Move compiler.h and imports.h/c from src/mesa/main into src/util
[mesa.git] / src / mesa / tnl / t_vb_light.c
1 /*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 1999-2006 Brian Paul All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included
14 * in all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 #include "c99_math.h"
27 #include "main/glheader.h"
28 #include "main/light.h"
29 #include "main/macros.h"
30 #include "util/imports.h"
31 #include "util/simple_list.h"
32 #include "main/mtypes.h"
33
34 #include "math/m_translate.h"
35
36 #include "util/bitscan.h"
37
38 #include "t_context.h"
39 #include "t_pipeline.h"
40 #include "tnl.h"
41
42 #define LIGHT_TWOSIDE 0x1
43 #define LIGHT_MATERIAL 0x2
44 #define MAX_LIGHT_FUNC 0x4
45
46 typedef void (*light_func)( struct gl_context *ctx,
47 struct vertex_buffer *VB,
48 struct tnl_pipeline_stage *stage,
49 GLvector4f *input );
50
51 /**
52 * Information for updating current material attributes from vertex color,
53 * for GL_COLOR_MATERIAL.
54 */
55 struct material_cursor {
56 const GLfloat *ptr; /* points to src vertex color (in VB array) */
57 GLuint stride; /* stride to next vertex color (bytes) */
58 GLfloat *current; /* points to material attribute to update */
59 GLuint size; /* vertex/color size: 1, 2, 3 or 4 */
60 };
61
62 /**
63 * Data private to this pipeline stage.
64 */
65 struct light_stage_data {
66 GLvector4f Input;
67 GLvector4f LitColor[2];
68 GLvector4f LitSecondary[2];
69 light_func *light_func_tab;
70
71 struct material_cursor mat[MAT_ATTRIB_MAX];
72 GLuint mat_count;
73 GLuint mat_bitmask;
74 };
75
76
77 #define LIGHT_STAGE_DATA(stage) ((struct light_stage_data *)(stage->privatePtr))
78
79
80
81 /**********************************************************************/
82 /***** Lighting computation *****/
83 /**********************************************************************/
84
85
86 /*
87 * Notes:
88 * When two-sided lighting is enabled we compute the color (or index)
89 * for both the front and back side of the primitive. Then, when the
90 * orientation of the facet is later learned, we can determine which
91 * color (or index) to use for rendering.
92 *
93 * KW: We now know orientation in advance and only shade for
94 * the side or sides which are actually required.
95 *
96 * Variables:
97 * n = normal vector
98 * V = vertex position
99 * P = light source position
100 * Pe = (0,0,0,1)
101 *
102 * Precomputed:
103 * IF P[3]==0 THEN
104 * // light at infinity
105 * IF local_viewer THEN
106 * _VP_inf_norm = unit vector from V to P // Precompute
107 * ELSE
108 * // eye at infinity
109 * _h_inf_norm = Normalize( VP + <0,0,1> ) // Precompute
110 * ENDIF
111 * ENDIF
112 *
113 * Functions:
114 * Normalize( v ) = normalized vector v
115 * Magnitude( v ) = length of vector v
116 */
117
118
119
120 static void
121 validate_shine_table( struct gl_context *ctx, GLuint side, GLfloat shininess )
122 {
123 TNLcontext *tnl = TNL_CONTEXT(ctx);
124 struct tnl_shine_tab *list = tnl->_ShineTabList;
125 struct tnl_shine_tab *s;
126
127 assert(side < 2);
128
129 foreach(s, list)
130 if ( s->shininess == shininess )
131 break;
132
133 if (s == list) {
134 GLint j;
135 GLfloat *m;
136
137 foreach(s, list)
138 if (s->refcount == 0)
139 break;
140
141 m = s->tab;
142 m[0] = 0.0F;
143 if (shininess == 0.0F) {
144 for (j = 1 ; j <= SHINE_TABLE_SIZE ; j++)
145 m[j] = 1.0F;
146 }
147 else {
148 for (j = 1 ; j < SHINE_TABLE_SIZE ; j++) {
149 GLfloat t, x = j / (GLfloat) (SHINE_TABLE_SIZE - 1);
