pan/bi: Implement csel fusing
[mesa.git] / src / panfrost / bifrost / bifrost_compile.c
1 /*
2 * Copyright (C) 2020 Collabora Ltd.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors (Collabora):
24 * Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
25 */
26
27 #include "main/mtypes.h"
28 #include "compiler/glsl/glsl_to_nir.h"
29 #include "compiler/nir_types.h"
30 #include "main/imports.h"
31 #include "compiler/nir/nir_builder.h"
32
33 #include "disassemble.h"
34 #include "bifrost_compile.h"
35 #include "bifrost_nir.h"
36 #include "compiler.h"
37 #include "bi_quirks.h"
38 #include "bi_print.h"
39
40 static bi_block *emit_cf_list(bi_context *ctx, struct exec_list *list);
41 static bi_instruction *bi_emit_branch(bi_context *ctx);
42 static void bi_schedule_barrier(bi_context *ctx);
43
44 static void
45 emit_jump(bi_context *ctx, nir_jump_instr *instr)
46 {
47 bi_instruction *branch = bi_emit_branch(ctx);
48
49 switch (instr->type) {
50 case nir_jump_break:
51 branch->branch.target = ctx->break_block;
52 break;
53 case nir_jump_continue:
54 branch->branch.target = ctx->continue_block;
55 break;
56 default:
57 unreachable("Unhandled jump type");
58 }
59
60 pan_block_add_successor(&ctx->current_block->base, &branch->branch.target->base);
61 }
62
63 /* Gets a bytemask for a complete vecN write */
64 static unsigned
65 bi_mask_for_channels_32(unsigned i)
66 {
67 return (1 << (4 * i)) - 1;
68 }
69
70 static bi_instruction
71 bi_load(enum bi_class T, nir_intrinsic_instr *instr)
72 {
73 bi_instruction load = {
74 .type = T,
75 .writemask = bi_mask_for_channels_32(instr->num_components),
76 .src = { BIR_INDEX_CONSTANT },
77 .constant = { .u64 = nir_intrinsic_base(instr) },
78 };
79
80 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
81
82 if (info->has_dest)
83 load.dest = bir_dest_index(&instr->dest);
84
85 if (info->has_dest && info->index_map[NIR_INTRINSIC_TYPE] > 0)
86 load.dest_type = nir_intrinsic_type(instr);
87
88 nir_src *offset = nir_get_io_offset_src(instr);
89
90 if (nir_src_is_const(*offset))
91 load.constant.u64 += nir_src_as_uint(*offset);
92 else
93 load.src[0] = bir_src_index(offset);
94
95 return load;
96 }
97
98 static void
99 bi_emit_ld_vary(bi_context *ctx, nir_intrinsic_instr *instr)
100 {
101 bi_instruction ins = bi_load(BI_LOAD_VAR, instr);
102 ins.load_vary.interp_mode = BIFROST_INTERP_DEFAULT; /* TODO */
103 ins.load_vary.reuse = false; /* TODO */
104 ins.load_vary.flat = instr->intrinsic != nir_intrinsic_load_interpolated_input;
105 ins.dest_type = nir_type_float | nir_dest_bit_size(instr->dest);
106
107 if (nir_src_is_const(*nir_get_io_offset_src(instr))) {
108 /* Zero it out for direct */
109 ins.src[1] = BIR_INDEX_ZERO;
110 } else {
111 /* R61 contains sample mask stuff, TODO RA XXX */
112 ins.src[1] = BIR_INDEX_REGISTER | 61;
113 }
114
115 bi_emit(ctx, ins);
116 }
117
118 static void
119 bi_emit_frag_out(bi_context *ctx, nir_intrinsic_instr *instr)
120 {
121 if (!ctx->emitted_atest) {
122 bi_instruction ins = {
123 .type = BI_ATEST,
124 .src = {
125 BIR_INDEX_REGISTER | 60 /* TODO: RA */,
126 bir_src_index(&instr->src[0])
127 },
128 .src_types = {
129 nir_type_uint32,
130 nir_type_float32
131 },
132 .swizzle = {
133 { 0 },
134 { 3, 0 } /* swizzle out the alpha */
135 },
136 .dest = BIR_INDEX_REGISTER | 60 /* TODO: RA */,
137 .dest_type = nir_type_uint32,
138 .writemask = 0xF
139 };
140
