pan/bi: Implement nir_op_ffma
[mesa.git] / src / panfrost / bifrost / bifrost_compile.c
1 /*
2 * Copyright (C) 2020 Collabora Ltd.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors (Collabora):
24 * Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
25 */
26
27 #include "main/mtypes.h"
28 #include "compiler/glsl/glsl_to_nir.h"
29 #include "compiler/nir_types.h"
30 #include "main/imports.h"
31 #include "compiler/nir/nir_builder.h"
32
33 #include "disassemble.h"
34 #include "bifrost_compile.h"
35 #include "bifrost_nir.h"
36 #include "compiler.h"
37 #include "bi_quirks.h"
38 #include "bi_print.h"
39
40 static bi_block *emit_cf_list(bi_context *ctx, struct exec_list *list);
41 static bi_instruction *bi_emit_branch(bi_context *ctx);
42 static void bi_schedule_barrier(bi_context *ctx);
43
44 static void
45 emit_jump(bi_context *ctx, nir_jump_instr *instr)
46 {
47 bi_instruction *branch = bi_emit_branch(ctx);
48
49 switch (instr->type) {
50 case nir_jump_break:
51 branch->branch.target = ctx->break_block;
52 break;
53 case nir_jump_continue:
54 branch->branch.target = ctx->continue_block;
55 break;
56 default:
57 unreachable("Unhandled jump type");
58 }
59
60 pan_block_add_successor(&ctx->current_block->base, &branch->branch.target->base);
61 }
62
63 /* Gets a bytemask for a complete vecN write */
64 static unsigned
65 bi_mask_for_channels_32(unsigned i)
66 {
67 return (1 << (4 * i)) - 1;
68 }
69
70 static bi_instruction
71 bi_load(enum bi_class T, nir_intrinsic_instr *instr)
72 {
73 bi_instruction load = {
74 .type = T,
75 .writemask = bi_mask_for_channels_32(instr->num_components),
76 .src = { BIR_INDEX_CONSTANT },
77 .constant = { .u64 = nir_intrinsic_base(instr) },
78 };
79
80 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
81
82 if (info->has_dest)
83 load.dest = bir_dest_index(&instr->dest);
84
85 if (info->has_dest && info->index_map[NIR_INTRINSIC_TYPE] > 0)
86 load.dest_type = nir_intrinsic_type(instr);
87
88 nir_src *offset = nir_get_io_offset_src(instr);
89
90 if (nir_src_is_const(*offset))
91 load.constant.u64 += nir_src_as_uint(*offset);
92 else
93 load.src[0] = bir_src_index(offset);
94
95 return load;
96 }
97
98 static void
99 bi_emit_ld_vary(bi_context *ctx, nir_intrinsic_instr *instr)
100 {
101 bi_instruction ins = bi_load(BI_LOAD_VAR, instr);
102 ins.load_vary.interp_mode = BIFROST_INTERP_DEFAULT; /* TODO */
103 ins.load_vary.reuse = false; /* TODO */
104 ins.load_vary.flat = instr->intrinsic != nir_intrinsic_load_interpolated_input;
105 ins.dest_type = nir_type_float | nir_dest_bit_size(instr->dest),
106 bi_emit(ctx, ins);
107 }
108
109 static void
110 bi_emit_frag_out(bi_context *ctx, nir_intrinsic_instr *instr)
111 {
112 if (!ctx->emitted_atest) {
113 bi_instruction ins = {
114 .type = BI_ATEST
115 };
116
117 bi_emit(ctx, ins);
118 bi_schedule_barrier(ctx);
119 ctx->emitted_atest = true;
120 }
121
122 bi_instruction blend = {
123 .type = BI_BLEND,
124 .blend_location = nir_intrinsic_base(instr),
