pan/bi: Pack LD_ATTR
[mesa.git] / src / panfrost / bifrost / bifrost_compile.c
1 /*
2 * Copyright (C) 2020 Collabora Ltd.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors (Collabora):
24 * Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
25 */
26
27 #include "main/mtypes.h"
28 #include "compiler/glsl/glsl_to_nir.h"
29 #include "compiler/nir_types.h"
30 #include "main/imports.h"
31 #include "compiler/nir/nir_builder.h"
32
33 #include "disassemble.h"
34 #include "bifrost_compile.h"
35 #include "bifrost_nir.h"
36 #include "compiler.h"
37 #include "bi_quirks.h"
38 #include "bi_print.h"
39
40 static bi_block *emit_cf_list(bi_context *ctx, struct exec_list *list);
41 static bi_instruction *bi_emit_branch(bi_context *ctx);
42 static void bi_schedule_barrier(bi_context *ctx);
43
44 static void
45 emit_jump(bi_context *ctx, nir_jump_instr *instr)
46 {
47 bi_instruction *branch = bi_emit_branch(ctx);
48
49 switch (instr->type) {
50 case nir_jump_break:
51 branch->branch.target = ctx->break_block;
52 break;
53 case nir_jump_continue:
54 branch->branch.target = ctx->continue_block;
55 break;
56 default:
57 unreachable("Unhandled jump type");
58 }
59
60 pan_block_add_successor(&ctx->current_block->base, &branch->branch.target->base);
61 }
62
63 /* Gets a bytemask for a complete vecN write */
64 static unsigned
65 bi_mask_for_channels_32(unsigned i)
66 {
67 return (1 << (4 * i)) - 1;
68 }
69
70 static bi_instruction
71 bi_load(enum bi_class T, nir_intrinsic_instr *instr)
72 {
73 bi_instruction load = {
74 .type = T,
75 .writemask = bi_mask_for_channels_32(instr->num_components),
76 .src = { BIR_INDEX_CONSTANT },
77 .constant = { .u64 = nir_intrinsic_base(instr) },
78 };
79
80 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
81
82 if (info->has_dest)
83 load.dest = bir_dest_index(&instr->dest);
84
85 if (info->has_dest && info->index_map[NIR_INTRINSIC_TYPE] > 0)
86 load.dest_type = nir_intrinsic_type(instr);
87
88 nir_src *offset = nir_get_io_offset_src(instr);
89
90 if (nir_src_is_const(*offset))
91 load.constant.u64 += nir_src_as_uint(*offset);
92 else
93 load.src[0] = bir_src_index(offset);
94
95 return load;
96 }
97
98 static void
99 bi_emit_ld_vary(bi_context *ctx, nir_intrinsic_instr *instr)
100 {
101 bi_instruction ins = bi_load(BI_LOAD_VAR, instr);
102 ins.load_vary.interp_mode = BIFROST_INTERP_DEFAULT; /* TODO */
103 ins.load_vary.reuse = false; /* TODO */
104 ins.load_vary.flat = instr->intrinsic != nir_intrinsic_load_interpolated_input;
105 ins.dest_type = nir_type_float | nir_dest_bit_size(instr->dest);
106
107 if (nir_src_is_const(*nir_get_io_offset_src(instr))) {
108 /* Zero it out for direct */
109 ins.src[1] = BIR_INDEX_ZERO;
110 } else {
111 /* R61 contains sample mask stuff, TODO RA XXX */
112 ins.src[1] = BIR_INDEX_REGISTER | 61;
113 }
114
115 bi_emit(ctx, ins);
116 }
117
118 static void
119 bi_emit_frag_out(bi_context *ctx, nir_intrinsic_instr *instr)
120 {
121 if (!ctx->emitted_atest) {
122 bi_instruction ins = {
123 .type = BI_ATEST,
124 .src = {
125 BIR_INDEX_REGISTER | 60 /* TODO: RA */,
126 bir_src_index(&instr->src[0])
127 },
128 .src_types = {
129 nir_type_uint32,
130 nir_type_float32
131 },
132 .swizzle = {
133 { 0 },
134 { 3, 0 } /* swizzle out the alpha */
135 },
