Move compiler.h and imports.h/c from src/mesa/main into src/util
[mesa.git] / src / mesa / swrast / s_aaline.c
1 /*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included
14 * in all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 #include "c99_math.h"
27 #include "main/glheader.h"
28 #include "util/imports.h"
29 #include "main/macros.h"
30 #include "main/mtypes.h"
31 #include "main/teximage.h"
32 #include "swrast/s_aaline.h"
33 #include "swrast/s_context.h"
34 #include "swrast/s_span.h"
35 #include "swrast/swrast.h"
36
37
38 #define SUB_PIXEL 4
39
40
41 /*
42 * Info about the AA line we're rendering
43 */
44 struct LineInfo
45 {
46 GLfloat x0, y0; /* start */
47 GLfloat x1, y1; /* end */
48 GLfloat dx, dy; /* direction vector */
49 GLfloat len; /* length */
50 GLfloat halfWidth; /* half of line width */
51 GLfloat xAdj, yAdj; /* X and Y adjustment for quad corners around line */
52 /* for coverage computation */
53 GLfloat qx0, qy0; /* quad vertices */
54 GLfloat qx1, qy1;
55 GLfloat qx2, qy2;
56 GLfloat qx3, qy3;
57 GLfloat ex0, ey0; /* quad edge vectors */
58 GLfloat ex1, ey1;
59 GLfloat ex2, ey2;
60 GLfloat ex3, ey3;
61
62 /* DO_Z */
63 GLfloat zPlane[4];
64 /* DO_RGBA - always enabled */
65 GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4];
66 /* DO_ATTRIBS */
67 GLfloat wPlane[4];
68 GLfloat attrPlane[VARYING_SLOT_MAX][4][4];
69 GLfloat lambda[VARYING_SLOT_MAX];
70 GLfloat texWidth[VARYING_SLOT_MAX];
71 GLfloat texHeight[VARYING_SLOT_MAX];
72
73 SWspan span;
74 };
75
76
77
78 /*
79 * Compute the equation of a plane used to interpolate line fragment data
80 * such as color, Z, texture coords, etc.
81 * Input: (x0, y0) and (x1,y1) are the endpoints of the line.
82 * z0, and z1 are the end point values to interpolate.
83 * Output: plane - the plane equation.
84 *
85 * Note: we don't really have enough parameters to specify a plane.
86 * We take the endpoints of the line and compute a plane such that
87 * the cross product of the line vector and the plane normal is
88 * parallel to the projection plane.
89 */
90 static void
91 compute_plane(GLfloat x0, GLfloat y0, GLfloat x1, GLfloat y1,
92 GLfloat z0, GLfloat z1, GLfloat plane[4])
93 {
94 #if 0
95 /* original */
96 const GLfloat px = x1 - x0;
97 const GLfloat py = y1 - y0;
98 const GLfloat pz = z1 - z0;
99 const GLfloat qx = -py;
100 const GLfloat qy = px;
101 const GLfloat qz = 0;
102 const GLfloat a = py * qz - pz * qy;
103 const GLfloat b = pz * qx - px * qz;
104 const GLfloat c = px * qy - py * qx;
105 const GLfloat d = -(a * x0 + b * y0 + c * z0);
106 plane[0] = a;
107 plane[1] = b;
108 plane[2] = c;
109 plane[3] = d;
110 #else
111 /* simplified */
112 const GLfloat px = x1 - x0;
113 const GLfloat py = y1 - y0;
114 const GLfloat pz = z0 - z1;
115 const GLfloat a = pz * px;
116 const GLfloat b = pz * py;
117 const GLfloat c = px * px + py * py;
118 const GLfloat d = -(a * x0 + b * y0 + c * z0);
119 if (a == 0.0F && b == 0.0F && c == 0.0F && d == 0.0F) {
120 plane[0] = 0.0F;
121 plane[1] = 0.0F;
122 plane[2] = 1.0F;
123 plane[3] = 0.0F;
124 }
125 else {
126 plane[0] = a;
127 plane[1] = b;
128 plane[2] = c;
129 plane[3] = d;
130 }
131 #endif
132 }
133
134
135 static inline void
136 constant_plane(GLfloat value, GLfloat plane[4])
137 {
138 plane[0] = 0.0F;
139 plane[1] = 0.0F;
140 plane[2] = -1.0F;
141 plane[3] = value;
142 }
143
144
145 static inline GLfloat
146 solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4])
147 {
148 const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
149 return z;
150 }
151
152 #define SOLVE_PLANE(X, Y, PLANE) \
153 ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2])
154
155
156 /*
157 * Return 1 / solve_plane().