125 .src = {
126 bir_src_index(&instr->src[0])
127 },
128 .swizzle = {
129 { 0, 1, 2, 3 }
130 }
131 };
132
133 bi_emit(ctx, blend);
134 bi_schedule_barrier(ctx);
135 }
136
137 static void
138 bi_emit_st_vary(bi_context *ctx, nir_intrinsic_instr *instr)
139 {
140 bi_instruction address = bi_load(BI_LOAD_VAR_ADDRESS, instr);
141 address.dest = bi_make_temp(ctx);
142 address.dest_type = nir_type_uint64;
143 address.writemask = (1 << 8) - 1;
144
145 bi_instruction st = {
146 .type = BI_STORE_VAR,
147 .src = {
148 address.dest,
149 bir_src_index(&instr->src[0])
150 },
151 .swizzle = {
152 { 0, 1, 2, 3 }
153 }
154 };
155
156 bi_emit(ctx, address);
157 bi_emit(ctx, st);
158 }
159
160 static void
161 bi_emit_ld_uniform(bi_context *ctx, nir_intrinsic_instr *instr)
162 {
163 bi_instruction ld = bi_load(BI_LOAD_UNIFORM, instr);
164 ld.src[1] = BIR_INDEX_ZERO; /* TODO: UBO index */
165
166 /* TODO: Indirect access, since we need to multiply by the element
167 * size. I believe we can get this lowering automatically via
168 * nir_lower_io (as mul instructions) with the proper options, but this
169 * is TODO */
170 assert(ld.src[0] & BIR_INDEX_CONSTANT);
171 ld.constant.u64 += ctx->sysvals.sysval_count;
172 ld.constant.u64 *= 16;
173
174 bi_emit(ctx, ld);
175 }
176
177 static void
178 bi_emit_sysval(bi_context *ctx, nir_instr *instr,
179 unsigned nr_components, unsigned offset)
180 {
181 nir_dest nir_dest;
182
183 /* Figure out which uniform this is */
184 int sysval = panfrost_sysval_for_instr(instr, &nir_dest);
185 void *val = _mesa_hash_table_u64_search(ctx->sysvals.sysval_to_id, sysval);
186
187 /* Sysvals are prefix uniforms */
188 unsigned uniform = ((uintptr_t) val) - 1;
189
190 /* Emit the read itself -- this is never indirect */
191
192 bi_instruction load = {
193 .type = BI_LOAD_UNIFORM,
194 .writemask = (1 << (nr_components * 4)) - 1,
195 .src = { BIR_INDEX_CONSTANT},
196 .constant = { (uniform * 16) + offset },
197 .dest = bir_dest_index(&nir_dest),
198 .dest_type = nir_type_uint32, /* TODO */
199 };
200
201 bi_emit(ctx, load);
202 }
203
204 static void
205 emit_intrinsic(bi_context *ctx, nir_intrinsic_instr *instr)
206 {
207
208 switch (instr->intrinsic) {
209 case nir_intrinsic_load_barycentric_pixel:
210 /* stub */
211 break;
212 case nir_intrinsic_load_interpolated_input:
213 case nir_intrinsic_load_input:
214 if (ctx->stage == MESA_SHADER_FRAGMENT)
215 bi_emit_ld_vary(ctx, instr);
216 else if (ctx->stage == MESA_SHADER_VERTEX)
217 bi_emit(ctx, bi_load(BI_LOAD_ATTR, instr));
218 else {
219 unreachable("Unsupported shader stage");
220 }
221 break;
222
223 case nir_intrinsic_store_output:
224 if (ctx->stage == MESA_SHADER_FRAGMENT)
225 bi_emit_frag_out(ctx, instr);
226 else if (ctx->stage == MESA_SHADER_VERTEX)
227 bi_emit_st_vary(ctx, instr);
228 else
229 unreachable("Unsupported shader stage");
230 break;
231
232 case nir_intrinsic_load_uniform:
233 bi_emit_ld_uniform(ctx, instr);
234 break;
235