136 .dest = BIR_INDEX_REGISTER | 60 /* TODO: RA */,
137 .dest_type = nir_type_uint32,
138 .writemask = 0xF
139 };
140
141 bi_emit(ctx, ins);
142 bi_schedule_barrier(ctx);
143 ctx->emitted_atest = true;
144 }
145
146 bi_instruction blend = {
147 .type = BI_BLEND,
148 .blend_location = nir_intrinsic_base(instr),
149 .src = {
150 BIR_INDEX_REGISTER | 60 /* Can this be arbitrary? */,
151 bir_src_index(&instr->src[0])
152 },
153 .src_types = {
154 nir_type_uint32,
155 nir_type_float32,
156 },
157 .swizzle = {
158 { 0 },
159 { 0, 1, 2, 3 }
160 },
161 .dest = BIR_INDEX_REGISTER | 48 /* Looks like magic */,
162 .dest_type = nir_type_uint32,
163 .writemask = 0xF
164 };
165
166 bi_emit(ctx, blend);
167 bi_schedule_barrier(ctx);
168 }
169
170 static bi_instruction
171 bi_load_with_r61(enum bi_class T, nir_intrinsic_instr *instr)
172 {
173 bi_instruction ld = bi_load(T, instr);
174 ld.src[1] = BIR_INDEX_REGISTER | 61; /* TODO: RA */
175 ld.src[2] = BIR_INDEX_REGISTER | 62;
176 ld.src[3] = 0;
177 ld.src_types[1] = nir_type_uint32;
178 ld.src_types[2] = nir_type_uint32;
179 ld.src_types[3] = nir_intrinsic_type(instr);
180 return ld;
181 }
182
183 static void
184 bi_emit_st_vary(bi_context *ctx, nir_intrinsic_instr *instr)
185 {
186 bi_instruction address = bi_load_with_r61(BI_LOAD_VAR_ADDRESS, instr);
187 address.dest = bi_make_temp(ctx);
188 address.dest_type = nir_type_uint32;
189 address.writemask = (1 << 12) - 1;
190
191 bi_instruction st = {
192 .type = BI_STORE_VAR,
193 .src = {
194 bir_src_index(&instr->src[0]),
195 address.dest, address.dest, address.dest,
196 },
197 .src_types = {
198 nir_type_uint32,
199 nir_type_uint32, nir_type_uint32, nir_type_uint32,
200 },
201 .swizzle = {
202 { 0, 1, 2, 3 },
203 { 0 }, { 1 }, { 2}
204 },
205 .store_channels = 4, /* TODO: WRITEMASK */
206 };
207
208 bi_emit(ctx, address);
209 bi_emit(ctx, st);
210 }
211
212 static void
213 bi_emit_ld_uniform(bi_context *ctx, nir_intrinsic_instr *instr)
214 {
215 bi_instruction ld = bi_load(BI_LOAD_UNIFORM, instr);
216 ld.src[1] = BIR_INDEX_ZERO; /* TODO: UBO index */
217
218 /* TODO: Indirect access, since we need to multiply by the element
219 * size. I believe we can get this lowering automatically via
220 * nir_lower_io (as mul instructions) with the proper options, but this
221 * is TODO */
222 assert(ld.src[0] & BIR_INDEX_CONSTANT);
223 ld.constant.u64 += ctx->sysvals.sysval_count;
224 ld.constant.u64 *= 16;
225
226 bi_emit(ctx, ld);
227 }
228
229 static void
230 bi_emit_sysval(bi_context *ctx, nir_instr *instr,
231 unsigned nr_components, unsigned offset)
232 {
233 nir_dest nir_dest;
234
235 /* Figure out which uniform this is */
236 int sysval = panfrost_sysval_for_instr(instr, &nir_dest);
237 void *val = _mesa_hash_table_u64_search(ctx->sysvals.sysval_to_id, sysval);
238
239 /* Sysvals are prefix uniforms */
240 unsigned uniform = ((uintptr_t) val) - 1;
241
242 /* Emit the read itself -- this is never indirect */
243
244 bi_instruction load = {
245 .type = BI_LOAD_UNIFORM,
246 .writemask = (1 << (nr_components * 4)) - 1,
247 .src = { BIR_INDEX_CONSTANT, BIR_INDEX_ZERO },
248 .constant = { (uniform * 16) + offset },
249 .dest = bir_dest_index(&nir_dest),
250 .dest_type = nir_type_uint32, /* TODO */
251 };
252
253 bi_emit(ctx, load);
254 }
255