141 bi_emit(ctx, ins);
142 bi_schedule_barrier(ctx);
143 ctx->emitted_atest = true;
144 }
145
146 bi_instruction blend = {
147 .type = BI_BLEND,
148 .blend_location = nir_intrinsic_base(instr),
149 .src = {
150 BIR_INDEX_REGISTER | 60 /* Can this be arbitrary? */,
151 bir_src_index(&instr->src[0])
152 },
153 .src_types = {
154 nir_type_uint32,
155 nir_type_float32,
156 },
157 .swizzle = {
158 { 0 },
159 { 0, 1, 2, 3 }
160 },
161 .dest = BIR_INDEX_REGISTER | 48 /* Looks like magic */,
162 .dest_type = nir_type_uint32,
163 .writemask = 0xF
164 };
165
166 bi_emit(ctx, blend);
167 bi_schedule_barrier(ctx);
168 }
169
170 static bi_instruction
171 bi_load_with_r61(enum bi_class T, nir_intrinsic_instr *instr)
172 {
173 bi_instruction ld = bi_load(T, instr);
174 ld.src[1] = BIR_INDEX_REGISTER | 61; /* TODO: RA */
175 ld.src[2] = BIR_INDEX_REGISTER | 62;
176 ld.src[3] = 0;
177 ld.src_types[1] = nir_type_uint32;
178 ld.src_types[2] = nir_type_uint32;
179 ld.src_types[3] = nir_intrinsic_type(instr);
180 return ld;
181 }
182
183 static void
184 bi_emit_st_vary(bi_context *ctx, nir_intrinsic_instr *instr)
185 {
186 bi_instruction address = bi_load_with_r61(BI_LOAD_VAR_ADDRESS, instr);
187 address.dest = bi_make_temp(ctx);
188 address.dest_type = nir_type_uint32;
189 address.writemask = (1 << 12) - 1;
190
191 bi_instruction st = {
192 .type = BI_STORE_VAR,
193 .src = {
194 bir_src_index(&instr->src[0]),
195 address.dest, address.dest, address.dest,
196 },
197 .src_types = {
198 nir_type_uint32,
199 nir_type_uint32, nir_type_uint32, nir_type_uint32,
200 },
201 .swizzle = {
202 { 0, 1, 2, 3 },
203 { 0 }, { 1 }, { 2}
204 },
205 .store_channels = 4, /* TODO: WRITEMASK */
206 };
207
208 bi_emit(ctx, address);
209 bi_emit(ctx, st);
210 }
211
212 static void
213 bi_emit_ld_uniform(bi_context *ctx, nir_intrinsic_instr *instr)
214 {
215 bi_instruction ld = bi_load(BI_LOAD_UNIFORM, instr);
216 ld.src[1] = BIR_INDEX_ZERO; /* TODO: UBO index */
217
218 /* TODO: Indirect access, since we need to multiply by the element
219 * size. I believe we can get this lowering automatically via
220 * nir_lower_io (as mul instructions) with the proper options, but this
221 * is TODO */
222 assert(ld.src[0] & BIR_INDEX_CONSTANT);
223 ld.constant.u64 += ctx->sysvals.sysval_count;
224 ld.constant.u64 *= 16;
225
226 bi_emit(ctx, ld);
227 }
228
229 static void
230 bi_emit_sysval(bi_context *ctx, nir_instr *instr,
231 unsigned nr_components, unsigned offset)
232 {
233 nir_dest nir_dest;
234
235 /* Figure out which uniform this is */
236 int sysval = panfrost_sysval_for_instr(instr, &nir_dest);
237 void *val = _mesa_hash_table_u64_search(ctx->sysvals.sysval_to_id, sysval);
238
239 /* Sysvals are prefix uniforms */
240 unsigned uniform = ((uintptr_t) val) - 1;
241
242 /* Emit the read itself -- this is never indirect */
243
244 bi_instruction load = {
245 .type = BI_LOAD_UNIFORM,
246 .writemask = (1 << (nr_components * 4)) - 1,
247 .src = { BIR_INDEX_CONSTANT, BIR_INDEX_ZERO },
248 .constant = { (uniform * 16) + offset },
249 .dest = bir_dest_index(&nir_dest),
250 .dest_type = nir_type_uint32, /* TODO */
251 };
252
253 bi_emit(ctx, load);
254 }
255
256 static void
257 emit_intrinsic(bi_context *ctx, nir_intrinsic_instr *instr)
258 {
259
260 switch (instr->intrinsic) {
261 case nir_intrinsic_load_barycentric_pixel:
262 /* stub */
263 break;
264 case nir_intrinsic_load_interpolated_input:
265 case nir_intrinsic_load_input:
266 if (ctx->stage == MESA_SHADER_FRAGMENT)
267 bi_emit_ld_vary(ctx, instr);
268 else if (ctx->stage == MESA_SHADER_VERTEX)
269 bi_emit(ctx, bi_load_with_r61(BI_LOAD_ATTR, instr));
270 else {
271 unreachable("Unsupported shader stage");
272 }
273 break;
274
275 case nir_intrinsic_store_output:
276 if (ctx->stage == MESA_SHADER_FRAGMENT)
277 bi_emit_frag_out(ctx, instr);
278 else if (ctx->stage == MESA_SHADER_VERTEX)
279 bi_emit_st_vary(ctx, instr);
280 else
281 unreachable("Unsupported shader stage");
282 break;
283
284 case nir_intrinsic_load_uniform:
285 bi_emit_ld_uniform(ctx, instr);
286 break;
287
288 case nir_intrinsic_load_ssbo_address:
289 bi_emit_sysval(ctx, &instr->instr, 1, 0);
290 break;
291
292 case nir_intrinsic_get_buffer_size:
293 bi_emit_sysval(ctx, &instr->instr, 1, 8);
294 break;
295
296 case nir_intrinsic_load_viewport_scale:
297 case nir_intrinsic_load_viewport_offset:
298 case nir_intrinsic_load_num_work_groups:
299 case nir_intrinsic_load_sampler_lod_parameters_pan:
300 bi_emit_sysval(ctx, &instr->instr, 3, 0);
301 break;
302
303 default:
304 /* todo */
305 break;
306 }
307 }
308
309 static void
310 emit_load_const(bi_context *ctx, nir_load_const_instr *instr)
311 {
312 /* Make sure we've been lowered */
313 assert(instr->def.num_components == 1);
314
315 bi_instruction move = {
316 .type = BI_MOV,
317 .dest = bir_ssa_index(&instr->def),
318 .dest_type = instr->def.bit_size | nir_type_uint,
319 .writemask = (1 << (instr->def.bit_size / 8)) - 1,
320 .src = {
321 BIR_INDEX_CONSTANT
322 },
323 .constant = {
324 .u64 = nir_const_value_as_uint(instr->value[0], instr->def.bit_size)
325 }
326 };
327
328 bi_emit(ctx, move);
329 }
330
331 #define BI_CASE_CMP(op) \
332 case op##8: \
333 case op##16: \
334 case op##32: \
335
336 static enum bi_class
337 bi_class_for_nir_alu(nir_op op)
338 {
339 switch (op) {
340 case nir_op_iadd:
341 case nir_op_fadd:
342 case nir_op_fsub:
343 return BI_ADD;
344 case nir_op_isub:
345 return BI_ISUB;
346
347 BI_CASE_CMP(nir_op_flt)
348 BI_CASE_CMP(nir_op_fge)
349 BI_CASE_CMP(nir_op_feq)
350 BI_CASE_CMP(nir_op_fne)
351 BI_CASE_CMP(nir_op_ilt)
352 BI_CASE_CMP(nir_op_ige)
353 BI_CASE_CMP(nir_op_ieq)
354 BI_CASE_CMP(nir_op_ine)
355 return BI_CMP;
356
357 case nir_op_b8csel:
358 case nir_op_b16csel:
359 case nir_op_b32csel:
360 return BI_CSEL;
361
362 case nir_op_i2i8:
363 case nir_op_i2i16:
364 case nir_op_i2i32:
365 case nir_op_i2i64:
366 case nir_op_u2u8:
367 case nir_op_u2u16:
368 case nir_op_u2u32:
369 case nir_op_u2u64:
370 case nir_op_f2i16:
371 case nir_op_f2i32:
372 case nir_op_f2i64:
373 case nir_op_f2u16:
374 case nir_op_f2u32:
375 case nir_op_f2u64:
376 case nir_op_i2f16:
377 case nir_op_i2f32:
378 case nir_op_i2f64:
379 case nir_op_u2f16:
380 case nir_op_u2f32:
381 case nir_op_u2f64:
382 return BI_CONVERT;
383
384 case nir_op_ffma:
385 case nir_op_fmul:
386 return BI_FMA;
387
388 case nir_op_imin:
389 case nir_op_imax:
390 case nir_op_umin:
391 case nir_op_umax:
392 case nir_op_fmin:
393 case nir_op_fmax:
394 return BI_MINMAX;
395
396 case nir_op_fsat:
397 case nir_op_fneg:
398 case nir_op_fabs:
399 return BI_FMOV;
400 case nir_op_mov:
401 return BI_MOV;
402
403 case nir_op_frcp:
404 case nir_op_frsq:
405 case nir_op_fsin:
406 case nir_op_fcos:
407 return BI_SPECIAL;
408
409 default:
410 unreachable("Unknown ALU op");
