pan/bi: Fix swizzle for second argument to ST_VARY
[mesa.git] / src / panfrost / bifrost / bifrost_compile.c
1 /*
2 * Copyright (C) 2020 Collabora Ltd.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors (Collabora):
24 * Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
25 */
26
27 #include "main/mtypes.h"
28 #include "compiler/glsl/glsl_to_nir.h"
29 #include "compiler/nir_types.h"
30 #include "main/imports.h"
31 #include "compiler/nir/nir_builder.h"
32
33 #include "disassemble.h"
34 #include "bifrost_compile.h"
35 #include "bifrost_nir.h"
36 #include "compiler.h"
37 #include "bi_quirks.h"
38 #include "bi_print.h"
39
40 static bi_block *emit_cf_list(bi_context *ctx, struct exec_list *list);
41 static bi_instruction *bi_emit_branch(bi_context *ctx);
42 static void bi_schedule_barrier(bi_context *ctx);
43
44 static void
45 emit_jump(bi_context *ctx, nir_jump_instr *instr)
46 {
47 bi_instruction *branch = bi_emit_branch(ctx);
48
49 switch (instr->type) {
50 case nir_jump_break:
51 branch->branch.target = ctx->break_block;
52 break;
53 case nir_jump_continue:
54 branch->branch.target = ctx->continue_block;
55 break;
56 default:
57 unreachable("Unhandled jump type");
58 }
59
60 pan_block_add_successor(&ctx->current_block->base, &branch->branch.target->base);
61 }
62
63 /* Gets a bytemask for a complete vecN write */
64 static unsigned
65 bi_mask_for_channels_32(unsigned i)
66 {
67 return (1 << (4 * i)) - 1;
68 }
69
70 static bi_instruction
71 bi_load(enum bi_class T, nir_intrinsic_instr *instr)
72 {
73 bi_instruction load = {
74 .type = T,
75 .writemask = bi_mask_for_channels_32(instr->num_components),
76 .src = { BIR_INDEX_CONSTANT },
77 .constant = { .u64 = nir_intrinsic_base(instr) },
78 };
79
80 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
81
82 if (info->has_dest)
83 load.dest = bir_dest_index(&instr->dest);
84
85 if (info->has_dest && info->index_map[NIR_INTRINSIC_TYPE] > 0)
86 load.dest_type = nir_intrinsic_type(instr);
87
88 nir_src *offset = nir_get_io_offset_src(instr);
89
90 if (nir_src_is_const(*offset))
91 load.constant.u64 += nir_src_as_uint(*offset);
92 else
93 load.src[0] = bir_src_index(offset);
94
95 return load;
96 }
97
98 static void
99 bi_emit_ld_vary(bi_context *ctx, nir_intrinsic_instr *instr)
100 {
101 bi_instruction ins = bi_load(BI_LOAD_VAR, instr);
102 ins.load_vary.interp_mode = BIFROST_INTERP_DEFAULT; /* TODO */
103 ins.load_vary.reuse = false; /* TODO */
104 ins.load_vary.flat = instr->intrinsic != nir_intrinsic_load_interpolated_input;
105 ins.dest_type = nir_type_float | nir_dest_bit_size(instr->dest),
106 bi_emit(ctx, ins);
107 }
108
109 static void
110 bi_emit_frag_out(bi_context *ctx, nir_intrinsic_instr *instr)
111 {
112 if (!ctx->emitted_atest) {
113 bi_instruction ins = {
114 .type = BI_ATEST
115 };
116
117 bi_emit(ctx, ins);
118 bi_schedule_barrier(ctx);
119 ctx->emitted_atest = true;
120 }
121
122 bi_instruction blend = {
123 .type = BI_BLEND,
