pan/bi: Enable lower_mediump_outputs NIR pass
[mesa.git] / src / panfrost / bifrost / bifrost_compile.c
1 /*
2 * Copyright (C) 2020 Collabora Ltd.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors (Collabora):
24 * Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
25 */
26
27 #include "main/mtypes.h"
28 #include "compiler/glsl/glsl_to_nir.h"
29 #include "compiler/nir_types.h"
30 #include "compiler/nir/nir_builder.h"
31
32 #include "disassemble.h"
33 #include "bifrost_compile.h"
34 #include "bifrost_nir.h"
35 #include "compiler.h"
36 #include "bi_quirks.h"
37 #include "bi_print.h"
38
39 static bi_block *emit_cf_list(bi_context *ctx, struct exec_list *list);
40 static bi_instruction *bi_emit_branch(bi_context *ctx);
41 static void bi_schedule_barrier(bi_context *ctx);
42
43 static void
44 emit_jump(bi_context *ctx, nir_jump_instr *instr)
45 {
46 bi_instruction *branch = bi_emit_branch(ctx);
47
48 switch (instr->type) {
49 case nir_jump_break:
50 branch->branch.target = ctx->break_block;
51 break;
52 case nir_jump_continue:
53 branch->branch.target = ctx->continue_block;
54 break;
55 default:
56 unreachable("Unhandled jump type");
57 }
58
59 pan_block_add_successor(&ctx->current_block->base, &branch->branch.target->base);
60 }
61
62 static bi_instruction
63 bi_load(enum bi_class T, nir_intrinsic_instr *instr)
64 {
65 bi_instruction load = {
66 .type = T,
67 .vector_channels = instr->num_components,
68 .src = { BIR_INDEX_CONSTANT },
69 .src_types = { nir_type_uint32 },
70 .constant = { .u64 = nir_intrinsic_base(instr) },
71 };
72
73 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
74
75 if (info->has_dest)
76 load.dest = pan_dest_index(&instr->dest);
77
78 if (info->has_dest && info->index_map[NIR_INTRINSIC_TYPE] > 0)
79 load.dest_type = nir_intrinsic_type(instr);
80
81 nir_src *offset = nir_get_io_offset_src(instr);
82
83 if (nir_src_is_const(*offset))
84 load.constant.u64 += nir_src_as_uint(*offset);
85 else
86 load.src[0] = pan_src_index(offset);
87
88 return load;
89 }
90
91 static void
92 bi_emit_ld_vary(bi_context *ctx, nir_intrinsic_instr *instr)
93 {
94 bi_instruction ins = bi_load(BI_LOAD_VAR, instr);
95 ins.load_vary.interp_mode = BIFROST_INTERP_DEFAULT; /* TODO */
96 ins.load_vary.reuse = false; /* TODO */
97 ins.load_vary.flat = instr->intrinsic != nir_intrinsic_load_interpolated_input;
98 ins.dest_type = nir_type_float | nir_dest_bit_size(instr->dest);
99
100 if (nir_src_is_const(*nir_get_io_offset_src(instr))) {
101 /* Zero it out for direct */
102 ins.src[1] = BIR_INDEX_ZERO;
103 } else {
104 /* R61 contains sample mask stuff, TODO RA XXX */
105 ins.src[1] = BIR_INDEX_REGISTER | 61;
106 }
107
108 bi_emit(ctx, ins);
109 }
110
111 static void
112 bi_emit_frag_out(bi_context *ctx, nir_intrinsic_instr *instr)
113 {
114 if (!ctx->emitted_atest) {
115 bi_instruction ins = {
116 .type = BI_ATEST,
117 .src = {
118 BIR_INDEX_REGISTER | 60 /* TODO: RA */,
119 pan_src_index(&instr->src[0])
120 },
121 .src_types = {
122 nir_type_uint32,
123 nir_intrinsic_type(instr)
124 },
125 .swizzle = {
126 { 0 },
127 { 3, 0 } /* swizzle out the alpha */
128 },
129 .dest = BIR_INDEX_REGISTER | 60 /* TODO: RA */,
130 .dest_type = nir_type_uint32,
131 };
132
133 bi_emit(ctx, ins);
134 bi_schedule_barrier(ctx);
135 ctx->emitted_atest = true;
136 }
137
138 bi_instruction blend = {
139 .type = BI_BLEND,
140 .blend_location = nir_intrinsic_base(instr),
141 .src = {
142 pan_src_index(&instr->src[0]),
143 BIR_INDEX_REGISTER | 60 /* Can this be arbitrary? */,
144 },
145 .src_types = {
146 nir_intrinsic_type(instr),
147 nir_type_uint32
148 },
149 .swizzle = {
150 { 0, 1, 2, 3 },
151 { 0 }
152 },