411 }
412 }
413
414 /* Gets a bi_cond for a given NIR comparison opcode. In soft mode, it will
415 * return BI_COND_ALWAYS as a sentinel if it fails to do so (when used for
416 * optimizations). Otherwise it will bail (when used for primary code
417 * generation). */
418
419 static enum bi_cond
420 bi_cond_for_nir(nir_op op, bool soft)
421 {
422 switch (op) {
423 BI_CASE_CMP(nir_op_flt)
424 BI_CASE_CMP(nir_op_ilt)
425 return BI_COND_LT;
426
427 BI_CASE_CMP(nir_op_fge)
428 BI_CASE_CMP(nir_op_ige)
429 return BI_COND_GE;
430
431 BI_CASE_CMP(nir_op_feq)
432 BI_CASE_CMP(nir_op_ieq)
433 return BI_COND_EQ;
434
435 BI_CASE_CMP(nir_op_fne)
436 BI_CASE_CMP(nir_op_ine)
437 return BI_COND_NE;
438 default:
439 if (soft)
440 return BI_COND_ALWAYS;
441 else
442 unreachable("Invalid compare");
443 }
444 }
445
446 static void
447 bi_copy_src(bi_instruction *alu, nir_alu_instr *instr, unsigned i, unsigned to,
448 unsigned *constants_left, unsigned *constant_shift)
449 {
450 unsigned bits = nir_src_bit_size(instr->src[i].src);
451 unsigned dest_bits = nir_dest_bit_size(instr->dest.dest);
452
453 alu->src_types[to] = nir_op_infos[instr->op].input_types[i]
454 | bits;
455
456 /* Try to inline a constant */
457 if (nir_src_is_const(instr->src[i].src) && *constants_left && (dest_bits == bits)) {
458 alu->constant.u64 |=
459 (nir_src_as_uint(instr->src[i].src)) << *constant_shift;
460
461 alu->src[to] = BIR_INDEX_CONSTANT | (*constant_shift);
462 --(*constants_left);
463 (*constant_shift) += dest_bits;
464 return;
465 }
466
467 alu->src[to] = bir_src_index(&instr->src[i].src);
468
469 /* We assert scalarization above */
470 alu->swizzle[to][0] = instr->src[i].swizzle[0];
471 }
472
473 static void
474 bi_fuse_csel_cond(bi_instruction *csel, nir_alu_src cond,
475 unsigned *constants_left, unsigned *constant_shift)
476 {
477 /* Bail for vector weirdness */
478 if (cond.swizzle[0] != 0)
479 return;
480
481 if (!cond.src.is_ssa)
482 return;
483
484 nir_ssa_def *def = cond.src.ssa;
485 nir_instr *parent = def->parent_instr;
486
487 if (parent->type != nir_instr_type_alu)
488 return;
489
490 nir_alu_instr *alu = nir_instr_as_alu(parent);
491
492 /* Try to match a condition */
493 enum bi_cond bcond = bi_cond_for_nir(alu->op, true);
494
495 if (bcond == BI_COND_ALWAYS)
496 return;
497
498 /* We found one, let's fuse it in */
499 csel->csel_cond = bcond;
500 bi_copy_src(csel, alu, 0, 0, constants_left, constant_shift);
501 bi_copy_src(csel, alu, 1, 3, constants_left, constant_shift);
502 }
503
504 static void
505 emit_alu(bi_context *ctx, nir_alu_instr *instr)
506 {
507 /* Assume it's something we can handle normally */
508 bi_instruction alu = {
509 .type = bi_class_for_nir_alu(instr->op),
510 .dest = bir_dest_index(&instr->dest.dest),
511 .dest_type = nir_op_infos[instr->op].output_type
512 | nir_dest_bit_size(instr->dest.dest),
513 };
514
515 /* TODO: Implement lowering of special functions for older Bifrost */
516 assert((alu.type != BI_SPECIAL) || !(ctx->quirks & BIFROST_NO_FAST_OP));
517
518 if (instr->dest.dest.is_ssa) {
519 /* Construct a writemask */
520 unsigned bits_per_comp = instr->dest.dest.ssa.bit_size;
521 unsigned comps = instr->dest.dest.ssa.num_components;
522 assert(comps == 1);
523 unsigned bits = bits_per_comp * comps;
524 unsigned bytes = bits / 8;
525 alu.writemask = (1 << bytes) - 1;
526 } else {
527 unsigned comp_mask = instr->dest.write_mask;