256 static void
257 emit_intrinsic(bi_context *ctx, nir_intrinsic_instr *instr)
258 {
259
260 switch (instr->intrinsic) {
261 case nir_intrinsic_load_barycentric_pixel:
262 /* stub */
263 break;
264 case nir_intrinsic_load_interpolated_input:
265 case nir_intrinsic_load_input:
266 if (ctx->stage == MESA_SHADER_FRAGMENT)
267 bi_emit_ld_vary(ctx, instr);
268 else if (ctx->stage == MESA_SHADER_VERTEX)
269 bi_emit(ctx, bi_load_with_r61(BI_LOAD_ATTR, instr));
270 else {
271 unreachable("Unsupported shader stage");
272 }
273 break;
274
275 case nir_intrinsic_store_output:
276 if (ctx->stage == MESA_SHADER_FRAGMENT)
277 bi_emit_frag_out(ctx, instr);
278 else if (ctx->stage == MESA_SHADER_VERTEX)
279 bi_emit_st_vary(ctx, instr);
280 else
281 unreachable("Unsupported shader stage");
282 break;
283
284 case nir_intrinsic_load_uniform:
285 bi_emit_ld_uniform(ctx, instr);
286 break;
287
288 case nir_intrinsic_load_ssbo_address:
289 bi_emit_sysval(ctx, &instr->instr, 1, 0);
290 break;
291
292 case nir_intrinsic_get_buffer_size:
293 bi_emit_sysval(ctx, &instr->instr, 1, 8);
294 break;
295
296 case nir_intrinsic_load_viewport_scale:
297 case nir_intrinsic_load_viewport_offset:
298 case nir_intrinsic_load_num_work_groups:
299 case nir_intrinsic_load_sampler_lod_parameters_pan:
300 bi_emit_sysval(ctx, &instr->instr, 3, 0);
301 break;
302
303 default:
304 /* todo */
305 break;
306 }
307 }
308
309 static void
310 emit_load_const(bi_context *ctx, nir_load_const_instr *instr)
311 {
312 /* Make sure we've been lowered */
313 assert(instr->def.num_components == 1);
314
315 bi_instruction move = {
316 .type = BI_MOV,
317 .dest = bir_ssa_index(&instr->def),
318 .dest_type = instr->def.bit_size | nir_type_uint,
319 .writemask = (1 << (instr->def.bit_size / 8)) - 1,
320 .src = {
321 BIR_INDEX_CONSTANT
322 },
323 .constant = {
324 .u64 = nir_const_value_as_uint(instr->value[0], instr->def.bit_size)
325 }
326 };
327
328 bi_emit(ctx, move);
329 }
330
331 static enum bi_class
332 bi_class_for_nir_alu(nir_op op)
333 {
334 switch (op) {
335 case nir_op_iadd:
336 case nir_op_fadd:
337 case nir_op_fsub:
338 return BI_ADD;
339 case nir_op_isub:
340 return BI_ISUB;
341
342 case nir_op_flt:
343 case nir_op_fge:
344 case nir_op_feq:
345 case nir_op_fne:
346 case nir_op_ilt:
347 case nir_op_ige:
348 case nir_op_ieq:
349 case nir_op_ine:
350 return BI_CMP;
351
352 case nir_op_bcsel:
353 return BI_CSEL;
354
355 case nir_op_i2i8:
356 case nir_op_i2i16:
357 case nir_op_i2i32:
358 case nir_op_i2i64:
359 case nir_op_u2u8:
360 case nir_op_u2u16:
361 case nir_op_u2u32:
362 case nir_op_u2u64:
363 case nir_op_f2i16:
364 case nir_op_f2i32:
365 case nir_op_f2i64:
366 case nir_op_f2u16:
367 case nir_op_f2u32:
368 case nir_op_f2u64:
369 case nir_op_i2f16:
370 case nir_op_i2f32:
371 case nir_op_i2f64:
372 case nir_op_u2f16:
373 case nir_op_u2f32:
374 case nir_op_u2f64:
375 return BI_CONVERT;
376
377 case nir_op_ffma:
378 case nir_op_fmul:
379 return BI_FMA;
380
381 case nir_op_imin:
382 case nir_op_imax:
383 case nir_op_umin:
384 case nir_op_umax:
385 case nir_op_fmin:
386 case nir_op_fmax:
387 return BI_MINMAX;
388
389 case nir_op_fsat:
390 case nir_op_fneg:
391 case nir_op_fabs:
392 return BI_FMOV;
393 case nir_op_mov:
394 return BI_MOV;
395
396 case nir_op_frcp:
397 case nir_op_frsq:
398 case nir_op_fsin:
399 case nir_op_fcos:
400 return BI_SPECIAL;
401
402 default:
403 unreachable("Unknown ALU op");
404 }
405 }
406
407 static enum bi_cond
408 bi_cond_for_nir(nir_op op)
409 {
410 switch (op) {
411 case nir_op_flt:
412 case nir_op_ilt:
413 return BI_COND_LT;
414 case nir_op_fge:
415 case nir_op_ige:
416 return BI_COND_GE;
417 case nir_op_feq:
418 case nir_op_ieq:
419 return BI_COND_EQ;
420 case nir_op_fne:
421 case nir_op_ine:
422 return BI_COND_NE;
423 default:
424 unreachable("Invalid compare");
425 }
426 }
427
428 static void
429 emit_alu(bi_context *ctx, nir_alu_instr *instr)
430 {
431 /* Assume it's something we can handle normally */
432 bi_instruction alu = {
433 .type = bi_class_for_nir_alu(instr->op),
434 .dest = bir_dest_index(&instr->dest.dest),
435 .dest_type = nir_op_infos[instr->op].output_type
436 | nir_dest_bit_size(instr->dest.dest),
437 };
438
439 /* TODO: Implement lowering of special functions for older Bifrost */
440 assert((alu.type != BI_SPECIAL) || !(ctx->quirks & BIFROST_NO_FAST_OP));
441
442 if (instr->dest.dest.is_ssa) {
443 /* Construct a writemask */
444 unsigned bits_per_comp = instr->dest.dest.ssa.bit_size;
445 unsigned comps = instr->dest.dest.ssa.num_components;
446 assert(comps == 1);
447 unsigned bits = bits_per_comp * comps;
448 unsigned bytes = MAX2(bits / 8, 1);
449 alu.writemask = (1 << bytes) - 1;
450 } else {
451 unsigned comp_mask = instr->dest.write_mask;
452
453 alu.writemask = pan_to_bytemask(nir_dest_bit_size(instr->dest.dest),
454 comp_mask);
455 }
456
457 /* We inline constants as we go. This tracks how many constants have
458 * been inlined, since we're limited to 64-bits of constants per
459 * instruction */
460
461 unsigned dest_bits = nir_dest_bit_size(instr->dest.dest);
462 unsigned constants_left = (64 / dest_bits);
463 unsigned constant_shift = 0;
464
465 /* Copy sources */
466
467 unsigned num_inputs = nir_op_infos[instr->op].num_inputs;
468 assert(num_inputs <= ARRAY_SIZE(alu.src));
469
470 for (unsigned i = 0; i < num_inputs; ++i) {
471 unsigned bits = nir_src_bit_size(instr->src[i].src);
472 alu.src_types[i] = nir_op_infos[instr->op].input_types[i]
473 | bits;
474
475 /* Try to inline a constant */
476 if (nir_src_is_const(instr->src[i].src) && constants_left && (dest_bits == bits)) {
477 alu.constant.u64 |=
478 (nir_src_as_uint(instr->src[i].src)) << constant_shift;
479
480 alu.src[i] = BIR_INDEX_CONSTANT | constant_shift;
481 --constants_left;
482 constant_shift += dest_bits;
483 continue;
484 }
485
486 alu.src[i] = bir_src_index(&instr->src[i].src);
487
488 /* We assert scalarization above */
489 alu.swizzle[i][0] = instr->src[i].swizzle[0];
490 }
491
492 /* Op-specific fixup */
493 switch (instr->op) {
494 case nir_op_fmul:
495 alu.src[2] = BIR_INDEX_ZERO; /* FMA */
496 break;
497 case nir_op_fsat:
498 alu.outmod = BIFROST_SAT; /* FMOV */
499 break;
500 case nir_op_fneg:
501 alu.src_neg[0] = true; /* FMOV */
502 break;
503 case nir_op_fabs:
504 alu.src_abs[0] = true; /* FMOV */
505 break;
506 case nir_op_fsub:
507 alu.src_neg[1] = true; /* FADD */
508 break;
509 case nir_op_fmax:
510 case nir_op_imax:
511 case nir_op_umax:
512 alu.op.minmax = BI_MINMAX_MAX; /* MINMAX */
513 break;
514 case nir_op_frcp:
515 alu.op.special = BI_SPECIAL_FRCP;
516 break;
517 case nir_op_frsq:
518 alu.op.special = BI_SPECIAL_FRSQ;
519 break;
520 case nir_op_fsin:
521 alu.op.special = BI_SPECIAL_FSIN;
522 break;
523 case nir_op_fcos:
524 alu.op.special = BI_SPECIAL_FCOS;
525 break;
526 case nir_op_flt:
527 case nir_op_ilt:
528 case nir_op_fge:
529 case nir_op_ige:
530 case nir_op_feq:
531 case nir_op_ieq:
532 case nir_op_fne:
533 case nir_op_ine:
534 alu.op.compare = bi_cond_for_nir(instr->op);
535 break;
536 default:
537 break;
538 }
539
540 bi_emit(ctx, alu);
541 }
542
543 static void
544 emit_instr(bi_context *ctx, struct nir_instr *instr)
545 {
546 switch (instr->type) {
547 case nir_instr_type_load_const:
548 emit_load_const(ctx, nir_instr_as_load_const(instr));
549 break;
550
551 case nir_instr_type_intrinsic:
552 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
553 break;
554
555 case nir_instr_type_alu:
556 emit_alu(ctx, nir_instr_as_alu(instr));
557 break;
558
559 #if 0
560 case nir_instr_type_tex:
561 emit_tex(ctx, nir_instr_as_tex(instr));
562 break;
563 #endif
564
565 case nir_instr_type_jump:
566 emit_jump(ctx, nir_instr_as_jump(instr));
567 break;
568
569 case nir_instr_type_ssa_undef:
570 /* Spurious */
571 break;
572
573 default:
574 //unreachable("Unhandled instruction type");
575 break;
576 }
577 }
578
579
580
581 static bi_block *
582 create_empty_block(bi_context *ctx)
583 {
584 bi_block *blk = rzalloc(ctx, bi_block);
585
586 blk->base.predecessors = _mesa_set_create(blk,
587 _mesa_hash_pointer,
588 _mesa_key_pointer_equal);
589
590 blk->base.name = ctx->block_name_count++;
591
592 return blk;
593 }
594
595 static void
596 bi_schedule_barrier(bi_context *ctx)
597 {
598 bi_block *temp = ctx->after_block;
599 ctx->after_block = create_empty_block(ctx);
600 list_addtail(&ctx->after_block->base.link, &ctx->blocks);
601 list_inithead(&ctx->after_block->base.instructions);
602 pan_block_add_successor(&ctx->current_block->base, &ctx->after_block->base);
603 ctx->current_block = ctx->after_block;
604 ctx->after_block = temp;
605 }
606
607 static bi_block *
608 emit_block(bi_context *ctx, nir_block *block)
609 {
610 if (ctx->after_block) {
611 ctx->current_block = ctx->after_block;
612 ctx->after_block = NULL;
613 } else {
614 ctx->current_block = create_empty_block(ctx);
615 }
616
617 list_addtail(&ctx->current_block->base.link, &ctx->blocks);
618 list_inithead(&ctx->current_block->base.instructions);
619
620 nir_foreach_instr(instr, block) {
621 emit_instr(ctx, instr);
622 ++ctx->instruction_count;
623 }
624
625 return ctx->current_block;
626 }
627
628 /* Emits an unconditional branch to the end of the current block, returning a
629 * pointer so the user can fill in details */
630
631 static bi_instruction *
632 bi_emit_branch(bi_context *ctx)
633 {
634 bi_instruction branch = {
635 .type = BI_BRANCH,
636 .branch = {
637 .cond = BI_COND_ALWAYS
638 }
639 };
640
641 return bi_emit(ctx, branch);
642 }
643
644 /* Sets a condition for a branch by examing the NIR condition. If we're
645 * familiar with the condition, we unwrap it to fold it into the branch
646 * instruction. Otherwise, we consume the condition directly. We
647 * generally use 1-bit booleans which allows us to use small types for
648 * the conditions.