153 .dest = BIR_INDEX_REGISTER | 48 /* Looks like magic */,
154 .dest_type = nir_type_uint32,
155 .vector_channels = 4
156 };
157
158 assert(blend.blend_location < BIFROST_MAX_RENDER_TARGET_COUNT);
159 assert(ctx->blend_types);
160 assert(blend.src_types[0]);
161 ctx->blend_types[blend.blend_location] = blend.src_types[0];
162
163 bi_emit(ctx, blend);
164 bi_schedule_barrier(ctx);
165 }
166
167 static bi_instruction
168 bi_load_with_r61(enum bi_class T, nir_intrinsic_instr *instr)
169 {
170 bi_instruction ld = bi_load(T, instr);
171 ld.src[1] = BIR_INDEX_REGISTER | 61; /* TODO: RA */
172 ld.src[2] = BIR_INDEX_REGISTER | 62;
173 ld.src[3] = 0;
174 ld.src_types[1] = nir_type_uint32;
175 ld.src_types[2] = nir_type_uint32;
176 ld.src_types[3] = nir_intrinsic_type(instr);
177 return ld;
178 }
179
180 static void
181 bi_emit_st_vary(bi_context *ctx, nir_intrinsic_instr *instr)
182 {
183 bi_instruction address = bi_load_with_r61(BI_LOAD_VAR_ADDRESS, instr);
184 address.dest = bi_make_temp(ctx);
185 address.dest_type = nir_type_uint32;
186 address.vector_channels = 3;
187
188 unsigned nr = nir_intrinsic_src_components(instr, 0);
189 assert(nir_intrinsic_write_mask(instr) == ((1 << nr) - 1));
190
191 bi_instruction st = {
192 .type = BI_STORE_VAR,
193 .src = {
194 pan_src_index(&instr->src[0]),
195 address.dest, address.dest, address.dest,
196 },
197 .src_types = {
198 nir_type_uint32,
199 nir_type_uint32, nir_type_uint32, nir_type_uint32,
200 },
201 .swizzle = {
202 { 0 },
203 { 0 }, { 1 }, { 2}
204 },
205 .vector_channels = nr,
206 };
207
208 for (unsigned i = 0; i < nr; ++i)
209 st.swizzle[0][i] = i;
210
211 bi_emit(ctx, address);
212 bi_emit(ctx, st);
213 }
214
215 static void
216 bi_emit_ld_uniform(bi_context *ctx, nir_intrinsic_instr *instr)
217 {
218 bi_instruction ld = bi_load(BI_LOAD_UNIFORM, instr);
219 ld.src[1] = BIR_INDEX_ZERO; /* TODO: UBO index */
220
221 /* TODO: Indirect access, since we need to multiply by the element
222 * size. I believe we can get this lowering automatically via
223 * nir_lower_io (as mul instructions) with the proper options, but this
224 * is TODO */
225 assert(ld.src[0] & BIR_INDEX_CONSTANT);
226 ld.constant.u64 += ctx->sysvals.sysval_count;
227 ld.constant.u64 *= 16;
228
229 bi_emit(ctx, ld);
230 }
231
232 static void
233 bi_emit_sysval(bi_context *ctx, nir_instr *instr,
234 unsigned nr_components, unsigned offset)
235 {
236 nir_dest nir_dest;
237
238 /* Figure out which uniform this is */
239 int sysval = panfrost_sysval_for_instr(instr, &nir_dest);
240 void *val = _mesa_hash_table_u64_search(ctx->sysvals.sysval_to_id, sysval);
241
242 /* Sysvals are prefix uniforms */
243 unsigned uniform = ((uintptr_t) val) - 1;
244
245 /* Emit the read itself -- this is never indirect */
246
247 bi_instruction load = {
248 .type = BI_LOAD_UNIFORM,
249 .vector_channels = nr_components,
250 .src = { BIR_INDEX_CONSTANT, BIR_INDEX_ZERO },
251 .src_types = { nir_type_uint32, nir_type_uint32 },
252 .constant = { (uniform * 16) + offset },
253 .dest = pan_dest_index(&nir_dest),
254 .dest_type = nir_type_uint32, /* TODO */
255 };
256
257 bi_emit(ctx, load);
258 }
259
260 static void
261 emit_intrinsic(bi_context *ctx, nir_intrinsic_instr *instr)
262 {
263
264 switch (instr->intrinsic) {
265 case nir_intrinsic_load_barycentric_pixel:
266 /* stub */
267 break;
268 case nir_intrinsic_load_interpolated_input:
269 case nir_intrinsic_load_input:
270 if (ctx->stage == MESA_SHADER_FRAGMENT)
271 bi_emit_ld_vary(ctx, instr);
272 else if (ctx->stage == MESA_SHADER_VERTEX)
273 bi_emit(ctx, bi_load_with_r61(BI_LOAD_ATTR, instr));
274 else {
275 unreachable("Unsupported shader stage");
276 }
277 break;
278