528
529 alu.writemask = pan_to_bytemask(nir_dest_bit_size(instr->dest.dest),
530 comp_mask);
531 }
532
533 /* We inline constants as we go. This tracks how many constants have
534 * been inlined, since we're limited to 64-bits of constants per
535 * instruction */
536
537 unsigned dest_bits = nir_dest_bit_size(instr->dest.dest);
538 unsigned constants_left = (64 / dest_bits);
539 unsigned constant_shift = 0;
540
541 /* Copy sources */
542
543 unsigned num_inputs = nir_op_infos[instr->op].num_inputs;
544 assert(num_inputs <= ARRAY_SIZE(alu.src));
545
546 for (unsigned i = 0; i < num_inputs; ++i)
547 bi_copy_src(&alu, instr, i, i, &constants_left, &constant_shift);
548
549 /* Op-specific fixup */
550 switch (instr->op) {
551 case nir_op_fmul:
552 alu.src[2] = BIR_INDEX_ZERO; /* FMA */
553 break;
554 case nir_op_fsat:
555 alu.outmod = BIFROST_SAT; /* FMOV */
556 break;
557 case nir_op_fneg:
558 alu.src_neg[0] = true; /* FMOV */
559 break;
560 case nir_op_fabs:
561 alu.src_abs[0] = true; /* FMOV */
562 break;
563 case nir_op_fsub:
564 alu.src_neg[1] = true; /* FADD */
565 break;
566 case nir_op_fmax:
567 case nir_op_imax:
568 case nir_op_umax:
569 alu.op.minmax = BI_MINMAX_MAX; /* MINMAX */
570 break;
571 case nir_op_frcp:
572 alu.op.special = BI_SPECIAL_FRCP;
573 break;
574 case nir_op_frsq:
575 alu.op.special = BI_SPECIAL_FRSQ;
576 break;
577 case nir_op_fsin:
578 alu.op.special = BI_SPECIAL_FSIN;
579 break;
580 case nir_op_fcos:
581 alu.op.special = BI_SPECIAL_FCOS;
582 break;
583 BI_CASE_CMP(nir_op_flt)
584 BI_CASE_CMP(nir_op_ilt)
585 BI_CASE_CMP(nir_op_fge)
586 BI_CASE_CMP(nir_op_ige)
587 BI_CASE_CMP(nir_op_feq)
588 BI_CASE_CMP(nir_op_ieq)
589 BI_CASE_CMP(nir_op_fne)
590 BI_CASE_CMP(nir_op_ine)
591 alu.op.compare = bi_cond_for_nir(instr->op, false);
592 break;
593 default:
594 break;
595 }
596
597 if (alu.type == BI_CSEL) {
598 bi_fuse_csel_cond(&alu, instr->src[0],
599 &constants_left, &constant_shift);
600 }
601
602 bi_emit(ctx, alu);
603 }
604
605 static void
606 emit_instr(bi_context *ctx, struct nir_instr *instr)
607 {
608 switch (instr->type) {
609 case nir_instr_type_load_const:
610 emit_load_const(ctx, nir_instr_as_load_const(instr));
611 break;
612
613 case nir_instr_type_intrinsic:
614 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
615 break;
616
617 case nir_instr_type_alu:
618 emit_alu(ctx, nir_instr_as_alu(instr));
619 break;
620
621 #if 0
622 case nir_instr_type_tex:
623 emit_tex(ctx, nir_instr_as_tex(instr));
624 break;
625 #endif
626
627 case nir_instr_type_jump:
628 emit_jump(ctx, nir_instr_as_jump(instr));
629 break;
630
631 case nir_instr_type_ssa_undef:
632 /* Spurious */
633 break;
634
635 default:
636 //unreachable("Unhandled instruction type");
637 break;
638 }
639 }
640
641
642
643 static bi_block *
644 create_empty_block(bi_context *ctx)
645 {
646 bi_block *blk = rzalloc(ctx, bi_block);
647
648 blk->base.predecessors = _mesa_set_create(blk,
649 _mesa_hash_pointer,
650 _mesa_key_pointer_equal);
651
652 blk->base.name = ctx->block_name_count++;
653
654 return blk;
655 }
656
657 static void
658 bi_schedule_barrier(bi_context *ctx)
659 {
660 bi_block *temp = ctx->after_block;
661 ctx->after_block = create_empty_block(ctx);
662 list_addtail(&ctx->after_block->base.link, &ctx->blocks);
663 list_inithead(&ctx->after_block->base.instructions);