649 */
650
651 static void
652 bi_set_branch_cond(bi_instruction *branch, nir_src *cond, bool invert)
653 {
654 /* TODO: Try to unwrap instead of always bailing */
655 branch->src[0] = bir_src_index(cond);
656 branch->src[1] = BIR_INDEX_ZERO;
657 branch->src_types[0] = branch->src_types[1] = nir_type_uint16;
658 branch->branch.cond = invert ? BI_COND_EQ : BI_COND_NE;
659 }
660
661 static void
662 emit_if(bi_context *ctx, nir_if *nif)
663 {
664 bi_block *before_block = ctx->current_block;
665
666 /* Speculatively emit the branch, but we can't fill it in until later */
667 bi_instruction *then_branch = bi_emit_branch(ctx);
668 bi_set_branch_cond(then_branch, &nif->condition, true);
669
670 /* Emit the two subblocks. */
671 bi_block *then_block = emit_cf_list(ctx, &nif->then_list);
672 bi_block *end_then_block = ctx->current_block;
673
674 /* Emit a jump from the end of the then block to the end of the else */
675 bi_instruction *then_exit = bi_emit_branch(ctx);
676
677 /* Emit second block, and check if it's empty */
678
679 int count_in = ctx->instruction_count;
680 bi_block *else_block = emit_cf_list(ctx, &nif->else_list);
681 bi_block *end_else_block = ctx->current_block;
682 ctx->after_block = create_empty_block(ctx);
683
684 /* Now that we have the subblocks emitted, fix up the branches */
685
686 assert(then_block);
687 assert(else_block);
688
689 if (ctx->instruction_count == count_in) {
690 /* The else block is empty, so don't emit an exit jump */
691 bi_remove_instruction(then_exit);
692 then_branch->branch.target = ctx->after_block;
693 } else {
694 then_branch->branch.target = else_block;
695 then_exit->branch.target = ctx->after_block;
696 pan_block_add_successor(&end_then_block->base, &then_exit->branch.target->base);
697 }
698
699 /* Wire up the successors */
700
701 pan_block_add_successor(&before_block->base, &then_branch->branch.target->base); /* then_branch */
702
703 pan_block_add_successor(&before_block->base, &then_block->base); /* fallthrough */
704 pan_block_add_successor(&end_else_block->base, &ctx->after_block->base); /* fallthrough */
705 }
706
707 static void
708 emit_loop(bi_context *ctx, nir_loop *nloop)
709 {
710 /* Remember where we are */
711 bi_block *start_block = ctx->current_block;
712
713 bi_block *saved_break = ctx->break_block;
714 bi_block *saved_continue = ctx->continue_block;
715
716 ctx->continue_block = create_empty_block(ctx);
717 ctx->break_block = create_empty_block(ctx);
718 ctx->after_block = ctx->continue_block;
719
720 /* Emit the body itself */
721 emit_cf_list(ctx, &nloop->body);
722
723 /* Branch back to loop back */
724 bi_instruction *br_back = bi_emit_branch(ctx);
725 br_back->branch.target = ctx->continue_block;