150 if (x < 0.005F) /* underflow check */
151 x = 0.005F;
152 t = powf(x, shininess);
153 if (t > 1e-20F)
154 m[j] = t;
155 else
156 m[j] = 0.0F;
157 }
158 m[SHINE_TABLE_SIZE] = 1.0F;
159 }
160
161 s->shininess = shininess;
162 }
163
164 if (tnl->_ShineTable[side])
165 tnl->_ShineTable[side]->refcount--;
166
167 tnl->_ShineTable[side] = s;
168 move_to_tail( list, s );
169 s->refcount++;
170 }
171
172
173 void
174 _tnl_validate_shine_tables( struct gl_context *ctx )
175 {
176 TNLcontext *tnl = TNL_CONTEXT(ctx);
177 GLfloat shininess;
178
179 shininess = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SHININESS][0];
180 if (!tnl->_ShineTable[0] || tnl->_ShineTable[0]->shininess != shininess)
181 validate_shine_table( ctx, 0, shininess );
182
183 shininess = ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_SHININESS][0];
184 if (!tnl->_ShineTable[1] || tnl->_ShineTable[1]->shininess != shininess)
185 validate_shine_table( ctx, 1, shininess );
186 }
187
188
189 /**
190 * In the case of colormaterial, the effected material attributes
191 * should already have been bound to point to the incoming color data,
192 * prior to running the pipeline.
193 * This function copies the vertex's color to the material attributes
194 * which are tracking glColor.
195 * It's called per-vertex in the lighting loop.
196 */
197 static void
198 update_materials(struct gl_context *ctx, struct light_stage_data *store)
199 {
200 GLuint i;
201
202 for (i = 0 ; i < store->mat_count ; i++) {
203 /* update the material */
204 COPY_CLEAN_4V(store->mat[i].current, store->mat[i].size, store->mat[i].ptr);
205 /* increment src vertex color pointer */
206 STRIDE_F(store->mat[i].ptr, store->mat[i].stride);
207 }
208
209 /* recompute derived light/material values */
210 _mesa_update_material( ctx, store->mat_bitmask );
211 /* XXX we should only call this if we're tracking/changing the specular
212 * exponent.
213 */
214 _tnl_validate_shine_tables( ctx );
215 }
216
217
218 /**
219 * Prepare things prior to running the lighting stage.
220 * Return number of material attributes which will track vertex color.
221 */
222 static GLuint
223 prepare_materials(struct gl_context *ctx,
224 struct vertex_buffer *VB, struct light_stage_data *store)
225 {
226 GLuint i;
227
228 store->mat_count = 0;
229 store->mat_bitmask = 0;
230
231 /* Examine the _ColorMaterialBitmask to determine which materials
232 * track vertex color. Override the material attribute's pointer
233 * with the color pointer for each one.
234 */
235 if (ctx->Light.ColorMaterialEnabled) {
236 GLbitfield bitmask = ctx->Light._ColorMaterialBitmask;
237 while (bitmask) {
238 const int i = u_bit_scan(&bitmask);
239 VB->AttribPtr[_TNL_ATTRIB_MAT_FRONT_AMBIENT + i] =
240 VB->AttribPtr[_TNL_ATTRIB_COLOR0];
241 }
242 }
243
244 /* Now, for each material attribute that's tracking vertex color, save
245 * some values (ptr, stride, size, current) that we'll need in
246 * update_materials(), above, that'll actually copy the vertex color to
247 * the material attribute(s).
248 */
249 for (i = _TNL_FIRST_MAT; i <= _TNL_LAST_MAT; i++) {
250 if (VB->AttribPtr[i]->stride) {
251 const GLuint j = store->mat_count++;
252 const GLuint attr = i - _TNL_ATTRIB_MAT_FRONT_AMBIENT;
253 store->mat[j].ptr = VB->AttribPtr[i]->start;
254 store->mat[j].stride = VB->AttribPtr[i]->stride;
255 store->mat[j].size = VB->AttribPtr[i]->size;
256 store->mat[j].current = ctx->Light.Material.Attrib[attr];
257 store->mat_bitmask |= (1<<attr);
258 }
259 }
260
261 /* FIXME: Is this already done?