158 */
159 static inline GLfloat
160 solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4])
161 {
162 const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y;
163 if (denom == 0.0F)
164 return 0.0F;
165 else
166 return -plane[2] / denom;
167 }
168
169
170 /*
171 * Solve plane and return clamped GLchan value.
172 */
173 static inline GLchan
174 solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4])
175 {
176 const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
177 #if CHAN_TYPE == GL_FLOAT
178 return CLAMP(z, 0.0F, CHAN_MAXF);
179 #else
180 if (z < 0)
181 return 0;
182 else if (z > CHAN_MAX)
183 return CHAN_MAX;
184 return (GLchan) IROUND_POS(z);
185 #endif
186 }
187
188
189 /*
190 * Compute mipmap level of detail.
191 */
192 static inline GLfloat
193 compute_lambda(const GLfloat sPlane[4], const GLfloat tPlane[4],
194 GLfloat invQ, GLfloat width, GLfloat height)
195 {
196 GLfloat dudx = sPlane[0] / sPlane[2] * invQ * width;
197 GLfloat dudy = sPlane[1] / sPlane[2] * invQ * width;
198 GLfloat dvdx = tPlane[0] / tPlane[2] * invQ * height;
199 GLfloat dvdy = tPlane[1] / tPlane[2] * invQ * height;
200 GLfloat r1 = dudx * dudx + dudy * dudy;
201 GLfloat r2 = dvdx * dvdx + dvdy * dvdy;
202 GLfloat rho2 = r1 + r2;
203 /* return log base 2 of rho */
204 if (rho2 == 0.0F)
205 return 0.0;
206 else
207 return logf(rho2) * 1.442695f * 0.5f;/* 1.442695 = 1/log(2) */
208 }
209
210
211
212
213 /*
214 * Fill in the samples[] array with the (x,y) subpixel positions of
215 * xSamples * ySamples sample positions.
216 * Note that the four corner samples are put into the first four
217 * positions of the array. This allows us to optimize for the common
218 * case of all samples being inside the polygon.
219 */
220 static void
221 make_sample_table(GLint xSamples, GLint ySamples, GLfloat samples[][2])
222 {
223 const GLfloat dx = 1.0F / (GLfloat) xSamples;
224 const GLfloat dy = 1.0F / (GLfloat) ySamples;
225 GLint x, y;
226 GLint i;
227
228 i = 4;
229 for (x = 0; x < xSamples; x++) {
230 for (y = 0; y < ySamples; y++) {
231 GLint j;
232 if (x == 0 && y == 0) {
233 /* lower left */
234 j = 0;
235 }
236 else if (x == xSamples - 1 && y == 0) {
237 /* lower right */
238 j = 1;
239 }
240 else if (x == 0 && y == ySamples - 1) {
241 /* upper left */
242 j = 2;
243 }
244 else if (x == xSamples - 1 && y == ySamples - 1) {
245 /* upper right */
246 j = 3;
247 }
248 else {
249 j = i++;
250 }
251 samples[j][0] = x * dx + 0.5F * dx;
252 samples[j][1] = y * dy + 0.5F * dy;
253 }
254 }
255 }
256
257
258
259 /*
260 * Compute how much of the given pixel's area is inside the rectangle
261 * defined by vertices v0, v1, v2, v3.
262 * Vertices MUST be specified in counter-clockwise order.
263 * Return: coverage in [0, 1].
