor:
1651 if (native_integers)
1652 emit_asm(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1653 else
1654 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1655 break;
1656
1657 case ir_binop_logic_or: {
1658 if (native_integers) {
1659 /* If integers are used as booleans, we can use an actual "or"
1660 * instruction.
1661 */
1662 assert(native_integers);
1663 emit_asm(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1664 } else {
1665 /* After the addition, the value will be an integer on the
1666 * range [0,2]. Zero stays zero, and positive values become 1.0.
1667 */
1668 glsl_to_tgsi_instruction *add =
1669 emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1670 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1671 /* The clamping to [0,1] can be done for free in the fragment
1672 * shader with a saturate if floats are being used as boolean values.
1673 */
1674 add->saturate = true;
1675 } else {
1676 /* Negating the result of the addition gives values on the range
1677 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1678 * is achieved using SLT.
1679 */
1680 st_src_reg slt_src = result_src;
1681 slt_src.negate = ~slt_src.negate;
1682 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1683 }
1684 }
1685 break;
1686 }
1687
1688 case ir_binop_logic_and:
1689 /* If native integers are disabled, the bool args are stored as float 0.0
1690 * or 1.0, so "mul" gives us "and". If they're enabled, just use the
1691 * actual AND opcode.
1692 */
1693 if (native_integers)
1694 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1695 else
1696 emit_asm(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1697 break;
1698
1699 case ir_binop_dot:
1700 assert(ir->operands[0]->type->is_vector());
1701 assert(ir->operands[0]->type == ir->operands[1]->type);
1702 emit_dp(ir, result_dst, op[0], op[1],
1703 ir->operands[0]->type->vector_elements);
1704 break;
1705
1706 case ir_unop_sqrt:
1707 if (have_sqrt) {
1708 emit_scalar(ir, TGSI_OPCODE_SQRT, result_dst, op[0]);
1709 } else {
1710 /* This is the only instruction sequence that makes the game "Risen"
1711 * render correctly. ABS is not required for the game, but since GLSL
1712 * declares negative values as "undefined", allowing us to do whatever
1713 * we want, I choose to use ABS to match DX9 and pre-GLSL RSQ
1714 * behavior.
1715 */
1716 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0].get_abs());
1717 emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, result_src);
1718 }
1719 break;
1720 case ir_unop_rsq:
1721 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1722 break;
1723 case ir_unop_i2f:
1724 if (native_integers) {
1725 emit_asm(ir, TGSI_OPCODE_I2F, result_dst, op[0]);
1726 break;
1727 }
1728 /* fallthrough to next case otherwise */
1729 case ir_unop_b2f:
1730 if (native_integers) {
1731 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_float(1.0));
1732 break;
1733 }
1734 /* fallthrough to next case otherwise */
1735 case ir_unop_i2u:
1736 case ir_unop_u2i:
1737 case ir_unop_i642u64:
1738 case ir_unop_u642i64:
1739 /* Converting between signed and unsigned integers is a no-op. */
1740 result_src = op[0];
1741 result_src.type = result_dst.type;
1742 break;
1743 case ir_unop_b2i:
1744 if (native_integers) {
1745 /* Booleans are stored as integers using ~0 for true and 0 for false.
1746 * GLSL requires that int(bool) return 1 for true and 0 for false.
1747 * This conversion is done with AND, but it could be done with NEG.
1748 */
1749 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_int(1));
1750 } else {
1751 /* Booleans and integers are both stored as floats when native
1752 * integers are disabled.
1753 */
1754 result_src = op[0];
1755 }
1756 break;
1757 case ir_unop_f2i:
1758 if (native_integers)
1759 emit_asm(ir, TGSI_OPCODE_F2I, result_dst, op[0]);
1760 else
1761 emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1762 break;
1763 case ir_unop_f2u:
1764 if (native_integers)
1765 emit_asm(ir, TGSI_OPCODE_F2U, result_dst, op[0]);
1766 else
1767 emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1768 break;
1769 case ir_unop_bitcast_f2i:
1770 case ir_unop_bitcast_f2u:
1771 /* Make sure we don't propagate the negate modifier to integer opcodes. */
1772 if (op[0].negate || op[0].abs)
1773 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
1774 else
1775 result_src = op[0];
1776 result_src.type = ir->operation == ir_unop_bitcast_f2i ? GLSL_TYPE_INT :
1777 GLSL_TYPE_UINT;
1778 break;
1779 case ir_unop_bitcast_i2f:
1780 case ir_unop_bitcast_u2f:
1781 result_src = op[0];
1782 result_src.type = GLSL_TYPE_FLOAT;
1783 break;
1784 case ir_unop_f2b:
1785 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1786 break;
1787 case ir_unop_d2b:
1788 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_double(0.0));
1789 break;
1790 case ir_unop_i2b:
1791 if (native_integers)
1792 emit_asm(ir, TGSI_OPCODE_USNE, result_dst, op[0], st_src_reg_for_int(0));
1793 else
1794 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1795 break;
1796 case ir_unop_bitcast_u642d:
1797 case ir_unop_bitcast_i642d:
1798 result_src = op[0];
1799 result_src.type = GLSL_TYPE_DOUBLE;
1800 break;
1801 case ir_unop_bitcast_d2i64:
1802 result_src = op[0];
1803 result_src.type = GLSL_TYPE_INT64;
1804 break;
1805 case ir_unop_bitcast_d2u64:
1806 result_src = op[0];
1807 result_src.type = GLSL_TYPE_UINT64;
1808 break;
1809 case ir_unop_trunc:
1810 emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1811 break;
1812 case ir_unop_ceil:
1813 emit_asm(ir, TGSI_OPCODE_CEIL, result_dst, op[0]);
1814 break;
1815 case ir_unop_floor:
1816 emit_asm(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1817 break;
1818 case ir_unop_round_even:
1819 emit_asm(ir, TGSI_OPCODE_ROUND, result_dst, op[0]);
1820 break;
1821 case ir_unop_fract:
1822 emit_asm(ir, TGSI_OPCODE_FRC, result_dst, op[0]);
1823 break;
1824
1825 case ir_binop_min:
1826 emit_asm(ir, TGSI_OPCODE_MIN, result_dst, op[0], op[1]);
1827 break;
1828 case ir_binop_max:
1829 emit_asm(ir, TGSI_OPCODE_MAX, result_dst, op[0], op[1]);
1830 break;
1831 case ir_binop_pow:
1832 emit_scalar(ir, TGSI_OPCODE_POW, result_dst, op[0], op[1]);
1833 break;
1834
1835 case ir_unop_bit_not:
1836 if (native_integers) {
1837 emit_asm(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1838 break;
1839 }
1840 case ir_unop_u2f:
1841 if (native_integers) {
1842 emit_asm(ir, TGSI_OPCODE_U2F, result_dst, op[0]);
1843 break;
1844 }
1845 case ir_binop_lshift:
1846 case ir_binop_rshift:
1847 if (native_integers) {
1848 unsigned opcode = ir->operation == ir_binop_lshift ? TGSI_OPCODE_SHL
1849 : TGSI_OPCODE_ISHR;
1850 st_src_reg count;
1851
1852 if (glsl_base_type_is_64bit(op[0].type)) {
1853 /* GLSL shift operations have 32-bit shift counts, but TGSI uses
1854 * 64 bits.
1855 */
1856 count = get_temp(glsl_type::u64vec(ir->operands[1]->type->components()));
1857 emit_asm(ir, TGSI_OPCODE_U2I64, st_dst_reg(count), op[1]);
1858 } else {
1859 count = op[1];
1860 }
1861
1862 emit_asm(ir, opcode, result_dst, op[0], count);
1863 break;
1864 }
1865 case ir_binop_bit_and:
1866 if (native_integers) {
1867 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1868 break;
1869 }
1870 case ir_binop_bit_xor:
1871 if (native_integers) {
1872 emit_asm(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1873 break;
1874 }
1875 case ir_binop_bit_or:
1876 if (native_integers) {
1877 emit_asm(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1878 break;
1879 }
1880
1881 assert(!"GLSL 1.30 features unsupported");
1882 break;
1883
1884 case ir_binop_ubo_load: {
1885 if (ctx->Const.UseSTD430AsDefaultPacking) {
1886 ir_rvalue *block = ir->operands[0];
1887 ir_rvalue *offset = ir->operands[1];
1888 ir_constant *const_block = block->as_constant();
1889
1890 st_src_reg cbuf(PROGRAM_CONSTANT,
1891 (const_block ? const_block->value.u[0] + 1 : 1),
1892 ir->type->base_type);
1893
1894 cbuf.has_index2 = true;
1895
1896 if (!const_block) {
1897 block->accept(this);
1898 cbuf.reladdr = ralloc(mem_ctx, st_src_reg);
1899 *cbuf.reladdr = this->result;
1900 emit_arl(ir, sampler_reladdr, this->result);
1901 }
1902
1903 /* Calculate the surface offset */
1904 offset->accept(this);
1905 st_src_reg off = this->result;
1906
1907 glsl_to_tgsi_instruction *inst =
1908 emit_asm(ir, TGSI_OPCODE_LOAD, result_dst, off);
1909
1910 if (result_dst.type == GLSL_TYPE_BOOL)
1911 emit_asm(ir, TGSI_OPCODE_USNE, result_dst, st_src_reg(result_dst),
1912 st_src_reg_for_int(0));
1913
1914 add_buffer_to_load_and_stores(inst, &cbuf, &this->instructions,
1915 NULL);
1916 } else {
1917 ir_constant *const_uniform_block = ir->operands[0]->as_constant();
1918 ir_constant *const_offset_ir = ir->operands[1]->as_constant();
1919 unsigned const_offset = const_offset_ir ?
1920 const_offset_ir->value.u[0] : 0;
1921 unsigned const_block = const_uniform_block ?
1922 const_uniform_block->value.u[0] + 1 : 1;
1923 st_src_reg index_reg = get_temp(glsl_type::uint_type);
1924 st_src_reg cbuf;
1925
1926 cbuf.type = ir->type->base_type;
1927 cbuf.file = PROGRAM_CONSTANT;
1928 cbuf.index = 0;
1929 cbuf.reladdr = NULL;
1930 cbuf.negate = 0;
1931 cbuf.abs = 0;
1932 cbuf.index2D = const_block;
1933
1934 assert(ir->type->is_vector() || ir->type->is_scalar());
1935
1936 if (const_offset_ir) {
1937 /* Constant index into constant buffer */
1938 cbuf.reladdr = NULL;
1939 cbuf.index = const_offset / 16;
1940 } else {
1941 ir_expression *offset_expr = ir->operands[1]->as_expression();
1942 st_src_reg offset = op[1];
1943
1944 /* The OpenGL spec is written in such a way that accesses with
1945 * non-constant offset are almost always vec4-aligned. The only
1946 * exception to this are members of structs in arrays of structs:
1947 * each struct in an array of structs is at least vec4-aligned,
1948 * but single-element and [ui]vec2 members of the struct may be at
1949 * an offset that is not a multiple of 16 bytes.
1950 *
1951 * Here, we extract that offset, relying on previous passes to
1952 * always generate offset expressions of the form
1953 * (+ expr constant_offset).
1954 *
1955 * Note that the std430 layout, which allows more cases of
1956 * alignment less than vec4 in arrays, is not supported for
1957 * uniform blocks, so we do not have to deal with it here.
1958 */
1959 if (offset_expr && offset_expr->operation == ir_binop_add) {
1960 const_offset_ir = offset_expr->operands[1]->as_constant();
1961 if (const_offset_ir) {
1962 const_offset = const_offset_ir->value.u[0];
1963 cbuf.index = const_offset / 16;
1964 offset_expr->operands[0]->accept(this);
1965 offset = this->result;
1966 }
1967 }
1968
1969 /* Relative/variable index into constant buffer */
1970 emit_asm(ir, TGSI_OPCODE_USHR, st_dst_reg(index_reg), offset,
1971 st_src_reg_for_int(4));
1972 cbuf.reladdr = ralloc(mem_ctx, st_src_reg);
1973 memcpy(cbuf.reladdr, &index_reg, sizeof(index_reg));
1974 }
1975
1976 if (const_uniform_block) {
1977 /* Constant constant buffer */
1978 cbuf.reladdr2 = NULL;
1979 } else {
1980 /* Relative/variable constant buffer */
1981 cbuf.reladdr2 = ralloc(mem_ctx, st_src_reg);
1982 memcpy(cbuf.reladdr2, &op[0], sizeof(st_src_reg));
1983 }
1984 cbuf.has_index2 = true;
1985
1986 cbuf.swizzle = swizzle_for_size(ir->type->vector_elements);
1987 if (glsl_base_type_is_64bit(cbuf.type))
1988 cbuf.swizzle += MAKE_SWIZZLE4(const_offset % 16 / 8,
1989 const_offset % 16 / 8,
1990 const_offset % 16 / 8,
1991 const_offset % 16 / 8);
1992 else
1993 cbuf.swizzle += MAKE_SWIZZLE4(const_offset % 16 / 4,
1994 const_offset % 16 / 4,
1995 const_offset % 16 / 4,
1996 const_offset % 16 / 4);
1997
1998 if (ir->type->is_boolean()) {
1999 emit_asm(ir, TGSI_OPCODE_USNE, result_dst, cbuf,
2000 st_src_reg_for_int(0));
2001 } else {
2002 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, cbuf);
2003 }
2004 }
2005 break;
2006 }
2007 case ir_triop_lrp:
2008 /* note: we have to reorder the three args here */
2009 emit_asm(ir, TGSI_OPCODE_LRP, result_dst, op[2], op[1], op[0]);
2010 break;
2011 case ir_triop_csel:
2012 if (this->ctx->Const.NativeIntegers)
2013 emit_asm(ir, TGSI_OPCODE_UCMP, result_dst, op[0], op[1], op[2]);
2014 else {
2015 op[0].negate = ~op[0].negate;
2016 emit_asm(ir, TGSI_OPCODE_CMP, result_dst, op[0], op[1], op[2]);
2017 }
2018 break;
2019 case ir_triop_bitfield_extract:
2020 emit_asm(ir, TGSI_OPCODE_IBFE, result_dst, op[0], op[1], op[2]);
2021 break;
2022 case ir_quadop_bitfield_insert:
2023 emit_asm(ir, TGSI_OPCODE_BFI, result_dst, op[0], op[1], op[2], op[3]);
2024 break;
2025 case ir_unop_bitfield_reverse:
2026 emit_asm(ir, TGSI_OPCODE_BREV, result_dst, op[0]);
2027 break;
2028 case ir_unop_bit_count:
2029 emit_asm(ir, TGSI_OPCODE_POPC, result_dst, op[0]);
2030 break;
2031 case ir_unop_find_msb:
2032 emit_asm(ir, TGSI_OPCODE_IMSB, result_dst, op[0]);
2033 break;
2034 case ir_unop_find_lsb:
2035 emit_asm(ir, TGSI_OPCODE_LSB, result_dst, op[0]);
2036 break;
2037 case ir_binop_imul_high:
2038 emit_asm(ir, TGSI_OPCODE_IMUL_HI, result_dst, op[0], op[1]);
2039 break;
2040 case ir_triop_fma:
2041 /* In theory, MAD is incorrect here. */
2042 if (have_fma)
2043 emit_asm(ir, TGSI_OPCODE_FMA, result_dst, op[0], op[1], op[2]);
2044 else
2045 emit_asm(ir, TGSI_OPCODE_MAD, result_dst, op[0], op[1], op[2]);
2046 break;
2047 case ir_unop_interpolate_at_centroid:
2048 emit_asm(ir, TGSI_OPCODE_INTERP_CENTROID, result_dst, op[0]);
2049 break;
2050 case ir_binop_interpolate_at_offset: {
2051 /* The y coordinate needs to be flipped for the default fb */
2052 static const gl_state_index transform_y_state[STATE_LENGTH]
2053 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM };
2054
2055 unsigned transform_y_index =
2056 _mesa_add_state_reference(this->prog->Parameters,
2057 transform_y_state);
2058
2059 st_src_reg transform_y = st_src_reg(PROGRAM_STATE_VAR,
2060 transform_y_index,
2061 glsl_type::vec4_type);
2062 transform_y.swizzle = SWIZZLE_XXXX;
2063
2064 st_src_reg temp = get_temp(glsl_type::vec2_type);
2065 st_dst_reg temp_dst = st_dst_reg(temp);
2066
2067 emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, op[1]);
2068 temp_dst.writemask = WRITEMASK_Y;
2069 emit_asm(ir, TGSI_OPCODE_MUL, temp_dst, transform_y, op[1]);
2070 emit_asm(ir, TGSI_OPCODE_INTERP_OFFSET, result_dst, op[0], temp);
2071 break;
2072 }
2073 case ir_binop_interpolate_at_sample:
2074 emit_asm(ir, TGSI_OPCODE_INTERP_SAMPLE, result_dst, op[0], op[1]);
2075 break;
2076
2077 case ir_unop_d2f:
2078 emit_asm(ir, TGSI_OPCODE_D2F, result_dst, op[0]);
2079 break;
2080 case ir_unop_f2d:
2081 emit_asm(ir, TGSI_OPCODE_F2D, result_dst, op[0]);
2082 break;
2083 case ir_unop_d2i:
2084 emit_asm(ir, TGSI_OPCODE_D2I, result_dst, op[0]);
2085 break;
2086 case ir_unop_i2d:
2087 emit_asm(ir, TGSI_OPCODE_I2D, result_dst, op[0]);
2088 break;
2089 case ir_unop_d2u:
2090 emit_asm(ir, TGSI_OPCODE_D2U, result_dst, op[0]);
2091 break;
2092 case ir_unop_u2d:
2093 emit_asm(ir, TGSI_OPCODE_U2D, result_dst, op[0]);
2094 break;
2095 case ir_unop_unpack_double_2x32:
2096 case ir_unop_pack_double_2x32:
2097 case ir_unop_unpack_int_2x32:
2098 case ir_unop_pack_int_2x32:
2099 case ir_unop_unpack_uint_2x32:
2100 case ir_unop_pack_uint_2x32:
2101 case ir_unop_unpack_sampler_2x32:
2102 case ir_unop_pack_sampler_2x32:
2103 case ir_unop_unpack_image_2x32:
2104 case ir_unop_pack_image_2x32:
2105 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
2106 break;
2107
2108 case ir_binop_ldexp:
2109 if (ir->operands[0]->type->is_double()) {
2110 emit_asm(ir, TGSI_OPCODE_DLDEXP, result_dst, op[0], op[1]);
2111 } else if (ir->operands[0]->type->is_float()) {
2112 emit_asm(ir, TGSI_OPCODE_LDEXP, result_dst, op[0], op[1]);
2113 } else {
2114 assert(!"Invalid ldexp for non-double opcode in glsl_to_tgsi_visitor::visit()");
2115 }
2116 break;
2117
2118 case ir_unop_pack_half_2x16:
2119 emit_asm(ir, TGSI_OPCODE_PK2H, result_dst, op[0]);
2120 break;
2121 case ir_unop_unpack_half_2x16:
2122 emit_asm(ir, TGSI_OPCODE_UP2H, result_dst, op[0]);
2123 break;
2124
2125 case ir_unop_get_buffer_size: {
2126 ir_constant *const_offset = ir->operands[0]->as_constant();
2127 st_src_reg buffer(
2128 PROGRAM_BUFFER,
2129 ctx->Const.Program[shader->Stage].MaxAtomicBuffers +
2130 (const_offset ? const_offset->value.u[0] : 0),
2131 GLSL_TYPE_UINT);
2132 if (!const_offset) {
2133 buffer.reladdr = ralloc(mem_ctx, st_src_reg);
2134 *buffer.reladdr = op[0];
2135 emit_arl(ir, sampler_reladdr, op[0]);
2136 }
2137 emit_asm(ir, TGSI_OPCODE_RESQ, result_dst)->resource = buffer;
2138 break;
2139 }
2140
2141 case ir_unop_u2i64:
2142 case ir_unop_u2u64:
2143 case ir_unop_b2i64: {
2144 st_src_reg temp = get_temp(glsl_type::uvec4_type);
2145 st_dst_reg temp_dst = st_dst_reg(temp);
2146 unsigned orig_swz = op[0].swizzle;
2147 /*
2148 * To convert unsigned to 64-bit:
2149 * zero Y channel, copy X channel.
2150 */
2151 temp_dst.writemask = WRITEMASK_Y;
2152 if (vector_elements > 1)
2153 temp_dst.writemask |= WRITEMASK_W;
2154 emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, st_src_reg_for_int(0));
2155 temp_dst.writemask = WRITEMASK_X;
2156 if (vector_elements > 1)
2157 temp_dst.writemask |= WRITEMASK_Z;
2158 op[0].swizzle = MAKE_SWIZZLE4(GET_SWZ(orig_swz, 0), GET_SWZ(orig_swz, 0),
2159 GET_SWZ(orig_swz, 1), GET_SWZ(orig_swz, 1));
2160 if (ir->operation == ir_unop_u2i64 || ir->operation == ir_unop_u2u64)
2161 emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, op[0]);
2162 else
2163 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, op[0], st_src_reg_for_int(1));
2164 result_src = temp;
2165 result_src.type = GLSL_TYPE_UINT64;
2166 if (vector_elements > 2) {
2167 /* Subtle: We rely on the fact that get_temp here returns the next
2168 * TGSI temporary register directly after the temp register used for
2169 * the first two components, so that the result gets picked up
2170 * automatically.
2171 */
2172 st_src_reg temp = get_temp(glsl_type::uvec4_type);
2173 st_dst_reg temp_dst = st_dst_reg(temp);
2174 temp_dst.writemask = WRITEMASK_Y;
2175 if (vector_elements > 3)
2176 temp_dst.writemask |= WRITEMASK_W;
2177 emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, st_src_reg_for_int(0));
2178
2179 temp_dst.writemask = WRITEMASK_X;
2180 if (vector_elements > 3)
2181 temp_dst.writemask |= WRITEMASK_Z;
2182 op[0].swizzle = MAKE_SWIZZLE4(GET_SWZ(orig_swz, 2), GET_SWZ(orig_swz, 2),
2183 GET_SWZ(orig_swz, 3), GET_SWZ(orig_swz, 3));
2184 if (ir->operation == ir_unop_u2i64 || ir->operation == ir_unop_u2u64)
2185 emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, op[0]);
2186 else
2187 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, op[0], st_src_reg_for_int(1));
2188 }
2189 break;
2190 }
2191 case ir_unop_i642i:
2192 case ir_unop_u642i:
2193 case ir_unop_u642u:
2194 case ir_unop_i642u: {
2195 st_src_reg temp = get_temp(glsl_type::uvec4_type);
2196 st_dst_reg temp_dst = st_dst_reg(temp);
2197 unsigned orig_swz = op[0].swizzle;
2198 unsigned orig_idx = op[0].index;
2199 int el;
2200 temp_dst.writemask = WRITEMASK_X;
2201
2202 for (el = 0; el < vector_elements; el++) {
2203 unsigned swz = GET_SWZ(orig_swz, el);
2204 if (swz & 1)
2205 op[0].swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_Z, SWIZZLE_Z, SWIZZLE_Z);
2206 else
2207 op[0].swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X);
2208 if (swz > 2)
2209 op[0].index = orig_idx + 1;
2210 op[0].type = GLSL_TYPE_UINT;
2211 temp_dst.writemask = WRITEMASK_X << el;
2212 emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, op[0]);
2213 }
2214 result_src = temp;
2215 if (ir->operation == ir_unop_u642u || ir->operation == ir_unop_i642u)
2216 result_src.type = GLSL_TYPE_UINT;
2217 else
2218 result_src.type = GLSL_TYPE_INT;
2219 break;
2220 }
2221 case ir_unop_i642b:
2222 emit_asm(ir, TGSI_OPCODE_U64SNE, result_dst, op[0], st_src_reg_for_int64(0));
2223 break;
2224 case ir_unop_i642f:
2225 emit_asm(ir, TGSI_OPCODE_I642F, result_dst, op[0]);
2226 break;
2227 case ir_unop_u642f:
2228 emit_asm(ir, TGSI_OPCODE_U642F, result_dst, op[0]);
2229 break;
2230 case ir_unop_i642d:
2231 emit_asm(ir, TGSI_OPCODE_I642D, result_dst, op[0]);
2232 break;
2233 case ir_unop_u642d:
2234 emit_asm(ir, TGSI_OPCODE_U642D, result_dst, op[0]);
2235 break;
2236 case ir_unop_i2i64:
2237 emit_asm(ir, TGSI_OPCODE_I2I64, result_dst, op[0]);
2238 break;
2239 case ir_unop_f2i64:
2240 emit_asm(ir, TGSI_OPCODE_F2I64, result_dst, op[0]);
2241 break;
2242 case ir_unop_d2i64:
2243 emit_asm(ir, TGSI_OPCODE_D2I64, result_dst, op[0]);
2244 break;
2245 case ir_unop_i2u64:
2246 emit_asm(ir, TGSI_OPCODE_I2I64, result_dst, op[0]);
2247 break;
2248 case ir_unop_f2u64:
2249 emit_asm(ir, TGSI_OPCODE_F2U64, result_dst, op[0]);
2250 break;
2251 case ir_unop_d2u64:
2252 emit_asm(ir, TGSI_OPCODE_D2U64, result_dst, op[0]);
2253 break;
2254 /* these might be needed */
2255 case ir_unop_pack_snorm_2x16:
2256 case ir_unop_pack_unorm_2x16:
2257 case ir_unop_pack_snorm_4x8:
2258 case ir_unop_pack_unorm_4x8:
2259
2260 case ir_unop_unpack_snorm_2x16:
2261 case ir_unop_unpack_unorm_2x16:
2262 case ir_unop_unpack_snorm_4x8:
2263 case ir_unop_unpack_unorm_4x8:
2264
2265 case ir_quadop_vector:
2266 case ir_binop_vector_extract:
2267 case ir_triop_vector_insert:
2268 case ir_binop_carry:
2269 case ir_binop_borrow:
2270 case ir_unop_ssbo_unsized_array_length:
2271 /* This operation is not supported, or should have already been handled.
2272 */
2273 assert(!"Invalid ir opcode in glsl_to_tgsi_visitor::visit()");
2274 break;
2275 }
2276
2277 this->result = result_src;
2278 }
2279
2280
2281 void
2282 glsl_to_tgsi_visitor::visit(ir_swizzle *ir)
2283 {
2284 st_src_reg src;
2285 int i;
2286 int swizzle[4];
2287
2288 /* Note that this is only swizzles in expressions, not those on the left
2289 * hand side of an assignment, which do write masking. See ir_assignment
2290 * for that.