664 pan_block_add_successor(&ctx->current_block->base, &ctx->after_block->base);
665 ctx->current_block = ctx->after_block;
666 ctx->after_block = temp;
667 }
668
669 static bi_block *
670 emit_block(bi_context *ctx, nir_block *block)
671 {
672 if (ctx->after_block) {
673 ctx->current_block = ctx->after_block;
674 ctx->after_block = NULL;
675 } else {
676 ctx->current_block = create_empty_block(ctx);
677 }
678
679 list_addtail(&ctx->current_block->base.link, &ctx->blocks);
680 list_inithead(&ctx->current_block->base.instructions);
681
682 nir_foreach_instr(instr, block) {
683 emit_instr(ctx, instr);
684 ++ctx->instruction_count;
685 }
686
687 return ctx->current_block;
688 }
689
690 /* Emits an unconditional branch to the end of the current block, returning a
691 * pointer so the user can fill in details */
692
693 static bi_instruction *
694 bi_emit_branch(bi_context *ctx)
695 {
696 bi_instruction branch = {
697 .type = BI_BRANCH,
698 .branch = {
699 .cond = BI_COND_ALWAYS
700 }
701 };
702
703 return bi_emit(ctx, branch);
704 }
705
706 /* Sets a condition for a branch by examing the NIR condition. If we're
707 * familiar with the condition, we unwrap it to fold it into the branch
708 * instruction. Otherwise, we consume the condition directly. We
709 * generally use 1-bit booleans which allows us to use small types for
710 * the conditions.
711 */
712
713 static void
714 bi_set_branch_cond(bi_instruction *branch, nir_src *cond, bool invert)
715 {
716 /* TODO: Try to unwrap instead of always bailing */
717 branch->src[0] = bir_src_index(cond);
718 branch->src[1] = BIR_INDEX_ZERO;
719 branch->src_types[0] = branch->src_types[1] = nir_type_uint16;
720 branch->branch.cond = invert ? BI_COND_EQ : BI_COND_NE;
721 }
722
723 static void
724 emit_if(bi_context *ctx, nir_if *nif)
725 {
726 bi_block *before_block = ctx->current_block;
727
728 /* Speculatively emit the branch, but we can't fill it in until later */
729 bi_instruction *then_branch = bi_emit_branch(ctx);
730 bi_set_branch_cond(then_branch, &nif->condition, true);
731
732 /* Emit the two subblocks. */
733 bi_block *then_block = emit_cf_list(ctx, &nif->then_list);
734 bi_block *end_then_block = ctx->current_block;
735
736 /* Emit a jump from the end of the then block to the end of the else */
737 bi_instruction *then_exit = bi_emit_branch(ctx);
738
739 /* Emit second block, and check if it's empty */
740
741 int count_in = ctx->instruction_count;
742 bi_block *else_block = emit_cf_list(ctx, &nif->else_list);
743 bi_block *end_else_block = ctx->current_block;
744 ctx->after_block = create_empty_block(ctx);
745
746 /* Now that we have the subblocks emitted, fix up the branches */
747
748 assert(then_block);
749 assert(else_block);
750
751 if (ctx->instruction_count == count_in) {
752 /* The else block is empty, so don't emit an exit jump */
753 bi_remove_instruction(then_exit);
754 then_branch->branch.target = ctx->after_block;
755 } else {
756 then_branch->branch.target = else_block;
757 then_exit->branch.target = ctx->after_block;
758 pan_block_add_successor(&end_then_block->base, &then_exit->branch.target->base);
759 }
760
761 /* Wire up the successors */
762
763 pan_block_add_successor(&before_block->base, &then_branch->branch.target->base); /* then_branch */
764
765 pan_block_add_successor(&before_block->base, &then_block->base); /* fallthrough */
766 pan_block_add_successor(&end_else_block->base, &ctx->after_block->base); /* fallthrough */