124 .blend_location = nir_intrinsic_base(instr),
125 .src = {
126 bir_src_index(&instr->src[0])
127 },
128 .swizzle = {
129 { 0, 1, 2, 3 }
130 }
131 };
132
133 bi_emit(ctx, blend);
134 bi_schedule_barrier(ctx);
135 }
136
137 static void
138 bi_emit_st_vary(bi_context *ctx, nir_intrinsic_instr *instr)
139 {
140 bi_instruction address = bi_load(BI_LOAD_VAR_ADDRESS, instr);
141 address.dest = bi_make_temp(ctx);
142 address.dest_type = nir_type_uint64;
143 address.writemask = (1 << 8) - 1;
144
145 bi_instruction st = {
146 .type = BI_STORE_VAR,
147 .src = {
148 address.dest,
149 bir_src_index(&instr->src[0])
150 },
151 .swizzle = {
152 { 0 },
153 { 0, 1, 2, 3 }
154 }
155 };
156
157 bi_emit(ctx, address);
158 bi_emit(ctx, st);
159 }
160
161 static void
162 bi_emit_ld_uniform(bi_context *ctx, nir_intrinsic_instr *instr)
163 {
164 bi_instruction ld = bi_load(BI_LOAD_UNIFORM, instr);
165 ld.src[1] = BIR_INDEX_ZERO; /* TODO: UBO index */
166
167 /* TODO: Indirect access, since we need to multiply by the element
168 * size. I believe we can get this lowering automatically via
169 * nir_lower_io (as mul instructions) with the proper options, but this
170 * is TODO */
171 assert(ld.src[0] & BIR_INDEX_CONSTANT);
172 ld.constant.u64 += ctx->sysvals.sysval_count;
173 ld.constant.u64 *= 16;
174
175 bi_emit(ctx, ld);
176 }
177
178 static void
179 bi_emit_sysval(bi_context *ctx, nir_instr *instr,
180 unsigned nr_components, unsigned offset)
181 {
182 nir_dest nir_dest;
183
184 /* Figure out which uniform this is */
185 int sysval = panfrost_sysval_for_instr(instr, &nir_dest);
186 void *val = _mesa_hash_table_u64_search(ctx->sysvals.sysval_to_id, sysval);
187
188 /* Sysvals are prefix uniforms */
189 unsigned uniform = ((uintptr_t) val) - 1;
190
191 /* Emit the read itself -- this is never indirect */
192
193 bi_instruction load = {
194 .type = BI_LOAD_UNIFORM,
195 .writemask = (1 << (nr_components * 4)) - 1,
196 .src = { BIR_INDEX_CONSTANT},
197 .constant = { (uniform * 16) + offset },
198 .dest = bir_dest_index(&nir_dest),
199 .dest_type = nir_type_uint32, /* TODO */
200 };
201
202 bi_emit(ctx, load);
203 }
204
205 static void
206 emit_intrinsic(bi_context *ctx, nir_intrinsic_instr *instr)
207 {
208
209 switch (instr->intrinsic) {
210 case nir_intrinsic_load_barycentric_pixel:
211 /* stub */
212 break;
213 case nir_intrinsic_load_interpolated_input:
214 case nir_intrinsic_load_input:
215 if (ctx->stage == MESA_SHADER_FRAGMENT)
216 bi_emit_ld_vary(ctx, instr);
217 else if (ctx->stage == MESA_SHADER_VERTEX)
218 bi_emit(ctx, bi_load(BI_LOAD_ATTR, instr));
219 else {
220 unreachable("Unsupported shader stage");
221 }
222 break;
223
224 case nir_intrinsic_store_output:
225 if (ctx->stage == MESA_SHADER_FRAGMENT)
226 bi_emit_frag_out(ctx, instr);
227 else if (ctx->stage == MESA_SHADER_VERTEX)
228 bi_emit_st_vary(ctx, instr);
229 else
230 unreachable("Unsupported shader stage");
231 break;
232
233 case nir_intrinsic_load_uniform:
234 bi_emit_ld_uniform(ctx, instr);