2291 */
2292
2293 ir->val->accept(this);
2294 src = this->result;
2295 assert(src.file != PROGRAM_UNDEFINED);
2296 assert(ir->type->vector_elements > 0);
2297
2298 for (i = 0; i < 4; i++) {
2299 if (i < ir->type->vector_elements) {
2300 switch (i) {
2301 case 0:
2302 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
2303 break;
2304 case 1:
2305 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
2306 break;
2307 case 2:
2308 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
2309 break;
2310 case 3:
2311 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
2312 break;
2313 }
2314 } else {
2315 /* If the type is smaller than a vec4, replicate the last
2316 * channel out.
2317 */
2318 swizzle[i] = swizzle[ir->type->vector_elements - 1];
2319 }
2320 }
2321
2322 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
2323
2324 this->result = src;
2325 }
2326
2327 /* Test if the variable is an array. Note that geometry and
2328 * tessellation shader inputs are outputs are always arrays (except
2329 * for patch inputs), so only the array element type is considered.
2330 */
2331 static bool
2332 is_inout_array(unsigned stage, ir_variable *var, bool *remove_array)
2333 {
2334 const glsl_type *type = var->type;
2335
2336 *remove_array = false;
2337
2338 if ((stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
2339 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out))
2340 return false;
2341
2342 if (((stage == MESA_SHADER_GEOMETRY && var->data.mode == ir_var_shader_in) ||
2343 (stage == MESA_SHADER_TESS_EVAL && var->data.mode == ir_var_shader_in) ||
2344 stage == MESA_SHADER_TESS_CTRL) &&
2345 !var->data.patch) {
2346 if (!var->type->is_array())
2347 return false; /* a system value probably */
2348
2349 type = var->type->fields.array;
2350 *remove_array = true;
2351 }
2352
2353 return type->is_array() || type->is_matrix();
2354 }
2355
2356 static unsigned
2357 st_translate_interp_loc(ir_variable *var)
2358 {
2359 if (var->data.centroid)
2360 return TGSI_INTERPOLATE_LOC_CENTROID;
2361 else if (var->data.sample)
2362 return TGSI_INTERPOLATE_LOC_SAMPLE;
2363 else
2364 return TGSI_INTERPOLATE_LOC_CENTER;
2365 }
2366
2367 void
2368 glsl_to_tgsi_visitor::visit(ir_dereference_variable *ir)
2369 {
2370 variable_storage *entry = find_variable_storage(ir->var);
2371 ir_variable *var = ir->var;
2372 bool remove_array;
2373
2374 if (!entry) {
2375 switch (var->data.mode) {
2376 case ir_var_uniform:
2377 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
2378 var->data.param_index);
2379 _mesa_hash_table_insert(this->variables, var, entry);
2380 break;
2381 case ir_var_shader_in: {
2382 /* The linker assigns locations for varyings and attributes,
2383 * including deprecated builtins (like gl_Color), user-assign
2384 * generic attributes (glBindVertexLocation), and
2385 * user-defined varyings.
2386 */
2387 assert(var->data.location != -1);
2388
2389 const glsl_type *type_without_array = var->type->without_array();
2390 struct inout_decl *decl = &inputs[num_inputs];
2391 unsigned component = var->data.location_frac;
2392 unsigned num_components;
2393 num_inputs++;
2394
2395 if (type_without_array->is_64bit())
2396 component = component / 2;
2397 if (type_without_array->vector_elements)
2398 num_components = type_without_array->vector_elements;
2399 else
2400 num_components = 4;
2401
2402 decl->mesa_index = var->data.location;
2403 decl->interp = (glsl_interp_mode) var->data.interpolation;
2404 decl->interp_loc = st_translate_interp_loc(var);
2405 decl->base_type = type_without_array->base_type;
2406 decl->usage_mask = u_bit_consecutive(component, num_components);
2407
2408 if (is_inout_array(shader->Stage, var, &remove_array)) {
2409 decl->array_id = num_input_arrays + 1;
2410 num_input_arrays++;
2411 } else {
2412 decl->array_id = 0;
2413 }
2414
2415 if (remove_array)
2416 decl->size = type_size(var->type->fields.array);
2417 else
2418 decl->size = type_size(var->type);
2419
2420 entry = new(mem_ctx) variable_storage(var,
2421 PROGRAM_INPUT,
2422 decl->mesa_index,
2423 decl->array_id);
2424 entry->component = component;
2425
2426 _mesa_hash_table_insert(this->variables, var, entry);
2427
2428 break;
2429 }
2430 case ir_var_shader_out: {
2431 assert(var->data.location != -1);
2432
2433 const glsl_type *type_without_array = var->type->without_array();
2434 struct inout_decl *decl = &outputs[num_outputs];
2435 unsigned component = var->data.location_frac;
2436 unsigned num_components;
2437 num_outputs++;
2438
2439 if (type_without_array->is_64bit())
2440 component = component / 2;
2441 if (type_without_array->vector_elements)
2442 num_components = type_without_array->vector_elements;
2443 else
2444 num_components = 4;
2445
2446 decl->mesa_index = var->data.location + FRAG_RESULT_MAX * var->data.index;
2447 decl->base_type = type_without_array->base_type;
2448 decl->usage_mask = u_bit_consecutive(component, num_components);
2449 if (var->data.stream & (1u << 31)) {
2450 decl->gs_out_streams = var->data.stream & ~(1u << 31);
2451 } else {
2452 assert(var->data.stream < 4);
2453 decl->gs_out_streams = 0;
2454 for (unsigned i = 0; i < num_components; ++i)
2455 decl->gs_out_streams |= var->data.stream << (2 * (component + i));
2456 }
2457
2458 if (is_inout_array(shader->Stage, var, &remove_array)) {
2459 decl->array_id = num_output_arrays + 1;
2460 num_output_arrays++;
2461 } else {
2462 decl->array_id = 0;
2463 }
2464
2465 if (remove_array)
2466 decl->size = type_size(var->type->fields.array);
2467 else
2468 decl->size = type_size(var->type);
2469
2470 if (var->data.fb_fetch_output) {
2471 st_dst_reg dst = st_dst_reg(get_temp(var->type));
2472 st_src_reg src = st_src_reg(PROGRAM_OUTPUT, decl->mesa_index,
2473 var->type, component, decl->array_id);
2474 emit_asm(NULL, TGSI_OPCODE_FBFETCH, dst, src);
2475 entry = new(mem_ctx) variable_storage(var, dst.file, dst.index,
2476 dst.array_id);
2477 } else {
2478 entry = new(mem_ctx) variable_storage(var,
2479 PROGRAM_OUTPUT,
2480 decl->mesa_index,
2481 decl->array_id);
2482 }
2483 entry->component = component;
2484
2485 _mesa_hash_table_insert(this->variables, var, entry);
2486
2487 break;
2488 }
2489 case ir_var_system_value:
2490 entry = new(mem_ctx) variable_storage(var,
2491 PROGRAM_SYSTEM_VALUE,
2492 var->data.location);
2493 break;
2494 case ir_var_auto:
2495 case ir_var_temporary:
2496 st_src_reg src = get_temp(var->type);
2497
2498 entry = new(mem_ctx) variable_storage(var, src.file, src.index,
2499 src.array_id);
2500 _mesa_hash_table_insert(this->variables, var, entry);
2501
2502 break;
2503 }
2504
2505 if (!entry) {
2506 printf("Failed to make storage for %s\n", var->name);
2507 exit(1);
2508 }
2509 }
2510
2511 this->result = st_src_reg(entry->file, entry->index, var->type,
2512 entry->component, entry->array_id);
2513 if (this->shader->Stage == MESA_SHADER_VERTEX &&
2514 var->data.mode == ir_var_shader_in &&
2515 var->type->without_array()->is_double())
2516 this->result.is_double_vertex_input = true;
2517 if (!native_integers)
2518 this->result.type = GLSL_TYPE_FLOAT;
2519 }
2520
2521 static void
2522 shrink_array_declarations(struct inout_decl *decls, unsigned count,
2523 GLbitfield64* usage_mask,
2524 GLbitfield64 double_usage_mask,
2525 GLbitfield* patch_usage_mask)
2526 {
2527 unsigned i;
2528 int j;
2529
2530 /* Fix array declarations by removing unused array elements at both ends
2531 * of the arrays. For example, mat4[3] where only mat[1] is used.
2532 */
2533 for (i = 0; i < count; i++) {
2534 struct inout_decl *decl = &decls[i];
2535 if (!decl->array_id)
2536 continue;
2537
2538 /* Shrink the beginning. */
2539 for (j = 0; j < (int)decl->size; j++) {
2540 if (decl->mesa_index >= VARYING_SLOT_PATCH0) {
2541 if (*patch_usage_mask &
2542 BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j))
2543 break;
2544 }
2545 else {
2546 if (*usage_mask & BITFIELD64_BIT(decl->mesa_index+j))
2547 break;
2548 if (double_usage_mask & BITFIELD64_BIT(decl->mesa_index+j-1))
2549 break;
2550 }
2551
2552 decl->mesa_index++;
2553 decl->size--;
2554 j--;
2555 }
2556
2557 /* Shrink the end. */
2558 for (j = decl->size-1; j >= 0; j--) {
2559 if (decl->mesa_index >= VARYING_SLOT_PATCH0) {
2560 if (*patch_usage_mask &
2561 BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j))
2562 break;
2563 }
2564 else {
2565 if (*usage_mask & BITFIELD64_BIT(decl->mesa_index+j))
2566 break;
2567 if (double_usage_mask & BITFIELD64_BIT(decl->mesa_index+j-1))
2568 break;
2569 }
2570
2571 decl->size--;
2572 }
2573
2574 /* When not all entries of an array are accessed, we mark them as used
2575 * here anyway, to ensure that the input/output mapping logic doesn't get
2576 * confused.
2577 *
2578 * TODO This happens when an array isn't used via indirect access, which
2579 * some game ports do (at least eON-based). There is an optimization
2580 * opportunity here by replacing the array declaration with non-array
2581 * declarations of those slots that are actually used.
2582 */
2583 for (j = 1; j < (int)decl->size; ++j) {
2584 if (decl->mesa_index >= VARYING_SLOT_PATCH0)
2585 *patch_usage_mask |= BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j);
2586 else
2587 *usage_mask |= BITFIELD64_BIT(decl->mesa_index + j);
2588 }
2589 }
2590 }
2591
2592 void
2593 glsl_to_tgsi_visitor::visit(ir_dereference_array *ir)
2594 {
2595 ir_constant *index;
2596 st_src_reg src;
2597 bool is_2D = false;
2598 ir_variable *var = ir->variable_referenced();
2599
2600 /* We only need the logic provided by st_glsl_storage_type_size()
2601 * for arrays of structs. Indirect sampler and image indexing is handled
2602 * elsewhere.
2603 */
2604 int element_size = ir->type->without_array()->is_record() ?
2605 st_glsl_storage_type_size(ir->type, var->data.bindless) :
2606 type_size(ir->type);
2607
2608 index = ir->array_index->constant_expression_value(ralloc_parent(ir));
2609
2610 ir->array->accept(this);
2611 src = this->result;
2612
2613 if (!src.has_index2) {
2614 switch (this->prog->Target) {
2615 case GL_TESS_CONTROL_PROGRAM_NV:
2616 is_2D = (src.file == PROGRAM_INPUT || src.file == PROGRAM_OUTPUT) &&
2617 !ir->variable_referenced()->data.patch;
2618 break;
2619 case GL_TESS_EVALUATION_PROGRAM_NV:
2620 is_2D = src.file == PROGRAM_INPUT &&
2621 !ir->variable_referenced()->data.patch;
2622 break;
2623 case GL_GEOMETRY_PROGRAM_NV:
2624 is_2D = src.file == PROGRAM_INPUT;
2625 break;
2626 }
2627 }
2628
2629 if (is_2D)
2630 element_size = 1;
2631
2632 if (index) {
2633
2634 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB &&
2635 src.file == PROGRAM_INPUT)
2636 element_size = attrib_type_size(ir->type, true);
2637 if (is_2D) {
2638 src.index2D = index->value.i[0];
2639 src.has_index2 = true;
2640 } else
2641 src.index += index->value.i[0] * element_size;
2642 } else {
2643 /* Variable index array dereference. It eats the "vec4" of the
2644 * base of the array and an index that offsets the TGSI register
2645 * index.
2646 */
2647 ir->array_index->accept(this);
2648
2649 st_src_reg index_reg;
2650
2651 if (element_size == 1) {
2652 index_reg = this->result;
2653 } else {
2654 index_reg = get_temp(native_integers ?
2655 glsl_type::int_type : glsl_type::float_type);
2656
2657 emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(index_reg),
2658 this->result, st_src_reg_for_type(index_reg.type, element_size));
2659 }
2660
2661 /* If there was already a relative address register involved, add the
2662 * new and the old together to get the new offset.
2663 */
2664 if (!is_2D && src.reladdr != NULL) {
2665 st_src_reg accum_reg = get_temp(native_integers ?
2666 glsl_type::int_type : glsl_type::float_type);
2667
2668 emit_asm(ir, TGSI_OPCODE_ADD, st_dst_reg(accum_reg),
2669 index_reg, *src.reladdr);
2670
2671 index_reg = accum_reg;
2672 }
2673
2674 if (is_2D) {
2675 src.reladdr2 = ralloc(mem_ctx, st_src_reg);
2676 memcpy(src.reladdr2, &index_reg, sizeof(index_reg));
2677 src.index2D = 0;
2678 src.has_index2 = true;
2679 } else {
2680 src.reladdr = ralloc(mem_ctx, st_src_reg);
2681 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
2682 }
2683 }
2684
2685 /* Change the register type to the element type of the array. */
2686 src.type = ir->type->base_type;
2687
2688 this->result = src;
2689 }
2690
2691 void
2692 glsl_to_tgsi_visitor::visit(ir_dereference_record *ir)
2693 {
2694 unsigned int i;
2695 const glsl_type *struct_type = ir->record->type;
2696 ir_variable *var = ir->record->variable_referenced();
2697 int offset = 0;
2698
2699 ir->record->accept(this);
2700
2701 assert(ir->field_idx >= 0);
2702 assert(var);
2703 for (i = 0; i < struct_type->length; i++) {
2704 if (i == (unsigned) ir->field_idx)
2705 break;
2706 const glsl_type *member_type = struct_type->fields.structure[i].type;
2707 offset += st_glsl_storage_type_size(member_type, var->data.bindless);
2708 }
2709
2710 /* If the type is smaller than a vec4, replicate the last channel out. */
2711 if (ir->type->is_scalar() || ir->type->is_vector())
2712 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
2713 else
2714 this->result.swizzle = SWIZZLE_NOOP;
2715
2716 this->result.index += offset;
2717 this->result.type = ir->type->base_type;
2718 }
2719
2720 /**
2721 * We want to be careful in assignment setup to hit the actual storage
2722 * instead of potentially using a temporary like we might with the
2723 * ir_dereference handler.
2724 */
2725 static st_dst_reg
2726 get_assignment_lhs(ir_dereference *ir, glsl_to_tgsi_visitor *v, int *component)
2727 {
2728 /* The LHS must be a dereference. If the LHS is a variable indexed array
2729 * access of a vector, it must be separated into a series conditional moves
2730 * before reaching this point (see ir_vec_index_to_cond_assign).
2731 */
2732 assert(ir->as_dereference());
2733 ir_dereference_array *deref_array = ir->as_dereference_array();
2734 if (deref_array) {
2735 assert(!deref_array->array->type->is_vector());
2736 }
2737
2738 /* Use the rvalue deref handler for the most part. We write swizzles using
2739 * the writemask, but we do extract the base component for enhanced layouts
2740 * from the source swizzle.
2741 */
2742 ir->accept(v);
2743 *component = GET_SWZ(v->result.swizzle, 0);
2744 return st_dst_reg(v->result);
2745 }
2746
2747 /**
2748 * Process the condition of a conditional assignment
2749 *
2750 * Examines the condition of a conditional assignment to generate the optimal
2751 * first operand of a \c CMP instruction. If the condition is a relational
2752 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
2753 * used as the source for the \c CMP instruction. Otherwise the comparison
2754 * is processed to a boolean result, and the boolean result is used as the
2755 * operand to the CMP instruction.
2756 */
2757 bool
2758 glsl_to_tgsi_visitor::process_move_condition(ir_rvalue *ir)
2759 {
2760 ir_rvalue *src_ir = ir;
2761 bool negate = true;
2762 bool switch_order = false;
2763
2764 ir_expression *const expr = ir->as_expression();
2765
2766 if (native_integers) {
2767 if ((expr != NULL) && (expr->num_operands == 2)) {
2768 enum glsl_base_type type = expr->operands[0]->type->base_type;
2769 if (type == GLSL_TYPE_INT || type == GLSL_TYPE_UINT ||
2770 type == GLSL_TYPE_BOOL) {
2771 if (expr->operation == ir_binop_equal) {
2772 if (expr->operands[0]->is_zero()) {
2773 src_ir = expr->operands[1];
2774 switch_order = true;
2775 }
2776 else if (expr->operands[1]->is_zero()) {
2777 src_ir = expr->operands[0];
2778 switch_order = true;
2779 }
2780 }
2781 else if (expr->operation == ir_binop_nequal) {
2782 if (expr->operands[0]->is_zero()) {
2783 src_ir = expr->operands[1];
2784 }
2785 else if (expr->operands[1]->is_zero()) {
2786 src_ir = expr->operands[0];
2787 }
2788 }
2789 }
2790 }
2791
2792 src_ir->accept(this);
2793 return switch_order;
2794 }
2795
2796 if ((expr != NULL) && (expr->num_operands == 2)) {
2797 bool zero_on_left = false;
2798
2799 if (expr->operands[0]->is_zero()) {
2800 src_ir = expr->operands[1];
2801 zero_on_left = true;
2802 } else if (expr->operands[1]->is_zero()) {
2803 src_ir = expr->operands[0];
2804 zero_on_left = false;
2805 }
2806
2807 /* a is - 0 + - 0 +
2808 * (a < 0) T F F ( a < 0) T F F
2809 * (0 < a) F F T (-a < 0) F F T
2810 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
2811 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
2812 * (a > 0) F F T (-a < 0) F F T
2813 * (0 > a) T F F ( a < 0) T F F
2814 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
2815 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
2816 *
2817 * Note that exchanging the order of 0 and 'a' in the comparison simply
2818 * means that the value of 'a' should be negated.
2819 */
2820 if (src_ir != ir) {
2821 switch (expr->operation) {
2822 case ir_binop_less:
2823 switch_order = false;
2824 negate = zero_on_left;
2825 break;
2826
2827 case ir_binop_greater:
2828 switch_order = false;
2829 negate = !zero_on_left;
2830 break;
2831
2832 case ir_binop_lequal:
2833 switch_order = true;
2834 negate = !zero_on_left;
2835 break;
2836
2837 case ir_binop_gequal:
2838 switch_order = true;
2839 negate = zero_on_left;
2840 break;
2841
2842 default:
2843 /* This isn't the right kind of comparison afterall, so make sure
2844 * the whole condition is visited.
2845 */
2846 src_ir = ir;
2847 break;
2848 }
2849 }
2850 }
2851
2852 src_ir->accept(this);
2853
2854 /* We use the TGSI_OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
2855 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
2856 * choose which value TGSI_OPCODE_CMP produces without an extra instruction
2857 * computing the condition.
2858 */
2859 if (negate)
2860 this->result.negate = ~this->result.negate;
2861
2862 return switch_order;
2863 }
2864
2865 void
2866 glsl_to_tgsi_visitor::emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
2867 st_dst_reg *l, st_src_reg *r,
2868 st_src_reg *cond, bool cond_swap)
2869 {
2870 if (type->is_record()) {
2871 for (unsigned int i = 0; i < type->length; i++) {
2872 emit_block_mov(ir, type->fields.structure[i].type, l, r,
2873 cond, cond_swap);
2874 }
2875 return;
2876 }
2877
2878 if (type->is_array()) {
2879 for (unsigned int i = 0; i < type->length; i++) {
2880 emit_block_mov(ir, type->fields.array, l, r, cond, cond_swap);
2881 }
2882 return;
2883 }
2884
2885 if (type->is_matrix()) {
2886 const struct glsl_type *vec_type;
2887
2888 vec_type = glsl_type::get_instance(type->is_double() ? GLSL_TYPE_DOUBLE : GLSL_TYPE_FLOAT,
2889 type->vector_elements, 1);
2890
2891 for (int i = 0; i < type->matrix_columns; i++) {
2892 emit_block_mov(ir, vec_type, l, r, cond, cond_swap);
2893 }
2894 return;
2895 }
2896
2897 assert(type->is_scalar() || type->is_vector());
2898
2899 l->type = type->base_type;
2900 r->type = type->base_type;
2901 if (cond) {
2902 st_src_reg l_src = st_src_reg(*l);
2903
2904 if (l_src.file == PROGRAM_OUTPUT &&
2905 this->prog->Target == GL_FRAGMENT_PROGRAM_ARB &&
2906 (l_src.index == FRAG_RESULT_DEPTH || l_src.index == FRAG_RESULT_STENCIL)) {
2907 /* This is a special case because the source swizzles will be shifted
2908 * later to account for the difference between GLSL (where they're
2909 * plain floats) and TGSI (where they're Z and Y components). */
2910 l_src.swizzle = SWIZZLE_XXXX;
2911 }
2912
2913 if (native_integers) {
2914 emit_asm(ir, TGSI_OPCODE_UCMP, *l, *cond,
2915 cond_swap ? l_src : *r,
2916 cond_swap ? *r : l_src);
2917 } else {
2918 emit_asm(ir, TGSI_OPCODE_CMP, *l, *cond,
2919 cond_swap ? l_src : *r,
2920 cond_swap ? *r : l_src);
2921 }
2922 } else {
2923 emit_asm(ir, TGSI_OPCODE_MOV, *l, *r);
2924 }
2925 l->index++;
2926 r->index++;
2927 if (type->is_dual_slot()) {
2928 l->index++;
2929 if (r->is_double_vertex_input == false)
2930 r->index++;
2931 }
2932 }
2933
2934 void
2935 glsl_to_tgsi_visitor::visit(ir_assignment *ir)
2936 {
2937 int dst_component;
2938 st_dst_reg l;
2939 st_src_reg r;
2940
2941 /* all generated instructions need to be flaged as precise */
2942 this->precise = is_precise(ir->lhs->variable_referenced());
2943 ir->rhs->accept(this);
2944 r = this->result;
2945
2946 l = get_assignment_lhs(ir->lhs, this, &dst_component);
2947
2948 {
2949 int swizzles[4];
2950 int first_enabled_chan = 0;
2951 int rhs_chan = 0;
2952 ir_variable *variable = ir->lhs->variable_referenced();
2953
2954 if (shader->Stage == MESA_SHADER_FRAGMENT &&
2955 variable->data.mode == ir_var_shader_out &&
2956 (variable->data.location == FRAG_RESULT_DEPTH ||
2957 variable->data.location == FRAG_RESULT_STENCIL)) {
2958 assert(ir->lhs->type->is_scalar());
2959 assert(ir->write_mask == WRITEMASK_X);
2960
2961 if (variable->data.location == FRAG_RESULT_DEPTH)
2962 l.writemask = WRITEMASK_Z;
2963 else {
2964 assert(variable->data.location == FRAG_RESULT_STENCIL);
2965 l.writemask = WRITEMASK_Y;
2966 }
2967 } else if (ir->write_mask == 0) {
2968 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
2969
2970 unsigned num_elements = ir->lhs->type->without_array()->vector_elements;
2971
2972 if (num_elements) {
2973 l.writemask = u_bit_consecutive(0, num_elements);
2974 } else {
2975 /* The type is a struct or an array of (array of) structs. */
2976 l.writemask = WRITEMASK_XYZW;
2977 }
2978 } else {
2979 l.writemask = ir->write_mask;
2980 }
2981
2982 for (int i = 0; i < 4; i++) {
2983 if (l.writemask & (1 << i)) {
2984 first_enabled_chan = GET_SWZ(r.swizzle, i);
2985 break;
2986 }
2987 }
2988
2989 l.writemask = l.writemask << dst_component;
2990
2991 /* Swizzle a small RHS vector into the channels being written.
2992 *
2993 * glsl ir treats write_mask as dictating how many channels are
2994 * present on the RHS while TGSI treats write_mask as just
2995 * showing which channels of the vec4 RHS get written.
2996 */
2997 for (int i = 0; i < 4; i++) {
2998 if (l.writemask & (1 << i))
2999 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
3000 else
3001 swizzles[i] = first_enabled_chan;
3002 }
3003 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
3004 swizzles[2], swizzles[3]);
3005 }
3006
3007 assert(l.file != PROGRAM_UNDEFINED);
3008 assert(r.file != PROGRAM_UNDEFINED);
3009
3010 if (ir->condition) {
3011 const bool switch_order = this->process_move_condition(ir->condition);
3012 st_src_reg condition = this->result;
3013
3014 emit_block_mov(ir, ir->lhs->type, &l, &r, &condition, switch_order);
3015 } else if (ir->rhs->as_expression() &&
3016 this->instructions.get_tail() &&
3017 ir->rhs == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->ir &&
3018 !((glsl_to_tgsi_instruction *)this->instructions.get_tail())->is_64bit_expanded &&
3019 type_size(ir->lhs->type) == 1 &&
3020 l.writemask == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->dst[0].writemask) {
3021 /* To avoid emitting an extra MOV when assigning an expression to a
3022 * variable, emit the last instruction of the expression again, but
3023 * replace the destination register with the target of the assignment.
3024 * Dead code elimination will remove the original instruction.
3025 */
3026 glsl_to_tgsi_instruction *inst, *new_inst;
3027 inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
3028 new_inst = emit_asm(ir, inst->op, l, inst->src[0], inst->src[1], inst->src[2], inst->src[3]);
3029 new_inst->saturate = inst->saturate;
3030 new_inst->resource = inst->resource;
3031 inst->dead_mask = inst->dst[0].writemask;
3032 } else {
3033 emit_block_mov(ir, ir->rhs->type, &l, &r, NULL, false);
3034 }
3035 this->precise = 0;
3036 }
3037
3038
3039 void
3040 glsl_to_tgsi_visitor::visit(ir_constant *ir)
3041 {
3042 st_src_reg src;
3043 GLdouble stack_vals[4] = { 0 };
3044 gl_constant_value *values = (gl_constant_value *) stack_vals;
3045 GLenum gl_type = GL_NONE;
3046 unsigned int i;
3047 static int in_array = 0;
3048 gl_register_file file = in_array ? PROGRAM_CONSTANT : PROGRAM_IMMEDIATE;
3049
3050 /* Unfortunately, 4 floats is all we can get into
3051 * _mesa_add_typed_unnamed_constant. So, make a temp to store an
3052 * aggregate constant and move each constant value into it. If we
3053 * get lucky, copy propagation will eliminate the extra moves.