767 }
768
769 static void
770 emit_loop(bi_context *ctx, nir_loop *nloop)
771 {
772 /* Remember where we are */
773 bi_block *start_block = ctx->current_block;
774
775 bi_block *saved_break = ctx->break_block;
776 bi_block *saved_continue = ctx->continue_block;
777
778 ctx->continue_block = create_empty_block(ctx);
779 ctx->break_block = create_empty_block(ctx);
780 ctx->after_block = ctx->continue_block;
781
782 /* Emit the body itself */
783 emit_cf_list(ctx, &nloop->body);
784
785 /* Branch back to loop back */
786 bi_instruction *br_back = bi_emit_branch(ctx);
787 br_back->branch.target = ctx->continue_block;
788 pan_block_add_successor(&start_block->base, &ctx->continue_block->base);
789 pan_block_add_successor(&ctx->current_block->base, &ctx->continue_block->base);
790
791 ctx->after_block = ctx->break_block;
792
793 /* Pop off */
794 ctx->break_block = saved_break;
795 ctx->continue_block = saved_continue;
796 ++ctx->loop_count;
797 }
798
799 static bi_block *
800 emit_cf_list(bi_context *ctx, struct exec_list *list)
801 {
802 bi_block *start_block = NULL;
803
804 foreach_list_typed(nir_cf_node, node, node, list) {
805 switch (node->type) {
806 case nir_cf_node_block: {
807 bi_block *block = emit_block(ctx, nir_cf_node_as_block(node));
808
809 if (!start_block)
810 start_block = block;
811
812 break;
813 }
814
815 case nir_cf_node_if:
816 emit_if(ctx, nir_cf_node_as_if(node));
817 break;
818
819 case nir_cf_node_loop:
820 emit_loop(ctx, nir_cf_node_as_loop(node));
821 break;
822
823 default:
824 unreachable("Unknown control flow");
825 }
826 }
827
828 return start_block;
829 }
830
831 static int
832 glsl_type_size(const struct glsl_type *type, bool bindless)
833 {
834 return glsl_count_attribute_slots(type, false);
835 }
836
837 static void
838 bi_optimize_nir(nir_shader *nir)
839 {
840 bool progress;
841 unsigned lower_flrp = 16 | 32 | 64;
842
843 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
844 NIR_PASS(progress, nir, nir_lower_idiv, nir_lower_idiv_fast);
845
846 nir_lower_tex_options lower_tex_options = {
847 .lower_txs_lod = true,
848 .lower_txp = ~0,
849 .lower_tex_without_implicit_lod = true,
850 .lower_txd = true,
851 };
852
853 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
854 NIR_PASS(progress, nir, nir_lower_alu_to_scalar, NULL, NULL);
855 NIR_PASS(progress, nir, nir_lower_load_const_to_scalar);
856
857 do {
858 progress = false;
859
860 NIR_PASS(progress, nir, nir_lower_var_copies);
861 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
862
863 NIR_PASS(progress, nir, nir_copy_prop);
864 NIR_PASS(progress, nir, nir_opt_remove_phis);
865 NIR_PASS(progress, nir, nir_opt_dce);
866 NIR_PASS(progress, nir, nir_opt_dead_cf);
867 NIR_PASS(progress, nir, nir_opt_cse);
868 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
869 NIR_PASS(progress, nir, nir_opt_algebraic);
870 NIR_PASS(progress, nir, nir_opt_constant_folding);
871
872 if (lower_flrp != 0) {
873 bool lower_flrp_progress = false;
874 NIR_PASS(lower_flrp_progress,
875 nir,
876 nir_lower_flrp,
877 lower_flrp,
878 false /* always_precise */,
879 nir->options->lower_ffma);
880 if (lower_flrp_progress) {
881 NIR_PASS(progress, nir,
882 nir_opt_constant_folding);
883 progress = true;
884 }
885
886 /* Nothing should rematerialize any flrps, so we only
887 * need to do this lowering once.