279 case nir_intrinsic_store_output:
280 if (ctx->stage == MESA_SHADER_FRAGMENT)
281 bi_emit_frag_out(ctx, instr);
282 else if (ctx->stage == MESA_SHADER_VERTEX)
283 bi_emit_st_vary(ctx, instr);
284 else
285 unreachable("Unsupported shader stage");
286 break;
287
288 case nir_intrinsic_load_uniform:
289 bi_emit_ld_uniform(ctx, instr);
290 break;
291
292 case nir_intrinsic_load_ssbo_address:
293 bi_emit_sysval(ctx, &instr->instr, 1, 0);
294 break;
295
296 case nir_intrinsic_get_buffer_size:
297 bi_emit_sysval(ctx, &instr->instr, 1, 8);
298 break;
299
300 case nir_intrinsic_load_viewport_scale:
301 case nir_intrinsic_load_viewport_offset:
302 case nir_intrinsic_load_num_work_groups:
303 case nir_intrinsic_load_sampler_lod_parameters_pan:
304 bi_emit_sysval(ctx, &instr->instr, 3, 0);
305 break;
306
307 default:
308 /* todo */
309 break;
310 }
311 }
312
313 static void
314 emit_load_const(bi_context *ctx, nir_load_const_instr *instr)
315 {
316 /* Make sure we've been lowered */
317 assert(instr->def.num_components == 1);
318
319 bi_instruction move = {
320 .type = BI_MOV,
321 .dest = pan_ssa_index(&instr->def),
322 .dest_type = instr->def.bit_size | nir_type_uint,
323 .src = {
324 BIR_INDEX_CONSTANT
325 },
326 .src_types = {
327 instr->def.bit_size | nir_type_uint,
328 },
329 .constant = {
330 .u64 = nir_const_value_as_uint(instr->value[0], instr->def.bit_size)
331 }
332 };
333
334 bi_emit(ctx, move);
335 }
336
337 #define BI_CASE_CMP(op) \
338 case op##8: \
339 case op##16: \
340 case op##32: \
341
342 static enum bi_class
343 bi_class_for_nir_alu(nir_op op)
344 {
345 switch (op) {
346 case nir_op_iadd:
347 case nir_op_fadd:
348 case nir_op_fsub:
349 return BI_ADD;
350 case nir_op_isub:
351 return BI_ISUB;
352
353 case nir_op_iand:
354 case nir_op_ior:
355 case nir_op_ixor:
356 return BI_BITWISE;
357
358 BI_CASE_CMP(nir_op_flt)
359 BI_CASE_CMP(nir_op_fge)
360 BI_CASE_CMP(nir_op_feq)
361 BI_CASE_CMP(nir_op_fne)
362 BI_CASE_CMP(nir_op_ilt)
363 BI_CASE_CMP(nir_op_ige)
364 BI_CASE_CMP(nir_op_ieq)
365 BI_CASE_CMP(nir_op_ine)
366 return BI_CMP;
367
368 case nir_op_b8csel:
369 case nir_op_b16csel:
370 case nir_op_b32csel:
371 return BI_CSEL;
372
373 case nir_op_i2i8:
374 case nir_op_i2i16:
375 case nir_op_i2i32:
376 case nir_op_i2i64:
377 case nir_op_u2u8:
378 case nir_op_u2u16:
379 case nir_op_u2u32:
380 case nir_op_u2u64:
381 case nir_op_f2i16:
382 case nir_op_f2i32:
383 case nir_op_f2i64:
384 case nir_op_f2u16:
385 case nir_op_f2u32:
386 case nir_op_f2u64:
387 case nir_op_i2f16:
388 case nir_op_i2f32:
389 case nir_op_i2f64:
390 case nir_op_u2f16:
391 case nir_op_u2f32:
392 case nir_op_u2f64:
393 case nir_op_f2f16:
394 case nir_op_f2f32:
395 case nir_op_f2f64:
396 case nir_op_f2fmp:
397 return BI_CONVERT;
398
399 case nir_op_vec2:
400 case nir_op_vec3:
401 case nir_op_vec4:
402 return BI_COMBINE;
403
404 case nir_op_vec8:
405 case nir_op_vec16:
406 unreachable("should've been lowered");
407
408 case nir_op_ffma:
409 case nir_op_fmul:
410 return BI_FMA;
411
412 case nir_op_imin:
413 case nir_op_imax:
414 case nir_op_umin:
415 case nir_op_umax:
416 case nir_op_fmin:
417 case nir_op_fmax:
418 return BI_MINMAX;
419
420 case nir_op_fsat:
421 case nir_op_fneg:
422 case nir_op_fabs:
423 return BI_FMOV;
424 case nir_op_mov:
425 return BI_MOV;
426
427 case nir_op_fround_even:
428 case nir_op_fceil:
429 case nir_op_ffloor:
430 case nir_op_ftrunc:
431 return BI_ROUND;
432
433 case nir_op_frcp:
434 case nir_op_frsq:
435 return BI_SPECIAL;
436
437 default:
438 unreachable("Unknown ALU op");
439 }
440 }
441
442 /* Gets a bi_cond for a given NIR comparison opcode. In soft mode, it will
443 * return BI_COND_ALWAYS as a sentinel if it fails to do so (when used for