3054 */
3055 if (ir->type->is_record()) {
3056 st_src_reg temp_base = get_temp(ir->type);
3057 st_dst_reg temp = st_dst_reg(temp_base);
3058
3059 for (i = 0; i < ir->type->length; i++) {
3060 ir_constant *const field_value = ir->get_record_field(i);
3061 int size = type_size(field_value->type);
3062
3063 assert(size > 0);
3064
3065 field_value->accept(this);
3066 src = this->result;
3067
3068 for (unsigned j = 0; j < (unsigned int)size; j++) {
3069 emit_asm(ir, TGSI_OPCODE_MOV, temp, src);
3070
3071 src.index++;
3072 temp.index++;
3073 }
3074 }
3075 this->result = temp_base;
3076 return;
3077 }
3078
3079 if (ir->type->is_array()) {
3080 st_src_reg temp_base = get_temp(ir->type);
3081 st_dst_reg temp = st_dst_reg(temp_base);
3082 int size = type_size(ir->type->fields.array);
3083
3084 assert(size > 0);
3085 in_array++;
3086
3087 for (i = 0; i < ir->type->length; i++) {
3088 ir->const_elements[i]->accept(this);
3089 src = this->result;
3090 for (int j = 0; j < size; j++) {
3091 emit_asm(ir, TGSI_OPCODE_MOV, temp, src);
3092
3093 src.index++;
3094 temp.index++;
3095 }
3096 }
3097 this->result = temp_base;
3098 in_array--;
3099 return;
3100 }
3101
3102 if (ir->type->is_matrix()) {
3103 st_src_reg mat = get_temp(ir->type);
3104 st_dst_reg mat_column = st_dst_reg(mat);
3105
3106 for (i = 0; i < ir->type->matrix_columns; i++) {
3107 switch (ir->type->base_type) {
3108 case GLSL_TYPE_FLOAT:
3109 values = (gl_constant_value *) &ir->value.f[i * ir->type->vector_elements];
3110
3111 src = st_src_reg(file, -1, ir->type->base_type);
3112 src.index = add_constant(file,
3113 values,
3114 ir->type->vector_elements,
3115 GL_FLOAT,
3116 &src.swizzle);
3117 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3118 break;
3119 case GLSL_TYPE_DOUBLE:
3120 values = (gl_constant_value *) &ir->value.d[i * ir->type->vector_elements];
3121 src = st_src_reg(file, -1, ir->type->base_type);
3122 src.index = add_constant(file,
3123 values,
3124 ir->type->vector_elements,
3125 GL_DOUBLE,
3126 &src.swizzle);
3127 if (ir->type->vector_elements >= 2) {
3128 mat_column.writemask = WRITEMASK_XY;
3129 src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
3130 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3131 } else {
3132 mat_column.writemask = WRITEMASK_X;
3133 src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X);
3134 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3135 }
3136 src.index++;
3137 if (ir->type->vector_elements > 2) {
3138 if (ir->type->vector_elements == 4) {
3139 mat_column.writemask = WRITEMASK_ZW;
3140 src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
3141 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3142 } else {
3143 mat_column.writemask = WRITEMASK_Z;
3144 src.swizzle = MAKE_SWIZZLE4(SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y);
3145 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3146 mat_column.writemask = WRITEMASK_XYZW;
3147 src.swizzle = SWIZZLE_XYZW;
3148 }
3149 mat_column.index++;
3150 }
3151 break;
3152 default:
3153 unreachable("Illegal matrix constant type.\n");
3154 break;
3155 }
3156 mat_column.index++;
3157 }
3158 this->result = mat;
3159 return;
3160 }
3161
3162 switch (ir->type->base_type) {
3163 case GLSL_TYPE_FLOAT:
3164 gl_type = GL_FLOAT;
3165 for (i = 0; i < ir->type->vector_elements; i++) {
3166 values[i].f = ir->value.f[i];
3167 }
3168 break;
3169 case GLSL_TYPE_DOUBLE:
3170 gl_type = GL_DOUBLE;
3171 for (i = 0; i < ir->type->vector_elements; i++) {
3172 memcpy(&values[i * 2], &ir->value.d[i], sizeof(double));
3173 }
3174 break;
3175 case GLSL_TYPE_INT64:
3176 gl_type = GL_INT64_ARB;
3177 for (i = 0; i < ir->type->vector_elements; i++) {
3178 memcpy(&values[i * 2], &ir->value.d[i], sizeof(int64_t));
3179 }
3180 break;
3181 case GLSL_TYPE_UINT64:
3182 gl_type = GL_UNSIGNED_INT64_ARB;
3183 for (i = 0; i < ir->type->vector_elements; i++) {
3184 memcpy(&values[i * 2], &ir->value.d[i], sizeof(uint64_t));
3185 }
3186 break;
3187 case GLSL_TYPE_UINT:
3188 gl_type = native_integers ? GL_UNSIGNED_INT : GL_FLOAT;
3189 for (i = 0; i < ir->type->vector_elements; i++) {
3190 if (native_integers)
3191 values[i].u = ir->value.u[i];
3192 else
3193 values[i].f = ir->value.u[i];
3194 }
3195 break;
3196 case GLSL_TYPE_INT:
3197 gl_type = native_integers ? GL_INT : GL_FLOAT;
3198 for (i = 0; i < ir->type->vector_elements; i++) {
3199 if (native_integers)
3200 values[i].i = ir->value.i[i];
3201 else
3202 values[i].f = ir->value.i[i];
3203 }
3204 break;
3205 case GLSL_TYPE_BOOL:
3206 gl_type = native_integers ? GL_BOOL : GL_FLOAT;
3207 for (i = 0; i < ir->type->vector_elements; i++) {
3208 values[i].u = ir->value.b[i] ? ctx->Const.UniformBooleanTrue : 0;
3209 }
3210 break;
3211 default:
3212 assert(!"Non-float/uint/int/bool constant");
3213 }
3214
3215 this->result = st_src_reg(file, -1, ir->type);
3216 this->result.index = add_constant(file,
3217 values,
3218 ir->type->vector_elements,
3219 gl_type,
3220 &this->result.swizzle);
3221 }
3222
3223 void
3224 glsl_to_tgsi_visitor::visit_atomic_counter_intrinsic(ir_call *ir)
3225 {
3226 exec_node *param = ir->actual_parameters.get_head();
3227 ir_dereference *deref = static_cast<ir_dereference *>(param);
3228 ir_variable *location = deref->variable_referenced();
3229
3230 st_src_reg buffer(
3231 PROGRAM_BUFFER, location->data.binding, GLSL_TYPE_ATOMIC_UINT);
3232
3233 /* Calculate the surface offset */
3234 st_src_reg offset;
3235 unsigned array_size = 0, base = 0;
3236 uint16_t index = 0;
3237
3238 get_deref_offsets(deref, &array_size, &base, &index, &offset, false);
3239
3240 if (offset.file != PROGRAM_UNDEFINED) {
3241 emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(offset),
3242 offset, st_src_reg_for_int(ATOMIC_COUNTER_SIZE));
3243 emit_asm(ir, TGSI_OPCODE_ADD, st_dst_reg(offset),
3244 offset, st_src_reg_for_int(location->data.offset + index * ATOMIC_COUNTER_SIZE));
3245 } else {
3246 offset = st_src_reg_for_int(location->data.offset + index * ATOMIC_COUNTER_SIZE);
3247 }
3248
3249 ir->return_deref->accept(this);
3250 st_dst_reg dst(this->result);
3251 dst.writemask = WRITEMASK_X;
3252
3253 glsl_to_tgsi_instruction *inst;
3254
3255 if (ir->callee->intrinsic_id == ir_intrinsic_atomic_counter_read) {
3256 inst = emit_asm(ir, TGSI_OPCODE_LOAD, dst, offset);
3257 } else if (ir->callee->intrinsic_id == ir_intrinsic_atomic_counter_increment) {
3258 inst = emit_asm(ir, TGSI_OPCODE_ATOMUADD, dst, offset,
3259 st_src_reg_for_int(1));
3260 } else if (ir->callee->intrinsic_id == ir_intrinsic_atomic_counter_predecrement) {
3261 inst = emit_asm(ir, TGSI_OPCODE_ATOMUADD, dst, offset,
3262 st_src_reg_for_int(-1));
3263 emit_asm(ir, TGSI_OPCODE_ADD, dst, this->result, st_src_reg_for_int(-1));
3264 } else {
3265 param = param->get_next();
3266 ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3267 val->accept(this);
3268
3269 st_src_reg data = this->result, data2 = undef_src;
3270 unsigned opcode;
3271 switch (ir->callee->intrinsic_id) {
3272 case ir_intrinsic_atomic_counter_add:
3273 opcode = TGSI_OPCODE_ATOMUADD;
3274 break;
3275 case ir_intrinsic_atomic_counter_min:
3276 opcode = TGSI_OPCODE_ATOMIMIN;
3277 break;
3278 case ir_intrinsic_atomic_counter_max:
3279 opcode = TGSI_OPCODE_ATOMIMAX;
3280 break;
3281 case ir_intrinsic_atomic_counter_and:
3282 opcode = TGSI_OPCODE_ATOMAND;
3283 break;
3284 case ir_intrinsic_atomic_counter_or:
3285 opcode = TGSI_OPCODE_ATOMOR;
3286 break;
3287 case ir_intrinsic_atomic_counter_xor:
3288 opcode = TGSI_OPCODE_ATOMXOR;
3289 break;
3290 case ir_intrinsic_atomic_counter_exchange:
3291 opcode = TGSI_OPCODE_ATOMXCHG;
3292 break;
3293 case ir_intrinsic_atomic_counter_comp_swap: {
3294 opcode = TGSI_OPCODE_ATOMCAS;
3295 param = param->get_next();
3296 val = ((ir_instruction *)param)->as_rvalue();
3297 val->accept(this);
3298 data2 = this->result;
3299 break;
3300 }
3301 default:
3302 assert(!"Unexpected intrinsic");
3303 return;
3304 }
3305
3306 inst = emit_asm(ir, opcode, dst, offset, data, data2);
3307 }
3308
3309 inst->resource = buffer;
3310 }
3311
3312 void
3313 glsl_to_tgsi_visitor::visit_ssbo_intrinsic(ir_call *ir)
3314 {
3315 exec_node *param = ir->actual_parameters.get_head();
3316
3317 ir_rvalue *block = ((ir_instruction *)param)->as_rvalue();
3318
3319 param = param->get_next();
3320 ir_rvalue *offset = ((ir_instruction *)param)->as_rvalue();
3321
3322 ir_constant *const_block = block->as_constant();
3323
3324 st_src_reg buffer(
3325 PROGRAM_BUFFER,
3326 ctx->Const.Program[shader->Stage].MaxAtomicBuffers +
3327 (const_block ? const_block->value.u[0] : 0),
3328 GLSL_TYPE_UINT);
3329
3330 if (!const_block) {
3331 block->accept(this);
3332 buffer.reladdr = ralloc(mem_ctx, st_src_reg);
3333 *buffer.reladdr = this->result;
3334 emit_arl(ir, sampler_reladdr, this->result);
3335 }
3336
3337 /* Calculate the surface offset */
3338 offset->accept(this);
3339 st_src_reg off = this->result;
3340
3341 st_dst_reg dst = undef_dst;
3342 if (ir->return_deref) {
3343 ir->return_deref->accept(this);
3344 dst = st_dst_reg(this->result);
3345 dst.writemask = (1 << ir->return_deref->type->vector_elements) - 1;
3346 }
3347
3348 glsl_to_tgsi_instruction *inst;
3349
3350 if (ir->callee->intrinsic_id == ir_intrinsic_ssbo_load) {
3351 inst = emit_asm(ir, TGSI_OPCODE_LOAD, dst, off);
3352 if (dst.type == GLSL_TYPE_BOOL)
3353 emit_asm(ir, TGSI_OPCODE_USNE, dst, st_src_reg(dst), st_src_reg_for_int(0));
3354 } else if (ir->callee->intrinsic_id == ir_intrinsic_ssbo_store) {
3355 param = param->get_next();
3356 ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3357 val->accept(this);
3358
3359 param = param->get_next();
3360 ir_constant *write_mask = ((ir_instruction *)param)->as_constant();
3361 assert(write_mask);
3362 dst.writemask = write_mask->value.u[0];
3363
3364 dst.type = this->result.type;
3365 inst = emit_asm(ir, TGSI_OPCODE_STORE, dst, off, this->result);
3366 } else {
3367 param = param->get_next();
3368 ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3369 val->accept(this);
3370
3371 st_src_reg data = this->result, data2 = undef_src;
3372 unsigned opcode;
3373 switch (ir->callee->intrinsic_id) {
3374 case ir_intrinsic_ssbo_atomic_add:
3375 opcode = TGSI_OPCODE_ATOMUADD;
3376 break;
3377 case ir_intrinsic_ssbo_atomic_min:
3378 opcode = TGSI_OPCODE_ATOMIMIN;
3379 break;
3380 case ir_intrinsic_ssbo_atomic_max:
3381 opcode = TGSI_OPCODE_ATOMIMAX;
3382 break;
3383 case ir_intrinsic_ssbo_atomic_and:
3384 opcode = TGSI_OPCODE_ATOMAND;
3385 break;
3386 case ir_intrinsic_ssbo_atomic_or:
3387 opcode = TGSI_OPCODE_ATOMOR;
3388 break;
3389 case ir_intrinsic_ssbo_atomic_xor:
3390 opcode = TGSI_OPCODE_ATOMXOR;
3391 break;
3392 case ir_intrinsic_ssbo_atomic_exchange:
3393 opcode = TGSI_OPCODE_ATOMXCHG;
3394 break;
3395 case ir_intrinsic_ssbo_atomic_comp_swap:
3396 opcode = TGSI_OPCODE_ATOMCAS;
3397 param = param->get_next();
3398 val = ((ir_instruction *)param)->as_rvalue();
3399 val->accept(this);
3400 data2 = this->result;
3401 break;
3402 default:
3403 assert(!"Unexpected intrinsic");
3404 return;
3405 }
3406
3407 inst = emit_asm(ir, opcode, dst, off, data, data2);
3408 }
3409
3410 param = param->get_next();
3411 ir_constant *access = NULL;
3412 if (!param->is_tail_sentinel()) {
3413 access = ((ir_instruction *)param)->as_constant();
3414 assert(access);
3415 }
3416
3417 add_buffer_to_load_and_stores(inst, &buffer, &this->instructions, access);
3418 }
3419
3420 void
3421 glsl_to_tgsi_visitor::visit_membar_intrinsic(ir_call *ir)
3422 {
3423 switch (ir->callee->intrinsic_id) {
3424 case ir_intrinsic_memory_barrier:
3425 emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3426 st_src_reg_for_int(TGSI_MEMBAR_SHADER_BUFFER |
3427 TGSI_MEMBAR_ATOMIC_BUFFER |
3428 TGSI_MEMBAR_SHADER_IMAGE |
3429 TGSI_MEMBAR_SHARED));
3430 break;
3431 case ir_intrinsic_memory_barrier_atomic_counter:
3432 emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3433 st_src_reg_for_int(TGSI_MEMBAR_ATOMIC_BUFFER));
3434 break;
3435 case ir_intrinsic_memory_barrier_buffer:
3436 emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3437 st_src_reg_for_int(TGSI_MEMBAR_SHADER_BUFFER));
3438 break;
3439 case ir_intrinsic_memory_barrier_image:
3440 emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3441 st_src_reg_for_int(TGSI_MEMBAR_SHADER_IMAGE));
3442 break;
3443 case ir_intrinsic_memory_barrier_shared:
3444 emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3445 st_src_reg_for_int(TGSI_MEMBAR_SHARED));
3446 break;
3447 case ir_intrinsic_group_memory_barrier:
3448 emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3449 st_src_reg_for_int(TGSI_MEMBAR_SHADER_BUFFER |
3450 TGSI_MEMBAR_ATOMIC_BUFFER |
3451 TGSI_MEMBAR_SHADER_IMAGE |
3452 TGSI_MEMBAR_SHARED |
3453 TGSI_MEMBAR_THREAD_GROUP));
3454 break;
3455 default:
3456 assert(!"Unexpected memory barrier intrinsic");
3457 }
3458 }
3459
3460 void
3461 glsl_to_tgsi_visitor::visit_shared_intrinsic(ir_call *ir)
3462 {
3463 exec_node *param = ir->actual_parameters.get_head();
3464
3465 ir_rvalue *offset = ((ir_instruction *)param)->as_rvalue();
3466
3467 st_src_reg buffer(PROGRAM_MEMORY, 0, GLSL_TYPE_UINT);
3468
3469 /* Calculate the surface offset */
3470 offset->accept(this);
3471 st_src_reg off = this->result;
3472
3473 st_dst_reg dst = undef_dst;
3474 if (ir->return_deref) {
3475 ir->return_deref->accept(this);
3476 dst = st_dst_reg(this->result);
3477 dst.writemask = (1 << ir->return_deref->type->vector_elements) - 1;
3478 }
3479
3480 glsl_to_tgsi_instruction *inst;
3481
3482 if (ir->callee->intrinsic_id == ir_intrinsic_shared_load) {
3483 inst = emit_asm(ir, TGSI_OPCODE_LOAD, dst, off);
3484 inst->resource = buffer;
3485 } else if (ir->callee->intrinsic_id == ir_intrinsic_shared_store) {
3486 param = param->get_next();
3487 ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3488 val->accept(this);
3489
3490 param = param->get_next();
3491 ir_constant *write_mask = ((ir_instruction *)param)->as_constant();
3492 assert(write_mask);
3493 dst.writemask = write_mask->value.u[0];
3494
3495 dst.type = this->result.type;
3496 inst = emit_asm(ir, TGSI_OPCODE_STORE, dst, off, this->result);
3497 inst->resource = buffer;
3498 } else {
3499 param = param->get_next();
3500 ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3501 val->accept(this);
3502
3503 st_src_reg data = this->result, data2 = undef_src;
3504 unsigned opcode;
3505 switch (ir->callee->intrinsic_id) {
3506 case ir_intrinsic_shared_atomic_add:
3507 opcode = TGSI_OPCODE_ATOMUADD;
3508 break;
3509 case ir_intrinsic_shared_atomic_min:
3510 opcode = TGSI_OPCODE_ATOMIMIN;
3511 break;
3512 case ir_intrinsic_shared_atomic_max:
3513 opcode = TGSI_OPCODE_ATOMIMAX;
3514 break;
3515 case ir_intrinsic_shared_atomic_and:
3516 opcode = TGSI_OPCODE_ATOMAND;
3517 break;
3518 case ir_intrinsic_shared_atomic_or:
3519 opcode = TGSI_OPCODE_ATOMOR;
3520 break;
3521 case ir_intrinsic_shared_atomic_xor:
3522 opcode = TGSI_OPCODE_ATOMXOR;
3523 break;
3524 case ir_intrinsic_shared_atomic_exchange:
3525 opcode = TGSI_OPCODE_ATOMXCHG;
3526 break;
3527 case ir_intrinsic_shared_atomic_comp_swap:
3528 opcode = TGSI_OPCODE_ATOMCAS;
3529 param = param->get_next();
3530 val = ((ir_instruction *)param)->as_rvalue();
3531 val->accept(this);
3532 data2 = this->result;
3533 break;
3534 default:
3535 assert(!"Unexpected intrinsic");
3536 return;
3537 }
3538
3539 inst = emit_asm(ir, opcode, dst, off, data, data2);
3540 inst->resource = buffer;
3541 }
3542 }
3543
3544 static void
3545 get_image_qualifiers(ir_dereference *ir, const glsl_type **type,
3546 bool *memory_coherent, bool *memory_volatile,
3547 bool *memory_restrict, unsigned *image_format)
3548 {
3549
3550 switch (ir->ir_type) {
3551 case ir_type_dereference_record: {
3552 ir_dereference_record *deref_record = ir->as_dereference_record();
3553 const glsl_type *struct_type = deref_record->record->type;
3554 int fild_idx = deref_record->field_idx;
3555
3556 *type = struct_type->fields.structure[fild_idx].type->without_array();
3557 *memory_coherent =
3558 struct_type->fields.structure[fild_idx].memory_coherent;
3559 *memory_volatile =
3560 struct_type->fields.structure[fild_idx].memory_volatile;
3561 *memory_restrict =
3562 struct_type->fields.structure[fild_idx].memory_restrict;
3563 *image_format =
3564 struct_type->fields.structure[fild_idx].image_format;
3565 break;
3566 }
3567
3568 case ir_type_dereference_array: {
3569 ir_dereference_array *deref_arr = ir->as_dereference_array();
3570 get_image_qualifiers((ir_dereference *)deref_arr->array, type,
3571 memory_coherent, memory_volatile, memory_restrict,
3572 image_format);
3573 break;
3574 }
3575
3576 case ir_type_dereference_variable: {
3577 ir_variable *var = ir->variable_referenced();
3578
3579 *type = var->type->without_array();
3580 *memory_coherent = var->data.memory_coherent;
3581 *memory_volatile = var->data.memory_volatile;
3582 *memory_restrict = var->data.memory_restrict;
3583 *image_format = var->data.image_format;
3584 break;
3585 }
3586
3587 default:
3588 break;
3589 }
3590 }
3591
3592 void
3593 glsl_to_tgsi_visitor::visit_image_intrinsic(ir_call *ir)
3594 {
3595 exec_node *param = ir->actual_parameters.get_head();
3596
3597 ir_dereference *img = (ir_dereference *)param;
3598 const ir_variable *imgvar = img->variable_referenced();
3599 unsigned sampler_array_size = 1, sampler_base = 0;
3600 bool memory_coherent = false, memory_volatile = false, memory_restrict = false;
3601 unsigned image_format = 0;
3602 const glsl_type *type = NULL;
3603
3604 get_image_qualifiers(img, &type, &memory_coherent, &memory_volatile,
3605 &memory_restrict, &image_format);
3606
3607 st_src_reg reladdr;
3608 st_src_reg image(PROGRAM_IMAGE, 0, GLSL_TYPE_UINT);
3609 uint16_t index = 0;
3610 get_deref_offsets(img, &sampler_array_size, &sampler_base,
3611 &index, &reladdr, !imgvar->contains_bindless());
3612
3613 image.index = index;
3614 if (reladdr.file != PROGRAM_UNDEFINED) {
3615 image.reladdr = ralloc(mem_ctx, st_src_reg);
3616 *image.reladdr = reladdr;
3617 emit_arl(ir, sampler_reladdr, reladdr);
3618 }
3619
3620 st_dst_reg dst = undef_dst;
3621 if (ir->return_deref) {
3622 ir->return_deref->accept(this);
3623 dst = st_dst_reg(this->result);
3624 dst.writemask = (1 << ir->return_deref->type->vector_elements) - 1;
3625 }
3626
3627 glsl_to_tgsi_instruction *inst;
3628
3629 st_src_reg bindless;
3630 if (imgvar->contains_bindless()) {
3631 img->accept(this);
3632 bindless = this->result;
3633 }
3634
3635 if (ir->callee->intrinsic_id == ir_intrinsic_image_size) {
3636 dst.writemask = WRITEMASK_XYZ;
3637 inst = emit_asm(ir, TGSI_OPCODE_RESQ, dst);
3638 } else if (ir->callee->intrinsic_id == ir_intrinsic_image_samples) {
3639 st_src_reg res = get_temp(glsl_type::ivec4_type);
3640 st_dst_reg dstres = st_dst_reg(res);
3641 dstres.writemask = WRITEMASK_W;
3642 inst = emit_asm(ir, TGSI_OPCODE_RESQ, dstres);
3643 res.swizzle = SWIZZLE_WWWW;
3644 emit_asm(ir, TGSI_OPCODE_MOV, dst, res);
3645 } else {
3646 st_src_reg arg1 = undef_src, arg2 = undef_src;
3647 st_src_reg coord;
3648 st_dst_reg coord_dst;
3649 coord = get_temp(glsl_type::ivec4_type);
3650 coord_dst = st_dst_reg(coord);
3651 coord_dst.writemask = (1 << type->coordinate_components()) - 1;
3652 param = param->get_next();
3653 ((ir_dereference *)param)->accept(this);
3654 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
3655 coord.swizzle = SWIZZLE_XXXX;
3656 switch (type->coordinate_components()) {
3657 case 4: assert(!"unexpected coord count");
3658 /* fallthrough */
3659 case 3: coord.swizzle |= SWIZZLE_Z << 6;
3660 /* fallthrough */
3661 case 2: coord.swizzle |= SWIZZLE_Y << 3;
3662 }
3663
3664 if (type->sampler_dimensionality == GLSL_SAMPLER_DIM_MS) {
3665 param = param->get_next();
3666 ((ir_dereference *)param)->accept(this);
3667 st_src_reg sample = this->result;
3668 sample.swizzle = SWIZZLE_XXXX;
3669 coord_dst.writemask = WRITEMASK_W;
3670 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, sample);
3671 coord.swizzle |= SWIZZLE_W << 9;
3672 }
3673
3674 param = param->get_next();
3675 if (!param->is_tail_sentinel()) {
3676 ((ir_dereference *)param)->accept(this);
3677 arg1 = this->result;
3678 param = param->get_next();
3679 }
3680
3681 if (!param->is_tail_sentinel()) {
3682 ((ir_dereference *)param)->accept(this);
3683 arg2 = this->result;
3684 param = param->get_next();
3685 }
3686
3687 assert(param->is_tail_sentinel());
3688
3689 unsigned opcode;
3690 switch (ir->callee->intrinsic_id) {
3691 case ir_intrinsic_image_load:
3692 opcode = TGSI_OPCODE_LOAD;
3693 break;
3694 case ir_intrinsic_image_store:
3695 opcode = TGSI_OPCODE_STORE;
3696 break;
3697 case ir_intrinsic_image_atomic_add:
3698 opcode = TGSI_OPCODE_ATOMUADD;
3699 break;
3700 case ir_intrinsic_image_atomic_min:
3701 opcode = TGSI_OPCODE_ATOMIMIN;
3702 break;
3703 case ir_intrinsic_image_atomic_max:
3704 opcode = TGSI_OPCODE_ATOMIMAX;
3705 break;
3706 case ir_intrinsic_image_atomic_and:
3707 opcode = TGSI_OPCODE_ATOMAND;
3708 break;
3709 case ir_intrinsic_image_atomic_or:
3710 opcode = TGSI_OPCODE_ATOMOR;
3711 break;
3712 case ir_intrinsic_image_atomic_xor:
3713 opcode = TGSI_OPCODE_ATOMXOR;
3714 break;
3715 case ir_intrinsic_image_atomic_exchange:
3716 opcode = TGSI_OPCODE_ATOMXCHG;
3717 break;
3718 case ir_intrinsic_image_atomic_comp_swap:
3719 opcode = TGSI_OPCODE_ATOMCAS;
3720 break;
3721 default:
3722 assert(!"Unexpected intrinsic");
3723 return;
3724 }
3725
3726 inst = emit_asm(ir, opcode, dst, coord, arg1, arg2);
3727 if (opcode == TGSI_OPCODE_STORE)
3728 inst->dst[0].writemask = WRITEMASK_XYZW;
3729 }
3730
3731 if (imgvar->contains_bindless()) {
3732 inst->resource = bindless;
3733 inst->resource.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y,
3734 SWIZZLE_X, SWIZZLE_Y);
3735 } else {
3736 inst->resource = image;
3737 inst->sampler_array_size = sampler_array_size;
3738 inst->sampler_base = sampler_base;
3739 }
3740
3741 inst->tex_target = type->sampler_index();
3742 inst->image_format = st_mesa_format_to_pipe_format(st_context(ctx),
3743 _mesa_get_shader_image_format(image_format));
3744
3745 if (memory_coherent)
3746 inst->buffer_access |= TGSI_MEMORY_COHERENT;
3747 if (memory_restrict)
3748 inst->buffer_access |= TGSI_MEMORY_RESTRICT;
3749 if (memory_volatile)
3750 inst->buffer_access |= TGSI_MEMORY_VOLATILE;
3751 }