262 */
263 _mesa_update_material( ctx, ~0 );
264
265 _tnl_validate_shine_tables( ctx );
266
267 return store->mat_count;
268 }
269
270 /*
271 * Compute dp ^ SpecularExponent.
272 * Lerp between adjacent values in the f(x) lookup table, giving a
273 * continuous function, with adequate overall accuracy. (Though still
274 * pretty good compared to a straight lookup).
275 */
276 static inline GLfloat
277 lookup_shininess(const struct gl_context *ctx, GLuint face, GLfloat dp)
278 {
279 TNLcontext *tnl = TNL_CONTEXT(ctx);
280 const struct tnl_shine_tab *tab = tnl->_ShineTable[face];
281 float f = dp * (SHINE_TABLE_SIZE - 1);
282 int k = (int) f;
283 if (k < 0 /* gcc may cast an overflow float value to negative int value */
284 || k > SHINE_TABLE_SIZE - 2)
285 return powf(dp, tab->shininess);
286 else
287 return tab->tab[k] + (f - k) * (tab->tab[k+1] - tab->tab[k]);
288 }
289
290 /* Tables for all the shading functions.
291 */
292 static light_func _tnl_light_tab[MAX_LIGHT_FUNC];
293 static light_func _tnl_light_fast_tab[MAX_LIGHT_FUNC];
294 static light_func _tnl_light_fast_single_tab[MAX_LIGHT_FUNC];
295 static light_func _tnl_light_spec_tab[MAX_LIGHT_FUNC];
296
297 #define TAG(x) x
298 #define IDX (0)
299 #include "t_vb_lighttmp.h"
300
301 #define TAG(x) x##_twoside
302 #define IDX (LIGHT_TWOSIDE)
303 #include "t_vb_lighttmp.h"
304
305 #define TAG(x) x##_material
306 #define IDX (LIGHT_MATERIAL)
307 #include "t_vb_lighttmp.h"
308
309 #define TAG(x) x##_twoside_material
310 #define IDX (LIGHT_TWOSIDE|LIGHT_MATERIAL)
311 #include "t_vb_lighttmp.h"
312
313
314 static void init_lighting_tables( void )
315 {
316 static int done;
317
318 if (!done) {
319 init_light_tab();
320 init_light_tab_twoside();
321 init_light_tab_material();
322 init_light_tab_twoside_material();
323 done = 1;
324 }
325 }
326
327
328 static GLboolean run_lighting( struct gl_context *ctx,
329 struct tnl_pipeline_stage *stage )
330 {
331 struct light_stage_data *store = LIGHT_STAGE_DATA(stage);
332 TNLcontext *tnl = TNL_CONTEXT(ctx);
333 struct vertex_buffer *VB = &tnl->vb;
334 GLvector4f *input = ctx->_NeedEyeCoords ? VB->EyePtr : VB->AttribPtr[_TNL_ATTRIB_POS];
335 GLuint idx;
336
337 if (!ctx->Light.Enabled || ctx->VertexProgram._Current)
338 return GL_TRUE;
339
340 /* Make sure we can talk about position x,y and z:
341 */
342 if (input->size <= 2 && input == VB->AttribPtr[_TNL_ATTRIB_POS]) {
343
344 _math_trans_4f( store->Input.data,
345 VB->AttribPtr[_TNL_ATTRIB_POS]->data,
346 VB->AttribPtr[_TNL_ATTRIB_POS]->stride,
347 GL_FLOAT,
348 VB->AttribPtr[_TNL_ATTRIB_POS]->size,
349 0,
350 VB->Count );
351
352 if (input->size <= 2) {
353 /* Clean z.