726 pan_block_add_successor(&start_block->base, &ctx->continue_block->base);
727 pan_block_add_successor(&ctx->current_block->base, &ctx->continue_block->base);
728
729 ctx->after_block = ctx->break_block;
730
731 /* Pop off */
732 ctx->break_block = saved_break;
733 ctx->continue_block = saved_continue;
734 ++ctx->loop_count;
735 }
736
737 static bi_block *
738 emit_cf_list(bi_context *ctx, struct exec_list *list)
739 {
740 bi_block *start_block = NULL;
741
742 foreach_list_typed(nir_cf_node, node, node, list) {
743 switch (node->type) {
744 case nir_cf_node_block: {
745 bi_block *block = emit_block(ctx, nir_cf_node_as_block(node));
746
747 if (!start_block)
748 start_block = block;
749
750 break;
751 }
752
753 case nir_cf_node_if:
754 emit_if(ctx, nir_cf_node_as_if(node));
755 break;
756
757 case nir_cf_node_loop:
758 emit_loop(ctx, nir_cf_node_as_loop(node));
759 break;
760
761 default:
762 unreachable("Unknown control flow");
763 }
764 }
765
766 return start_block;
767 }
768
769 static int
770 glsl_type_size(const struct glsl_type *type, bool bindless)
771 {
772 return glsl_count_attribute_slots(type, false);
773 }
774
775 static void
776 bi_optimize_nir(nir_shader *nir)
777 {
778 bool progress;
779 unsigned lower_flrp = 16 | 32 | 64;
780
781 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
782 NIR_PASS(progress, nir, nir_lower_idiv, nir_lower_idiv_fast);
783
784 nir_lower_tex_options lower_tex_options = {
785 .lower_txs_lod = true,
786 .lower_txp = ~0,
787 .lower_tex_without_implicit_lod = true,
788 .lower_txd = true,
789 };
790
791 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
792 NIR_PASS(progress, nir, nir_lower_alu_to_scalar, NULL, NULL);
793 NIR_PASS(progress, nir, nir_lower_load_const_to_scalar);
794
795 do {
796 progress = false;
797
798 NIR_PASS(progress, nir, nir_lower_var_copies);
799 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
800
801 NIR_PASS(progress, nir, nir_copy_prop);
802 NIR_PASS(progress, nir, nir_opt_remove_phis);
803 NIR_PASS(progress, nir, nir_opt_dce);
804 NIR_PASS(progress, nir, nir_opt_dead_cf);
805 NIR_PASS(progress, nir, nir_opt_cse);
806 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
807 NIR_PASS(progress, nir, nir_opt_algebraic);
808 NIR_PASS(progress, nir, nir_opt_constant_folding);
809
810 if (lower_flrp != 0) {
811 bool lower_flrp_progress = false;
812 NIR_PASS(lower_flrp_progress,
813 nir,
814 nir_lower_flrp,
815 lower_flrp,
816 false /* always_precise */,
817 nir->options->lower_ffma);
818 if (lower_flrp_progress) {
819 NIR_PASS(progress, nir,
820 nir_opt_constant_folding);
821 progress = true;
822 }
823
824 /* Nothing should rematerialize any flrps, so we only
825 * need to do this lowering once.