3752
3753 void
3754 glsl_to_tgsi_visitor::visit_generic_intrinsic(ir_call *ir, unsigned op)
3755 {
3756 ir->return_deref->accept(this);
3757 st_dst_reg dst = st_dst_reg(this->result);
3758
3759 dst.writemask = u_bit_consecutive(0, ir->return_deref->var->type->vector_elements);
3760
3761 st_src_reg src[4] = { undef_src, undef_src, undef_src, undef_src };
3762 unsigned num_src = 0;
3763 foreach_in_list(ir_rvalue, param, &ir->actual_parameters) {
3764 assert(num_src < ARRAY_SIZE(src));
3765
3766 this->result.file = PROGRAM_UNDEFINED;
3767 param->accept(this);
3768 assert(this->result.file != PROGRAM_UNDEFINED);
3769
3770 src[num_src] = this->result;
3771 num_src++;
3772 }
3773
3774 emit_asm(ir, op, dst, src[0], src[1], src[2], src[3]);
3775 }
3776
3777 void
3778 glsl_to_tgsi_visitor::visit(ir_call *ir)
3779 {
3780 ir_function_signature *sig = ir->callee;
3781
3782 /* Filter out intrinsics */
3783 switch (sig->intrinsic_id) {
3784 case ir_intrinsic_atomic_counter_read:
3785 case ir_intrinsic_atomic_counter_increment:
3786 case ir_intrinsic_atomic_counter_predecrement:
3787 case ir_intrinsic_atomic_counter_add:
3788 case ir_intrinsic_atomic_counter_min:
3789 case ir_intrinsic_atomic_counter_max:
3790 case ir_intrinsic_atomic_counter_and:
3791 case ir_intrinsic_atomic_counter_or:
3792 case ir_intrinsic_atomic_counter_xor:
3793 case ir_intrinsic_atomic_counter_exchange:
3794 case ir_intrinsic_atomic_counter_comp_swap:
3795 visit_atomic_counter_intrinsic(ir);
3796 return;
3797
3798 case ir_intrinsic_ssbo_load:
3799 case ir_intrinsic_ssbo_store:
3800 case ir_intrinsic_ssbo_atomic_add:
3801 case ir_intrinsic_ssbo_atomic_min:
3802 case ir_intrinsic_ssbo_atomic_max:
3803 case ir_intrinsic_ssbo_atomic_and:
3804 case ir_intrinsic_ssbo_atomic_or:
3805 case ir_intrinsic_ssbo_atomic_xor:
3806 case ir_intrinsic_ssbo_atomic_exchange:
3807 case ir_intrinsic_ssbo_atomic_comp_swap:
3808 visit_ssbo_intrinsic(ir);
3809 return;
3810
3811 case ir_intrinsic_memory_barrier:
3812 case ir_intrinsic_memory_barrier_atomic_counter:
3813 case ir_intrinsic_memory_barrier_buffer:
3814 case ir_intrinsic_memory_barrier_image:
3815 case ir_intrinsic_memory_barrier_shared:
3816 case ir_intrinsic_group_memory_barrier:
3817 visit_membar_intrinsic(ir);
3818 return;
3819
3820 case ir_intrinsic_shared_load:
3821 case ir_intrinsic_shared_store:
3822 case ir_intrinsic_shared_atomic_add:
3823 case ir_intrinsic_shared_atomic_min:
3824 case ir_intrinsic_shared_atomic_max:
3825 case ir_intrinsic_shared_atomic_and:
3826 case ir_intrinsic_shared_atomic_or:
3827 case ir_intrinsic_shared_atomic_xor:
3828 case ir_intrinsic_shared_atomic_exchange:
3829 case ir_intrinsic_shared_atomic_comp_swap:
3830 visit_shared_intrinsic(ir);
3831 return;
3832
3833 case ir_intrinsic_image_load:
3834 case ir_intrinsic_image_store:
3835 case ir_intrinsic_image_atomic_add:
3836 case ir_intrinsic_image_atomic_min:
3837 case ir_intrinsic_image_atomic_max:
3838 case ir_intrinsic_image_atomic_and:
3839 case ir_intrinsic_image_atomic_or:
3840 case ir_intrinsic_image_atomic_xor:
3841 case ir_intrinsic_image_atomic_exchange:
3842 case ir_intrinsic_image_atomic_comp_swap:
3843 case ir_intrinsic_image_size:
3844 case ir_intrinsic_image_samples:
3845 visit_image_intrinsic(ir);
3846 return;
3847
3848 case ir_intrinsic_shader_clock:
3849 visit_generic_intrinsic(ir, TGSI_OPCODE_CLOCK);
3850 return;
3851
3852 case ir_intrinsic_vote_all:
3853 visit_generic_intrinsic(ir, TGSI_OPCODE_VOTE_ALL);
3854 return;
3855 case ir_intrinsic_vote_any:
3856 visit_generic_intrinsic(ir, TGSI_OPCODE_VOTE_ANY);
3857 return;
3858 case ir_intrinsic_vote_eq:
3859 visit_generic_intrinsic(ir, TGSI_OPCODE_VOTE_EQ);
3860 return;
3861 case ir_intrinsic_ballot:
3862 visit_generic_intrinsic(ir, TGSI_OPCODE_BALLOT);
3863 return;
3864 case ir_intrinsic_read_first_invocation:
3865 visit_generic_intrinsic(ir, TGSI_OPCODE_READ_FIRST);
3866 return;
3867 case ir_intrinsic_read_invocation:
3868 visit_generic_intrinsic(ir, TGSI_OPCODE_READ_INVOC);
3869 return;
3870
3871 case ir_intrinsic_invalid:
3872 case ir_intrinsic_generic_load:
3873 case ir_intrinsic_generic_store:
3874 case ir_intrinsic_generic_atomic_add:
3875 case ir_intrinsic_generic_atomic_and:
3876 case ir_intrinsic_generic_atomic_or:
3877 case ir_intrinsic_generic_atomic_xor:
3878 case ir_intrinsic_generic_atomic_min:
3879 case ir_intrinsic_generic_atomic_max:
3880 case ir_intrinsic_generic_atomic_exchange:
3881 case ir_intrinsic_generic_atomic_comp_swap:
3882 unreachable("Invalid intrinsic");
3883 }
3884 }
3885
3886 void
3887 glsl_to_tgsi_visitor::calc_deref_offsets(ir_dereference *tail,
3888 unsigned *array_elements,
3889 uint16_t *index,
3890 st_src_reg *indirect,
3891 unsigned *location)
3892 {
3893 switch (tail->ir_type) {
3894 case ir_type_dereference_record: {
3895 ir_dereference_record *deref_record = tail->as_dereference_record();
3896 const glsl_type *struct_type = deref_record->record->type;
3897 int field_index = deref_record->field_idx;
3898
3899 calc_deref_offsets(deref_record->record->as_dereference(), array_elements, index, indirect, location);
3900
3901 assert(field_index >= 0);
3902 *location += struct_type->record_location_offset(field_index);
3903 break;
3904 }
3905
3906 case ir_type_dereference_array: {
3907 ir_dereference_array *deref_arr = tail->as_dereference_array();
3908
3909 void *mem_ctx = ralloc_parent(deref_arr);
3910 ir_constant *array_index =
3911 deref_arr->array_index->constant_expression_value(mem_ctx);
3912
3913 if (!array_index) {
3914 st_src_reg temp_reg;
3915 st_dst_reg temp_dst;
3916
3917 temp_reg = get_temp(glsl_type::uint_type);
3918 temp_dst = st_dst_reg(temp_reg);
3919 temp_dst.writemask = 1;
3920
3921 deref_arr->array_index->accept(this);
3922 if (*array_elements != 1)
3923 emit_asm(NULL, TGSI_OPCODE_MUL, temp_dst, this->result, st_src_reg_for_int(*array_elements));
3924 else
3925 emit_asm(NULL, TGSI_OPCODE_MOV, temp_dst, this->result);
3926
3927 if (indirect->file == PROGRAM_UNDEFINED)
3928 *indirect = temp_reg;
3929 else {
3930 temp_dst = st_dst_reg(*indirect);
3931 temp_dst.writemask = 1;
3932 emit_asm(NULL, TGSI_OPCODE_ADD, temp_dst, *indirect, temp_reg);
3933 }
3934 } else
3935 *index += array_index->value.u[0] * *array_elements;
3936
3937 *array_elements *= deref_arr->array->type->length;
3938
3939 calc_deref_offsets(deref_arr->array->as_dereference(), array_elements, index, indirect, location);
3940 break;
3941 }
3942 default:
3943 break;
3944 }
3945 }
3946
3947 void
3948 glsl_to_tgsi_visitor::get_deref_offsets(ir_dereference *ir,
3949 unsigned *array_size,
3950 unsigned *base,
3951 uint16_t *index,
3952 st_src_reg *reladdr,
3953 bool opaque)
3954 {
3955 GLuint shader = _mesa_program_enum_to_shader_stage(this->prog->Target);
3956 unsigned location = 0;
3957 ir_variable *var = ir->variable_referenced();
3958
3959 memset(reladdr, 0, sizeof(*reladdr));
3960 reladdr->file = PROGRAM_UNDEFINED;
3961
3962 *base = 0;
3963 *array_size = 1;
3964
3965 assert(var);
3966 location = var->data.location;
3967 calc_deref_offsets(ir, array_size, index, reladdr, &location);
3968
3969 /*
3970 * If we end up with no indirect then adjust the base to the index,
3971 * and set the array size to 1.
3972 */
3973 if (reladdr->file == PROGRAM_UNDEFINED) {
3974 *base = *index;
3975 *array_size = 1;
3976 }
3977
3978 if (opaque) {
3979 assert(location != 0xffffffff);
3980 *base += this->shader_program->data->UniformStorage[location].opaque[shader].index;
3981 *index += this->shader_program->data->UniformStorage[location].opaque[shader].index;
3982 }
3983 }
3984
3985 st_src_reg
3986 glsl_to_tgsi_visitor::canonicalize_gather_offset(st_src_reg offset)
3987 {
3988 if (offset.reladdr || offset.reladdr2) {
3989 st_src_reg tmp = get_temp(glsl_type::ivec2_type);
3990 st_dst_reg tmp_dst = st_dst_reg(tmp);
3991 tmp_dst.writemask = WRITEMASK_XY;
3992 emit_asm(NULL, TGSI_OPCODE_MOV, tmp_dst, offset);
3993 return tmp;
3994 }
3995
3996 return offset;
3997 }
3998
3999 void
4000 glsl_to_tgsi_visitor::visit(ir_texture *ir)
4001 {
4002 st_src_reg result_src, coord, cube_sc, lod_info, projector, dx, dy;
4003 st_src_reg offset[MAX_GLSL_TEXTURE_OFFSET], sample_index, component;
4004 st_src_reg levels_src, reladdr;
4005 st_dst_reg result_dst, coord_dst, cube_sc_dst;
4006 glsl_to_tgsi_instruction *inst = NULL;
4007 unsigned opcode = TGSI_OPCODE_NOP;
4008 const glsl_type *sampler_type = ir->sampler->type;
4009 unsigned sampler_array_size = 1, sampler_base = 0;
4010 bool is_cube_array = false, is_cube_shadow = false;
4011 ir_variable *var = ir->sampler->variable_referenced();
4012 unsigned i;
4013
4014 /* if we are a cube array sampler or a cube shadow */
4015 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE) {
4016 is_cube_array = sampler_type->sampler_array;
4017 is_cube_shadow = sampler_type->sampler_shadow;
4018 }
4019
4020 if (ir->coordinate) {
4021 ir->coordinate->accept(this);
4022
4023 /* Put our coords in a temp. We'll need to modify them for shadow,
4024 * projection, or LOD, so the only case we'd use it as-is is if
4025 * we're doing plain old texturing. The optimization passes on
4026 * glsl_to_tgsi_visitor should handle cleaning up our mess in that case.
4027 */
4028 coord = get_temp(glsl_type::vec4_type);
4029 coord_dst = st_dst_reg(coord);
4030 coord_dst.writemask = (1 << ir->coordinate->type->vector_elements) - 1;
4031 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
4032 }
4033
4034 if (ir->projector) {
4035 ir->projector->accept(this);
4036 projector = this->result;
4037 }
4038
4039 /* Storage for our result. Ideally for an assignment we'd be using
4040 * the actual storage for the result here, instead.
4041 */
4042 result_src = get_temp(ir->type);
4043 result_dst = st_dst_reg(result_src);
4044 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
4045
4046 switch (ir->op) {
4047 case ir_tex:
4048 opcode = (is_cube_array && ir->shadow_comparator) ? TGSI_OPCODE_TEX2 : TGSI_OPCODE_TEX;
4049 if (ir->offset) {
4050 ir->offset->accept(this);
4051 offset[0] = this->result;
4052 }
4053 break;
4054 case ir_txb:
4055 if (is_cube_array || is_cube_shadow) {
4056 opcode = TGSI_OPCODE_TXB2;
4057 }
4058 else {
4059 opcode = TGSI_OPCODE_TXB;
4060 }
4061 ir->lod_info.bias->accept(this);
4062 lod_info = this->result;
4063 if (ir->offset) {
4064 ir->offset->accept(this);
4065 offset[0] = this->result;
4066 }
4067 break;
4068 case ir_txl:
4069 if (this->has_tex_txf_lz && ir->lod_info.lod->is_zero()) {
4070 opcode = TGSI_OPCODE_TEX_LZ;
4071 } else {
4072 opcode = is_cube_array ? TGSI_OPCODE_TXL2 : TGSI_OPCODE_TXL;
4073 ir->lod_info.lod->accept(this);
4074 lod_info = this->result;
4075 }
4076 if (ir->offset) {
4077 ir->offset->accept(this);
4078 offset[0] = this->result;
4079 }
4080 break;
4081 case ir_txd:
4082 opcode = TGSI_OPCODE_TXD;
4083 ir->lod_info.grad.dPdx->accept(this);
4084 dx = this->result;
4085 ir->lod_info.grad.dPdy->accept(this);
4086 dy = this->result;
4087 if (ir->offset) {
4088 ir->offset->accept(this);
4089 offset[0] = this->result;
4090 }
4091 break;
4092 case ir_txs:
4093 opcode = TGSI_OPCODE_TXQ;
4094 ir->lod_info.lod->accept(this);
4095 lod_info = this->result;
4096 break;
4097 case ir_query_levels:
4098 opcode = TGSI_OPCODE_TXQ;
4099 lod_info = undef_src;
4100 levels_src = get_temp(ir->type);
4101 break;
4102 case ir_txf:
4103 if (this->has_tex_txf_lz && ir->lod_info.lod->is_zero()) {
4104 opcode = TGSI_OPCODE_TXF_LZ;
4105 } else {
4106 opcode = TGSI_OPCODE_TXF;
4107 ir->lod_info.lod->accept(this);
4108 lod_info = this->result;
4109 }
4110 if (ir->offset) {
4111 ir->offset->accept(this);
4112 offset[0] = this->result;
4113 }
4114 break;
4115 case ir_txf_ms:
4116 opcode = TGSI_OPCODE_TXF;
4117 ir->lod_info.sample_index->accept(this);
4118 sample_index = this->result;
4119 break;
4120 case ir_tg4:
4121 opcode = TGSI_OPCODE_TG4;
4122 ir->lod_info.component->accept(this);
4123 component = this->result;
4124 if (ir->offset) {
4125 ir->offset->accept(this);
4126 if (ir->offset->type->is_array()) {
4127 const glsl_type *elt_type = ir->offset->type->fields.array;
4128 for (i = 0; i < ir->offset->type->length; i++) {
4129 offset[i] = this->result;
4130 offset[i].index += i * type_size(elt_type);
4131 offset[i].type = elt_type->base_type;
4132 offset[i].swizzle = swizzle_for_size(elt_type->vector_elements);
4133 offset[i] = canonicalize_gather_offset(offset[i]);
4134 }
4135 } else {
4136 offset[0] = canonicalize_gather_offset(this->result);
4137 }
4138 }
4139 break;
4140 case ir_lod:
4141 opcode = TGSI_OPCODE_LODQ;
4142 break;
4143 case ir_texture_samples:
4144 opcode = TGSI_OPCODE_TXQS;
4145 break;
4146 case ir_samples_identical:
4147 unreachable("Unexpected ir_samples_identical opcode");
4148 }
4149
4150 if (ir->projector) {
4151 if (opcode == TGSI_OPCODE_TEX) {
4152 /* Slot the projector in as the last component of the coord. */
4153 coord_dst.writemask = WRITEMASK_W;
4154 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, projector);
4155 coord_dst.writemask = WRITEMASK_XYZW;
4156 opcode = TGSI_OPCODE_TXP;
4157 } else {
4158 st_src_reg coord_w = coord;
4159 coord_w.swizzle = SWIZZLE_WWWW;
4160
4161 /* For the other TEX opcodes there's no projective version
4162 * since the last slot is taken up by LOD info. Do the
4163 * projective divide now.
4164 */
4165 coord_dst.writemask = WRITEMASK_W;
4166 emit_asm(ir, TGSI_OPCODE_RCP, coord_dst, projector);
4167
4168 /* In the case where we have to project the coordinates "by hand,"
4169 * the shadow comparator value must also be projected.
4170 */
4171 st_src_reg tmp_src = coord;
4172 if (ir->shadow_comparator) {
4173 /* Slot the shadow value in as the second to last component of the
4174 * coord.
4175 */
4176 ir->shadow_comparator->accept(this);
4177
4178 tmp_src = get_temp(glsl_type::vec4_type);
4179 st_dst_reg tmp_dst = st_dst_reg(tmp_src);
4180
4181 /* Projective division not allowed for array samplers. */
4182 assert(!sampler_type->sampler_array);
4183
4184 tmp_dst.writemask = WRITEMASK_Z;
4185 emit_asm(ir, TGSI_OPCODE_MOV, tmp_dst, this->result);
4186
4187 tmp_dst.writemask = WRITEMASK_XY;
4188 emit_asm(ir, TGSI_OPCODE_MOV, tmp_dst, coord);
4189 }
4190
4191 coord_dst.writemask = WRITEMASK_XYZ;
4192 emit_asm(ir, TGSI_OPCODE_MUL, coord_dst, tmp_src, coord_w);
4193
4194 coord_dst.writemask = WRITEMASK_XYZW;
4195 coord.swizzle = SWIZZLE_XYZW;
4196 }
4197 }
4198
4199 /* If projection is done and the opcode is not TGSI_OPCODE_TXP, then the shadow
4200 * comparator was put in the correct place (and projected) by the code,
4201 * above, that handles by-hand projection.
4202 */
4203 if (ir->shadow_comparator && (!ir->projector || opcode == TGSI_OPCODE_TXP)) {
4204 /* Slot the shadow value in as the second to last component of the
4205 * coord.
4206 */
4207 ir->shadow_comparator->accept(this);
4208
4209 if (is_cube_array) {
4210 cube_sc = get_temp(glsl_type::float_type);
4211 cube_sc_dst = st_dst_reg(cube_sc);
4212 cube_sc_dst.writemask = WRITEMASK_X;
4213 emit_asm(ir, TGSI_OPCODE_MOV, cube_sc_dst, this->result);
4214 cube_sc_dst.writemask = WRITEMASK_X;
4215 }
4216 else {
4217 if ((sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
4218 sampler_type->sampler_array) ||
4219 sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE) {
4220 coord_dst.writemask = WRITEMASK_W;
4221 } else {
4222 coord_dst.writemask = WRITEMASK_Z;
4223 }
4224 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
4225 coord_dst.writemask = WRITEMASK_XYZW;
4226 }
4227 }
4228
4229 if (ir->op == ir_txf_ms) {
4230 coord_dst.writemask = WRITEMASK_W;
4231 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, sample_index);
4232 coord_dst.writemask = WRITEMASK_XYZW;
4233 } else if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXB ||
4234 opcode == TGSI_OPCODE_TXF) {
4235 /* TGSI stores LOD or LOD bias in the last channel of the coords. */
4236 coord_dst.writemask = WRITEMASK_W;
4237 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, lod_info);
4238 coord_dst.writemask = WRITEMASK_XYZW;
4239 }
4240
4241 st_src_reg sampler(PROGRAM_SAMPLER, 0, GLSL_TYPE_UINT);
4242
4243 uint16_t index = 0;
4244 get_deref_offsets(ir->sampler, &sampler_array_size, &sampler_base,
4245 &index, &reladdr, !var->contains_bindless());
4246
4247 sampler.index = index;
4248 if (reladdr.file != PROGRAM_UNDEFINED) {
4249 sampler.reladdr = ralloc(mem_ctx, st_src_reg);
4250 *sampler.reladdr = reladdr;
4251 emit_arl(ir, sampler_reladdr, reladdr);
4252 }
4253
4254 st_src_reg bindless;
4255 if (var->contains_bindless()) {
4256 ir->sampler->accept(this);
4257 bindless = this->result;
4258 }
4259
4260 if (opcode == TGSI_OPCODE_TXD)
4261 inst = emit_asm(ir, opcode, result_dst, coord, dx, dy);
4262 else if (opcode == TGSI_OPCODE_TXQ) {
4263 if (ir->op == ir_query_levels) {
4264 /* the level is stored in W */
4265 inst = emit_asm(ir, opcode, st_dst_reg(levels_src), lod_info);
4266 result_dst.writemask = WRITEMASK_X;
4267 levels_src.swizzle = SWIZZLE_WWWW;
4268 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, levels_src);
4269 } else
4270 inst = emit_asm(ir, opcode, result_dst, lod_info);
4271 } else if (opcode == TGSI_OPCODE_TXQS) {
4272 inst = emit_asm(ir, opcode, result_dst);
4273 } else if (opcode == TGSI_OPCODE_TXL2 || opcode == TGSI_OPCODE_TXB2) {
4274 inst = emit_asm(ir, opcode, result_dst, coord, lod_info);
4275 } else if (opcode == TGSI_OPCODE_TEX2) {
4276 inst = emit_asm(ir, opcode, result_dst, coord, cube_sc);
4277 } else if (opcode == TGSI_OPCODE_TG4) {
4278 if (is_cube_array && ir->shadow_comparator) {
4279 inst = emit_asm(ir, opcode, result_dst, coord, cube_sc);
4280 } else {
4281 inst = emit_asm(ir, opcode, result_dst, coord, component);
4282 }
4283 } else
4284 inst = emit_asm(ir, opcode, result_dst, coord);
4285
4286 if (ir->shadow_comparator)
4287 inst->tex_shadow = GL_TRUE;
4288
4289 if (var->contains_bindless()) {
4290 inst->resource = bindless;
4291 inst->resource.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y,
4292 SWIZZLE_X, SWIZZLE_Y);
4293 } else {
4294 inst->resource = sampler;
4295 inst->sampler_array_size = sampler_array_size;
4296 inst->sampler_base = sampler_base;
4297 }
4298
4299 if (ir->offset) {
4300 if (!inst->tex_offsets)
4301 inst->tex_offsets = rzalloc_array(inst, st_src_reg, MAX_GLSL_TEXTURE_OFFSET);
4302
4303 for (i = 0; i < MAX_GLSL_TEXTURE_OFFSET && offset[i].file != PROGRAM_UNDEFINED; i++)
4304 inst->tex_offsets[i] = offset[i];
4305 inst->tex_offset_num_offset = i;
4306 }
4307
4308 inst->tex_target = sampler_type->sampler_index();
4309 inst->tex_type = ir->type->base_type;
4310
4311 this->result = result_src;
4312 }
4313
4314 void
4315 glsl_to_tgsi_visitor::visit(ir_return *ir)
4316 {
4317 assert(!ir->get_value());
4318
4319 emit_asm(ir, TGSI_OPCODE_RET);
4320 }
4321
4322 void
4323 glsl_to_tgsi_visitor::visit(ir_discard *ir)
4324 {
4325 if (ir->condition) {
4326 ir->condition->accept(this);
4327 st_src_reg condition = this->result;
4328
4329 /* Convert the bool condition to a float so we can negate. */
4330 if (native_integers) {
4331 st_src_reg temp = get_temp(ir->condition->type);
4332 emit_asm(ir, TGSI_OPCODE_AND, st_dst_reg(temp),
4333 condition, st_src_reg_for_float(1.0));
4334 condition = temp;
4335 }
4336
4337 condition.negate = ~condition.negate;
4338 emit_asm(ir, TGSI_OPCODE_KILL_IF, undef_dst, condition);
4339 } else {
4340 /* unconditional kil */
4341 emit_asm(ir, TGSI_OPCODE_KILL);
4342 }
4343 }
4344
4345 void
4346 glsl_to_tgsi_visitor::visit(ir_if *ir)
4347 {
4348 unsigned if_opcode;
4349 glsl_to_tgsi_instruction *if_inst;
4350
4351 ir->condition->accept(this);
4352 assert(this->result.file != PROGRAM_UNDEFINED);
4353
4354 if_opcode = native_integers ? TGSI_OPCODE_UIF : TGSI_OPCODE_IF;
4355
4356 if_inst = emit_asm(ir->condition, if_opcode, undef_dst, this->result);
4357
4358 this->instructions.push_tail(if_inst);
4359
4360 visit_exec_list(&ir->then_instructions, this);
4361
4362 if (!ir->else_instructions.is_empty()) {
4363 emit_asm(ir->condition, TGSI_OPCODE_ELSE);
4364 visit_exec_list(&ir->else_instructions, this);
4365 }
4366
4367 if_inst = emit_asm(ir->condition, TGSI_OPCODE_ENDIF);
4368 }
4369
4370
4371 void
4372 glsl_to_tgsi_visitor::visit(ir_emit_vertex *ir)
4373 {
4374 assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
4375
4376 ir->stream->accept(this);
4377 emit_asm(ir, TGSI_OPCODE_EMIT, undef_dst, this->result);
4378 }
4379
4380 void
4381 glsl_to_tgsi_visitor::visit(ir_end_primitive *ir)
4382 {
4383 assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
4384
4385 ir->stream->accept(this);
4386 emit_asm(ir, TGSI_OPCODE_ENDPRIM, undef_dst, this->result);
4387 }
4388
4389 void
4390 glsl_to_tgsi_visitor::visit(ir_barrier *ir)
4391 {
4392 assert(this->prog->Target == GL_TESS_CONTROL_PROGRAM_NV ||
4393 this->prog->Target == GL_COMPUTE_PROGRAM_NV);
4394
4395 emit_asm(ir, TGSI_OPCODE_BARRIER);
4396 }
4397
4398 glsl_to_tgsi_visitor::glsl_to_tgsi_visitor()
4399 {
4400 STATIC_ASSERT(sizeof(samplers_used) * 8 >= PIPE_MAX_SAMPLERS);
4401
4402 result.file = PROGRAM_UNDEFINED;
4403 next_temp = 1;
4404 array_sizes = NULL;
4405 max_num_arrays = 0;
4406 next_array = 0;
4407 num_inputs = 0;
4408 num_outputs = 0;
4409 num_input_arrays = 0;
4410 num_output_arrays = 0;
4411 num_immediates = 0;
4412 num_address_regs = 0;
4413 samplers_used = 0;
4414 images_used = 0;
4415 indirect_addr_consts = false;
4416 wpos_transform_const = -1;
4417 native_integers = false;
4418 mem_ctx = ralloc_context(NULL);
4419 ctx = NULL;
4420 prog = NULL;
4421 precise = 0;
4422 shader_program = NULL;
4423 shader = NULL;
4424 options = NULL;
4425 have_sqrt = false;
4426 have_fma = false;
4427 use_shared_memory = false;
4428 has_tex_txf_lz = false;
4429 variables = NULL;
4430 }
4431
4432 static void var_destroy(struct hash_entry *entry)
4433 {
4434 variable_storage *storage = (variable_storage *)entry->data;
4435
4436 delete storage;
4437 }
4438
4439 glsl_to_tgsi_visitor::~glsl_to_tgsi_visitor()
4440 {
4441 _mesa_hash_table_destroy(variables, var_destroy);
4442 free(array_sizes);
4443 ralloc_free(mem_ctx);
4444 }
4445
4446 extern "C" void free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor *v)
4447 {
4448 delete v;
4449 }
4450
4451
4452 /**
4453 * Count resources used by the given gpu program (number of texture
4454 * samplers, etc).