236 case nir_intrinsic_load_ssbo_address:
237 bi_emit_sysval(ctx, &instr->instr, 1, 0);
238 break;
239
240 case nir_intrinsic_get_buffer_size:
241 bi_emit_sysval(ctx, &instr->instr, 1, 8);
242 break;
243
244 case nir_intrinsic_load_viewport_scale:
245 case nir_intrinsic_load_viewport_offset:
246 case nir_intrinsic_load_num_work_groups:
247 case nir_intrinsic_load_sampler_lod_parameters_pan:
248 bi_emit_sysval(ctx, &instr->instr, 3, 0);
249 break;
250
251 default:
252 /* todo */
253 break;
254 }
255 }
256
257 static void
258 emit_load_const(bi_context *ctx, nir_load_const_instr *instr)
259 {
260 /* Make sure we've been lowered */
261 assert(instr->def.num_components == 1);
262
263 bi_instruction move = {
264 .type = BI_MOV,
265 .dest = bir_ssa_index(&instr->def),
266 .dest_type = instr->def.bit_size | nir_type_uint,
267 .writemask = (1 << (instr->def.bit_size / 8)) - 1,
268 .src = {
269 BIR_INDEX_CONSTANT
270 },
271 .constant = {
272 .u64 = nir_const_value_as_uint(instr->value[0], instr->def.bit_size)
273 }
274 };
275
276 bi_emit(ctx, move);
277 }
278
279 static enum bi_class
280 bi_class_for_nir_alu(nir_op op)
281 {
282 switch (op) {
283 case nir_op_iadd:
284 case nir_op_fadd:
285 case nir_op_fsub:
286 return BI_ADD;
287 case nir_op_isub:
288 return BI_ISUB;
289
290 case nir_op_flt:
291 case nir_op_fge:
292 case nir_op_feq:
293 case nir_op_fne:
294 case nir_op_ilt:
295 case nir_op_ige:
296 case nir_op_ieq:
297 case nir_op_ine:
298 return BI_CMP;
299
300 case nir_op_bcsel:
301 return BI_CSEL;
302
303 case nir_op_i2i8:
304 case nir_op_i2i16:
305 case nir_op_i2i32:
306 case nir_op_i2i64:
307 case nir_op_u2u8:
308 case nir_op_u2u16:
309 case nir_op_u2u32:
310 case nir_op_u2u64:
311 case nir_op_f2i16:
312 case nir_op_f2i32:
313 case nir_op_f2i64:
314 case nir_op_f2u16:
315 case nir_op_f2u32:
316 case nir_op_f2u64:
317 case nir_op_i2f16:
318 case nir_op_i2f32:
319 case nir_op_i2f64:
320 case nir_op_u2f16:
321 case nir_op_u2f32:
322 case nir_op_u2f64:
323 return BI_CONVERT;
324
325 case nir_op_ffma:
326 case nir_op_fmul:
327 return BI_FMA;
328
329 case nir_op_imin:
330 case nir_op_imax:
331 case nir_op_umin:
332 case nir_op_umax:
333 case nir_op_fmin:
334 case nir_op_fmax:
335 return BI_MINMAX;
336
337 case nir_op_fsat:
338 case nir_op_fneg:
339 case nir_op_fabs:
340 case nir_op_mov:
341 return BI_MOV;
342
343 case nir_op_frcp:
344 case nir_op_frsq:
345 case nir_op_fsin:
346 case nir_op_fcos:
347 return BI_SPECIAL;
348
349 default:
350 unreachable("Unknown ALU op");
351 }
352 }
353
354 static enum bi_cond
355 bi_cond_for_nir(nir_op op)
356 {
357 switch (op) {
358 case nir_op_flt:
359 case nir_op_ilt:
360 return BI_COND_LT;
361 case nir_op_fge:
362 case nir_op_ige:
363 return BI_COND_GE;
364 case nir_op_feq:
365 case nir_op_ieq:
366 return BI_COND_EQ;
367 case nir_op_fne:
368 case nir_op_ine:
369 return BI_COND_NE;
370 default:
371 unreachable("Invalid compare");
372 }
373 }
374
375 static void