444 * optimizations). Otherwise it will bail (when used for primary code
445 * generation). */
446
447 static enum bi_cond
448 bi_cond_for_nir(nir_op op, bool soft)
449 {
450 switch (op) {
451 BI_CASE_CMP(nir_op_flt)
452 BI_CASE_CMP(nir_op_ilt)
453 return BI_COND_LT;
454
455 BI_CASE_CMP(nir_op_fge)
456 BI_CASE_CMP(nir_op_ige)
457 return BI_COND_GE;
458
459 BI_CASE_CMP(nir_op_feq)
460 BI_CASE_CMP(nir_op_ieq)
461 return BI_COND_EQ;
462
463 BI_CASE_CMP(nir_op_fne)
464 BI_CASE_CMP(nir_op_ine)
465 return BI_COND_NE;
466 default:
467 if (soft)
468 return BI_COND_ALWAYS;
469 else
470 unreachable("Invalid compare");
471 }
472 }
473
474 static void
475 bi_copy_src(bi_instruction *alu, nir_alu_instr *instr, unsigned i, unsigned to,
476 unsigned *constants_left, unsigned *constant_shift, unsigned comps)
477 {
478 unsigned bits = nir_src_bit_size(instr->src[i].src);
479 unsigned dest_bits = nir_dest_bit_size(instr->dest.dest);
480
481 alu->src_types[to] = nir_op_infos[instr->op].input_types[i]
482 | bits;
483
484 /* Try to inline a constant */
485 if (nir_src_is_const(instr->src[i].src) && *constants_left && (dest_bits == bits)) {
486 uint64_t mask = (1ull << dest_bits) - 1;
487 uint64_t cons = nir_src_as_uint(instr->src[i].src);
488
489 /* Try to reuse a constant */
490 for (unsigned i = 0; i < (*constant_shift); i += dest_bits) {
491 if (((alu->constant.u64 >> i) & mask) == cons) {
492 alu->src[to] = BIR_INDEX_CONSTANT | i;
493 return;
494 }
495 }
496
497 alu->constant.u64 |= cons << *constant_shift;
498 alu->src[to] = BIR_INDEX_CONSTANT | (*constant_shift);
499 --(*constants_left);
500 (*constant_shift) += MAX2(dest_bits, 32); /* lo/hi */
501 return;
502 }
503
504 alu->src[to] = pan_src_index(&instr->src[i].src);
505
506 /* Copy swizzle for all vectored components, replicating last component
507 * to fill undersized */
508
509 unsigned vec = alu->type == BI_COMBINE ? 1 :
510 MAX2(1, 32 / dest_bits);
511
512 for (unsigned j = 0; j < vec; ++j)
513 alu->swizzle[to][j] = instr->src[i].swizzle[MIN2(j, comps - 1)];
514 }
515
516 static void
517 bi_fuse_csel_cond(bi_instruction *csel, nir_alu_src cond,
518 unsigned *constants_left, unsigned *constant_shift, unsigned comps)
519 {
520 /* Bail for vector weirdness */
521 if (cond.swizzle[0] != 0)
522 return;
523
524 if (!cond.src.is_ssa)
525 return;
526
527 nir_ssa_def *def = cond.src.ssa;
528 nir_instr *parent = def->parent_instr;
529
530 if (parent->type != nir_instr_type_alu)
531 return;
532
533 nir_alu_instr *alu = nir_instr_as_alu(parent);
534
535 /* Try to match a condition */
536 enum bi_cond bcond = bi_cond_for_nir(alu->op, true);
537
538 if (bcond == BI_COND_ALWAYS)
539 return;
540
541 /* We found one, let's fuse it in */
542 csel->cond = bcond;
543 bi_copy_src(csel, alu, 0, 0, constants_left, constant_shift, comps);
544 bi_copy_src(csel, alu, 1, 1, constants_left, constant_shift, comps);
545 }
546
547 static void
548 emit_alu(bi_context *ctx, nir_alu_instr *instr)
549 {
550 /* Try some special functions */
551 switch (instr->op) {
552 case nir_op_fexp2:
553 bi_emit_fexp2(ctx, instr);
554 return;
555 case nir_op_flog2:
556 bi_emit_flog2(ctx, instr);
557 return;
558 default:
559 break;
560 }
561
562 /* Otherwise, assume it's something we can handle normally */
563 bi_instruction alu = {
564 .type = bi_class_for_nir_alu(instr->op),
565 .dest = pan_dest_index(&instr->dest.dest),
566 .dest_type = nir_op_infos[instr->op].output_type
567 | nir_dest_bit_size(instr->dest.dest),
568 };
569
570 /* TODO: Implement lowering of special functions for older Bifrost */
571 assert((alu.type != BI_SPECIAL) || !(ctx->quirks & BIFROST_NO_FAST_OP));
572