4455 */
4456 static void
4457 count_resources(glsl_to_tgsi_visitor *v, gl_program *prog)
4458 {
4459 v->samplers_used = 0;
4460 v->images_used = 0;
4461 prog->info.textures_used_by_txf = 0;
4462
4463 foreach_in_list(glsl_to_tgsi_instruction, inst, &v->instructions) {
4464 if (inst->info->is_tex) {
4465 for (int i = 0; i < inst->sampler_array_size; i++) {
4466 unsigned idx = inst->sampler_base + i;
4467 v->samplers_used |= 1u << idx;
4468
4469 debug_assert(idx < (int)ARRAY_SIZE(v->sampler_types));
4470 v->sampler_types[idx] = inst->tex_type;
4471 v->sampler_targets[idx] =
4472 st_translate_texture_target(inst->tex_target, inst->tex_shadow);
4473
4474 if (inst->op == TGSI_OPCODE_TXF || inst->op == TGSI_OPCODE_TXF_LZ) {
4475 prog->info.textures_used_by_txf |= 1u << idx;
4476 }
4477 }
4478 }
4479
4480 if (inst->tex_target == TEXTURE_EXTERNAL_INDEX)
4481 prog->ExternalSamplersUsed |= 1 << inst->resource.index;
4482
4483 if (inst->resource.file != PROGRAM_UNDEFINED && (
4484 is_resource_instruction(inst->op) ||
4485 inst->op == TGSI_OPCODE_STORE)) {
4486 if (inst->resource.file == PROGRAM_MEMORY) {
4487 v->use_shared_memory = true;
4488 } else if (inst->resource.file == PROGRAM_IMAGE) {
4489 for (int i = 0; i < inst->sampler_array_size; i++) {
4490 unsigned idx = inst->sampler_base + i;
4491 v->images_used |= 1 << idx;
4492 v->image_targets[idx] =
4493 st_translate_texture_target(inst->tex_target, false);
4494 v->image_formats[idx] = inst->image_format;
4495 }
4496 }
4497 }
4498 }
4499 prog->SamplersUsed = v->samplers_used;
4500
4501 if (v->shader_program != NULL)
4502 _mesa_update_shader_textures_used(v->shader_program, prog);
4503 }
4504
4505 /**
4506 * Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
4507 * are read from the given src in this instruction
4508 */
4509 static int
4510 get_src_arg_mask(st_dst_reg dst, st_src_reg src)
4511 {
4512 int read_mask = 0, comp;
4513
4514 /* Now, given the src swizzle and the written channels, find which
4515 * components are actually read
4516 */
4517 for (comp = 0; comp < 4; ++comp) {
4518 const unsigned coord = GET_SWZ(src.swizzle, comp);
4519 assert(coord < 4);
4520 if (dst.writemask & (1 << comp) && coord <= SWIZZLE_W)
4521 read_mask |= 1 << coord;
4522 }
4523
4524 return read_mask;
4525 }
4526
4527 /**
4528 * This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
4529 * instruction is the first instruction to write to register T0. There are
4530 * several lowering passes done in GLSL IR (e.g. branches and
4531 * relative addressing) that create a large number of conditional assignments
4532 * that ir_to_mesa converts to CMP instructions like the one mentioned above.
4533 *
4534 * Here is why this conversion is safe:
4535 * CMP T0, T1 T2 T0 can be expanded to:
4536 * if (T1 < 0.0)
4537 * MOV T0, T2;
4538 * else
4539 * MOV T0, T0;
4540 *
4541 * If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
4542 * as the original program. If (T1 < 0.0) evaluates to false, executing
4543 * MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
4544 * Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
4545 * because any instruction that was going to read from T0 after this was going
4546 * to read a garbage value anyway.
4547 */
4548 void
4549 glsl_to_tgsi_visitor::simplify_cmp(void)
4550 {
4551 int tempWritesSize = 0;
4552 unsigned *tempWrites = NULL;
4553 unsigned outputWrites[VARYING_SLOT_TESS_MAX];
4554
4555 memset(outputWrites, 0, sizeof(outputWrites));
4556
4557 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4558 unsigned prevWriteMask = 0;
4559
4560 /* Give up if we encounter relative addressing or flow control. */
4561 if (inst->dst[0].reladdr || inst->dst[0].reladdr2 ||
4562 inst->dst[1].reladdr || inst->dst[1].reladdr2 ||
4563 inst->info->is_branch ||
4564 inst->op == TGSI_OPCODE_CONT ||
4565 inst->op == TGSI_OPCODE_END ||
4566 inst->op == TGSI_OPCODE_RET) {
4567 break;
4568 }
4569
4570 if (inst->dst[0].file == PROGRAM_OUTPUT) {
4571 assert(inst->dst[0].index < (signed)ARRAY_SIZE(outputWrites));
4572 prevWriteMask = outputWrites[inst->dst[0].index];
4573 outputWrites[inst->dst[0].index] |= inst->dst[0].writemask;
4574 } else if (inst->dst[0].file == PROGRAM_TEMPORARY) {
4575 if (inst->dst[0].index >= tempWritesSize) {
4576 const int inc = 4096;
4577
4578 tempWrites = (unsigned*)
4579 realloc(tempWrites,
4580 (tempWritesSize + inc) * sizeof(unsigned));
4581 if (!tempWrites)
4582 return;
4583
4584 memset(tempWrites + tempWritesSize, 0, inc * sizeof(unsigned));
4585 tempWritesSize += inc;
4586 }
4587
4588 prevWriteMask = tempWrites[inst->dst[0].index];
4589 tempWrites[inst->dst[0].index] |= inst->dst[0].writemask;
4590 } else
4591 continue;
4592
4593 /* For a CMP to be considered a conditional write, the destination
4594 * register and source register two must be the same. */
4595 if (inst->op == TGSI_OPCODE_CMP
4596 && !(inst->dst[0].writemask & prevWriteMask)
4597 && inst->src[2].file == inst->dst[0].file
4598 && inst->src[2].index == inst->dst[0].index
4599 && inst->dst[0].writemask == get_src_arg_mask(inst->dst[0], inst->src[2])) {
4600
4601 inst->op = TGSI_OPCODE_MOV;
4602 inst->info = tgsi_get_opcode_info(inst->op);
4603 inst->src[0] = inst->src[1];
4604 }
4605 }
4606
4607 free(tempWrites);
4608 }
4609
4610 static void
4611 rename_temp_handle_src(struct rename_reg_pair *renames,
4612 struct st_src_reg *src)
4613 {
4614 if (src && src->file == PROGRAM_TEMPORARY) {
4615 int old_idx = src->index;
4616 if (renames[old_idx].valid)
4617 src->index = renames[old_idx].new_reg;
4618 }
4619 }
4620
4621 /* Replaces all references to a temporary register index with another index. */
4622 void
4623 glsl_to_tgsi_visitor::rename_temp_registers(struct rename_reg_pair *renames)
4624 {
4625 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4626 unsigned j;
4627 for (j = 0; j < num_inst_src_regs(inst); j++) {
4628 rename_temp_handle_src(renames, &inst->src[j]);
4629 rename_temp_handle_src(renames, inst->src[j].reladdr);
4630 rename_temp_handle_src(renames, inst->src[j].reladdr2);
4631 }
4632
4633 for (j = 0; j < inst->tex_offset_num_offset; j++) {
4634 rename_temp_handle_src(renames, &inst->tex_offsets[j]);
4635 rename_temp_handle_src(renames, inst->tex_offsets[j].reladdr);
4636 rename_temp_handle_src(renames, inst->tex_offsets[j].reladdr2);
4637 }
4638
4639 rename_temp_handle_src(renames, &inst->resource);
4640 rename_temp_handle_src(renames, inst->resource.reladdr);
4641 rename_temp_handle_src(renames, inst->resource.reladdr2);
4642
4643 for (j = 0; j < num_inst_dst_regs(inst); j++) {
4644 if (inst->dst[j].file == PROGRAM_TEMPORARY) {
4645 int old_idx = inst->dst[j].index;
4646 if (renames[old_idx].valid)
4647 inst->dst[j].index = renames[old_idx].new_reg;
4648 }
4649 rename_temp_handle_src(renames, inst->dst[j].reladdr);
4650 rename_temp_handle_src(renames, inst->dst[j].reladdr2);
4651 }
4652 }
4653 }
4654
4655 void
4656 glsl_to_tgsi_visitor::get_first_temp_write(int *first_writes)
4657 {
4658 int depth = 0; /* loop depth */
4659 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
4660 unsigned i = 0, j;
4661
4662 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4663 for (j = 0; j < num_inst_dst_regs(inst); j++) {
4664 if (inst->dst[j].file == PROGRAM_TEMPORARY) {
4665 if (first_writes[inst->dst[j].index] == -1)
4666 first_writes[inst->dst[j].index] = (depth == 0) ? i : loop_start;
4667 }
4668 }
4669
4670 if (inst->op == TGSI_OPCODE_BGNLOOP) {
4671 if(depth++ == 0)
4672 loop_start = i;
4673 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
4674 if (--depth == 0)
4675 loop_start = -1;
4676 }
4677 assert(depth >= 0);
4678 i++;
4679 }
4680 }
4681
4682 void
4683 glsl_to_tgsi_visitor::get_first_temp_read(int *first_reads)
4684 {
4685 int depth = 0; /* loop depth */
4686 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
4687 unsigned i = 0, j;
4688
4689 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4690 for (j = 0; j < num_inst_src_regs(inst); j++) {
4691 if (inst->src[j].file == PROGRAM_TEMPORARY) {
4692 if (first_reads[inst->src[j].index] == -1)
4693 first_reads[inst->src[j].index] = (depth == 0) ? i : loop_start;
4694 }
4695 }
4696 for (j = 0; j < inst->tex_offset_num_offset; j++) {
4697 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY) {
4698 if (first_reads[inst->tex_offsets[j].index] == -1)
4699 first_reads[inst->tex_offsets[j].index] = (depth == 0) ? i : loop_start;
4700 }
4701 }
4702 if (inst->op == TGSI_OPCODE_BGNLOOP) {
4703 if(depth++ == 0)
4704 loop_start = i;
4705 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
4706 if (--depth == 0)
4707 loop_start = -1;
4708 }
4709 assert(depth >= 0);
4710 i++;
4711 }
4712 }
4713
4714 void
4715 glsl_to_tgsi_visitor::get_last_temp_read_first_temp_write(int *last_reads, int *first_writes)
4716 {
4717 int depth = 0; /* loop depth */
4718 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
4719 unsigned i = 0, j;
4720 int k;
4721 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4722 for (j = 0; j < num_inst_src_regs(inst); j++) {
4723 if (inst->src[j].file == PROGRAM_TEMPORARY)
4724 last_reads[inst->src[j].index] = (depth == 0) ? i : -2;
4725 }
4726 for (j = 0; j < num_inst_dst_regs(inst); j++) {
4727 if (inst->dst[j].file == PROGRAM_TEMPORARY) {
4728 if (first_writes[inst->dst[j].index] == -1)
4729 first_writes[inst->dst[j].index] = (depth == 0) ? i : loop_start;
4730 last_reads[inst->dst[j].index] = (depth == 0) ? i : -2;
4731 }
4732 }
4733 for (j = 0; j < inst->tex_offset_num_offset; j++) {
4734 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY)
4735 last_reads[inst->tex_offsets[j].index] = (depth == 0) ? i : -2;
4736 }
4737 if (inst->op == TGSI_OPCODE_BGNLOOP) {
4738 if(depth++ == 0)
4739 loop_start = i;
4740 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
4741 if (--depth == 0) {
4742 loop_start = -1;
4743 for (k = 0; k < this->next_temp; k++) {
4744 if (last_reads[k] == -2) {
4745 last_reads[k] = i;
4746 }
4747 }
4748 }
4749 }
4750 assert(depth >= 0);
4751 i++;
4752 }
4753 }
4754
4755 void
4756 glsl_to_tgsi_visitor::get_last_temp_write(int *last_writes)
4757 {
4758 int depth = 0; /* loop depth */
4759 int i = 0, k;
4760 unsigned j;
4761
4762 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4763 for (j = 0; j < num_inst_dst_regs(inst); j++) {
4764 if (inst->dst[j].file == PROGRAM_TEMPORARY)
4765 last_writes[inst->dst[j].index] = (depth == 0) ? i : -2;
4766 }
4767
4768 if (inst->op == TGSI_OPCODE_BGNLOOP)
4769 depth++;
4770 else if (inst->op == TGSI_OPCODE_ENDLOOP)
4771 if (--depth == 0) {
4772 for (k = 0; k < this->next_temp; k++) {
4773 if (last_writes[k] == -2) {
4774 last_writes[k] = i;
4775 }
4776 }
4777 }
4778 assert(depth >= 0);
4779 i++;
4780 }
4781 }
4782
4783 /*
4784 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
4785 * channels for copy propagation and updates following instructions to
4786 * use the original versions.
4787 *
4788 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
4789 * will occur. As an example, a TXP production before this pass:
4790 *
4791 * 0: MOV TEMP[1], INPUT[4].xyyy;
4792 * 1: MOV TEMP[1].w, INPUT[4].wwww;
4793 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
4794 *
4795 * and after:
4796 *
4797 * 0: MOV TEMP[1], INPUT[4].xyyy;
4798 * 1: MOV TEMP[1].w, INPUT[4].wwww;
4799 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
4800 *
4801 * which allows for dead code elimination on TEMP[1]'s writes.
4802 */
4803 void
4804 glsl_to_tgsi_visitor::copy_propagate(void)
4805 {
4806 glsl_to_tgsi_instruction **acp = rzalloc_array(mem_ctx,
4807 glsl_to_tgsi_instruction *,
4808 this->next_temp * 4);
4809 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
4810 int level = 0;
4811
4812 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4813 assert(inst->dst[0].file != PROGRAM_TEMPORARY
4814 || inst->dst[0].index < this->next_temp);
4815
4816 /* First, do any copy propagation possible into the src regs. */
4817 for (int r = 0; r < 3; r++) {
4818 glsl_to_tgsi_instruction *first = NULL;
4819 bool good = true;
4820 int acp_base = inst->src[r].index * 4;
4821
4822 if (inst->src[r].file != PROGRAM_TEMPORARY ||
4823 inst->src[r].reladdr ||
4824 inst->src[r].reladdr2)
4825 continue;
4826
4827 /* See if we can find entries in the ACP consisting of MOVs
4828 * from the same src register for all the swizzled channels
4829 * of this src register reference.
4830 */
4831 for (int i = 0; i < 4; i++) {
4832 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
4833 glsl_to_tgsi_instruction *copy_chan = acp[acp_base + src_chan];
4834
4835 if (!copy_chan) {
4836 good = false;
4837 break;
4838 }
4839
4840 assert(acp_level[acp_base + src_chan] <= level);
4841
4842 if (!first) {
4843 first = copy_chan;
4844 } else {
4845 if (first->src[0].file != copy_chan->src[0].file ||
4846 first->src[0].index != copy_chan->src[0].index ||
4847 first->src[0].double_reg2 != copy_chan->src[0].double_reg2 ||
4848 first->src[0].index2D != copy_chan->src[0].index2D) {
4849 good = false;
4850 break;
4851 }
4852 }
4853 }
4854
4855 if (good) {
4856 /* We've now validated that we can copy-propagate to
4857 * replace this src register reference. Do it.
4858 */
4859 inst->src[r].file = first->src[0].file;
4860 inst->src[r].index = first->src[0].index;
4861 inst->src[r].index2D = first->src[0].index2D;
4862 inst->src[r].has_index2 = first->src[0].has_index2;
4863 inst->src[r].double_reg2 = first->src[0].double_reg2;
4864 inst->src[r].array_id = first->src[0].array_id;
4865
4866 int swizzle = 0;
4867 for (int i = 0; i < 4; i++) {
4868 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
4869 glsl_to_tgsi_instruction *copy_inst = acp[acp_base + src_chan];
4870 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) << (3 * i));
4871 }
4872 inst->src[r].swizzle = swizzle;
4873 }
4874 }
4875
4876 switch (inst->op) {
4877 case TGSI_OPCODE_BGNLOOP:
4878 case TGSI_OPCODE_ENDLOOP:
4879 /* End of a basic block, clear the ACP entirely. */
4880 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
4881 break;
4882
4883 case TGSI_OPCODE_IF:
4884 case TGSI_OPCODE_UIF:
4885 ++level;
4886 break;
4887
4888 case TGSI_OPCODE_ENDIF:
4889 case TGSI_OPCODE_ELSE:
4890 /* Clear all channels written inside the block from the ACP, but
4891 * leaving those that were not touched.
4892 */
4893 for (int r = 0; r < this->next_temp; r++) {
4894 for (int c = 0; c < 4; c++) {
4895 if (!acp[4 * r + c])
4896 continue;
4897
4898 if (acp_level[4 * r + c] >= level)
4899 acp[4 * r + c] = NULL;
4900 }
4901 }
4902 if (inst->op == TGSI_OPCODE_ENDIF)
4903 --level;
4904 break;
4905
4906 default:
4907 /* Continuing the block, clear any written channels from
4908 * the ACP.
4909 */
4910 for (int d = 0; d < 2; d++) {
4911 if (inst->dst[d].file == PROGRAM_TEMPORARY && inst->dst[d].reladdr) {
4912 /* Any temporary might be written, so no copy propagation
4913 * across this instruction.
4914 */
4915 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
4916 } else if (inst->dst[d].file == PROGRAM_OUTPUT &&
4917 inst->dst[d].reladdr) {
4918 /* Any output might be written, so no copy propagation
4919 * from outputs across this instruction.
4920 */
4921 for (int r = 0; r < this->next_temp; r++) {
4922 for (int c = 0; c < 4; c++) {
4923 if (!acp[4 * r + c])
4924 continue;
4925
4926 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
4927 acp[4 * r + c] = NULL;
4928 }
4929 }
4930 } else if (inst->dst[d].file == PROGRAM_TEMPORARY ||
4931 inst->dst[d].file == PROGRAM_OUTPUT) {
4932 /* Clear where it's used as dst. */
4933 if (inst->dst[d].file == PROGRAM_TEMPORARY) {
4934 for (int c = 0; c < 4; c++) {
4935 if (inst->dst[d].writemask & (1 << c))
4936 acp[4 * inst->dst[d].index + c] = NULL;
4937 }
4938 }
4939
4940 /* Clear where it's used as src. */
4941 for (int r = 0; r < this->next_temp; r++) {
4942 for (int c = 0; c < 4; c++) {
4943 if (!acp[4 * r + c])
4944 continue;
4945
4946 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
4947
4948 if (acp[4 * r + c]->src[0].file == inst->dst[d].file &&
4949 acp[4 * r + c]->src[0].index == inst->dst[d].index &&
4950 inst->dst[d].writemask & (1 << src_chan)) {
4951 acp[4 * r + c] = NULL;
4952 }
4953 }
4954 }
4955 }
4956 }
4957 break;
4958 }
4959
4960 /* If this is a copy, add it to the ACP. */
4961 if (inst->op == TGSI_OPCODE_MOV &&
4962 inst->dst[0].file == PROGRAM_TEMPORARY &&
4963 !(inst->dst[0].file == inst->src[0].file &&
4964 inst->dst[0].index == inst->src[0].index) &&
4965 !inst->dst[0].reladdr &&
4966 !inst->dst[0].reladdr2 &&
4967 !inst->saturate &&
4968 inst->src[0].file != PROGRAM_ARRAY &&
4969 (inst->src[0].file != PROGRAM_OUTPUT ||
4970 this->shader->Stage != MESA_SHADER_TESS_CTRL) &&
4971 !inst->src[0].reladdr &&
4972 !inst->src[0].reladdr2 &&
4973 !inst->src[0].negate &&
4974 !inst->src[0].abs) {
4975 for (int i = 0; i < 4; i++) {
4976 if (inst->dst[0].writemask & (1 << i)) {
4977 acp[4 * inst->dst[0].index + i] = inst;
4978 acp_level[4 * inst->dst[0].index + i] = level;
4979 }
4980 }
4981 }
4982 }
4983
4984 ralloc_free(acp_level);
4985 ralloc_free(acp);
4986 }
4987
4988 static void
4989 dead_code_handle_reladdr(glsl_to_tgsi_instruction **writes, st_src_reg *reladdr)
4990 {
4991 if (reladdr && reladdr->file == PROGRAM_TEMPORARY) {
4992 /* Clear where it's used as src. */
4993 int swz = GET_SWZ(reladdr->swizzle, 0);
4994 writes[4 * reladdr->index + swz] = NULL;
4995 }
4996 }
4997
4998 /*
4999 * On a basic block basis, tracks available PROGRAM_TEMPORARY registers for dead
5000 * code elimination.
5001 *
5002 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
5003 * will occur. As an example, a TXP production after copy propagation but
5004 * before this pass:
5005 *
5006 * 0: MOV TEMP[1], INPUT[4].xyyy;
5007 * 1: MOV TEMP[1].w, INPUT[4].wwww;
5008 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
5009 *
5010 * and after this pass:
5011 *
5012 * 0: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
5013 */
5014 int
5015 glsl_to_tgsi_visitor::eliminate_dead_code(void)
5016 {
5017 glsl_to_tgsi_instruction **writes = rzalloc_array(mem_ctx,
5018 glsl_to_tgsi_instruction *,
5019 this->next_temp * 4);
5020 int *write_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
5021 int level = 0;
5022 int removed = 0;
5023
5024 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
5025 assert(inst->dst[0].file != PROGRAM_TEMPORARY
5026 || inst->dst[0].index < this->next_temp);
5027
5028 switch (inst->op) {
5029 case TGSI_OPCODE_BGNLOOP:
5030 case TGSI_OPCODE_ENDLOOP:
5031 case TGSI_OPCODE_CONT:
5032 case TGSI_OPCODE_BRK:
5033 /* End of a basic block, clear the write array entirely.
5034 *
5035 * This keeps us from killing dead code when the writes are
5036 * on either side of a loop, even when the register isn't touched
5037 * inside the loop. However, glsl_to_tgsi_visitor doesn't seem to emit
5038 * dead code of this type, so it shouldn't make a difference as long as
5039 * the dead code elimination pass in the GLSL compiler does its job.
5040 */
5041 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
5042 break;
5043
5044 case TGSI_OPCODE_ENDIF:
5045 case TGSI_OPCODE_ELSE:
5046 /* Promote the recorded level of all channels written inside the
5047 * preceding if or else block to the level above the if/else block.
5048 */
5049 for (int r = 0; r < this->next_temp; r++) {
5050 for (int c = 0; c < 4; c++) {
5051 if (!writes[4 * r + c])
5052 continue;
5053
5054 if (write_level[4 * r + c] == level)
5055 write_level[4 * r + c] = level-1;
5056 }
5057 }
5058 if(inst->op == TGSI_OPCODE_ENDIF)
5059 --level;
5060 break;
5061
5062 case TGSI_OPCODE_IF:
5063 case TGSI_OPCODE_UIF:
5064 ++level;
5065 /* fallthrough to default case to mark the condition as read */
5066 default:
5067 /* Continuing the block, clear any channels from the write array that
5068 * are read by this instruction.
5069 */
5070 for (unsigned i = 0; i < ARRAY_SIZE(inst->src); i++) {
5071 if (inst->src[i].file == PROGRAM_TEMPORARY && inst->src[i].reladdr){
5072 /* Any temporary might be read, so no dead code elimination
5073 * across this instruction.