376 emit_alu(bi_context *ctx, nir_alu_instr *instr)
377 {
378 /* Assume it's something we can handle normally */
379 bi_instruction alu = {
380 .type = bi_class_for_nir_alu(instr->op),
381 .dest = bir_dest_index(&instr->dest.dest),
382 .dest_type = nir_op_infos[instr->op].output_type
383 | nir_dest_bit_size(instr->dest.dest),
384 };
385
386 /* TODO: Implement lowering of special functions for older Bifrost */
387 assert((alu.type != BI_SPECIAL) || !(ctx->quirks & BIFROST_NO_FAST_OP));
388
389 if (instr->dest.dest.is_ssa) {
390 /* Construct a writemask */
391 unsigned bits_per_comp = instr->dest.dest.ssa.bit_size;
392 unsigned comps = instr->dest.dest.ssa.num_components;
393 assert(comps == 1);
394 unsigned bits = bits_per_comp * comps;
395 unsigned bytes = MAX2(bits / 8, 1);
396 alu.writemask = (1 << bytes) - 1;
397 } else {
398 unsigned comp_mask = instr->dest.write_mask;
399
400 alu.writemask = pan_to_bytemask(nir_dest_bit_size(instr->dest.dest),
401 comp_mask);
402 }
403
404 /* We inline constants as we go. This tracks how many constants have
405 * been inlined, since we're limited to 64-bits of constants per
406 * instruction */
407
408 unsigned dest_bits = nir_dest_bit_size(instr->dest.dest);
409 unsigned constants_left = (64 / dest_bits);
410 unsigned constant_shift = 0;
411
412 /* Copy sources */
413
414 unsigned num_inputs = nir_op_infos[instr->op].num_inputs;
415 assert(num_inputs <= ARRAY_SIZE(alu.src));
416
417 for (unsigned i = 0; i < num_inputs; ++i) {
418 unsigned bits = nir_src_bit_size(instr->src[i].src);
419 alu.src_types[i] = nir_op_infos[instr->op].input_types[i]
420 | bits;
421
422 /* Try to inline a constant */
423 if (nir_src_is_const(instr->src[i].src) && constants_left && (dest_bits == bits)) {
424 alu.constant.u64 |=
425 (nir_src_as_uint(instr->src[i].src)) << constant_shift;
426
427 alu.src[i] = BIR_INDEX_CONSTANT | constant_shift;
428 --constants_left;
429 constant_shift += dest_bits;
430 continue;
431 }
432
433 alu.src[i] = bir_src_index(&instr->src[i].src);
434
435 /* We assert scalarization above */
436 alu.swizzle[i][0] = instr->src[i].swizzle[0];
437 }
438
439 /* Op-specific fixup */
440 switch (instr->op) {
441 case nir_op_fmul:
442 alu.src[2] = BIR_INDEX_ZERO; /* FMA */
443 break;
444 case nir_op_fsat:
445 alu.outmod = BIFROST_SAT; /* MOV */
446 break;
447 case nir_op_fneg:
448 alu.src_neg[0] = true; /* MOV */
449 break;
450 case nir_op_fabs:
451 alu.src_abs[0] = true; /* MOV */
452 break;
453 case nir_op_fsub:
454 alu.src_neg[1] = true; /* ADD */
455 break;
456 case nir_op_fmax:
457 case nir_op_imax:
458 case nir_op_umax:
459 alu.op.minmax = BI_MINMAX_MAX; /* MINMAX */
460 break;
461 case nir_op_frcp:
462 alu.op.special = BI_SPECIAL_FRCP;
463 break;
464 case nir_op_frsq:
465 alu.op.special = BI_SPECIAL_FRSQ;
466 break;
467 case nir_op_fsin:
468 alu.op.special = BI_SPECIAL_FSIN;
469 break;
470 case nir_op_fcos:
471 alu.op.special = BI_SPECIAL_FCOS;
472 break;
473 case nir_op_flt:
474 case nir_op_ilt:
475 case nir_op_fge:
476 case nir_op_ige:
477 case nir_op_feq:
478 case nir_op_ieq:
479 case nir_op_fne:
480 case nir_op_ine:
481 alu.op.compare = bi_cond_for_nir(instr->op);
482 break;
483 default:
484 break;
485 }
486
487 bi_emit(ctx, alu);
488 }
489
490 static void
491 emit_instr(bi_context *ctx, struct nir_instr *instr)
492 {
493 switch (instr->type) {
494 case nir_instr_type_load_const:
495 emit_load_const(ctx, nir_instr_as_load_const(instr));
496 break;
497
498 case nir_instr_type_intrinsic:
499 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
500 break;
501
502 case nir_instr_type_alu:
503 emit_alu(ctx, nir_instr_as_alu(instr));
504 break;
505
506 #if 0
507 case nir_instr_type_tex:
508 emit_tex(ctx, nir_instr_as_tex(instr));
509 break;
510 #endif
511
512 case nir_instr_type_jump:
513 emit_jump(ctx, nir_instr_as_jump(instr));
514 break;
515
516 case nir_instr_type_ssa_undef:
517 /* Spurious */
518 break;
519
520 default:
521 //unreachable("Unhandled instruction type");
522 break;
523 }
524 }
525
526
527
528 static bi_block *
529 create_empty_block(bi_context *ctx)
530 {
531 bi_block *blk = rzalloc(ctx, bi_block);
532
533 blk->base.predecessors = _mesa_set_create(blk,
534 _mesa_hash_pointer,
535 _mesa_key_pointer_equal);
536
537 blk->base.name = ctx->block_name_count++;
538
539 return blk;
540 }
541
542 static void
543 bi_schedule_barrier(bi_context *ctx)
544 {
545 bi_block *temp = ctx->after_block;
546 ctx->after_block = create_empty_block(ctx);
547 list_addtail(&ctx->after_block->base.link, &ctx->blocks);
548 list_inithead(&ctx->after_block->base.instructions);
549 pan_block_add_successor(&ctx->current_block->base, &ctx->after_block->base);
550 ctx->current_block = ctx->after_block;
551 ctx->after_block = temp;
552 }
553
554 static bi_block *
555 emit_block(bi_context *ctx, nir_block *block)
556 {
557 if (ctx->after_block) {
558 ctx->current_block = ctx->after_block;
559 ctx->after_block = NULL;
560 } else {
561 ctx->current_block = create_empty_block(ctx);
562 }
563
564 list_addtail(&ctx->current_block->base.link, &ctx->blocks);
565 list_inithead(&ctx->current_block->base.instructions);
566
567 nir_foreach_instr(instr, block) {
568 emit_instr(ctx, instr);
569 ++ctx->instruction_count;
570 }
571
572 return ctx->current_block;
573 }
574
575 /* Emits an unconditional branch to the end of the current block, returning a
576 * pointer so the user can fill in details */
577
578 static bi_instruction *
579 bi_emit_branch(bi_context *ctx)
580 {
581 bi_instruction branch = {
582 .type = BI_BRANCH,
583 .branch = {
584 .cond = BI_COND_ALWAYS
585 }
586 };
587
588 return bi_emit(ctx, branch);
589 }
590
591 /* Sets a condition for a branch by examing the NIR condition. If we're
592 * familiar with the condition, we unwrap it to fold it into the branch
593 * instruction. Otherwise, we consume the condition directly. We
594 * generally use 1-bit booleans which allows us to use small types for
595 * the conditions.