354 */
355 _mesa_vector4f_clean_elem(&store->Input, VB->Count, 2);
356 }
357
358 if (input->size <= 1) {
359 /* Clean y.
360 */
361 _mesa_vector4f_clean_elem(&store->Input, VB->Count, 1);
362 }
363
364 input = &store->Input;
365 }
366
367 idx = 0;
368
369 if (prepare_materials( ctx, VB, store ))
370 idx |= LIGHT_MATERIAL;
371
372 if (ctx->Light.Model.TwoSide)
373 idx |= LIGHT_TWOSIDE;
374
375 /* The individual functions know about replaying side-effects
376 * vs. full re-execution.
377 */
378 store->light_func_tab[idx]( ctx, VB, stage, input );
379
380 return GL_TRUE;
381 }
382
383
384 /* Called in place of do_lighting when the light table may have changed.
385 */
386 static void validate_lighting( struct gl_context *ctx,
387 struct tnl_pipeline_stage *stage )
388 {
389 light_func *tab;
390
391 if (!ctx->Light.Enabled || ctx->VertexProgram._Current)
392 return;
393
394 if (ctx->Light._NeedVertices) {
395 if (ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)
396 tab = _tnl_light_spec_tab;
397 else
398 tab = _tnl_light_tab;
399 }
400 else {
401 /* Power of two means only a single active light. */
402 if (_mesa_is_pow_two(ctx->Light._EnabledLights))
403 tab = _tnl_light_fast_single_tab;
404 else
405 tab = _tnl_light_fast_tab;
406 }
407
408
409 LIGHT_STAGE_DATA(stage)->light_func_tab = tab;
410
411 /* This and the above should only be done on _NEW_LIGHT:
412 */
413 TNL_CONTEXT(ctx)->Driver.NotifyMaterialChange( ctx );
414 }
415
416
417
418 /* Called the first time stage->run is called. In effect, don't
419 * allocate data until the first time the stage is run.
420 */
421 static GLboolean init_lighting( struct gl_context *ctx,
422 struct tnl_pipeline_stage *stage )
423 {
424 TNLcontext *tnl = TNL_CONTEXT(ctx);
425 struct light_stage_data *store;
426 GLuint size = tnl->vb.Size;
427
428 stage->privatePtr = malloc(sizeof(*store));
429 store = LIGHT_STAGE_DATA(stage);
430 if (!store)
431 return GL_FALSE;
432
433 /* Do onetime init.
434 */
435 init_lighting_tables();
436
437 _mesa_vector4f_alloc( &store->Input, 0, size, 32 );
438 _mesa_vector4f_alloc( &store->LitColor[0], 0, size, 32 );
439 _mesa_vector4f_alloc( &store->LitColor[1], 0, size, 32 );
440 _mesa_vector4f_alloc( &store->LitSecondary[0], 0, size, 32 );
441 _mesa_vector4f_alloc( &store->LitSecondary[1], 0, size, 32 );
442
443 store->LitColor[0].size = 4;
444 store->LitColor[1].size = 4;
445 store->LitSecondary[0].size = 3;
446 store->LitSecondary[1].size = 3;
447
448 return GL_TRUE;
449 }
450
451
452
453
454 static void dtr( struct tnl_pipeline_stage *stage )
455 {
456 struct light_stage_data *store = LIGHT_STAGE_DATA(stage);
457
458 if (store) {
459 _mesa_vector4f_free( &store->Input );
460 _mesa_vector4f_free( &store->LitColor[0] );
461 _mesa_vector4f_free( &store->LitColor[1] );
462 _mesa_vector4f_free( &store->LitSecondary[0] );
463 _mesa_vector4f_free( &store->LitSecondary[1] );
464 free( store );
465 stage->privatePtr = NULL;
466 }
467 }
468
469 const struct tnl_pipeline_stage _tnl_lighting_stage =
470 {
471 "lighting", /* name */
472 NULL, /* private_data */
473 init_lighting,
474 dtr, /* destroy */
475 validate_lighting,
476 run_lighting
477 };