5074 */
5075 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
5076 } else if (inst->src[i].file == PROGRAM_TEMPORARY) {
5077 /* Clear where it's used as src. */
5078 int src_chans = 1 << GET_SWZ(inst->src[i].swizzle, 0);
5079 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 1);
5080 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 2);
5081 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 3);
5082
5083 for (int c = 0; c < 4; c++) {
5084 if (src_chans & (1 << c))
5085 writes[4 * inst->src[i].index + c] = NULL;
5086 }
5087 }
5088 dead_code_handle_reladdr(writes, inst->src[i].reladdr);
5089 dead_code_handle_reladdr(writes, inst->src[i].reladdr2);
5090 }
5091 for (unsigned i = 0; i < inst->tex_offset_num_offset; i++) {
5092 if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY && inst->tex_offsets[i].reladdr){
5093 /* Any temporary might be read, so no dead code elimination
5094 * across this instruction.
5095 */
5096 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
5097 } else if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY) {
5098 /* Clear where it's used as src. */
5099 int src_chans = 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 0);
5100 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 1);
5101 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 2);
5102 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 3);
5103
5104 for (int c = 0; c < 4; c++) {
5105 if (src_chans & (1 << c))
5106 writes[4 * inst->tex_offsets[i].index + c] = NULL;
5107 }
5108 }
5109 dead_code_handle_reladdr(writes, inst->tex_offsets[i].reladdr);
5110 dead_code_handle_reladdr(writes, inst->tex_offsets[i].reladdr2);
5111 }
5112
5113 if (inst->resource.file == PROGRAM_TEMPORARY) {
5114 int src_chans;
5115
5116 src_chans = 1 << GET_SWZ(inst->resource.swizzle, 0);
5117 src_chans |= 1 << GET_SWZ(inst->resource.swizzle, 1);
5118 src_chans |= 1 << GET_SWZ(inst->resource.swizzle, 2);
5119 src_chans |= 1 << GET_SWZ(inst->resource.swizzle, 3);
5120
5121 for (int c = 0; c < 4; c++) {
5122 if (src_chans & (1 << c))
5123 writes[4 * inst->resource.index + c] = NULL;
5124 }
5125 }
5126 dead_code_handle_reladdr(writes, inst->resource.reladdr);
5127 dead_code_handle_reladdr(writes, inst->resource.reladdr2);
5128
5129 for (unsigned i = 0; i < ARRAY_SIZE(inst->dst); i++) {
5130 dead_code_handle_reladdr(writes, inst->dst[i].reladdr);
5131 dead_code_handle_reladdr(writes, inst->dst[i].reladdr2);
5132 }
5133 break;
5134 }
5135
5136 /* If this instruction writes to a temporary, add it to the write array.
5137 * If there is already an instruction in the write array for one or more
5138 * of the channels, flag that channel write as dead.
5139 */
5140 for (unsigned i = 0; i < ARRAY_SIZE(inst->dst); i++) {
5141 if (inst->dst[i].file == PROGRAM_TEMPORARY &&
5142 !inst->dst[i].reladdr) {
5143 for (int c = 0; c < 4; c++) {
5144 if (inst->dst[i].writemask & (1 << c)) {
5145 if (writes[4 * inst->dst[i].index + c]) {
5146 if (write_level[4 * inst->dst[i].index + c] < level)
5147 continue;
5148 else
5149 writes[4 * inst->dst[i].index + c]->dead_mask |= (1 << c);
5150 }
5151 writes[4 * inst->dst[i].index + c] = inst;
5152 write_level[4 * inst->dst[i].index + c] = level;
5153 }
5154 }
5155 }
5156 }
5157 }
5158
5159 /* Anything still in the write array at this point is dead code. */
5160 for (int r = 0; r < this->next_temp; r++) {
5161 for (int c = 0; c < 4; c++) {
5162 glsl_to_tgsi_instruction *inst = writes[4 * r + c];
5163 if (inst)
5164 inst->dead_mask |= (1 << c);
5165 }
5166 }
5167
5168 /* Now actually remove the instructions that are completely dead and update
5169 * the writemask of other instructions with dead channels.
5170 */
5171 foreach_in_list_safe(glsl_to_tgsi_instruction, inst, &this->instructions) {
5172 if (!inst->dead_mask || !inst->dst[0].writemask)
5173 continue;
5174 /* No amount of dead masks should remove memory stores */
5175 if (inst->info->is_store)
5176 continue;
5177
5178 if ((inst->dst[0].writemask & ~inst->dead_mask) == 0) {
5179 inst->remove();
5180 delete inst;
5181 removed++;
5182 } else {
5183 if (glsl_base_type_is_64bit(inst->dst[0].type)) {
5184 if (inst->dead_mask == WRITEMASK_XY ||
5185 inst->dead_mask == WRITEMASK_ZW)
5186 inst->dst[0].writemask &= ~(inst->dead_mask);
5187 } else
5188 inst->dst[0].writemask &= ~(inst->dead_mask);
5189 }
5190 }
5191
5192 ralloc_free(write_level);
5193 ralloc_free(writes);
5194
5195 return removed;
5196 }
5197
5198 /* merge DFRACEXP instructions into one. */
5199 void
5200 glsl_to_tgsi_visitor::merge_two_dsts(void)
5201 {
5202 /* We never delete inst, but we may delete its successor. */
5203 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
5204 glsl_to_tgsi_instruction *inst2;
5205 unsigned defined;
5206
5207 if (num_inst_dst_regs(inst) != 2)
5208 continue;
5209
5210 if (inst->dst[0].file != PROGRAM_UNDEFINED &&
5211 inst->dst[1].file != PROGRAM_UNDEFINED)
5212 continue;
5213
5214 assert(inst->dst[0].file != PROGRAM_UNDEFINED ||
5215 inst->dst[1].file != PROGRAM_UNDEFINED);
5216
5217 if (inst->dst[0].file == PROGRAM_UNDEFINED)
5218 defined = 1;
5219 else
5220 defined = 0;
5221
5222 inst2 = (glsl_to_tgsi_instruction *) inst->next;
5223 do {
5224 if (inst->op == inst2->op &&
5225 inst2->dst[defined].file == PROGRAM_UNDEFINED &&
5226 inst->src[0].file == inst2->src[0].file &&
5227 inst->src[0].index == inst2->src[0].index &&
5228 inst->src[0].type == inst2->src[0].type &&
5229 inst->src[0].swizzle == inst2->src[0].swizzle)
5230 break;
5231 inst2 = (glsl_to_tgsi_instruction *) inst2->next;
5232 } while (inst2);
5233
5234 if (!inst2) {
5235 /* Undefined destinations are not allowed, substitute with an unused
5236 * temporary register.
5237 */
5238 st_src_reg tmp = get_temp(glsl_type::vec4_type);
5239 inst->dst[defined ^ 1] = st_dst_reg(tmp);
5240 inst->dst[defined ^ 1].writemask = 0;
5241 continue;
5242 }
5243
5244 inst->dst[defined ^ 1] = inst2->dst[defined ^ 1];
5245 inst2->remove();
5246 delete inst2;
5247 }
5248 }
5249
5250 /* Merges temporary registers together where possible to reduce the number of
5251 * registers needed to run a program.
5252 *
5253 * Produces optimal code only after copy propagation and dead code elimination
5254 * have been run. */
5255 void
5256 glsl_to_tgsi_visitor::merge_registers(void)
5257 {
5258 assert(need_uarl);
5259 struct lifetime *lifetimes =
5260 rzalloc_array(mem_ctx, struct lifetime, this->next_temp);
5261
5262 if (get_temp_registers_required_lifetimes(mem_ctx, &this->instructions,
5263 this->next_temp, lifetimes)) {
5264 struct rename_reg_pair *renames =
5265 rzalloc_array(mem_ctx, struct rename_reg_pair, this->next_temp);
5266 get_temp_registers_remapping(mem_ctx, this->next_temp, lifetimes, renames);
5267 rename_temp_registers(renames);
5268 ralloc_free(renames);
5269 }
5270
5271 ralloc_free(lifetimes);
5272 }
5273
5274 /* Reassign indices to temporary registers by reusing unused indices created
5275 * by optimization passes. */
5276 void
5277 glsl_to_tgsi_visitor::renumber_registers(void)
5278 {
5279 int i = 0;
5280 int new_index = 0;
5281 int *first_writes = ralloc_array(mem_ctx, int, this->next_temp);
5282 struct rename_reg_pair *renames = rzalloc_array(mem_ctx, struct rename_reg_pair, this->next_temp);
5283
5284 for (i = 0; i < this->next_temp; i++) {
5285 first_writes[i] = -1;
5286 }
5287 get_first_temp_write(first_writes);
5288
5289 for (i = 0; i < this->next_temp; i++) {
5290 if (first_writes[i] < 0) continue;
5291 if (i != new_index) {
5292 renames[i].new_reg = new_index;
5293 renames[i].valid = true;
5294 }
5295 new_index++;
5296 }
5297
5298 rename_temp_registers(renames);
5299 this->next_temp = new_index;
5300 ralloc_free(renames);
5301 ralloc_free(first_writes);
5302 }
5303
5304 /* ------------------------- TGSI conversion stuff -------------------------- */
5305
5306 /**
5307 * Intermediate state used during shader translation.
5308 */
5309 struct st_translate {
5310 struct ureg_program *ureg;
5311
5312 unsigned temps_size;
5313 struct ureg_dst *temps;
5314
5315 struct ureg_dst *arrays;
5316 unsigned num_temp_arrays;
5317 struct ureg_src *constants;
5318 int num_constants;
5319 struct ureg_src *immediates;
5320 int num_immediates;
5321 struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
5322 struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
5323 struct ureg_dst address[3];
5324 struct ureg_src samplers[PIPE_MAX_SAMPLERS];
5325 struct ureg_src buffers[PIPE_MAX_SHADER_BUFFERS];
5326 struct ureg_src images[PIPE_MAX_SHADER_IMAGES];
5327 struct ureg_src systemValues[SYSTEM_VALUE_MAX];
5328 struct ureg_src shared_memory;
5329 unsigned *array_sizes;
5330 struct inout_decl *input_decls;
5331 unsigned num_input_decls;
5332 struct inout_decl *output_decls;
5333 unsigned num_output_decls;
5334
5335 const ubyte *inputMapping;
5336 const ubyte *outputMapping;
5337
5338 unsigned procType; /**< PIPE_SHADER_VERTEX/FRAGMENT */
5339 bool need_uarl;
5340 };
5341
5342 /** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
5343 unsigned
5344 _mesa_sysval_to_semantic(unsigned sysval)
5345 {
5346 switch (sysval) {
5347 /* Vertex shader */
5348 case SYSTEM_VALUE_VERTEX_ID:
5349 return TGSI_SEMANTIC_VERTEXID;
5350 case SYSTEM_VALUE_INSTANCE_ID:
5351 return TGSI_SEMANTIC_INSTANCEID;
5352 case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
5353 return TGSI_SEMANTIC_VERTEXID_NOBASE;
5354 case SYSTEM_VALUE_BASE_VERTEX:
5355 return TGSI_SEMANTIC_BASEVERTEX;
5356 case SYSTEM_VALUE_BASE_INSTANCE:
5357 return TGSI_SEMANTIC_BASEINSTANCE;
5358 case SYSTEM_VALUE_DRAW_ID:
5359 return TGSI_SEMANTIC_DRAWID;
5360
5361 /* Geometry shader */
5362 case SYSTEM_VALUE_INVOCATION_ID:
5363 return TGSI_SEMANTIC_INVOCATIONID;
5364
5365 /* Fragment shader */
5366 case SYSTEM_VALUE_FRAG_COORD:
5367 return TGSI_SEMANTIC_POSITION;
5368 case SYSTEM_VALUE_FRONT_FACE:
5369 return TGSI_SEMANTIC_FACE;
5370 case SYSTEM_VALUE_SAMPLE_ID:
5371 return TGSI_SEMANTIC_SAMPLEID;
5372 case SYSTEM_VALUE_SAMPLE_POS:
5373 return TGSI_SEMANTIC_SAMPLEPOS;
5374 case SYSTEM_VALUE_SAMPLE_MASK_IN:
5375 return TGSI_SEMANTIC_SAMPLEMASK;
5376 case SYSTEM_VALUE_HELPER_INVOCATION:
5377 return TGSI_SEMANTIC_HELPER_INVOCATION;
5378
5379 /* Tessellation shader */
5380 case SYSTEM_VALUE_TESS_COORD:
5381 return TGSI_SEMANTIC_TESSCOORD;
5382 case SYSTEM_VALUE_VERTICES_IN:
5383 return TGSI_SEMANTIC_VERTICESIN;
5384 case SYSTEM_VALUE_PRIMITIVE_ID:
5385 return TGSI_SEMANTIC_PRIMID;
5386 case SYSTEM_VALUE_TESS_LEVEL_OUTER:
5387 return TGSI_SEMANTIC_TESSOUTER;
5388 case SYSTEM_VALUE_TESS_LEVEL_INNER:
5389 return TGSI_SEMANTIC_TESSINNER;
5390
5391 /* Compute shader */
5392 case SYSTEM_VALUE_LOCAL_INVOCATION_ID:
5393 return TGSI_SEMANTIC_THREAD_ID;
5394 case SYSTEM_VALUE_WORK_GROUP_ID:
5395 return TGSI_SEMANTIC_BLOCK_ID;
5396 case SYSTEM_VALUE_NUM_WORK_GROUPS:
5397 return TGSI_SEMANTIC_GRID_SIZE;
5398 case SYSTEM_VALUE_LOCAL_GROUP_SIZE:
5399 return TGSI_SEMANTIC_BLOCK_SIZE;
5400
5401 /* ARB_shader_ballot */
5402 case SYSTEM_VALUE_SUBGROUP_SIZE:
5403 return TGSI_SEMANTIC_SUBGROUP_SIZE;
5404 case SYSTEM_VALUE_SUBGROUP_INVOCATION:
5405 return TGSI_SEMANTIC_SUBGROUP_INVOCATION;
5406 case SYSTEM_VALUE_SUBGROUP_EQ_MASK:
5407 return TGSI_SEMANTIC_SUBGROUP_EQ_MASK;
5408 case SYSTEM_VALUE_SUBGROUP_GE_MASK:
5409 return TGSI_SEMANTIC_SUBGROUP_GE_MASK;
5410 case SYSTEM_VALUE_SUBGROUP_GT_MASK:
5411 return TGSI_SEMANTIC_SUBGROUP_GT_MASK;
5412 case SYSTEM_VALUE_SUBGROUP_LE_MASK:
5413 return TGSI_SEMANTIC_SUBGROUP_LE_MASK;
5414 case SYSTEM_VALUE_SUBGROUP_LT_MASK:
5415 return TGSI_SEMANTIC_SUBGROUP_LT_MASK;
5416
5417 /* Unhandled */
5418 case SYSTEM_VALUE_LOCAL_INVOCATION_INDEX:
5419 case SYSTEM_VALUE_GLOBAL_INVOCATION_ID:
5420 case SYSTEM_VALUE_VERTEX_CNT:
5421 default:
5422 assert(!"Unexpected SYSTEM_VALUE_ enum");
5423 return TGSI_SEMANTIC_COUNT;
5424 }
5425 }
5426
5427 /**
5428 * Map a glsl_to_tgsi constant/immediate to a TGSI immediate.
5429 */
5430 static struct ureg_src
5431 emit_immediate(struct st_translate *t,
5432 gl_constant_value values[4],
5433 int type, int size)
5434 {
5435 struct ureg_program *ureg = t->ureg;
5436
5437 switch(type)
5438 {
5439 case GL_FLOAT:
5440 return ureg_DECL_immediate(ureg, &values[0].f, size);
5441 case GL_DOUBLE:
5442 return ureg_DECL_immediate_f64(ureg, (double *)&values[0].f, size);
5443 case GL_INT64_ARB:
5444 return ureg_DECL_immediate_int64(ureg, (int64_t *)&values[0].f, size);
5445 case GL_UNSIGNED_INT64_ARB:
5446 return ureg_DECL_immediate_uint64(ureg, (uint64_t *)&values[0].f, size);
5447 case GL_INT:
5448 return ureg_DECL_immediate_int(ureg, &values[0].i, size);
5449 case GL_UNSIGNED_INT:
5450 case GL_BOOL:
5451 return ureg_DECL_immediate_uint(ureg, &values[0].u, size);
5452 default:
5453 assert(!"should not get here - type must be float, int, uint, or bool");
5454 return ureg_src_undef();
5455 }
5456 }
5457
5458 /**
5459 * Map a glsl_to_tgsi dst register to a TGSI ureg_dst register.
5460 */
5461 static struct ureg_dst
5462 dst_register(struct st_translate *t, gl_register_file file, unsigned index,
5463 unsigned array_id)
5464 {
5465 unsigned array;
5466
5467 switch(file) {
5468 case PROGRAM_UNDEFINED:
5469 return ureg_dst_undef();
5470
5471 case PROGRAM_TEMPORARY:
5472 /* Allocate space for temporaries on demand. */
5473 if (index >= t->temps_size) {
5474 const int inc = align(index - t->temps_size + 1, 4096);
5475
5476 t->temps = (struct ureg_dst*)
5477 realloc(t->temps,
5478 (t->temps_size + inc) * sizeof(struct ureg_dst));
5479 if (!t->temps)
5480 return ureg_dst_undef();
5481
5482 memset(t->temps + t->temps_size, 0, inc * sizeof(struct ureg_dst));
5483 t->temps_size += inc;
5484 }
5485
5486 if (ureg_dst_is_undef(t->temps[index]))
5487 t->temps[index] = ureg_DECL_local_temporary(t->ureg);
5488
5489 return t->temps[index];
5490
5491 case PROGRAM_ARRAY:
5492 assert(array_id && array_id <= t->num_temp_arrays);
5493 array = array_id - 1;
5494
5495 if (ureg_dst_is_undef(t->arrays[array]))
5496 t->arrays[array] = ureg_DECL_array_temporary(
5497 t->ureg, t->array_sizes[array], TRUE);
5498
5499 return ureg_dst_array_offset(t->arrays[array], index);
5500
5501 case PROGRAM_OUTPUT:
5502 if (!array_id) {
5503 if (t->procType == PIPE_SHADER_FRAGMENT)
5504 assert(index < 2 * FRAG_RESULT_MAX);
5505 else if (t->procType == PIPE_SHADER_TESS_CTRL ||
5506 t->procType == PIPE_SHADER_TESS_EVAL)
5507 assert(index < VARYING_SLOT_TESS_MAX);
5508 else
5509 assert(index < VARYING_SLOT_MAX);
5510
5511 assert(t->outputMapping[index] < ARRAY_SIZE(t->outputs));
5512 assert(t->outputs[t->outputMapping[index]].File != TGSI_FILE_NULL);
5513 return t->outputs[t->outputMapping[index]];
5514 }
5515 else {
5516 struct inout_decl *decl = find_inout_array(t->output_decls, t->num_output_decls, array_id);
5517 unsigned mesa_index = decl->mesa_index;
5518 int slot = t->outputMapping[mesa_index];
5519
5520 assert(slot != -1 && t->outputs[slot].File == TGSI_FILE_OUTPUT);
5521
5522 struct ureg_dst dst = t->outputs[slot];
5523 dst.ArrayID = array_id;
5524 return ureg_dst_array_offset(dst, index - mesa_index);
5525 }
5526
5527 case PROGRAM_ADDRESS:
5528 return t->address[index];
5529
5530 default:
5531 assert(!"unknown dst register file");
5532 return ureg_dst_undef();
5533 }
5534 }
5535
5536 static struct ureg_src
5537 translate_src(struct st_translate *t, const st_src_reg *src_reg);
5538
5539 static struct ureg_src
5540 translate_addr(struct st_translate *t, const st_src_reg *reladdr,
5541 unsigned addr_index)
5542 {
5543 if (t->need_uarl || !reladdr->is_legal_tgsi_address_operand())
5544 return ureg_src(t->address[addr_index]);
5545
5546 return translate_src(t, reladdr);
5547 }
5548
5549 /**
5550 * Create a TGSI ureg_dst register from an st_dst_reg.
5551 */
5552 static struct ureg_dst
5553 translate_dst(struct st_translate *t,
5554 const st_dst_reg *dst_reg,
5555 bool saturate)
5556 {
5557 struct ureg_dst dst = dst_register(t, dst_reg->file, dst_reg->index,
5558 dst_reg->array_id);
5559
5560 if (dst.File == TGSI_FILE_NULL)
5561 return dst;
5562
5563 dst = ureg_writemask(dst, dst_reg->writemask);
5564
5565 if (saturate)
5566 dst = ureg_saturate(dst);
5567
5568 if (dst_reg->reladdr != NULL) {
5569 assert(dst_reg->file != PROGRAM_TEMPORARY);
5570 dst = ureg_dst_indirect(dst, translate_addr(t, dst_reg->reladdr, 0));
5571 }
5572
5573 if (dst_reg->has_index2) {
5574 if (dst_reg->reladdr2)
5575 dst = ureg_dst_dimension_indirect(dst,
5576 translate_addr(t, dst_reg->reladdr2, 1),
5577 dst_reg->index2D);
5578 else
5579 dst = ureg_dst_dimension(dst, dst_reg->index2D);
5580 }
5581
5582 return dst;
5583 }
5584
5585 /**
5586 * Create a TGSI ureg_src register from an st_src_reg.
5587 */
5588 static struct ureg_src
5589 translate_src(struct st_translate *t, const st_src_reg *src_reg)
5590 {
5591 struct ureg_src src;
5592 int index = src_reg->index;
5593 int double_reg2 = src_reg->double_reg2 ? 1 : 0;
5594
5595 switch(src_reg->file) {
5596 case PROGRAM_UNDEFINED:
5597 src = ureg_imm4f(t->ureg, 0, 0, 0, 0);
5598 break;
5599
5600 case PROGRAM_TEMPORARY:
5601 case PROGRAM_ARRAY:
5602 src = ureg_src(dst_register(t, src_reg->file, src_reg->index, src_reg->array_id));
5603 break;
5604
5605 case PROGRAM_OUTPUT: {
5606 struct ureg_dst dst = dst_register(t, src_reg->file, src_reg->index, src_reg->array_id);
5607 assert(dst.WriteMask != 0);
5608 unsigned shift = ffs(dst.WriteMask) - 1;
5609 src = ureg_swizzle(ureg_src(dst),
5610 shift,
5611 MIN2(shift + 1, 3),
5612 MIN2(shift + 2, 3),
5613 MIN2(shift + 3, 3));
5614 break;
5615 }
5616
5617 case PROGRAM_UNIFORM:
5618 assert(src_reg->index >= 0);
5619 src = src_reg->index < t->num_constants ?
5620 t->constants[src_reg->index] : ureg_imm4f(t->ureg, 0, 0, 0, 0);
5621 break;
5622 case PROGRAM_STATE_VAR:
5623 case PROGRAM_CONSTANT: /* ie, immediate */
5624 if (src_reg->has_index2)
5625 src = ureg_src_register(TGSI_FILE_CONSTANT, src_reg->index);
5626 else
5627 src = src_reg->index >= 0 && src_reg->index < t->num_constants ?
5628 t->constants[src_reg->index] : ureg_imm4f(t->ureg, 0, 0, 0, 0);
5629 break;
5630
5631 case PROGRAM_IMMEDIATE:
5632 assert(src_reg->index >= 0 && src_reg->index < t->num_immediates);
5633 src = t->immediates[src_reg->index];
5634 break;
5635
5636 case PROGRAM_INPUT:
5637 /* GLSL inputs are 64-bit containers, so we have to
5638 * map back to the original index and add the offset after
5639 * mapping. */
5640 index -= double_reg2;
5641 if (!src_reg->array_id) {
5642 assert(t->inputMapping[index] < ARRAY_SIZE(t->inputs));
5643 assert(t->inputs[t->inputMapping[index]].File != TGSI_FILE_NULL);
5644 src = t->inputs[t->inputMapping[index] + double_reg2];
5645 }
5646 else {
5647 struct inout_decl *decl = find_inout_array(t->input_decls, t->num_input_decls,
5648 src_reg->array_id);
5649 unsigned mesa_index = decl->mesa_index;
5650 int slot = t->inputMapping[mesa_index];
5651
5652 assert(slot != -1 && t->inputs[slot].File == TGSI_FILE_INPUT);
5653
5654 src = t->inputs[slot];
5655 src.ArrayID = src_reg->array_id;
5656 src = ureg_src_array_offset(src, index + double_reg2 - mesa_index);
5657 }
5658 break;
5659
5660 case PROGRAM_ADDRESS:
5661 src = ureg_src(t->address[src_reg->index]);
5662 break;
5663
5664 case PROGRAM_SYSTEM_VALUE:
5665 assert(src_reg->index < (int) ARRAY_SIZE(t->systemValues));
5666 src = t->systemValues[src_reg->index];
5667 break;
5668
5669 default:
5670 assert(!"unknown src register file");
5671 return ureg_src_undef();
5672 }
5673
5674 if (src_reg->has_index2) {
5675 /* 2D indexes occur with geometry shader inputs (attrib, vertex)
5676 * and UBO constant buffers (buffer, position).