235 break;
236
237 case nir_intrinsic_load_ssbo_address:
238 bi_emit_sysval(ctx, &instr->instr, 1, 0);
239 break;
240
241 case nir_intrinsic_get_buffer_size:
242 bi_emit_sysval(ctx, &instr->instr, 1, 8);
243 break;
244
245 case nir_intrinsic_load_viewport_scale:
246 case nir_intrinsic_load_viewport_offset:
247 case nir_intrinsic_load_num_work_groups:
248 case nir_intrinsic_load_sampler_lod_parameters_pan:
249 bi_emit_sysval(ctx, &instr->instr, 3, 0);
250 break;
251
252 default:
253 /* todo */
254 break;
255 }
256 }
257
258 static void
259 emit_load_const(bi_context *ctx, nir_load_const_instr *instr)
260 {
261 /* Make sure we've been lowered */
262 assert(instr->def.num_components == 1);
263
264 bi_instruction move = {
265 .type = BI_MOV,
266 .dest = bir_ssa_index(&instr->def),
267 .dest_type = instr->def.bit_size | nir_type_uint,
268 .writemask = (1 << (instr->def.bit_size / 8)) - 1,
269 .src = {
270 BIR_INDEX_CONSTANT
271 },
272 .constant = {
273 .u64 = nir_const_value_as_uint(instr->value[0], instr->def.bit_size)
274 }
275 };
276
277 bi_emit(ctx, move);
278 }
279
280 static enum bi_class
281 bi_class_for_nir_alu(nir_op op)
282 {
283 switch (op) {
284 case nir_op_iadd:
285 case nir_op_fadd:
286 case nir_op_fsub:
287 return BI_ADD;
288 case nir_op_isub:
289 return BI_ISUB;
290
291 case nir_op_flt:
292 case nir_op_fge:
293 case nir_op_feq:
294 case nir_op_fne:
295 case nir_op_ilt:
296 case nir_op_ige:
297 case nir_op_ieq:
298 case nir_op_ine:
299 return BI_CMP;
300
301 case nir_op_bcsel:
302 return BI_CSEL;
303
304 case nir_op_i2i8:
305 case nir_op_i2i16:
306 case nir_op_i2i32:
307 case nir_op_i2i64:
308 case nir_op_u2u8:
309 case nir_op_u2u16:
310 case nir_op_u2u32:
311 case nir_op_u2u64:
312 case nir_op_f2i16:
313 case nir_op_f2i32:
314 case nir_op_f2i64:
315 case nir_op_f2u16:
316 case nir_op_f2u32:
317 case nir_op_f2u64:
318 case nir_op_i2f16:
319 case nir_op_i2f32:
320 case nir_op_i2f64:
321 case nir_op_u2f16:
322 case nir_op_u2f32:
323 case nir_op_u2f64:
324 return BI_CONVERT;
325
326 case nir_op_ffma:
327 case nir_op_fmul:
328 return BI_FMA;
329
330 case nir_op_imin:
331 case nir_op_imax:
332 case nir_op_umin:
333 case nir_op_umax:
334 case nir_op_fmin:
335 case nir_op_fmax:
336 return BI_MINMAX;
337
338 case nir_op_fsat:
339 case nir_op_fneg:
340 case nir_op_fabs:
341 case nir_op_mov:
342 return BI_MOV;
343
344 case nir_op_frcp:
345 case nir_op_frsq:
346 case nir_op_fsin:
347 case nir_op_fcos:
348 return BI_SPECIAL;
349
350 default:
351 unreachable("Unknown ALU op");
352 }
353 }
354
355 static enum bi_cond
356 bi_cond_for_nir(nir_op op)
357 {
358 switch (op) {
359 case nir_op_flt:
360 case nir_op_ilt:
361 return BI_COND_LT;
362 case nir_op_fge:
363 case nir_op_ige:
364 return BI_COND_GE;
365 case nir_op_feq:
366 case nir_op_ieq:
367 return BI_COND_EQ;
368 case nir_op_fne:
369 case nir_op_ine:
370 return BI_COND_NE;
371 default:
372 unreachable("Invalid compare");
373 }
374 }
375
376 static void