573 unsigned comps = nir_dest_num_components(instr->dest.dest);
574
575 if (alu.type != BI_COMBINE)
576 assert(comps <= MAX2(1, 32 / comps));
577
578 if (!instr->dest.dest.is_ssa) {
579 for (unsigned i = 0; i < comps; ++i)
580 assert(instr->dest.write_mask);
581 }
582
583 /* We inline constants as we go. This tracks how many constants have
584 * been inlined, since we're limited to 64-bits of constants per
585 * instruction */
586
587 unsigned dest_bits = nir_dest_bit_size(instr->dest.dest);
588 unsigned constants_left = (64 / dest_bits);
589 unsigned constant_shift = 0;
590
591 if (alu.type == BI_COMBINE)
592 constants_left = 0;
593
594 /* Copy sources */
595
596 unsigned num_inputs = nir_op_infos[instr->op].num_inputs;
597 assert(num_inputs <= ARRAY_SIZE(alu.src));
598
599 for (unsigned i = 0; i < num_inputs; ++i) {
600 unsigned f = 0;
601
602 if (i && alu.type == BI_CSEL)
603 f++;
604
605 bi_copy_src(&alu, instr, i, i + f, &constants_left, &constant_shift, comps);
606 }
607
608 /* Op-specific fixup */
609 switch (instr->op) {
610 case nir_op_fmul:
611 alu.src[2] = BIR_INDEX_ZERO; /* FMA */
612 alu.src_types[2] = alu.src_types[1];
613 break;
614 case nir_op_fsat:
615 alu.outmod = BIFROST_SAT; /* FMOV */
616 break;
617 case nir_op_fneg:
618 alu.src_neg[0] = true; /* FMOV */
619 break;
620 case nir_op_fabs:
621 alu.src_abs[0] = true; /* FMOV */
622 break;
623 case nir_op_fsub:
624 alu.src_neg[1] = true; /* FADD */
625 break;
626 case nir_op_fmax:
627 case nir_op_imax:
628 case nir_op_umax:
629 alu.op.minmax = BI_MINMAX_MAX; /* MINMAX */
630 break;
631 case nir_op_frcp:
632 alu.op.special = BI_SPECIAL_FRCP;
633 break;
634 case nir_op_frsq:
635 alu.op.special = BI_SPECIAL_FRSQ;
636 break;
637 BI_CASE_CMP(nir_op_flt)
638 BI_CASE_CMP(nir_op_ilt)
639 BI_CASE_CMP(nir_op_fge)
640 BI_CASE_CMP(nir_op_ige)
641 BI_CASE_CMP(nir_op_feq)
642 BI_CASE_CMP(nir_op_ieq)
643 BI_CASE_CMP(nir_op_fne)
644 BI_CASE_CMP(nir_op_ine)
645 alu.cond = bi_cond_for_nir(instr->op, false);
646 break;
647 case nir_op_fround_even:
648 alu.roundmode = BIFROST_RTE;
649 break;
650 case nir_op_fceil:
651 alu.roundmode = BIFROST_RTP;
652 break;
653 case nir_op_ffloor:
654 alu.roundmode = BIFROST_RTN;
655 break;
656 case nir_op_ftrunc:
657 alu.roundmode = BIFROST_RTZ;
658 break;
659 case nir_op_iand:
660 alu.op.bitwise = BI_BITWISE_AND;
661 break;
662 case nir_op_ior:
663 alu.op.bitwise = BI_BITWISE_OR;
664 break;
665 case nir_op_ixor:
666 alu.op.bitwise = BI_BITWISE_XOR;
667 break;
668 default:
669 break;
670 }
671
672 if (alu.type == BI_CSEL) {
673 /* Default to csel3 */
674 alu.cond = BI_COND_NE;
675 alu.src[1] = BIR_INDEX_ZERO;
676 alu.src_types[1] = alu.src_types[0];
677
678 bi_fuse_csel_cond(&alu, instr->src[0],
679 &constants_left, &constant_shift, comps);
680 } else if (alu.type == BI_BITWISE) {
681 /* Implicit shift argument... at some point we should fold */
682 alu.src[2] = BIR_INDEX_ZERO;
683 alu.src_types[2] = alu.src_types[1];
684 }
685
686 bi_emit(ctx, alu);
687 }
688
689 /* TEX_COMPACT instructions assume normal 2D f32 operation but are more
690 * space-efficient and with simpler RA/scheduling requirements*/
691
692 static void
693 emit_tex_compact(bi_context *ctx, nir_tex_instr *instr)
694 {
695 bi_instruction tex = {
696 .type = BI_TEX,
697 .op = { .texture = BI_TEX_COMPACT },
698 .texture = {
699 .texture_index = instr->texture_index,
700 .sampler_index = instr->sampler_index,
701 },
702 .dest = pan_dest_index(&instr->dest),
703 .dest_type = instr->dest_type,
704 .src_types = { nir_type_float32, nir_type_float32 },
705 .vector_channels = 4
706 };
707
708 for (unsigned i = 0; i < instr->num_srcs; ++i) {
709 int index = pan_src_index(&instr->src[i].src);