5677 */
5678 if (src_reg->reladdr2)
5679 src = ureg_src_dimension_indirect(src,
5680 translate_addr(t, src_reg->reladdr2, 1),
5681 src_reg->index2D);
5682 else
5683 src = ureg_src_dimension(src, src_reg->index2D);
5684 }
5685
5686 src = ureg_swizzle(src,
5687 GET_SWZ(src_reg->swizzle, 0) & 0x3,
5688 GET_SWZ(src_reg->swizzle, 1) & 0x3,
5689 GET_SWZ(src_reg->swizzle, 2) & 0x3,
5690 GET_SWZ(src_reg->swizzle, 3) & 0x3);
5691
5692 if (src_reg->abs)
5693 src = ureg_abs(src);
5694
5695 if ((src_reg->negate & 0xf) == NEGATE_XYZW)
5696 src = ureg_negate(src);
5697
5698 if (src_reg->reladdr != NULL) {
5699 assert(src_reg->file != PROGRAM_TEMPORARY);
5700 src = ureg_src_indirect(src, translate_addr(t, src_reg->reladdr, 0));
5701 }
5702
5703 return src;
5704 }
5705
5706 static struct tgsi_texture_offset
5707 translate_tex_offset(struct st_translate *t,
5708 const st_src_reg *in_offset)
5709 {
5710 struct tgsi_texture_offset offset;
5711 struct ureg_src src = translate_src(t, in_offset);
5712
5713 offset.File = src.File;
5714 offset.Index = src.Index;
5715 offset.SwizzleX = src.SwizzleX;
5716 offset.SwizzleY = src.SwizzleY;
5717 offset.SwizzleZ = src.SwizzleZ;
5718 offset.Padding = 0;
5719
5720 assert(!src.Indirect);
5721 assert(!src.DimIndirect);
5722 assert(!src.Dimension);
5723 assert(!src.Absolute); /* those shouldn't be used with integers anyway */
5724 assert(!src.Negate);
5725
5726 return offset;
5727 }
5728
5729 static void
5730 compile_tgsi_instruction(struct st_translate *t,
5731 const glsl_to_tgsi_instruction *inst)
5732 {
5733 struct ureg_program *ureg = t->ureg;
5734 int i;
5735 struct ureg_dst dst[2];
5736 struct ureg_src src[4];
5737 struct tgsi_texture_offset texoffsets[MAX_GLSL_TEXTURE_OFFSET];
5738
5739 int num_dst;
5740 int num_src;
5741 unsigned tex_target = 0;
5742
5743 num_dst = num_inst_dst_regs(inst);
5744 num_src = num_inst_src_regs(inst);
5745
5746 for (i = 0; i < num_dst; i++)
5747 dst[i] = translate_dst(t,
5748 &inst->dst[i],
5749 inst->saturate);
5750
5751 for (i = 0; i < num_src; i++)
5752 src[i] = translate_src(t, &inst->src[i]);
5753
5754 switch(inst->op) {
5755 case TGSI_OPCODE_BGNLOOP:
5756 case TGSI_OPCODE_ELSE:
5757 case TGSI_OPCODE_ENDLOOP:
5758 case TGSI_OPCODE_IF:
5759 case TGSI_OPCODE_UIF:
5760 assert(num_dst == 0);
5761 ureg_insn(ureg, inst->op, NULL, 0, src, num_src, inst->precise);
5762 return;
5763
5764 case TGSI_OPCODE_TEX:
5765 case TGSI_OPCODE_TEX_LZ:
5766 case TGSI_OPCODE_TXB:
5767 case TGSI_OPCODE_TXD:
5768 case TGSI_OPCODE_TXL:
5769 case TGSI_OPCODE_TXP:
5770 case TGSI_OPCODE_TXQ:
5771 case TGSI_OPCODE_TXQS:
5772 case TGSI_OPCODE_TXF:
5773 case TGSI_OPCODE_TXF_LZ:
5774 case TGSI_OPCODE_TEX2:
5775 case TGSI_OPCODE_TXB2:
5776 case TGSI_OPCODE_TXL2:
5777 case TGSI_OPCODE_TG4:
5778 case TGSI_OPCODE_LODQ:
5779 if (inst->resource.file == PROGRAM_SAMPLER) {
5780 src[num_src] = t->samplers[inst->resource.index];
5781 } else {
5782 /* Bindless samplers. */
5783 src[num_src] = translate_src(t, &inst->resource);
5784 }
5785 assert(src[num_src].File != TGSI_FILE_NULL);
5786 if (inst->resource.reladdr)
5787 src[num_src] =
5788 ureg_src_indirect(src[num_src],
5789 translate_addr(t, inst->resource.reladdr, 2));
5790 num_src++;
5791 for (i = 0; i < (int)inst->tex_offset_num_offset; i++) {
5792 texoffsets[i] = translate_tex_offset(t, &inst->tex_offsets[i]);
5793 }
5794 tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
5795
5796 ureg_tex_insn(ureg,
5797 inst->op,
5798 dst, num_dst,
5799 tex_target,
5800 st_translate_texture_type(inst->tex_type),
5801 texoffsets, inst->tex_offset_num_offset,
5802 src, num_src);
5803 return;
5804
5805 case TGSI_OPCODE_RESQ:
5806 case TGSI_OPCODE_LOAD:
5807 case TGSI_OPCODE_ATOMUADD:
5808 case TGSI_OPCODE_ATOMXCHG:
5809 case TGSI_OPCODE_ATOMCAS:
5810 case TGSI_OPCODE_ATOMAND:
5811 case TGSI_OPCODE_ATOMOR:
5812 case TGSI_OPCODE_ATOMXOR:
5813 case TGSI_OPCODE_ATOMUMIN:
5814 case TGSI_OPCODE_ATOMUMAX:
5815 case TGSI_OPCODE_ATOMIMIN:
5816 case TGSI_OPCODE_ATOMIMAX:
5817 for (i = num_src - 1; i >= 0; i--)
5818 src[i + 1] = src[i];
5819 num_src++;
5820 if (inst->resource.file == PROGRAM_MEMORY) {
5821 src[0] = t->shared_memory;
5822 } else if (inst->resource.file == PROGRAM_BUFFER) {
5823 src[0] = t->buffers[inst->resource.index];
5824 } else if (inst->resource.file == PROGRAM_CONSTANT) {
5825 assert(inst->resource.has_index2);
5826 src[0] = ureg_src_register(TGSI_FILE_CONSTBUF, inst->resource.index);
5827 } else {
5828 assert(inst->resource.file != PROGRAM_UNDEFINED);
5829 if (inst->resource.file == PROGRAM_IMAGE) {
5830 src[0] = t->images[inst->resource.index];
5831 } else {
5832 /* Bindless images. */
5833 src[0] = translate_src(t, &inst->resource);
5834 }
5835 tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
5836 }
5837 if (inst->resource.reladdr)
5838 src[0] = ureg_src_indirect(src[0],
5839 translate_addr(t, inst->resource.reladdr, 2));
5840 assert(src[0].File != TGSI_FILE_NULL);
5841 ureg_memory_insn(ureg, inst->op, dst, num_dst, src, num_src,
5842 inst->buffer_access,
5843 tex_target, inst->image_format);
5844 break;
5845
5846 case TGSI_OPCODE_STORE:
5847 if (inst->resource.file == PROGRAM_MEMORY) {
5848 dst[0] = ureg_dst(t->shared_memory);
5849 } else if (inst->resource.file == PROGRAM_BUFFER) {
5850 dst[0] = ureg_dst(t->buffers[inst->resource.index]);
5851 } else {
5852 if (inst->resource.file == PROGRAM_IMAGE) {
5853 dst[0] = ureg_dst(t->images[inst->resource.index]);
5854 } else {
5855 /* Bindless images. */
5856 dst[0] = ureg_dst(translate_src(t, &inst->resource));
5857 }
5858 tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
5859 }
5860 dst[0] = ureg_writemask(dst[0], inst->dst[0].writemask);
5861 if (inst->resource.reladdr)
5862 dst[0] = ureg_dst_indirect(dst[0],
5863 translate_addr(t, inst->resource.reladdr, 2));
5864 assert(dst[0].File != TGSI_FILE_NULL);
5865 ureg_memory_insn(ureg, inst->op, dst, num_dst, src, num_src,
5866 inst->buffer_access,
5867 tex_target, inst->image_format);
5868 break;
5869
5870 default:
5871 ureg_insn(ureg,
5872 inst->op,
5873 dst, num_dst,
5874 src, num_src, inst->precise);
5875 break;
5876 }
5877 }
5878
5879 /**
5880 * Emit the TGSI instructions for inverting and adjusting WPOS.
5881 * This code is unavoidable because it also depends on whether
5882 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
5883 */
5884 static void
5885 emit_wpos_adjustment(struct gl_context *ctx,
5886 struct st_translate *t,
5887 int wpos_transform_const,
5888 boolean invert,
5889 GLfloat adjX, GLfloat adjY[2])
5890 {
5891 struct ureg_program *ureg = t->ureg;
5892
5893 assert(wpos_transform_const >= 0);
5894
5895 /* Fragment program uses fragment position input.
5896 * Need to replace instances of INPUT[WPOS] with temp T
5897 * where T = INPUT[WPOS] is inverted by Y.
5898 */
5899 struct ureg_src wpostrans = ureg_DECL_constant(ureg, wpos_transform_const);
5900 struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
5901 struct ureg_src *wpos =
5902 ctx->Const.GLSLFragCoordIsSysVal ?
5903 &t->systemValues[SYSTEM_VALUE_FRAG_COORD] :
5904 &t->inputs[t->inputMapping[VARYING_SLOT_POS]];
5905 struct ureg_src wpos_input = *wpos;
5906
5907 /* First, apply the coordinate shift: */
5908 if (adjX || adjY[0] || adjY[1]) {
5909 if (adjY[0] != adjY[1]) {
5910 /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
5911 * depending on whether inversion is actually going to be applied
5912 * or not, which is determined by testing against the inversion
5913 * state variable used below, which will be either +1 or -1.
5914 */
5915 struct ureg_dst adj_temp = ureg_DECL_local_temporary(ureg);
5916
5917 ureg_CMP(ureg, adj_temp,
5918 ureg_scalar(wpostrans, invert ? 2 : 0),
5919 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
5920 ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
5921 ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
5922 } else {
5923 ureg_ADD(ureg, wpos_temp, wpos_input,
5924 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
5925 }
5926 wpos_input = ureg_src(wpos_temp);
5927 } else {
5928 /* MOV wpos_temp, input[wpos]
5929 */
5930 ureg_MOV( ureg, wpos_temp, wpos_input );
5931 }
5932
5933 /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
5934 * inversion/identity, or the other way around if we're drawing to an FBO.
5935 */
5936 if (invert) {
5937 /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
5938 */
5939 ureg_MAD( ureg,
5940 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
5941 wpos_input,
5942 ureg_scalar(wpostrans, 0),
5943 ureg_scalar(wpostrans, 1));
5944 } else {
5945 /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
5946 */
5947 ureg_MAD( ureg,
5948 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
5949 wpos_input,
5950 ureg_scalar(wpostrans, 2),
5951 ureg_scalar(wpostrans, 3));
5952 }
5953
5954 /* Use wpos_temp as position input from here on:
5955 */
5956 *wpos = ureg_src(wpos_temp);
5957 }
5958
5959
5960 /**
5961 * Emit fragment position/ooordinate code.
5962 */
5963 static void
5964 emit_wpos(struct st_context *st,
5965 struct st_translate *t,
5966 const struct gl_program *program,
5967 struct ureg_program *ureg,
5968 int wpos_transform_const)
5969 {
5970 struct pipe_screen *pscreen = st->pipe->screen;
5971 GLfloat adjX = 0.0f;
5972 GLfloat adjY[2] = { 0.0f, 0.0f };
5973 boolean invert = FALSE;
5974
5975 /* Query the pixel center conventions supported by the pipe driver and set
5976 * adjX, adjY to help out if it cannot handle the requested one internally.
5977 *
5978 * The bias of the y-coordinate depends on whether y-inversion takes place
5979 * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
5980 * drawing to an FBO (causes additional inversion), and whether the pipe
5981 * driver origin and the requested origin differ (the latter condition is
5982 * stored in the 'invert' variable).
5983 *
5984 * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
5985 *
5986 * center shift only:
5987 * i -> h: +0.5
5988 * h -> i: -0.5
5989 *
5990 * inversion only:
5991 * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
5992 * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
5993 * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
5994 * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
5995 *
5996 * inversion and center shift:
5997 * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
5998 * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
5999 * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
6000 * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
6001 */
6002 if (program->OriginUpperLeft) {
6003 /* Fragment shader wants origin in upper-left */
6004 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
6005 /* the driver supports upper-left origin */
6006 }
6007 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
6008 /* the driver supports lower-left origin, need to invert Y */
6009 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
6010 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
6011 invert = TRUE;
6012 }
6013 else
6014 assert(0);
6015 }
6016 else {
6017 /* Fragment shader wants origin in lower-left */
6018 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
6019 /* the driver supports lower-left origin */
6020 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
6021 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
6022 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
6023 /* the driver supports upper-left origin, need to invert Y */
6024 invert = TRUE;
6025 else
6026 assert(0);
6027 }
6028
6029 if (program->PixelCenterInteger) {
6030 /* Fragment shader wants pixel center integer */
6031 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
6032 /* the driver supports pixel center integer */
6033 adjY[1] = 1.0f;
6034 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
6035 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
6036 }
6037 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
6038 /* the driver supports pixel center half integer, need to bias X,Y */
6039 adjX = -0.5f;
6040 adjY[0] = -0.5f;
6041 adjY[1] = 0.5f;
6042 }
6043 else
6044 assert(0);
6045 }
6046 else {
6047 /* Fragment shader wants pixel center half integer */
6048 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
6049 /* the driver supports pixel center half integer */
6050 }
6051 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
6052 /* the driver supports pixel center integer, need to bias X,Y */
6053 adjX = adjY[0] = adjY[1] = 0.5f;
6054 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
6055 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
6056 }
6057 else
6058 assert(0);
6059 }
6060
6061 /* we invert after adjustment so that we avoid the MOV to temporary,
6062 * and reuse the adjustment ADD instead */
6063 emit_wpos_adjustment(st->ctx, t, wpos_transform_const, invert, adjX, adjY);
6064 }
6065
6066 /**
6067 * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
6068 * TGSI uses +1 for front, -1 for back.
6069 * This function converts the TGSI value to the GL value. Simply clamping/
6070 * saturating the value to [0,1] does the job.
6071 */
6072 static void
6073 emit_face_var(struct gl_context *ctx, struct st_translate *t)
6074 {
6075 struct ureg_program *ureg = t->ureg;
6076 struct ureg_dst face_temp = ureg_DECL_temporary(ureg);
6077 struct ureg_src face_input = t->inputs[t->inputMapping[VARYING_SLOT_FACE]];
6078
6079 if (ctx->Const.NativeIntegers) {
6080 ureg_FSGE(ureg, face_temp, face_input, ureg_imm1f(ureg, 0));
6081 }
6082 else {
6083 /* MOV_SAT face_temp, input[face] */
6084 ureg_MOV(ureg, ureg_saturate(face_temp), face_input);
6085 }
6086
6087 /* Use face_temp as face input from here on: */
6088 t->inputs[t->inputMapping[VARYING_SLOT_FACE]] = ureg_src(face_temp);
6089 }
6090
6091 static void
6092 emit_compute_block_size(const struct gl_program *prog,
6093 struct ureg_program *ureg) {
6094 ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH,
6095 prog->info.cs.local_size[0]);
6096 ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT,
6097 prog->info.cs.local_size[1]);
6098 ureg_property(ureg, TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH,
6099 prog->info.cs.local_size[2]);
6100 }
6101
6102 struct sort_inout_decls {
6103 bool operator()(const struct inout_decl &a, const struct inout_decl &b) const {
6104 return mapping[a.mesa_index] < mapping[b.mesa_index];
6105 }
6106
6107 const ubyte *mapping;
6108 };
6109
6110 /* Sort the given array of decls by the corresponding slot (TGSI file index).
6111 *
6112 * This is for the benefit of older drivers which are broken when the
6113 * declarations aren't sorted in this way.
6114 */
6115 static void
6116 sort_inout_decls_by_slot(struct inout_decl *decls,
6117 unsigned count,
6118 const ubyte mapping[])
6119 {
6120 sort_inout_decls sorter;
6121 sorter.mapping = mapping;
6122 std::sort(decls, decls + count, sorter);
6123 }
6124
6125 static unsigned
6126 st_translate_interp(enum glsl_interp_mode glsl_qual, GLuint varying)
6127 {
6128 switch (glsl_qual) {
6129 case INTERP_MODE_NONE:
6130 if (varying == VARYING_SLOT_COL0 || varying == VARYING_SLOT_COL1)
6131 return TGSI_INTERPOLATE_COLOR;
6132 return TGSI_INTERPOLATE_PERSPECTIVE;
6133 case INTERP_MODE_SMOOTH:
6134 return TGSI_INTERPOLATE_PERSPECTIVE;
6135 case INTERP_MODE_FLAT:
6136 return TGSI_INTERPOLATE_CONSTANT;
6137 case INTERP_MODE_NOPERSPECTIVE:
6138 return TGSI_INTERPOLATE_LINEAR;
6139 default:
6140 assert(0 && "unexpected interp mode in st_translate_interp()");
6141 return TGSI_INTERPOLATE_PERSPECTIVE;
6142 }
6143 }
6144
6145 /**
6146 * Translate intermediate IR (glsl_to_tgsi_instruction) to TGSI format.
6147 * \param program the program to translate
6148 * \param numInputs number of input registers used
6149 * \param inputMapping maps Mesa fragment program inputs to TGSI generic
6150 * input indexes
6151 * \param inputSemanticName the TGSI_SEMANTIC flag for each input
6152 * \param inputSemanticIndex the semantic index (ex: which texcoord) for
6153 * each input
6154 * \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
6155 * \param numOutputs number of output registers used
6156 * \param outputMapping maps Mesa fragment program outputs to TGSI
6157 * generic outputs
6158 * \param outputSemanticName the TGSI_SEMANTIC flag for each output
6159 * \param outputSemanticIndex the semantic index (ex: which texcoord) for
6160 * each output
6161 *
6162 * \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
6163 */
6164 extern "C" enum pipe_error
6165 st_translate_program(
6166 struct gl_context *ctx,
6167 uint procType,
6168 struct ureg_program *ureg,
6169 glsl_to_tgsi_visitor *program,
6170 const struct gl_program *proginfo,
6171 GLuint numInputs,
6172 const ubyte inputMapping[],
6173 const ubyte inputSlotToAttr[],
6174 const ubyte inputSemanticName[],
6175 const ubyte inputSemanticIndex[],
6176 const ubyte interpMode[],
6177 GLuint numOutputs,
6178 const ubyte outputMapping[],
6179 const ubyte outputSemanticName[],
6180 const ubyte outputSemanticIndex[])
6181 {
6182 struct pipe_screen *screen = st_context(ctx)->pipe->screen;
6183 struct st_translate *t;
6184 unsigned i;
6185 struct gl_program_constants *frag_const =
6186 &ctx->Const.Program[MESA_SHADER_FRAGMENT];
6187 enum pipe_error ret = PIPE_OK;
6188
6189 assert(numInputs <= ARRAY_SIZE(t->inputs));
6190 assert(numOutputs <= ARRAY_SIZE(t->outputs));
6191
6192 t = CALLOC_STRUCT(st_translate);
6193 if (!t) {
6194 ret = PIPE_ERROR_OUT_OF_MEMORY;
6195 goto out;
6196 }
6197
6198 t->procType = procType;
6199 t->need_uarl = !screen->get_param(screen, PIPE_CAP_TGSI_ANY_REG_AS_ADDRESS);
6200 t->inputMapping = inputMapping;
6201 t->outputMapping = outputMapping;
6202 t->ureg = ureg;
6203 t->num_temp_arrays = program->next_array;
6204 if (t->num_temp_arrays)
6205 t->arrays = (struct ureg_dst*)
6206 calloc(t->num_temp_arrays, sizeof(t->arrays[0]));
6207
6208 /*
6209 * Declare input attributes.
6210 */
6211 switch (procType) {
6212 case PIPE_SHADER_FRAGMENT:
6213 case PIPE_SHADER_GEOMETRY:
6214 case PIPE_SHADER_TESS_EVAL:
6215 case PIPE_SHADER_TESS_CTRL:
6216 sort_inout_decls_by_slot(program->inputs, program->num_inputs, inputMapping);
6217
6218 for (i = 0; i < program->num_inputs; ++i) {
6219 struct inout_decl *decl = &program->inputs[i];
6220 unsigned slot = inputMapping[decl->mesa_index];
6221 struct ureg_src src;
6222 ubyte tgsi_usage_mask = decl->usage_mask;
6223
6224 if (glsl_base_type_is_64bit(decl->base_type)) {
6225 if (tgsi_usage_mask == 1)
6226 tgsi_usage_mask = TGSI_WRITEMASK_XY;
6227 else if (tgsi_usage_mask == 2)
6228 tgsi_usage_mask = TGSI_WRITEMASK_ZW;
6229 else
6230 tgsi_usage_mask = TGSI_WRITEMASK_XYZW;
6231 }
6232
6233 unsigned interp_mode = 0;
6234 unsigned interp_location = 0;
6235 if (procType == PIPE_SHADER_FRAGMENT) {
6236 assert(interpMode);
6237 interp_mode = interpMode[slot] != TGSI_INTERPOLATE_COUNT ?
6238 interpMode[slot] :
6239 st_translate_interp(decl->interp, inputSlotToAttr[slot]);
6240
6241 interp_location = decl->interp_loc;
6242 }
6243
6244 src = ureg_DECL_fs_input_cyl_centroid_layout(ureg,
6245 inputSemanticName[slot], inputSemanticIndex[slot],
6246 interp_mode, 0, interp_location, slot, tgsi_usage_mask,
6247 decl->array_id, decl->size);
6248
6249 for (unsigned j = 0; j < decl->size; ++j) {
6250 if (t->inputs[slot + j].File != TGSI_FILE_INPUT) {
6251 /* The ArrayID is set up in dst_register */
6252 t->inputs[slot + j] = src;
6253 t->inputs[slot + j].ArrayID = 0;
6254 t->inputs[slot + j].Index += j;
6255 }
6256 }
6257 }
6258 break;
6259 case PIPE_SHADER_VERTEX:
6260 for (i = 0; i < numInputs; i++) {
6261 t->inputs[i] = ureg_DECL_vs_input(ureg, i);
6262 }
6263 break;
6264 case PIPE_SHADER_COMPUTE:
6265 break;
6266 default:
6267 assert(0);
6268 }
6269
6270 /*
6271 * Declare output attributes.
6272 */
6273 switch (procType) {
6274 case PIPE_SHADER_FRAGMENT:
6275 case PIPE_SHADER_COMPUTE:
6276 break;
6277 case PIPE_SHADER_GEOMETRY:
6278 case PIPE_SHADER_TESS_EVAL:
6279 case PIPE_SHADER_TESS_CTRL:
6280 case PIPE_SHADER_VERTEX:
6281 sort_inout_decls_by_slot(program->outputs, program->num_outputs, outputMapping);
6282
6283 for (i = 0; i < program->num_outputs; ++i) {
6284 struct inout_decl *decl = &program->outputs[i];
6285 unsigned slot = outputMapping[decl->mesa_index];
6286 struct ureg_dst dst;
6287 ubyte tgsi_usage_mask = decl->usage_mask;
6288
6289 if (glsl_base_type_is_64bit(decl->base_type)) {
6290 if (tgsi_usage_mask == 1)
6291 tgsi_usage_mask = TGSI_WRITEMASK_XY;
6292 else if (tgsi_usage_mask == 2)
6293 tgsi_usage_mask = TGSI_WRITEMASK_ZW;
6294 else
6295 tgsi_usage_mask = TGSI_WRITEMASK_XYZW;
6296 }
6297
6298 dst = ureg_DECL_output_layout(ureg,
6299 outputSemanticName[slot], outputSemanticIndex[slot],
6300 decl->gs_out_streams,
6301 slot, tgsi_usage_mask, decl->array_id, decl->size);
6302
6303 for (unsigned j = 0; j < decl->size; ++j) {
6304 if (t->outputs[slot + j].File != TGSI_FILE_OUTPUT) {
6305 /* The ArrayID is set up in dst_register */
6306 t->outputs[slot + j] = dst;
6307 t->outputs[slot + j].ArrayID = 0;
6308 t->outputs[slot + j].Index += j;
6309 }
6310 }
6311 }
6312 break;
6313 default:
6314 assert(0);
6315 }
6316
6317 if (procType == PIPE_SHADER_FRAGMENT) {
6318 if (program->shader->Program->info.fs.early_fragment_tests ||
6319 program->shader->Program->info.fs.post_depth_coverage) {
6320 ureg_property(ureg, TGSI_PROPERTY_FS_EARLY_DEPTH_STENCIL, 1);
6321
6322 if (program->shader->Program->info.fs.post_depth_coverage)
6323 ureg_property(ureg, TGSI_PROPERTY_FS_POST_DEPTH_COVERAGE, 1);
6324 }
6325
6326 if (proginfo->info.inputs_read & VARYING_BIT_POS) {
6327 /* Must do this after setting up t->inputs. */
6328 emit_wpos(st_context(ctx), t, proginfo, ureg,
6329 program->wpos_transform_const);
6330 }
6331
6332 if (proginfo->info.inputs_read & VARYING_BIT_FACE)
6333 emit_face_var(ctx, t);
6334
6335 for (i = 0; i < numOutputs; i++) {
6336 switch (outputSemanticName[i]) {
6337 case TGSI_SEMANTIC_POSITION:
6338 t->outputs[i] = ureg_DECL_output(ureg,
6339 TGSI_SEMANTIC_POSITION, /* Z/Depth */
6340 outputSemanticIndex[i]);
6341 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Z);
6342 break;
6343 case TGSI_SEMANTIC_STENCIL:
6344 t->outputs[i] = ureg_DECL_output(ureg,
6345 TGSI_SEMANTIC_STENCIL, /* Stencil */
6346 outputSemanticIndex[i]);
6347 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Y);
6348 break;
6349 case TGSI_SEMANTIC_COLOR:
6350 t->outputs[i] = ureg_DECL_output(ureg,
6351 TGSI_SEMANTIC_COLOR,
6352 outputSemanticIndex[i]);
6353 break;
6354 case TGSI_SEMANTIC_SAMPLEMASK:
6355 t->outputs[i] = ureg_DECL_output(ureg,
6356 TGSI_SEMANTIC_SAMPLEMASK,
6357 outputSemanticIndex[i]);
6358 /* TODO: If we ever support more than 32 samples, this will have
6359 * to become an array.
6360 */
6361 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
6362 break;
6363 default:
6364 assert(!"fragment shader outputs must be POSITION/STENCIL/COLOR");
6365 ret = PIPE_ERROR_BAD_INPUT;
6366 goto out;
6367 }
6368 }
6369 }
6370 else if (procType == PIPE_SHADER_VERTEX) {
6371 for (i = 0; i < numOutputs; i++) {
6372 if (outputSemanticName[i] == TGSI_SEMANTIC_FOG) {
6373 /* force register to contain a fog coordinate in the form (F, 0, 0, 1). */
6374 ureg_MOV(ureg,
6375 ureg_writemask(t->outputs[i], TGSI_WRITEMASK_YZW),
6376 ureg_imm4f(ureg, 0.0f, 0.0f, 0.0f, 1.0f));
6377 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
6378 }
6379 }
6380 }
6381
6382 if (procType == PIPE_SHADER_COMPUTE) {
6383 emit_compute_block_size(proginfo, ureg);
6384 }
6385
6386 /* Declare address register.
6387 */
6388 if (program->num_address_regs > 0) {
6389 assert(program->num_address_regs <= 3);
6390 for (int i = 0; i < program->num_address_regs; i++)
6391 t->address[i] = ureg_DECL_address(ureg);
6392 }
6393
6394 /* Declare misc input registers
6395 */
6396 {
6397 GLbitfield sysInputs = proginfo->info.system_values_read;
6398
6399 for (i = 0; sysInputs; i++) {
6400 if (sysInputs & (1 << i)) {
6401 unsigned semName = _mesa_sysval_to_semantic(i);
6402
6403 t->systemValues[i] = ureg_DECL_system_value(ureg, semName, 0);
6404
6405 if (semName == TGSI_SEMANTIC_INSTANCEID ||
6406 semName == TGSI_SEMANTIC_VERTEXID) {
6407 /* From Gallium perspective, these system values are always
6408 * integer, and require native integer support. However, if
6409 * native integer is supported on the vertex stage but not the
6410 * pixel stage (e.g, i915g + draw), Mesa will generate IR that
6411 * assumes these system values are floats. To resolve the
6412 * inconsistency, we insert a U2F.