377 emit_alu(bi_context *ctx, nir_alu_instr *instr)
378 {
379 /* Assume it's something we can handle normally */
380 bi_instruction alu = {
381 .type = bi_class_for_nir_alu(instr->op),
382 .dest = bir_dest_index(&instr->dest.dest),
383 .dest_type = nir_op_infos[instr->op].output_type
384 | nir_dest_bit_size(instr->dest.dest),
385 };
386
387 /* TODO: Implement lowering of special functions for older Bifrost */
388 assert((alu.type != BI_SPECIAL) || !(ctx->quirks & BIFROST_NO_FAST_OP));
389
390 if (instr->dest.dest.is_ssa) {
391 /* Construct a writemask */
392 unsigned bits_per_comp = instr->dest.dest.ssa.bit_size;
393 unsigned comps = instr->dest.dest.ssa.num_components;
394 assert(comps == 1);
395 unsigned bits = bits_per_comp * comps;
396 unsigned bytes = MAX2(bits / 8, 1);
397 alu.writemask = (1 << bytes) - 1;
398 } else {
399 unsigned comp_mask = instr->dest.write_mask;
400
401 alu.writemask = pan_to_bytemask(nir_dest_bit_size(instr->dest.dest),
402 comp_mask);
403 }
404
405 /* We inline constants as we go. This tracks how many constants have
406 * been inlined, since we're limited to 64-bits of constants per
407 * instruction */
408
409 unsigned dest_bits = nir_dest_bit_size(instr->dest.dest);
410 unsigned constants_left = (64 / dest_bits);
411 unsigned constant_shift = 0;
412
413 /* Copy sources */
414
415 unsigned num_inputs = nir_op_infos[instr->op].num_inputs;
416 assert(num_inputs <= ARRAY_SIZE(alu.src));
417
418 for (unsigned i = 0; i < num_inputs; ++i) {
419 unsigned bits = nir_src_bit_size(instr->src[i].src);
420 alu.src_types[i] = nir_op_infos[instr->op].input_types[i]
421 | bits;
422
423 /* Try to inline a constant */
424 if (nir_src_is_const(instr->src[i].src) && constants_left && (dest_bits == bits)) {
425 alu.constant.u64 |=
426 (nir_src_as_uint(instr->src[i].src)) << constant_shift;
427
428 alu.src[i] = BIR_INDEX_CONSTANT | constant_shift;
429 --constants_left;
430 constant_shift += dest_bits;
431 continue;
432 }
433
434 alu.src[i] = bir_src_index(&instr->src[i].src);
435
436 /* We assert scalarization above */
437 alu.swizzle[i][0] = instr->src[i].swizzle[0];
438 }
439
440 /* Op-specific fixup */
441 switch (instr->op) {
442 case nir_op_fmul:
443 alu.src[2] = BIR_INDEX_ZERO; /* FMA */
444 break;
445 case nir_op_fsat:
446 alu.outmod = BIFROST_SAT; /* MOV */
447 break;
448 case nir_op_fneg:
449 alu.src_neg[0] = true; /* MOV */
450 break;
451 case nir_op_fabs:
452 alu.src_abs[0] = true; /* MOV */
453 break;
454 case nir_op_fsub:
455 alu.src_neg[1] = true; /* ADD */
456 break;
457 case nir_op_fmax:
458 case nir_op_imax:
459 case nir_op_umax:
460 alu.op.minmax = BI_MINMAX_MAX; /* MINMAX */
461 break;
462 case nir_op_frcp:
463 alu.op.special = BI_SPECIAL_FRCP;
464 break;
465 case nir_op_frsq:
466 alu.op.special = BI_SPECIAL_FRSQ;
467 break;
468 case nir_op_fsin:
469 alu.op.special = BI_SPECIAL_FSIN;
470 break;
471 case nir_op_fcos:
472 alu.op.special = BI_SPECIAL_FCOS;
473 break;
474 case nir_op_flt:
475 case nir_op_ilt:
476 case nir_op_fge:
477 case nir_op_ige:
478 case nir_op_feq:
479 case nir_op_ieq:
480 case nir_op_fne:
481 case nir_op_ine:
482 alu.op.compare = bi_cond_for_nir(instr->op);
483 break;
484 default:
485 break;
486 }
487
488 bi_emit(ctx, alu);
489 }
490
491 static void
492 emit_instr(bi_context *ctx, struct nir_instr *instr)
493 {
494 switch (instr->type) {
495 case nir_instr_type_load_const:
496 emit_load_const(ctx, nir_instr_as_load_const(instr));
497 break;
498
499 case nir_instr_type_intrinsic:
500 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
501 break;
502
503 case nir_instr_type_alu:
504 emit_alu(ctx, nir_instr_as_alu(instr));
505 break;
506
507 #if 0
508 case nir_instr_type_tex:
509 emit_tex(ctx, nir_instr_as_tex(instr));
510 break;
511 #endif
512
513 case nir_instr_type_jump:
514 emit_jump(ctx, nir_instr_as_jump(instr));
515 break;
516
517 case nir_instr_type_ssa_undef:
518 /* Spurious */
519 break;
520
521 default:
522 //unreachable("Unhandled instruction type");
523 break;
524 }
525 }
526
527
528
529 static bi_block *
530 create_empty_block(bi_context *ctx)
531 {
532 bi_block *blk = rzalloc(ctx, bi_block);
533
534 blk->base.predecessors = _mesa_set_create(blk,
535 _mesa_hash_pointer,
536 _mesa_key_pointer_equal);
537
538 blk->base.name = ctx->block_name_count++;
539
540 return blk;
541 }
542
543 static void
544 bi_schedule_barrier(bi_context *ctx)
545 {
546 bi_block *temp = ctx->after_block;
547 ctx->after_block = create_empty_block(ctx);
548 list_addtail(&ctx->after_block->base.link, &ctx->blocks);
549 list_inithead(&ctx->after_block->base.instructions);
550 pan_block_add_successor(&ctx->current_block->base, &ctx->after_block->base);
551 ctx->current_block = ctx->after_block;
552 ctx->after_block = temp;
553 }
554
555 static bi_block *
556 emit_block(bi_context *ctx, nir_block *block)
557 {
558 if (ctx->after_block) {
559 ctx->current_block = ctx->after_block;
560 ctx->after_block = NULL;
561 } else {
562 ctx->current_block = create_empty_block(ctx);
563 }
564
565 list_addtail(&ctx->current_block->base.link, &ctx->blocks);
566 list_inithead(&ctx->current_block->base.instructions);
567
568 nir_foreach_instr(instr, block) {
569 emit_instr(ctx, instr);
570 ++ctx->instruction_count;
571 }
572
573 return ctx->current_block;
574 }
575
576 /* Emits an unconditional branch to the end of the current block, returning a
577 * pointer so the user can fill in details */
578
579 static bi_instruction *
580 bi_emit_branch(bi_context *ctx)
581 {
582 bi_instruction branch = {
583 .type = BI_BRANCH,
584 .branch = {
585 .cond = BI_COND_ALWAYS
586 }
587 };
588
589 return bi_emit(ctx, branch);
590 }
591
592 /* Sets a condition for a branch by examing the NIR condition. If we're
593 * familiar with the condition, we unwrap it to fold it into the branch
594 * instruction. Otherwise, we consume the condition directly. We
595 * generally use 1-bit booleans which allows us to use small types for
596 * the conditions.