710 assert (instr->src[i].src_type == nir_tex_src_coord);
711
712 tex.src[0] = index;
713 tex.src[1] = index;
714 tex.swizzle[0][0] = 0;
715 tex.swizzle[1][0] = 1;
716 }
717
718 bi_emit(ctx, tex);
719 }
720
721 static void
722 emit_tex_full(bi_context *ctx, nir_tex_instr *instr)
723 {
724 unreachable("stub");
725 }
726
727 static void
728 emit_tex(bi_context *ctx, nir_tex_instr *instr)
729 {
730 nir_alu_type base = nir_alu_type_get_base_type(instr->dest_type);
731 unsigned sz = nir_dest_bit_size(instr->dest);
732 instr->dest_type = base | sz;
733
734 bool is_normal = instr->op == nir_texop_tex;
735 bool is_2d = instr->sampler_dim == GLSL_SAMPLER_DIM_2D ||
736 instr->sampler_dim == GLSL_SAMPLER_DIM_EXTERNAL;
737 bool is_f = base == nir_type_float && (sz == 16 || sz == 32);
738
739 bool is_compact = is_normal && is_2d && is_f && !instr->is_shadow;
740
741 if (is_compact)
742 emit_tex_compact(ctx, instr);
743 else
744 emit_tex_full(ctx, instr);
745 }
746
747 static void
748 emit_instr(bi_context *ctx, struct nir_instr *instr)
749 {
750 switch (instr->type) {
751 case nir_instr_type_load_const:
752 emit_load_const(ctx, nir_instr_as_load_const(instr));
753 break;
754
755 case nir_instr_type_intrinsic:
756 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
757 break;
758
759 case nir_instr_type_alu:
760 emit_alu(ctx, nir_instr_as_alu(instr));
761 break;
762
763 case nir_instr_type_tex:
764 emit_tex(ctx, nir_instr_as_tex(instr));
765 break;
766
767 case nir_instr_type_jump:
768 emit_jump(ctx, nir_instr_as_jump(instr));
769 break;
770
771 case nir_instr_type_ssa_undef:
772 /* Spurious */
773 break;
774
775 default:
776 unreachable("Unhandled instruction type");
777 break;
778 }
779 }
780
781
782
783 static bi_block *
784 create_empty_block(bi_context *ctx)
785 {
786 bi_block *blk = rzalloc(ctx, bi_block);
787
788 blk->base.predecessors = _mesa_set_create(blk,
789 _mesa_hash_pointer,
790 _mesa_key_pointer_equal);
791
792 blk->base.name = ctx->block_name_count++;
793
794 return blk;
795 }
796
797 static void
798 bi_schedule_barrier(bi_context *ctx)
799 {
800 bi_block *temp = ctx->after_block;
801 ctx->after_block = create_empty_block(ctx);
802 list_addtail(&ctx->after_block->base.link, &ctx->blocks);
803 list_inithead(&ctx->after_block->base.instructions);
804 pan_block_add_successor(&ctx->current_block->base, &ctx->after_block->base);
805 ctx->current_block = ctx->after_block;
806 ctx->after_block = temp;
807 }
808
809 static bi_block *
810 emit_block(bi_context *ctx, nir_block *block)
811 {
812 if (ctx->after_block) {
813 ctx->current_block = ctx->after_block;
814 ctx->after_block = NULL;
815 } else {
816 ctx->current_block = create_empty_block(ctx);
817 }
818
819 list_addtail(&ctx->current_block->base.link, &ctx->blocks);
820 list_inithead(&ctx->current_block->base.instructions);
821
822 nir_foreach_instr(instr, block) {
823 emit_instr(ctx, instr);
824 ++ctx->instruction_count;
825 }
826
827 return ctx->current_block;
828 }
829
830 /* Emits an unconditional branch to the end of the current block, returning a
831 * pointer so the user can fill in details */
832
833 static bi_instruction *
834 bi_emit_branch(bi_context *ctx)
835 {
836 bi_instruction branch = {
837 .type = BI_BRANCH,
838 .branch = {
839 .cond = BI_COND_ALWAYS
840 }
841 };
842
843 return bi_emit(ctx, branch);
844 }
845
846 /* Sets a condition for a branch by examing the NIR condition. If we're
847 * familiar with the condition, we unwrap it to fold it into the branch
848 * instruction. Otherwise, we consume the condition directly. We
849 * generally use 1-bit booleans which allows us to use small types for
850 * the conditions.