6413 */
6414 struct st_context *st = st_context(ctx);
6415 struct pipe_screen *pscreen = st->pipe->screen;
6416 assert(procType == PIPE_SHADER_VERTEX);
6417 assert(pscreen->get_shader_param(pscreen, PIPE_SHADER_VERTEX, PIPE_SHADER_CAP_INTEGERS));
6418 (void) pscreen;
6419 if (!ctx->Const.NativeIntegers) {
6420 struct ureg_dst temp = ureg_DECL_local_temporary(t->ureg);
6421 ureg_U2F( t->ureg, ureg_writemask(temp, TGSI_WRITEMASK_X), t->systemValues[i]);
6422 t->systemValues[i] = ureg_scalar(ureg_src(temp), 0);
6423 }
6424 }
6425
6426 if (procType == PIPE_SHADER_FRAGMENT &&
6427 semName == TGSI_SEMANTIC_POSITION)
6428 emit_wpos(st_context(ctx), t, proginfo, ureg,
6429 program->wpos_transform_const);
6430
6431 sysInputs &= ~(1 << i);
6432 }
6433 }
6434 }
6435
6436 t->array_sizes = program->array_sizes;
6437 t->input_decls = program->inputs;
6438 t->num_input_decls = program->num_inputs;
6439 t->output_decls = program->outputs;
6440 t->num_output_decls = program->num_outputs;
6441
6442 /* Emit constants and uniforms. TGSI uses a single index space for these,
6443 * so we put all the translated regs in t->constants.
6444 */
6445 if (proginfo->Parameters) {
6446 t->constants = (struct ureg_src *)
6447 calloc(proginfo->Parameters->NumParameters, sizeof(t->constants[0]));
6448 if (t->constants == NULL) {
6449 ret = PIPE_ERROR_OUT_OF_MEMORY;
6450 goto out;
6451 }
6452 t->num_constants = proginfo->Parameters->NumParameters;
6453
6454 for (i = 0; i < proginfo->Parameters->NumParameters; i++) {
6455 switch (proginfo->Parameters->Parameters[i].Type) {
6456 case PROGRAM_STATE_VAR:
6457 case PROGRAM_UNIFORM:
6458 t->constants[i] = ureg_DECL_constant(ureg, i);
6459 break;
6460
6461 /* Emit immediates for PROGRAM_CONSTANT only when there's no indirect
6462 * addressing of the const buffer.
6463 * FIXME: Be smarter and recognize param arrays:
6464 * indirect addressing is only valid within the referenced
6465 * array.
6466 */
6467 case PROGRAM_CONSTANT:
6468 if (program->indirect_addr_consts)
6469 t->constants[i] = ureg_DECL_constant(ureg, i);
6470 else
6471 t->constants[i] = emit_immediate(t,
6472 proginfo->Parameters->ParameterValues[i],
6473 proginfo->Parameters->Parameters[i].DataType,
6474 4);
6475 break;
6476 default:
6477 break;
6478 }
6479 }
6480 }
6481
6482 for (i = 0; i < proginfo->info.num_ubos; i++) {
6483 unsigned size = proginfo->sh.UniformBlocks[i]->UniformBufferSize;
6484 unsigned num_const_vecs = (size + 15) / 16;
6485 unsigned first, last;
6486 assert(num_const_vecs > 0);
6487 first = 0;
6488 last = num_const_vecs > 0 ? num_const_vecs - 1 : 0;
6489 ureg_DECL_constant2D(t->ureg, first, last, i + 1);
6490 }
6491
6492 /* Emit immediate values.
6493 */
6494 t->immediates = (struct ureg_src *)
6495 calloc(program->num_immediates, sizeof(struct ureg_src));
6496 if (t->immediates == NULL) {
6497 ret = PIPE_ERROR_OUT_OF_MEMORY;
6498 goto out;
6499 }
6500 t->num_immediates = program->num_immediates;
6501
6502 i = 0;
6503 foreach_in_list(immediate_storage, imm, &program->immediates) {
6504 assert(i < program->num_immediates);
6505 t->immediates[i++] = emit_immediate(t, imm->values, imm->type, imm->size32);
6506 }
6507 assert(i == program->num_immediates);
6508
6509 /* texture samplers */
6510 for (i = 0; i < frag_const->MaxTextureImageUnits; i++) {
6511 if (program->samplers_used & (1u << i)) {
6512 unsigned type = st_translate_texture_type(program->sampler_types[i]);
6513
6514 t->samplers[i] = ureg_DECL_sampler(ureg, i);
6515
6516 ureg_DECL_sampler_view( ureg, i, program->sampler_targets[i],
6517 type, type, type, type );
6518 }
6519 }
6520
6521 /* Declare atomic and shader storage buffers. */
6522 {
6523 struct gl_program *prog = program->prog;
6524
6525 for (i = 0; i < prog->info.num_abos; i++) {
6526 unsigned index = prog->sh.AtomicBuffers[i]->Binding;
6527 assert(index < frag_const->MaxAtomicBuffers);
6528 t->buffers[index] = ureg_DECL_buffer(ureg, index, true);
6529 }
6530
6531 assert(prog->info.num_ssbos <= frag_const->MaxShaderStorageBlocks);
6532 for (i = 0; i < prog->info.num_ssbos; i++) {
6533 unsigned index = frag_const->MaxAtomicBuffers + i;
6534 t->buffers[index] = ureg_DECL_buffer(ureg, index, false);
6535 }
6536 }
6537
6538 if (program->use_shared_memory)
6539 t->shared_memory = ureg_DECL_memory(ureg, TGSI_MEMORY_TYPE_SHARED);
6540
6541 for (i = 0; i < program->shader->Program->info.num_images; i++) {
6542 if (program->images_used & (1 << i)) {
6543 t->images[i] = ureg_DECL_image(ureg, i,
6544 program->image_targets[i],
6545 program->image_formats[i],
6546 true, false);
6547 }
6548 }
6549
6550 /* Emit each instruction in turn:
6551 */
6552 foreach_in_list(glsl_to_tgsi_instruction, inst, &program->instructions)
6553 compile_tgsi_instruction(t, inst);
6554
6555 /* Set the next shader stage hint for VS and TES. */
6556 switch (procType) {
6557 case PIPE_SHADER_VERTEX:
6558 case PIPE_SHADER_TESS_EVAL:
6559 if (program->shader_program->SeparateShader)
6560 break;
6561
6562 for (i = program->shader->Stage+1; i <= MESA_SHADER_FRAGMENT; i++) {
6563 if (program->shader_program->_LinkedShaders[i]) {
6564 ureg_set_next_shader_processor(
6565 ureg, pipe_shader_type_from_mesa((gl_shader_stage)i));
6566 break;
6567 }
6568 }
6569 break;
6570 }
6571
6572 out:
6573 if (t) {
6574 free(t->arrays);
6575 free(t->temps);
6576 free(t->constants);
6577 t->num_constants = 0;
6578 free(t->immediates);
6579 t->num_immediates = 0;
6580 FREE(t);
6581 }
6582
6583 return ret;
6584 }
6585 /* ----------------------------- End TGSI code ------------------------------ */
6586
6587
6588 /**
6589 * Convert a shader's GLSL IR into a Mesa gl_program, although without
6590 * generating Mesa IR.
6591 */
6592 static struct gl_program *
6593 get_mesa_program_tgsi(struct gl_context *ctx,
6594 struct gl_shader_program *shader_program,
6595 struct gl_linked_shader *shader)
6596 {
6597 glsl_to_tgsi_visitor* v;
6598 struct gl_program *prog;
6599 struct gl_shader_compiler_options *options =
6600 &ctx->Const.ShaderCompilerOptions[shader->Stage];
6601 struct pipe_screen *pscreen = ctx->st->pipe->screen;
6602 enum pipe_shader_type ptarget = pipe_shader_type_from_mesa(shader->Stage);
6603 unsigned skip_merge_registers;
6604
6605 validate_ir_tree(shader->ir);
6606
6607 prog = shader->Program;
6608
6609 prog->Parameters = _mesa_new_parameter_list();
6610 v = new glsl_to_tgsi_visitor();
6611 v->ctx = ctx;
6612 v->prog = prog;
6613 v->shader_program = shader_program;
6614 v->shader = shader;
6615 v->options = options;
6616 v->native_integers = ctx->Const.NativeIntegers;
6617
6618 v->have_sqrt = pscreen->get_shader_param(pscreen, ptarget,
6619 PIPE_SHADER_CAP_TGSI_SQRT_SUPPORTED);
6620 v->have_fma = pscreen->get_shader_param(pscreen, ptarget,
6621 PIPE_SHADER_CAP_TGSI_FMA_SUPPORTED);
6622 v->has_tex_txf_lz = pscreen->get_param(pscreen,
6623 PIPE_CAP_TGSI_TEX_TXF_LZ);
6624 v->need_uarl = !pscreen->get_param(pscreen, PIPE_CAP_TGSI_ANY_REG_AS_ADDRESS);
6625
6626 v->variables = _mesa_hash_table_create(v->mem_ctx, _mesa_hash_pointer,
6627 _mesa_key_pointer_equal);
6628 skip_merge_registers =
6629 pscreen->get_shader_param(pscreen, ptarget,
6630 PIPE_SHADER_CAP_TGSI_SKIP_MERGE_REGISTERS);
6631
6632 _mesa_generate_parameters_list_for_uniforms(ctx, shader_program, shader,
6633 prog->Parameters);
6634
6635 /* Remove reads from output registers. */
6636 if (!pscreen->get_param(pscreen, PIPE_CAP_TGSI_CAN_READ_OUTPUTS))
6637 lower_output_reads(shader->Stage, shader->ir);
6638
6639 /* Emit intermediate IR for main(). */
6640 visit_exec_list(shader->ir, v);
6641
6642 #if 0
6643 /* Print out some information (for debugging purposes) used by the
6644 * optimization passes. */
6645 {
6646 int i;
6647 int *first_writes = ralloc_array(v->mem_ctx, int, v->next_temp);
6648 int *first_reads = ralloc_array(v->mem_ctx, int, v->next_temp);
6649 int *last_writes = ralloc_array(v->mem_ctx, int, v->next_temp);
6650 int *last_reads = ralloc_array(v->mem_ctx, int, v->next_temp);
6651
6652 for (i = 0; i < v->next_temp; i++) {
6653 first_writes[i] = -1;
6654 first_reads[i] = -1;
6655 last_writes[i] = -1;
6656 last_reads[i] = -1;
6657 }
6658 v->get_first_temp_read(first_reads);
6659 v->get_last_temp_read_first_temp_write(last_reads, first_writes);
6660 v->get_last_temp_write(last_writes);
6661 for (i = 0; i < v->next_temp; i++)
6662 printf("Temp %d: FR=%3d FW=%3d LR=%3d LW=%3d\n", i, first_reads[i],
6663 first_writes[i],
6664 last_reads[i],
6665 last_writes[i]);
6666 ralloc_free(first_writes);
6667 ralloc_free(first_reads);
6668 ralloc_free(last_writes);
6669 ralloc_free(last_reads);
6670 }
6671 #endif
6672
6673 /* Perform optimizations on the instructions in the glsl_to_tgsi_visitor. */
6674 v->simplify_cmp();
6675 v->copy_propagate();
6676
6677 while (v->eliminate_dead_code());
6678
6679 v->merge_two_dsts();
6680 if (!skip_merge_registers)
6681 v->merge_registers();
6682 v->renumber_registers();
6683
6684 /* Write the END instruction. */
6685 v->emit_asm(NULL, TGSI_OPCODE_END);
6686
6687 if (ctx->_Shader->Flags & GLSL_DUMP) {
6688 _mesa_log("\n");
6689 _mesa_log("GLSL IR for linked %s program %d:\n",
6690 _mesa_shader_stage_to_string(shader->Stage),
6691 shader_program->Name);
6692 _mesa_print_ir(_mesa_get_log_file(), shader->ir, NULL);
6693 _mesa_log("\n\n");
6694 }
6695
6696 do_set_program_inouts(shader->ir, prog, shader->Stage);
6697 _mesa_copy_linked_program_data(shader_program, shader);
6698 shrink_array_declarations(v->inputs, v->num_inputs,
6699 &prog->info.inputs_read,
6700 prog->info.double_inputs_read,
6701 &prog->info.patch_inputs_read);
6702 shrink_array_declarations(v->outputs, v->num_outputs,
6703 &prog->info.outputs_written, 0ULL,
6704 &prog->info.patch_outputs_written);
6705 count_resources(v, prog);
6706
6707 /* The GLSL IR won't be needed anymore. */
6708 ralloc_free(shader->ir);
6709 shader->ir = NULL;
6710
6711 /* This must be done before the uniform storage is associated. */
6712 if (shader->Stage == MESA_SHADER_FRAGMENT &&
6713 (prog->info.inputs_read & VARYING_BIT_POS ||
6714 prog->info.system_values_read & (1 << SYSTEM_VALUE_FRAG_COORD))) {
6715 static const gl_state_index wposTransformState[STATE_LENGTH] = {
6716 STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM
6717 };
6718
6719 v->wpos_transform_const = _mesa_add_state_reference(prog->Parameters,
6720 wposTransformState);
6721 }
6722
6723 /* Avoid reallocation of the program parameter list, because the uniform
6724 * storage is only associated with the original parameter list.
6725 * This should be enough for Bitmap and DrawPixels constants.
6726 */
6727 _mesa_reserve_parameter_storage(prog->Parameters, 8);
6728
6729 /* This has to be done last. Any operation the can cause
6730 * prog->ParameterValues to get reallocated (e.g., anything that adds a
6731 * program constant) has to happen before creating this linkage.
6732 */
6733 _mesa_associate_uniform_storage(ctx, shader_program, prog, true);
6734 if (!shader_program->data->LinkStatus) {
6735 free_glsl_to_tgsi_visitor(v);
6736 _mesa_reference_program(ctx, &shader->Program, NULL);
6737 return NULL;
6738 }
6739
6740 struct st_vertex_program *stvp;
6741 struct st_fragment_program *stfp;
6742 struct st_common_program *stp;
6743 struct st_compute_program *stcp;
6744
6745 switch (shader->Stage) {
6746 case MESA_SHADER_VERTEX:
6747 stvp = (struct st_vertex_program *)prog;
6748 stvp->glsl_to_tgsi = v;
6749 break;
6750 case MESA_SHADER_FRAGMENT:
6751 stfp = (struct st_fragment_program *)prog;
6752 stfp->glsl_to_tgsi = v;
6753 break;
6754 case MESA_SHADER_TESS_CTRL:
6755 case MESA_SHADER_TESS_EVAL:
6756 case MESA_SHADER_GEOMETRY:
6757 stp = st_common_program(prog);
6758 stp->glsl_to_tgsi = v;
6759 break;
6760 case MESA_SHADER_COMPUTE:
6761 stcp = (struct st_compute_program *)prog;
6762 stcp->glsl_to_tgsi = v;
6763 break;
6764 default:
6765 assert(!"should not be reached");
6766 return NULL;
6767 }
6768
6769 return prog;
6770 }
6771
6772 /* See if there are unsupported control flow statements. */
6773 class ir_control_flow_info_visitor : public ir_hierarchical_visitor {
6774 private:
6775 const struct gl_shader_compiler_options *options;
6776 public:
6777 ir_control_flow_info_visitor(const struct gl_shader_compiler_options *options)
6778 : options(options),
6779 unsupported(false)
6780 {
6781 }
6782
6783 virtual ir_visitor_status visit_enter(ir_function *ir)
6784 {
6785 /* Other functions are skipped (same as glsl_to_tgsi). */
6786 if (strcmp(ir->name, "main") == 0)
6787 return visit_continue;
6788
6789 return visit_continue_with_parent;
6790 }
6791
6792 virtual ir_visitor_status visit_enter(ir_call *ir)
6793 {
6794 if (!ir->callee->is_intrinsic()) {
6795 unsupported = true; /* it's a function call */
6796 return visit_stop;
6797 }
6798 return visit_continue;
6799 }
6800
6801 virtual ir_visitor_status visit_enter(ir_return *ir)
6802 {
6803 if (options->EmitNoMainReturn) {
6804 unsupported = true;
6805 return visit_stop;
6806 }
6807 return visit_continue;
6808 }
6809
6810 bool unsupported;
6811 };
6812
6813 static bool
6814 has_unsupported_control_flow(exec_list *ir,
6815 const struct gl_shader_compiler_options *options)
6816 {
6817 ir_control_flow_info_visitor visitor(options);
6818 visit_list_elements(&visitor, ir);
6819 return visitor.unsupported;
6820 }
6821
6822 extern "C" {
6823
6824 /**
6825 * Link a shader.
6826 * Called via ctx->Driver.LinkShader()
6827 * This actually involves converting GLSL IR into an intermediate TGSI-like IR
6828 * with code lowering and other optimizations.
6829 */
6830 GLboolean
6831 st_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
6832 {
6833 /* Return early if we are loading the shader from on-disk cache */
6834 if (st_load_tgsi_from_disk_cache(ctx, prog)) {
6835 return GL_TRUE;
6836 }
6837
6838 struct pipe_screen *pscreen = ctx->st->pipe->screen;
6839 assert(prog->data->LinkStatus);
6840
6841 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
6842 if (prog->_LinkedShaders[i] == NULL)
6843 continue;
6844
6845 struct gl_linked_shader *shader = prog->_LinkedShaders[i];
6846 exec_list *ir = shader->ir;
6847 gl_shader_stage stage = shader->Stage;
6848 const struct gl_shader_compiler_options *options =
6849 &ctx->Const.ShaderCompilerOptions[stage];
6850 enum pipe_shader_type ptarget = pipe_shader_type_from_mesa(stage);
6851 bool have_dround = pscreen->get_shader_param(pscreen, ptarget,
6852 PIPE_SHADER_CAP_TGSI_DROUND_SUPPORTED);
6853 bool have_dfrexp = pscreen->get_shader_param(pscreen, ptarget,
6854 PIPE_SHADER_CAP_TGSI_DFRACEXP_DLDEXP_SUPPORTED);
6855 bool have_ldexp = pscreen->get_shader_param(pscreen, ptarget,
6856 PIPE_SHADER_CAP_TGSI_LDEXP_SUPPORTED);
6857 unsigned if_threshold = pscreen->get_shader_param(pscreen, ptarget,
6858 PIPE_SHADER_CAP_LOWER_IF_THRESHOLD);
6859
6860 /* If there are forms of indirect addressing that the driver
6861 * cannot handle, perform the lowering pass.
6862 */
6863 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput ||
6864 options->EmitNoIndirectTemp || options->EmitNoIndirectUniform) {
6865 lower_variable_index_to_cond_assign(stage, ir,
6866 options->EmitNoIndirectInput,
6867 options->EmitNoIndirectOutput,
6868 options->EmitNoIndirectTemp,
6869 options->EmitNoIndirectUniform);
6870 }
6871
6872 if (!pscreen->get_param(pscreen, PIPE_CAP_INT64_DIVMOD))
6873 lower_64bit_integer_instructions(ir, DIV64 | MOD64);
6874
6875 if (ctx->Extensions.ARB_shading_language_packing) {
6876 unsigned lower_inst = LOWER_PACK_SNORM_2x16 |
6877 LOWER_UNPACK_SNORM_2x16 |
6878 LOWER_PACK_UNORM_2x16 |
6879 LOWER_UNPACK_UNORM_2x16 |
6880 LOWER_PACK_SNORM_4x8 |
6881 LOWER_UNPACK_SNORM_4x8 |
6882 LOWER_UNPACK_UNORM_4x8 |
6883 LOWER_PACK_UNORM_4x8;
6884
6885 if (ctx->Extensions.ARB_gpu_shader5)
6886 lower_inst |= LOWER_PACK_USE_BFI |
6887 LOWER_PACK_USE_BFE;
6888 if (!ctx->st->has_half_float_packing)
6889 lower_inst |= LOWER_PACK_HALF_2x16 |
6890 LOWER_UNPACK_HALF_2x16;
6891
6892 lower_packing_builtins(ir, lower_inst);
6893 }
6894
6895 if (!pscreen->get_param(pscreen, PIPE_CAP_TEXTURE_GATHER_OFFSETS))
6896 lower_offset_arrays(ir);
6897 do_mat_op_to_vec(ir);
6898
6899 if (stage == MESA_SHADER_FRAGMENT)
6900 lower_blend_equation_advanced(shader);
6901
6902 lower_instructions(ir,
6903 MOD_TO_FLOOR |
6904 FDIV_TO_MUL_RCP |
6905 EXP_TO_EXP2 |
6906 LOG_TO_LOG2 |
6907 (have_ldexp ? 0 : LDEXP_TO_ARITH) |
6908 (have_dfrexp ? 0 : DFREXP_DLDEXP_TO_ARITH) |
6909 CARRY_TO_ARITH |
6910 BORROW_TO_ARITH |
6911 (have_dround ? 0 : DOPS_TO_DFRAC) |
6912 (options->EmitNoPow ? POW_TO_EXP2 : 0) |
6913 (!ctx->Const.NativeIntegers ? INT_DIV_TO_MUL_RCP : 0) |
6914 (options->EmitNoSat ? SAT_TO_CLAMP : 0) |
6915 (ctx->Const.ForceGLSLAbsSqrt ? SQRT_TO_ABS_SQRT : 0) |
6916 /* Assume that if ARB_gpu_shader5 is not supported
6917 * then all of the extended integer functions need
6918 * lowering. It may be necessary to add some caps
6919 * for individual instructions.
6920 */
6921 (!ctx->Extensions.ARB_gpu_shader5
6922 ? BIT_COUNT_TO_MATH |
6923 EXTRACT_TO_SHIFTS |
6924 INSERT_TO_SHIFTS |
6925 REVERSE_TO_SHIFTS |
6926 FIND_LSB_TO_FLOAT_CAST |
6927 FIND_MSB_TO_FLOAT_CAST |
6928 IMUL_HIGH_TO_MUL
6929 : 0));
6930
6931 do_vec_index_to_cond_assign(ir);
6932 lower_vector_insert(ir, true);
6933 lower_quadop_vector(ir, false);
6934 lower_noise(ir);
6935 if (options->MaxIfDepth == 0) {
6936 lower_discard(ir);
6937 }
6938
6939 if (ctx->Const.GLSLOptimizeConservatively) {
6940 /* Do it once and repeat only if there's unsupported control flow. */
6941 do {
6942 do_common_optimization(ir, true, true, options,
6943 ctx->Const.NativeIntegers);
6944 lower_if_to_cond_assign((gl_shader_stage)i, ir,
6945 options->MaxIfDepth, if_threshold);
6946 } while (has_unsupported_control_flow(ir, options));
6947 } else {
6948 /* Repeat it until it stops making changes. */
6949 bool progress;
6950 do {
6951 progress = do_common_optimization(ir, true, true, options,
6952 ctx->Const.NativeIntegers);
6953 progress |= lower_if_to_cond_assign((gl_shader_stage)i, ir,
6954 options->MaxIfDepth, if_threshold);
6955 } while (progress);
6956 }
6957
6958 validate_ir_tree(ir);
6959 }
6960
6961 build_program_resource_list(ctx, prog);
6962
6963 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
6964 struct gl_linked_shader *shader = prog->_LinkedShaders[i];
6965 if (shader == NULL)
6966 continue;
6967
6968 enum pipe_shader_type ptarget =
6969 pipe_shader_type_from_mesa(shader->Stage);
6970 enum pipe_shader_ir preferred_ir = (enum pipe_shader_ir)
6971 pscreen->get_shader_param(pscreen, ptarget,
6972 PIPE_SHADER_CAP_PREFERRED_IR);
6973
6974 struct gl_program *linked_prog = NULL;
6975 if (preferred_ir == PIPE_SHADER_IR_NIR) {
6976 /* TODO only for GLSL VS/FS/CS for now: */
6977 switch (shader->Stage) {
6978 case MESA_SHADER_VERTEX:
6979 case MESA_SHADER_FRAGMENT:
6980 case MESA_SHADER_COMPUTE:
6981 linked_prog = st_nir_get_mesa_program(ctx, prog, shader);
6982 default:
6983 break;
6984 }
6985 } else {
6986 linked_prog = get_mesa_program_tgsi(ctx, prog, shader);
6987 }
6988
6989 if (linked_prog) {
6990 st_set_prog_affected_state_flags(linked_prog);
6991 if (!ctx->Driver.ProgramStringNotify(ctx,
6992 _mesa_shader_stage_to_program(i),
6993 linked_prog)) {
6994 _mesa_reference_program(ctx, &shader->Program, NULL);
6995 return GL_FALSE;
6996 }
6997 }
6998 }
6999
7000 return GL_TRUE;
7001 }
7002
7003 void
7004 st_translate_stream_output_info(glsl_to_tgsi_visitor *glsl_to_tgsi,
7005 const ubyte outputMapping[],
7006 struct pipe_stream_output_info *so)
7007 {
7008 if (!glsl_to_tgsi->shader_program->last_vert_prog)
7009 return;
7010
7011 struct gl_transform_feedback_info *info =
7012 glsl_to_tgsi->shader_program->last_vert_prog->sh.LinkedTransformFeedback;
7013 st_translate_stream_output_info2(info, outputMapping, so);
7014 }
7015
7016 void
7017 st_translate_stream_output_info2(struct gl_transform_feedback_info *info,
7018 const ubyte outputMapping[],
7019 struct pipe_stream_output_info *so)
7020 {
7021 unsigned i;
7022
7023 for (i = 0; i < info->NumOutputs; i++) {
7024 so->output[i].register_index =
7025 outputMapping[info->Outputs[i].OutputRegister];
7026 so->output[i].start_component = info->Outputs[i].ComponentOffset;
7027 so->output[i].num_components = info->Outputs[i].NumComponents;
7028 so->output[i].output_buffer = info->Outputs[i].OutputBuffer;
7029 so->output[i].dst_offset = info->Outputs[i].DstOffset;
7030 so->output[i].stream = info->Outputs[i].StreamId;
7031 }
7032
7033 for (i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
7034 so->stride[i] = info->Buffers[i].Stride;
7035 }
7036 so->num_outputs = info->NumOutputs;
7037 }
7038
7039 } /* extern "C" */