597 */
598
599 static void
600 bi_set_branch_cond(bi_instruction *branch, nir_src *cond, bool invert)
601 {
602 /* TODO: Try to unwrap instead of always bailing */
603 branch->src[0] = bir_src_index(cond);
604 branch->src[1] = BIR_INDEX_ZERO;
605 branch->src_types[0] = branch->src_types[1] = nir_type_uint16;
606 branch->branch.cond = invert ? BI_COND_EQ : BI_COND_NE;
607 }
608
609 static void
610 emit_if(bi_context *ctx, nir_if *nif)
611 {
612 bi_block *before_block = ctx->current_block;
613
614 /* Speculatively emit the branch, but we can't fill it in until later */
615 bi_instruction *then_branch = bi_emit_branch(ctx);
616 bi_set_branch_cond(then_branch, &nif->condition, true);
617
618 /* Emit the two subblocks. */
619 bi_block *then_block = emit_cf_list(ctx, &nif->then_list);
620 bi_block *end_then_block = ctx->current_block;
621
622 /* Emit a jump from the end of the then block to the end of the else */
623 bi_instruction *then_exit = bi_emit_branch(ctx);
624
625 /* Emit second block, and check if it's empty */
626
627 int count_in = ctx->instruction_count;
628 bi_block *else_block = emit_cf_list(ctx, &nif->else_list);
629 bi_block *end_else_block = ctx->current_block;
630 ctx->after_block = create_empty_block(ctx);
631
632 /* Now that we have the subblocks emitted, fix up the branches */
633
634 assert(then_block);
635 assert(else_block);
636
637 if (ctx->instruction_count == count_in) {
638 /* The else block is empty, so don't emit an exit jump */
639 bi_remove_instruction(then_exit);
640 then_branch->branch.target = ctx->after_block;
641 } else {
642 then_branch->branch.target = else_block;
643 then_exit->branch.target = ctx->after_block;
644 pan_block_add_successor(&end_then_block->base, &then_exit->branch.target->base);
645 }
646
647 /* Wire up the successors */
648
649 pan_block_add_successor(&before_block->base, &then_branch->branch.target->base); /* then_branch */
650
651 pan_block_add_successor(&before_block->base, &then_block->base); /* fallthrough */
652 pan_block_add_successor(&end_else_block->base, &ctx->after_block->base); /* fallthrough */
653 }
654
655 static void
656 emit_loop(bi_context *ctx, nir_loop *nloop)
657 {
658 /* Remember where we are */
659 bi_block *start_block = ctx->current_block;
660
661 bi_block *saved_break = ctx->break_block;
662 bi_block *saved_continue = ctx->continue_block;
663
664 ctx->continue_block = create_empty_block(ctx);
665 ctx->break_block = create_empty_block(ctx);
666 ctx->after_block = ctx->continue_block;
667
668 /* Emit the body itself */
669 emit_cf_list(ctx, &nloop->body);
670
671 /* Branch back to loop back */
672 bi_instruction *br_back = bi_emit_branch(ctx);
673 br_back->branch.target = ctx->continue_block;
674 pan_block_add_successor(&start_block->base, &ctx->continue_block->base);
675 pan_block_add_successor(&ctx->current_block->base, &ctx->continue_block->base);
676
677 ctx->after_block = ctx->break_block;
678
679 /* Pop off */
680 ctx->break_block = saved_break;
681 ctx->continue_block = saved_continue;
682 ++ctx->loop_count;
683 }
684
685 static bi_block *
686 emit_cf_list(bi_context *ctx, struct exec_list *list)
687 {
688 bi_block *start_block = NULL;
689
690 foreach_list_typed(nir_cf_node, node, node, list) {
691 switch (node->type) {
692 case nir_cf_node_block: {
693 bi_block *block = emit_block(ctx, nir_cf_node_as_block(node));
694
695 if (!start_block)
696 start_block = block;
697
698 break;
699 }
700
701 case nir_cf_node_if:
702 emit_if(ctx, nir_cf_node_as_if(node));
703 break;
704
705 case nir_cf_node_loop:
706 emit_loop(ctx, nir_cf_node_as_loop(node));
707 break;
708
709 default:
710 unreachable("Unknown control flow");
711 }
712 }
713
714 return start_block;
715 }
716
717 static int
718 glsl_type_size(const struct glsl_type *type, bool bindless)
719 {
720 return glsl_count_attribute_slots(type, false);
721 }
722
723 static void
724 bi_optimize_nir(nir_shader *nir)
725 {
726 bool progress;
727 unsigned lower_flrp = 16 | 32 | 64;
728
729 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
730 NIR_PASS(progress, nir, nir_lower_idiv, nir_lower_idiv_fast);
731
732 nir_lower_tex_options lower_tex_options = {
733 .lower_txs_lod = true,
734 .lower_txp = ~0,
735 .lower_tex_without_implicit_lod = true,
736 .lower_txd = true,
737 };
738
739 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
740 NIR_PASS(progress, nir, nir_lower_alu_to_scalar, NULL, NULL);
741 NIR_PASS(progress, nir, nir_lower_load_const_to_scalar);
742
743 do {
744 progress = false;
745
746 NIR_PASS(progress, nir, nir_lower_var_copies);
747 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
748
749 NIR_PASS(progress, nir, nir_copy_prop);
750 NIR_PASS(progress, nir, nir_opt_remove_phis);
751 NIR_PASS(progress, nir, nir_opt_dce);
752 NIR_PASS(progress, nir, nir_opt_dead_cf);
753 NIR_PASS(progress, nir, nir_opt_cse);
754 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
755 NIR_PASS(progress, nir, nir_opt_algebraic);
756 NIR_PASS(progress, nir, nir_opt_constant_folding);
757
758 if (lower_flrp != 0) {
759 bool lower_flrp_progress = false;
760 NIR_PASS(lower_flrp_progress,
761 nir,
762 nir_lower_flrp,
763 lower_flrp,
764 false /* always_precise */,
765 nir->options->lower_ffma);
766 if (lower_flrp_progress) {
767 NIR_PASS(progress, nir,
768 nir_opt_constant_folding);
769 progress = true;
770 }
771
772 /* Nothing should rematerialize any flrps, so we only
773 * need to do this lowering once.