596 */
597
598 static void
599 bi_set_branch_cond(bi_instruction *branch, nir_src *cond, bool invert)
600 {
601 /* TODO: Try to unwrap instead of always bailing */
602 branch->src[0] = bir_src_index(cond);
603 branch->src[1] = BIR_INDEX_ZERO;
604 branch->src_types[0] = branch->src_types[1] = nir_type_uint16;
605 branch->branch.cond = invert ? BI_COND_EQ : BI_COND_NE;
606 }
607
608 static void
609 emit_if(bi_context *ctx, nir_if *nif)
610 {
611 bi_block *before_block = ctx->current_block;
612
613 /* Speculatively emit the branch, but we can't fill it in until later */
614 bi_instruction *then_branch = bi_emit_branch(ctx);
615 bi_set_branch_cond(then_branch, &nif->condition, true);
616
617 /* Emit the two subblocks. */
618 bi_block *then_block = emit_cf_list(ctx, &nif->then_list);
619 bi_block *end_then_block = ctx->current_block;
620
621 /* Emit a jump from the end of the then block to the end of the else */
622 bi_instruction *then_exit = bi_emit_branch(ctx);
623
624 /* Emit second block, and check if it's empty */
625
626 int count_in = ctx->instruction_count;
627 bi_block *else_block = emit_cf_list(ctx, &nif->else_list);
628 bi_block *end_else_block = ctx->current_block;
629 ctx->after_block = create_empty_block(ctx);
630
631 /* Now that we have the subblocks emitted, fix up the branches */
632
633 assert(then_block);
634 assert(else_block);
635
636 if (ctx->instruction_count == count_in) {
637 /* The else block is empty, so don't emit an exit jump */
638 bi_remove_instruction(then_exit);
639 then_branch->branch.target = ctx->after_block;
640 } else {
641 then_branch->branch.target = else_block;
642 then_exit->branch.target = ctx->after_block;
643 pan_block_add_successor(&end_then_block->base, &then_exit->branch.target->base);
644 }
645
646 /* Wire up the successors */
647
648 pan_block_add_successor(&before_block->base, &then_branch->branch.target->base); /* then_branch */
649
650 pan_block_add_successor(&before_block->base, &then_block->base); /* fallthrough */
651 pan_block_add_successor(&end_else_block->base, &ctx->after_block->base); /* fallthrough */
652 }
653
654 static void
655 emit_loop(bi_context *ctx, nir_loop *nloop)
656 {
657 /* Remember where we are */
658 bi_block *start_block = ctx->current_block;
659
660 bi_block *saved_break = ctx->break_block;
661 bi_block *saved_continue = ctx->continue_block;
662
663 ctx->continue_block = create_empty_block(ctx);
664 ctx->break_block = create_empty_block(ctx);
665 ctx->after_block = ctx->continue_block;
666
667 /* Emit the body itself */
668 emit_cf_list(ctx, &nloop->body);
669
670 /* Branch back to loop back */
671 bi_instruction *br_back = bi_emit_branch(ctx);
672 br_back->branch.target = ctx->continue_block;
673 pan_block_add_successor(&start_block->base, &ctx->continue_block->base);
674 pan_block_add_successor(&ctx->current_block->base, &ctx->continue_block->base);
675
676 ctx->after_block = ctx->break_block;
677
678 /* Pop off */
679 ctx->break_block = saved_break;
680 ctx->continue_block = saved_continue;
681 ++ctx->loop_count;
682 }
683
684 static bi_block *
685 emit_cf_list(bi_context *ctx, struct exec_list *list)
686 {
687 bi_block *start_block = NULL;
688
689 foreach_list_typed(nir_cf_node, node, node, list) {
690 switch (node->type) {
691 case nir_cf_node_block: {
692 bi_block *block = emit_block(ctx, nir_cf_node_as_block(node));
693
694 if (!start_block)
695 start_block = block;
696
697 break;
698 }
699
700 case nir_cf_node_if:
701 emit_if(ctx, nir_cf_node_as_if(node));
702 break;
703
704 case nir_cf_node_loop:
705 emit_loop(ctx, nir_cf_node_as_loop(node));
706 break;
707
708 default:
709 unreachable("Unknown control flow");
710 }
711 }
712
713 return start_block;
714 }
715
716 static int
717 glsl_type_size(const struct glsl_type *type, bool bindless)
718 {
719 return glsl_count_attribute_slots(type, false);
720 }
721
722 static void
723 bi_optimize_nir(nir_shader *nir)
724 {
725 bool progress;
726 unsigned lower_flrp = 16 | 32 | 64;
727
728 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
729 NIR_PASS(progress, nir, nir_lower_idiv, nir_lower_idiv_fast);
730
731 nir_lower_tex_options lower_tex_options = {
732 .lower_txs_lod = true,
733 .lower_txp = ~0,
734 .lower_tex_without_implicit_lod = true,
735 .lower_txd = true,
736 };
737
738 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
739 NIR_PASS(progress, nir, nir_lower_alu_to_scalar, NULL, NULL);
740 NIR_PASS(progress, nir, nir_lower_load_const_to_scalar);
741
742 do {
743 progress = false;
744
745 NIR_PASS(progress, nir, nir_lower_var_copies);
746 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
747
748 NIR_PASS(progress, nir, nir_copy_prop);
749 NIR_PASS(progress, nir, nir_opt_remove_phis);
750 NIR_PASS(progress, nir, nir_opt_dce);
751 NIR_PASS(progress, nir, nir_opt_dead_cf);
752 NIR_PASS(progress, nir, nir_opt_cse);
753 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
754 NIR_PASS(progress, nir, nir_opt_algebraic);
755 NIR_PASS(progress, nir, nir_opt_constant_folding);
756
757 if (lower_flrp != 0) {
758 bool lower_flrp_progress = false;
759 NIR_PASS(lower_flrp_progress,
760 nir,
761 nir_lower_flrp,
762 lower_flrp,
763 false /* always_precise */,
764 nir->options->lower_ffma);
765 if (lower_flrp_progress) {
766 NIR_PASS(progress, nir,
767 nir_opt_constant_folding);
768 progress = true;
769 }
770
771 /* Nothing should rematerialize any flrps, so we only
772 * need to do this lowering once.