264 */
265 static GLfloat
266 compute_coveragef(const struct LineInfo *info,
267 GLint winx, GLint winy)
268 {
269 static GLfloat samples[SUB_PIXEL * SUB_PIXEL][2];
270 static GLboolean haveSamples = GL_FALSE;
271 const GLfloat x = (GLfloat) winx;
272 const GLfloat y = (GLfloat) winy;
273 GLint stop = 4, i;
274 GLfloat insideCount = SUB_PIXEL * SUB_PIXEL;
275
276 if (!haveSamples) {
277 make_sample_table(SUB_PIXEL, SUB_PIXEL, samples);
278 haveSamples = GL_TRUE;
279 }
280
281 #if 0 /*DEBUG*/
282 {
283 const GLfloat area = dx0 * dy1 - dx1 * dy0;
284 assert(area >= 0.0);
285 }
286 #endif
287
288 for (i = 0; i < stop; i++) {
289 const GLfloat sx = x + samples[i][0];
290 const GLfloat sy = y + samples[i][1];
291 const GLfloat fx0 = sx - info->qx0;
292 const GLfloat fy0 = sy - info->qy0;
293 const GLfloat fx1 = sx - info->qx1;
294 const GLfloat fy1 = sy - info->qy1;
295 const GLfloat fx2 = sx - info->qx2;
296 const GLfloat fy2 = sy - info->qy2;
297 const GLfloat fx3 = sx - info->qx3;
298 const GLfloat fy3 = sy - info->qy3;
299 /* cross product determines if sample is inside or outside each edge */
300 GLfloat cross0 = (info->ex0 * fy0 - info->ey0 * fx0);
301 GLfloat cross1 = (info->ex1 * fy1 - info->ey1 * fx1);
302 GLfloat cross2 = (info->ex2 * fy2 - info->ey2 * fx2);
303 GLfloat cross3 = (info->ex3 * fy3 - info->ey3 * fx3);
304 /* Check if the sample is exactly on an edge. If so, let cross be a
305 * positive or negative value depending on the direction of the edge.
306 */
307 if (cross0 == 0.0F)
308 cross0 = info->ex0 + info->ey0;
309 if (cross1 == 0.0F)
310 cross1 = info->ex1 + info->ey1;
311 if (cross2 == 0.0F)
312 cross2 = info->ex2 + info->ey2;
313 if (cross3 == 0.0F)
314 cross3 = info->ex3 + info->ey3;
315 if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F || cross3 < 0.0F) {
316 /* point is outside quadrilateral */
317 insideCount -= 1.0F;
318 stop = SUB_PIXEL * SUB_PIXEL;
319 }
320 }
321 if (stop == 4)
322 return 1.0F;
323 else
324 return insideCount * (1.0F / (SUB_PIXEL * SUB_PIXEL));
325 }
326
327
328 typedef void (*plot_func)(struct gl_context *ctx, struct LineInfo *line,
329 int ix, int iy);
330
331
332
333 /*
334 * Draw an AA line segment (called many times per line when stippling)
335 */
336 static void
337 segment(struct gl_context *ctx,
338 struct LineInfo *line,
339 plot_func plot,
340 GLfloat t0, GLfloat t1)
341 {
342 const GLfloat absDx = (line->dx < 0.0F) ? -line->dx : line->dx;
343 const GLfloat absDy = (line->dy < 0.0F) ? -line->dy : line->dy;
344 /* compute the actual segment's endpoints */
345 const GLfloat x0 = line->x0 + t0 * line->dx;
346 const GLfloat y0 = line->y0 + t0 * line->dy;
347 const GLfloat x1 = line->x0 + t1 * line->dx;
348 const GLfloat y1 = line->y0 + t1 * line->dy;
349
350 /* compute vertices of the line-aligned quadrilateral */
351 line->qx0 = x0 - line->yAdj;
352 line->qy0 = y0 + line->xAdj;
353 line->qx1 = x0 + line->yAdj;
354 line->qy1 = y0 - line->xAdj;
355 line->qx2 = x1 + line->yAdj;
356 line->qy2 = y1 - line->xAdj;
357 line->qx3 = x1 - line->yAdj;
358 line->qy3 = y1 + line->xAdj;
359 /* compute the quad's edge vectors (for coverage calc) */
360 line->ex0 = line->qx1 - line->qx0;
361 line->ey0 = line->qy1 - line->qy0;
362 line->ex1 = line->qx2 - line->qx1;