774 */
775 lower_flrp = 0;
776 }
777
778 NIR_PASS(progress, nir, nir_opt_undef);
779 NIR_PASS(progress, nir, nir_opt_loop_unroll,
780 nir_var_shader_in |
781 nir_var_shader_out |
782 nir_var_function_temp);
783 } while (progress);
784
785 NIR_PASS(progress, nir, nir_opt_algebraic_late);
786 NIR_PASS(progress, nir, bifrost_nir_lower_algebraic_late);
787 NIR_PASS(progress, nir, nir_lower_alu_to_scalar, NULL, NULL);
788 NIR_PASS(progress, nir, nir_lower_load_const_to_scalar);
789
790 /* Take us out of SSA */
791 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
792 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
793
794 /* We're a primary scalar architecture but there's enough vector that
795 * we use a vector IR so let's not also deal with scalar hacks on top
796 * of the vector hacks */
797
798 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
799 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
800 NIR_PASS(progress, nir, nir_opt_dce);
801 }
802
803 void
804 bifrost_compile_shader_nir(nir_shader *nir, panfrost_program *program, unsigned product_id)
805 {
806 bi_context *ctx = rzalloc(NULL, bi_context);
807 ctx->nir = nir;
808 ctx->stage = nir->info.stage;
809 ctx->quirks = bifrost_get_quirks(product_id);
810 list_inithead(&ctx->blocks);
811
812 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
813 * (so we don't accidentally duplicate the epilogue since mesa/st has
814 * messed with our I/O quite a bit already) */
815
816 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
817
818 if (ctx->stage == MESA_SHADER_VERTEX) {
819 NIR_PASS_V(nir, nir_lower_viewport_transform);
820 NIR_PASS_V(nir, nir_lower_point_size, 1.0, 1024.0);
821 }
822
823 NIR_PASS_V(nir, nir_split_var_copies);
824 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
825 NIR_PASS_V(nir, nir_lower_var_copies);
826 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
827 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
828 NIR_PASS_V(nir, nir_lower_ssbo);
829
830 bi_optimize_nir(nir);
831 nir_print_shader(nir, stdout);
832
833 panfrost_nir_assign_sysvals(&ctx->sysvals, nir);
834 program->sysval_count = ctx->sysvals.sysval_count;
835 memcpy(program->sysvals, ctx->sysvals.sysvals, sizeof(ctx->sysvals.sysvals[0]) * ctx->sysvals.sysval_count);
836
837 nir_foreach_function(func, nir) {
838 if (!func->impl)
839 continue;
840
841 ctx->impl = func->impl;
842 emit_cf_list(ctx, &func->impl->body);
843 break; /* TODO: Multi-function shaders */
844 }
845
846 bool progress = false;
847
848 do {
849 progress = false;
850
851 bi_foreach_block(ctx, _block) {
852 bi_block *block = (bi_block *) _block;
853 progress |= bi_opt_dead_code_eliminate(ctx, block);
854 }
855 } while(progress);
856
857 bi_print_shader(ctx, stdout);
858 bi_schedule(ctx);
859
860 ralloc_free(ctx);
861 }