826 */
827 lower_flrp = 0;
828 }
829
830 NIR_PASS(progress, nir, nir_opt_undef);
831 NIR_PASS(progress, nir, nir_opt_loop_unroll,
832 nir_var_shader_in |
833 nir_var_shader_out |
834 nir_var_function_temp);
835 } while (progress);
836
837 NIR_PASS(progress, nir, nir_opt_algebraic_late);
838 NIR_PASS(progress, nir, bifrost_nir_lower_algebraic_late);
839 NIR_PASS(progress, nir, nir_lower_alu_to_scalar, NULL, NULL);
840 NIR_PASS(progress, nir, nir_lower_load_const_to_scalar);
841
842 /* Take us out of SSA */
843 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
844 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
845
846 /* We're a primary scalar architecture but there's enough vector that
847 * we use a vector IR so let's not also deal with scalar hacks on top
848 * of the vector hacks */
849
850 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
851 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
852 NIR_PASS(progress, nir, nir_opt_dce);
853 }
854
855 static void
856 bi_insert_mov32(bi_context *ctx, bi_instruction *parent, unsigned comp)
857 {
858 bi_instruction move = {
859 .type = BI_MOV,
860 .dest = parent->dest,
861 .dest_type = nir_type_uint32,
862 .writemask = (0xF << (4 * comp)),
863 .src = { parent->src[0] },
864 .src_types = { nir_type_uint32 },
865 .swizzle = { { comp } }
866 };
867
868 bi_emit_before(ctx, parent, move);
869 }
870
871 static void
872 bi_lower_mov(bi_context *ctx, bi_block *block)
873 {
874 bi_foreach_instr_in_block_safe(block, ins) {
875 if (ins->type != BI_MOV) continue;
876 if (util_bitcount(ins->writemask) <= 4) continue;
877
878 for (unsigned i = 0; i < 4; ++i) {
879 unsigned quad = (ins->writemask >> (4 * i)) & 0xF;
880
881 if (quad == 0)
882 continue;
883 else if (quad == 0xF)
884 bi_insert_mov32(ctx, ins, i);
885 else
886 unreachable("TODO: Lowering <32bit moves");
887 }
888
889 bi_remove_instruction(ins);
890 }
891 }
892
893 void
894 bifrost_compile_shader_nir(nir_shader *nir, panfrost_program *program, unsigned product_id)
895 {
896 bi_context *ctx = rzalloc(NULL, bi_context);
897 ctx->nir = nir;
898 ctx->stage = nir->info.stage;
899 ctx->quirks = bifrost_get_quirks(product_id);
900 list_inithead(&ctx->blocks);
901
902 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
903 * (so we don't accidentally duplicate the epilogue since mesa/st has
904 * messed with our I/O quite a bit already) */
905
906 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
907
908 if (ctx->stage == MESA_SHADER_VERTEX) {
909 NIR_PASS_V(nir, nir_lower_viewport_transform);
910 NIR_PASS_V(nir, nir_lower_point_size, 1.0, 1024.0);
911 }
912
913 NIR_PASS_V(nir, nir_split_var_copies);
914 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
915 NIR_PASS_V(nir, nir_lower_var_copies);
916 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
917 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
918 NIR_PASS_V(nir, nir_lower_ssbo);
919
920 bi_optimize_nir(nir);
921 nir_print_shader(nir, stdout);
922
923 panfrost_nir_assign_sysvals(&ctx->sysvals, nir);
924 program->sysval_count = ctx->sysvals.sysval_count;
925 memcpy(program->sysvals, ctx->sysvals.sysvals, sizeof(ctx->sysvals.sysvals[0]) * ctx->sysvals.sysval_count);
926
927 nir_foreach_function(func, nir) {
928 if (!func->impl)
929 continue;
930
931 ctx->impl = func->impl;
932 emit_cf_list(ctx, &func->impl->body);
933 break; /* TODO: Multi-function shaders */
934 }
935
936 bi_foreach_block(ctx, _block) {
937 bi_block *block = (bi_block *) _block;
938 bi_lower_mov(ctx, block);
939 }
940
941 bool progress = false;
942
943 do {
944 progress = false;
945
946 bi_foreach_block(ctx, _block) {
947 bi_block *block = (bi_block *) _block;
948 progress |= bi_opt_dead_code_eliminate(ctx, block);
949 }
950 } while(progress);
951
952 bi_print_shader(ctx, stdout);
953 bi_schedule(ctx);
954 bi_register_allocate(ctx);
955 bi_print_shader(ctx, stdout);
956 bi_pack(ctx, &program->compiled);
957 disassemble_bifrost(stdout, program->compiled.data, program->compiled.size, true);
958
959 ralloc_free(ctx);
960 }