851 */
852
853 static void
854 bi_set_branch_cond(bi_instruction *branch, nir_src *cond, bool invert)
855 {
856 /* TODO: Try to unwrap instead of always bailing */
857 branch->src[0] = pan_src_index(cond);
858 branch->src[1] = BIR_INDEX_ZERO;
859 branch->src_types[0] = branch->src_types[1] = nir_type_uint16;
860 branch->branch.cond = invert ? BI_COND_EQ : BI_COND_NE;
861 }
862
863 static void
864 emit_if(bi_context *ctx, nir_if *nif)
865 {
866 bi_block *before_block = ctx->current_block;
867
868 /* Speculatively emit the branch, but we can't fill it in until later */
869 bi_instruction *then_branch = bi_emit_branch(ctx);
870 bi_set_branch_cond(then_branch, &nif->condition, true);
871
872 /* Emit the two subblocks. */
873 bi_block *then_block = emit_cf_list(ctx, &nif->then_list);
874 bi_block *end_then_block = ctx->current_block;
875
876 /* Emit a jump from the end of the then block to the end of the else */
877 bi_instruction *then_exit = bi_emit_branch(ctx);
878
879 /* Emit second block, and check if it's empty */
880
881 int count_in = ctx->instruction_count;
882 bi_block *else_block = emit_cf_list(ctx, &nif->else_list);
883 bi_block *end_else_block = ctx->current_block;
884 ctx->after_block = create_empty_block(ctx);
885
886 /* Now that we have the subblocks emitted, fix up the branches */
887
888 assert(then_block);
889 assert(else_block);
890
891 if (ctx->instruction_count == count_in) {
892 /* The else block is empty, so don't emit an exit jump */
893 bi_remove_instruction(then_exit);
894 then_branch->branch.target = ctx->after_block;
895 } else {
896 then_branch->branch.target = else_block;
897 then_exit->branch.target = ctx->after_block;
898 pan_block_add_successor(&end_then_block->base, &then_exit->branch.target->base);
899 }
900
901 /* Wire up the successors */
902
903 pan_block_add_successor(&before_block->base, &then_branch->branch.target->base); /* then_branch */
904
905 pan_block_add_successor(&before_block->base, &then_block->base); /* fallthrough */
906 pan_block_add_successor(&end_else_block->base, &ctx->after_block->base); /* fallthrough */
907 }
908
909 static void
910 emit_loop(bi_context *ctx, nir_loop *nloop)
911 {
912 /* Remember where we are */
913 bi_block *start_block = ctx->current_block;
914
915 bi_block *saved_break = ctx->break_block;
916 bi_block *saved_continue = ctx->continue_block;
917
918 ctx->continue_block = create_empty_block(ctx);
919 ctx->break_block = create_empty_block(ctx);
920 ctx->after_block = ctx->continue_block;
921
922 /* Emit the body itself */
923 emit_cf_list(ctx, &nloop->body);
924
925 /* Branch back to loop back */
926 bi_instruction *br_back = bi_emit_branch(ctx);
927 br_back->branch.target = ctx->continue_block;
928 pan_block_add_successor(&start_block->base, &ctx->continue_block->base);
929 pan_block_add_successor(&ctx->current_block->base, &ctx->continue_block->base);
930
931 ctx->after_block = ctx->break_block;
932
933 /* Pop off */
934 ctx->break_block = saved_break;
935 ctx->continue_block = saved_continue;
936 ++ctx->loop_count;
937 }
938
939 static bi_block *
940 emit_cf_list(bi_context *ctx, struct exec_list *list)
941 {
942 bi_block *start_block = NULL;
943
944 foreach_list_typed(nir_cf_node, node, node, list) {
945 switch (node->type) {
946 case nir_cf_node_block: {
947 bi_block *block = emit_block(ctx, nir_cf_node_as_block(node));
948
949 if (!start_block)
950 start_block = block;
951
952 break;
953 }
954
955 case nir_cf_node_if:
956 emit_if(ctx, nir_cf_node_as_if(node));
957 break;
958
959 case nir_cf_node_loop:
960 emit_loop(ctx, nir_cf_node_as_loop(node));
961 break;
962
963 default:
964 unreachable("Unknown control flow");
965 }
966 }
967
968 return start_block;
969 }
970
971 static int
972 glsl_type_size(const struct glsl_type *type, bool bindless)
973 {
974 return glsl_count_attribute_slots(type, false);
975 }
976
977 static void
978 bi_optimize_nir(nir_shader *nir)
979 {
980 bool progress;
981 unsigned lower_flrp = 16 | 32 | 64;
982
983 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
984 NIR_PASS(progress, nir, nir_lower_idiv, nir_lower_idiv_fast);
985
986 nir_lower_tex_options lower_tex_options = {
987 .lower_txs_lod = true,
988 .lower_txp = ~0,
989 .lower_tex_without_implicit_lod = true,
990 .lower_txd = true,
991 };
992
993 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
994 NIR_PASS(progress, nir, nir_lower_alu_to_scalar, NULL, NULL);
995 NIR_PASS(progress, nir, nir_lower_load_const_to_scalar);
996
997 do {
998 progress = false;
999
1000 NIR_PASS(progress, nir, nir_lower_var_copies);
1001 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
1002
1003 NIR_PASS(progress, nir, nir_copy_prop);
1004 NIR_PASS(progress, nir, nir_opt_remove_phis);
1005 NIR_PASS(progress, nir, nir_opt_dce);
1006 NIR_PASS(progress, nir, nir_opt_dead_cf);
1007 NIR_PASS(progress, nir, nir_opt_cse);
1008 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
1009 NIR_PASS(progress, nir, nir_opt_algebraic);
1010 NIR_PASS(progress, nir, nir_opt_constant_folding);
1011
1012 if (lower_flrp != 0) {
1013 bool lower_flrp_progress = false;
1014 NIR_PASS(lower_flrp_progress,
1015 nir,
1016 nir_lower_flrp,
1017 lower_flrp,
1018 false /* always_precise */,
1019 nir->options->lower_ffma);
1020 if (lower_flrp_progress) {
1021 NIR_PASS(progress, nir,
1022 nir_opt_constant_folding);
1023 progress = true;
1024 }
1025
1026 /* Nothing should rematerialize any flrps, so we only
1027 * need to do this lowering once.