363 line->ey1 = line->qy2 - line->qy1;
364 line->ex2 = line->qx3 - line->qx2;
365 line->ey2 = line->qy3 - line->qy2;
366 line->ex3 = line->qx0 - line->qx3;
367 line->ey3 = line->qy0 - line->qy3;
368
369 if (absDx > absDy) {
370 /* X-major line */
371 GLfloat dydx = line->dy / line->dx;
372 GLfloat xLeft, xRight, yBot, yTop;
373 GLint ix, ixRight;
374 if (x0 < x1) {
375 xLeft = x0 - line->halfWidth;
376 xRight = x1 + line->halfWidth;
377 if (line->dy >= 0.0F) {
378 yBot = y0 - 3.0F * line->halfWidth;
379 yTop = y0 + line->halfWidth;
380 }
381 else {
382 yBot = y0 - line->halfWidth;
383 yTop = y0 + 3.0F * line->halfWidth;
384 }
385 }
386 else {
387 xLeft = x1 - line->halfWidth;
388 xRight = x0 + line->halfWidth;
389 if (line->dy <= 0.0F) {
390 yBot = y1 - 3.0F * line->halfWidth;
391 yTop = y1 + line->halfWidth;
392 }
393 else {
394 yBot = y1 - line->halfWidth;
395 yTop = y1 + 3.0F * line->halfWidth;
396 }
397 }
398
399 /* scan along the line, left-to-right */
400 ixRight = (GLint) (xRight + 1.0F);
401
402 /*printf("avg span height: %g\n", yTop - yBot);*/
403 for (ix = (GLint) xLeft; ix < ixRight; ix++) {
404 const GLint iyBot = (GLint) yBot;
405 const GLint iyTop = (GLint) (yTop + 1.0F);
406 GLint iy;
407 /* scan across the line, bottom-to-top */
408 for (iy = iyBot; iy < iyTop; iy++) {
409 plot(ctx, line, ix, iy);
410 }
411 yBot += dydx;
412 yTop += dydx;
413 }
414 }
415 else {
416 /* Y-major line */
417 GLfloat dxdy = line->dx / line->dy;
418 GLfloat yBot, yTop, xLeft, xRight;
419 GLint iy, iyTop;
420 if (y0 < y1) {
421 yBot = y0 - line->halfWidth;
422 yTop = y1 + line->halfWidth;
423 if (line->dx >= 0.0F) {
424 xLeft = x0 - 3.0F * line->halfWidth;
425 xRight = x0 + line->halfWidth;
426 }
427 else {
428 xLeft = x0 - line->halfWidth;
429 xRight = x0 + 3.0F * line->halfWidth;
430 }
431 }
432 else {
433 yBot = y1 - line->halfWidth;
434 yTop = y0 + line->halfWidth;
435 if (line->dx <= 0.0F) {
436 xLeft = x1 - 3.0F * line->halfWidth;
437 xRight = x1 + line->halfWidth;
438 }
439 else {
440 xLeft = x1 - line->halfWidth;
441 xRight = x1 + 3.0F * line->halfWidth;
442 }
443 }
444
445 /* scan along the line, bottom-to-top */
446 iyTop = (GLint) (yTop + 1.0F);
447
448 /*printf("avg span width: %g\n", xRight - xLeft);*/
449 for (iy = (GLint) yBot; iy < iyTop; iy++) {
450 const GLint ixLeft = (GLint) xLeft;
451 const GLint ixRight = (GLint) (xRight + 1.0F);
452 GLint ix;
453 /* scan across the line, left-to-right */
454 for (ix = ixLeft; ix < ixRight; ix++) {
455 plot(ctx, line, ix, iy);
456 }
457 xLeft += dxdy;
458 xRight += dxdy;
459 }
460 }
461 }
462
463
464 #define NAME(x) aa_rgba_##x
465 #define DO_Z
466 #include "s_aalinetemp.h"
467
468
469 #define NAME(x) aa_general_rgba_##x
470 #define DO_Z
471 #define DO_ATTRIBS
472 #include "s_aalinetemp.h"
473
474
475
476 void
477 _swrast_choose_aa_line_function(struct gl_context *ctx)
478 {
479 SWcontext *swrast = SWRAST_CONTEXT(ctx);
480
481 assert(ctx->Line.SmoothFlag);
482
483 if (ctx->Texture._EnabledCoordUnits != 0
484 || _swrast_use_fragment_program(ctx)
485 || (ctx->Light.Enabled &&
486 ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)
487 || ctx->Fog.ColorSumEnabled
488 || swrast->_FogEnabled) {
489 swrast->Line = aa_general_rgba_line;
490 }
491 else {
492 swrast->Line = aa_rgba_line;
493 }
494 }