773 */
774 lower_flrp = 0;
775 }
776
777 NIR_PASS(progress, nir, nir_opt_undef);
778 NIR_PASS(progress, nir, nir_opt_loop_unroll,
779 nir_var_shader_in |
780 nir_var_shader_out |
781 nir_var_function_temp);
782 } while (progress);
783
784 NIR_PASS(progress, nir, nir_opt_algebraic_late);
785 NIR_PASS(progress, nir, bifrost_nir_lower_algebraic_late);
786 NIR_PASS(progress, nir, nir_lower_alu_to_scalar, NULL, NULL);
787 NIR_PASS(progress, nir, nir_lower_load_const_to_scalar);
788
789 /* Take us out of SSA */
790 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
791 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
792
793 /* We're a primary scalar architecture but there's enough vector that
794 * we use a vector IR so let's not also deal with scalar hacks on top
795 * of the vector hacks */
796
797 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
798 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
799 NIR_PASS(progress, nir, nir_opt_dce);
800 }
801
802 void
803 bifrost_compile_shader_nir(nir_shader *nir, panfrost_program *program, unsigned product_id)
804 {
805 bi_context *ctx = rzalloc(NULL, bi_context);
806 ctx->nir = nir;
807 ctx->stage = nir->info.stage;
808 ctx->quirks = bifrost_get_quirks(product_id);
809 list_inithead(&ctx->blocks);
810
811 /* Lower gl_Position pre-optimisation, but after lowering vars to ssa
812 * (so we don't accidentally duplicate the epilogue since mesa/st has
813 * messed with our I/O quite a bit already) */
814
815 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
816
817 if (ctx->stage == MESA_SHADER_VERTEX) {
818 NIR_PASS_V(nir, nir_lower_viewport_transform);
819 NIR_PASS_V(nir, nir_lower_point_size, 1.0, 1024.0);
820 }
821
822 NIR_PASS_V(nir, nir_split_var_copies);
823 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
824 NIR_PASS_V(nir, nir_lower_var_copies);
825 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
826 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
827 NIR_PASS_V(nir, nir_lower_ssbo);
828
829 bi_optimize_nir(nir);
830 nir_print_shader(nir, stdout);
831
832 panfrost_nir_assign_sysvals(&ctx->sysvals, nir);
833 program->sysval_count = ctx->sysvals.sysval_count;
834 memcpy(program->sysvals, ctx->sysvals.sysvals, sizeof(ctx->sysvals.sysvals[0]) * ctx->sysvals.sysval_count);
835
836 nir_foreach_function(func, nir) {
837 if (!func->impl)
838 continue;
839
840 ctx->impl = func->impl;
841 emit_cf_list(ctx, &func->impl->body);
842 break; /* TODO: Multi-function shaders */
843 }
844
845 bool progress = false;
846
847 do {
848 progress = false;
849
850 bi_foreach_block(ctx, _block) {
851 bi_block *block = (bi_block *) _block;
852 progress |= bi_opt_dead_code_eliminate(ctx, block);
853 }
854 } while(progress);
855
856 bi_print_shader(ctx, stdout);
857 bi_schedule(ctx);
858
859 ralloc_free(ctx);
860 }