1028 */
1029 lower_flrp = 0;
1030 }
1031
1032 NIR_PASS(progress, nir, nir_opt_undef);
1033 NIR_PASS(progress, nir, nir_opt_loop_unroll,
1034 nir_var_shader_in |
1035 nir_var_shader_out |
1036 nir_var_function_temp);
1037 } while (progress);
1038
1039 NIR_PASS(progress, nir, nir_opt_algebraic_late);
1040 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
1041 NIR_PASS(progress, nir, bifrost_nir_lower_algebraic_late);
1042 NIR_PASS(progress, nir, nir_lower_alu_to_scalar, NULL, NULL);
1043 NIR_PASS(progress, nir, nir_lower_load_const_to_scalar);
1044
1045 /* Take us out of SSA */
1046 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
1047 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
1048 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
1049 }
1050
1051 void
1052 bifrost_compile_shader_nir(nir_shader *nir, panfrost_program *program, unsigned product_id)
1053 {
1054 bi_context *ctx = rzalloc(NULL, bi_context);
1055 ctx->nir = nir;
1056 ctx->stage = nir->info.stage;
1057 ctx->quirks = bifrost_get_quirks(product_id);
1058 list_inithead(&ctx->blocks);
1059
1060 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
1061 * (so we don't accidentally duplicate the epilogue since mesa/st has
1062 * messed with our I/O quite a bit already) */
1063
1064 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
1065
1066 if (ctx->stage == MESA_SHADER_VERTEX) {
1067 NIR_PASS_V(nir, nir_lower_viewport_transform);
1068 NIR_PASS_V(nir, nir_lower_point_size, 1.0, 1024.0);
1069 }
1070
1071 NIR_PASS_V(nir, nir_split_var_copies);
1072 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
1073 NIR_PASS_V(nir, nir_lower_var_copies);
1074 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
1075 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
1076 NIR_PASS_V(nir, nir_lower_ssbo);
1077 NIR_PASS_V(nir, nir_lower_mediump_outputs);
1078
1079 bi_optimize_nir(nir);
1080 nir_print_shader(nir, stdout);
1081
1082 panfrost_nir_assign_sysvals(&ctx->sysvals, nir);
1083 program->sysval_count = ctx->sysvals.sysval_count;
1084 memcpy(program->sysvals, ctx->sysvals.sysvals, sizeof(ctx->sysvals.sysvals[0]) * ctx->sysvals.sysval_count);
1085 ctx->blend_types = program->blend_types;
1086
1087 nir_foreach_function(func, nir) {
1088 if (!func->impl)
1089 continue;
1090
1091 ctx->impl = func->impl;
1092 emit_cf_list(ctx, &func->impl->body);
1093 break; /* TODO: Multi-function shaders */
1094 }
1095
1096 bi_foreach_block(ctx, _block) {
1097 bi_block *block = (bi_block *) _block;
1098 bi_lower_combine(ctx, block);
1099 }
1100
1101 bool progress = false;
1102
1103 do {
1104 progress = false;
1105
1106 bi_foreach_block(ctx, _block) {
1107 bi_block *block = (bi_block *) _block;
1108 progress |= bi_opt_dead_code_eliminate(ctx, block);
1109 }
1110 } while(progress);
1111
1112 bi_print_shader(ctx, stdout);
1113 bi_schedule(ctx);
1114 bi_register_allocate(ctx);
1115 bi_print_shader(ctx, stdout);
1116 bi_pack(ctx, &program->compiled);
1117 disassemble_bifrost(stdout, program->compiled.data, program->compiled.size, true);
1118
1119 ralloc_free(ctx);
1120 }