888 */
889 lower_flrp = 0;
890 }
891
892 NIR_PASS(progress, nir, nir_opt_undef);
893 NIR_PASS(progress, nir, nir_opt_loop_unroll,
894 nir_var_shader_in |
895 nir_var_shader_out |
896 nir_var_function_temp);
897 } while (progress);
898
899 NIR_PASS(progress, nir, nir_opt_algebraic_late);
900 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
901 NIR_PASS(progress, nir, bifrost_nir_lower_algebraic_late);
902 NIR_PASS(progress, nir, nir_lower_alu_to_scalar, NULL, NULL);
903 NIR_PASS(progress, nir, nir_lower_load_const_to_scalar);
904
905 /* Take us out of SSA */
906 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
907 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
908
909 /* We're a primary scalar architecture but there's enough vector that
910 * we use a vector IR so let's not also deal with scalar hacks on top
911 * of the vector hacks */
912
913 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
914 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
915 NIR_PASS(progress, nir, nir_opt_dce);
916 }
917
918 static void
919 bi_insert_mov32(bi_context *ctx, bi_instruction *parent, unsigned comp)
920 {
921 bi_instruction move = {
922 .type = BI_MOV,
923 .dest = parent->dest,
924 .dest_type = nir_type_uint32,
925 .writemask = (0xF << (4 * comp)),
926 .src = { parent->src[0] },
927 .src_types = { nir_type_uint32 },
928 .swizzle = { { comp } }
929 };
930
931 bi_emit_before(ctx, parent, move);
932 }
933
934 static void
935 bi_lower_mov(bi_context *ctx, bi_block *block)
936 {
937 bi_foreach_instr_in_block_safe(block, ins) {
938 if (ins->type != BI_MOV) continue;
939 if (util_bitcount(ins->writemask) <= 4) continue;
940
941 for (unsigned i = 0; i < 4; ++i) {
942 unsigned quad = (ins->writemask >> (4 * i)) & 0xF;
943
944 if (quad == 0)
945 continue;
946 else if (quad == 0xF)
947 bi_insert_mov32(ctx, ins, i);
948 else
949 unreachable("TODO: Lowering <32bit moves");
950 }
951
952 bi_remove_instruction(ins);
953 }
954 }
955
956 void
957 bifrost_compile_shader_nir(nir_shader *nir, panfrost_program *program, unsigned product_id)
958 {
959 bi_context *ctx = rzalloc(NULL, bi_context);
960 ctx->nir = nir;
961 ctx->stage = nir->info.stage;
962 ctx->quirks = bifrost_get_quirks(product_id);
963 list_inithead(&ctx->blocks);
964
965 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
966 * (so we don't accidentally duplicate the epilogue since mesa/st has
967 * messed with our I/O quite a bit already) */
968
969 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
970
971 if (ctx->stage == MESA_SHADER_VERTEX) {
972 NIR_PASS_V(nir, nir_lower_viewport_transform);
973 NIR_PASS_V(nir, nir_lower_point_size, 1.0, 1024.0);
974 }
975
976 NIR_PASS_V(nir, nir_split_var_copies);
977 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
978 NIR_PASS_V(nir, nir_lower_var_copies);
979 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
980 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
981 NIR_PASS_V(nir, nir_lower_ssbo);
982
983 bi_optimize_nir(nir);
984 nir_print_shader(nir, stdout);
985
986 panfrost_nir_assign_sysvals(&ctx->sysvals, nir);
987 program->sysval_count = ctx->sysvals.sysval_count;
988 memcpy(program->sysvals, ctx->sysvals.sysvals, sizeof(ctx->sysvals.sysvals[0]) * ctx->sysvals.sysval_count);
989
990 nir_foreach_function(func, nir) {
991 if (!func->impl)
992 continue;
993
994 ctx->impl = func->impl;
995 emit_cf_list(ctx, &func->impl->body);
996 break; /* TODO: Multi-function shaders */
997 }
998
999 bi_foreach_block(ctx, _block) {
1000 bi_block *block = (bi_block *) _block;
1001 bi_lower_mov(ctx, block);
1002 }
1003
1004 bool progress = false;
1005
1006 do {
1007 progress = false;
1008
1009 bi_foreach_block(ctx, _block) {
1010 bi_block *block = (bi_block *) _block;
1011 progress |= bi_opt_dead_code_eliminate(ctx, block);
1012 }
1013 } while(progress);
1014
1015 bi_print_shader(ctx, stdout);
1016 bi_schedule(ctx);
1017 bi_register_allocate(ctx);
1018 bi_print_shader(ctx, stdout);
1019 bi_pack(ctx, &program->compiled);
1020 disassemble_bifrost(stdout, program->compiled.data, program->compiled.size, true);
1021
1022 ralloc_free(ctx);
1023 }