pan/bi: Rename BI_ISUB to BI_IMATH
[mesa.git] / src / panfrost / bifrost / compiler.h
1 /*
2 * Copyright (C) 2020 Collabora Ltd.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors (Collabora):
24 * Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
25 */
26
27 #ifndef __BIFROST_COMPILER_H
28 #define __BIFROST_COMPILER_H
29
30 #include "bifrost.h"
31 #include "compiler/nir/nir.h"
32 #include "panfrost/util/pan_ir.h"
33
34 /* Bifrost opcodes are tricky -- the same op may exist on both FMA and
35 * ADD with two completely different opcodes, and opcodes can be varying
36 * length in some cases. Then we have different opcodes for int vs float
37 * and then sometimes even for different typesizes. Further, virtually
38 * every op has a number of flags which depend on the op. In constrast
39 * to Midgard where you have a strict ALU/LDST/TEX division and within
40 * ALU you have strict int/float and that's it... here it's a *lot* more
41 * involved. As such, we use something much higher level for our IR,
42 * encoding "classes" of operations, letting the opcode details get
43 * sorted out at emit time.
44 *
45 * Please keep this list alphabetized. Please use a dictionary if you
46 * don't know how to do that.
47 */
48
49 enum bi_class {
50 BI_ADD,
51 BI_ATEST,
52 BI_BRANCH,
53 BI_CMP,
54 BI_BLEND,
55 BI_BITWISE,
56 BI_COMBINE,
57 BI_CONVERT,
58 BI_CSEL,
59 BI_DISCARD,
60 BI_FMA,
61 BI_FMOV,
62 BI_FREXP,
63 BI_IMATH,
64 BI_LOAD,
65 BI_LOAD_UNIFORM,
66 BI_LOAD_ATTR,
67 BI_LOAD_VAR,
68 BI_LOAD_VAR_ADDRESS,
69 BI_MINMAX,
70 BI_MOV,
71 BI_REDUCE_FMA,
72 BI_SELECT,
73 BI_SHIFT,
74 BI_STORE,
75 BI_STORE_VAR,
76 BI_SPECIAL, /* _FAST on supported GPUs */
77 BI_TABLE,
78 BI_TEX,
79 BI_ROUND,
80 BI_NUM_CLASSES
81 };
82
83 /* Properties of a class... */
84 extern unsigned bi_class_props[BI_NUM_CLASSES];
85
86 /* abs/neg/outmod valid for a float op */
87 #define BI_MODS (1 << 0)
88
89 /* Accepts a bi_cond */
90 #define BI_CONDITIONAL (1 << 1)
91
92 /* Accepts a bifrost_roundmode */
93 #define BI_ROUNDMODE (1 << 2)
94
95 /* Can be scheduled to FMA */
96 #define BI_SCHED_FMA (1 << 3)
97
98 /* Can be scheduled to ADD */
99 #define BI_SCHED_ADD (1 << 4)
100
101 /* Most ALU ops can do either, actually */
102 #define BI_SCHED_ALL (BI_SCHED_FMA | BI_SCHED_ADD)
103
104 /* Along with setting BI_SCHED_ADD, eats up the entire cycle, so FMA must be
105 * nopped out. Used for _FAST operations. */
106 #define BI_SCHED_SLOW (1 << 5)
107
108 /* Swizzling allowed for the 8/16-bit source */
109 #define BI_SWIZZLABLE (1 << 6)
110
111 /* For scheduling purposes this is a high latency instruction and must be at
112 * the end of a clause. Implies ADD */
113 #define BI_SCHED_HI_LATENCY (1 << 7)
114
115 /* Intrinsic is vectorized and acts with `vector_channels` components */
116 #define BI_VECTOR (1 << 8)
117
118 /* Use a data register for src0/dest respectively, bypassing the usual
119 * register accessor. Mutually exclusive. */
120 #define BI_DATA_REG_SRC (1 << 9)
121 #define BI_DATA_REG_DEST (1 << 10)
122
123 /* Quirk: cannot encode multiple abs on FMA in fp16 mode */
124 #define BI_NO_ABS_ABS_FP16_FMA (1 << 11)
125
126 /* It can't get any worse than csel4... can it? */
127 #define BIR_SRC_COUNT 4
128
129 /* BI_LD_VARY */
130 struct bi_load_vary {
131 enum bifrost_interp_mode interp_mode;
132 bool reuse;
133 bool flat;
134 };
135
136 /* BI_BRANCH encoding the details of the branch itself as well as a pointer to
137 * the target. We forward declare bi_block since this is mildly circular (not
138 * strictly, but this order of the file makes more sense I think)
139 *
140 * We define our own enum of conditions since the conditions in the hardware
141 * packed in crazy ways that would make manipulation unweildly (meaning changes
142 * based on port swapping, etc), so we defer dealing with that until emit time.
143 * Likewise, we expose NIR types instead of the crazy branch types, although
144 * the restrictions do eventually apply of course. */
145
146 struct bi_block;
147
148 enum bi_cond {
149 BI_COND_ALWAYS,
150 BI_COND_LT,
151 BI_COND_LE,
152 BI_COND_GE,
153 BI_COND_GT,
154 BI_COND_EQ,
155 BI_COND_NE,
156 };
157
158 /* Opcodes within a class */
159 enum bi_minmax_op {
160 BI_MINMAX_MIN,
161 BI_MINMAX_MAX
162 };
163
164 enum bi_bitwise_op {
165 BI_BITWISE_AND,
166 BI_BITWISE_OR,
167 BI_BITWISE_XOR
168 };
169
170 enum bi_table_op {
171 /* fp32 log2() with low precision, suitable for GL or half_log2() in
172 * CL. In the first argument, takes x. Letting u be such that x =
173 * 2^{-m} u with m integer and 0.75 <= u < 1.5, returns
174 * log2(u) / (u - 1). */
175
176 BI_TABLE_LOG2_U_OVER_U_1_LOW,
177 };
178
179 enum bi_reduce_op {
180 /* Takes two fp32 arguments and returns x + frexp(y). Used in
181 * low-precision log2 argument reduction on newer models. */
182
183 BI_REDUCE_ADD_FREXPM,
184 };
185
186 enum bi_frexp_op {
187 BI_FREXPE_LOG,
188 };
189
190 enum bi_special_op {
191 BI_SPECIAL_FRCP,
192 BI_SPECIAL_FRSQ,
193
194 /* fp32 exp2() with low precision, suitable for half_exp2() in CL or
195 * exp2() in GL. In the first argument, it takes f2i_rte(x * 2^24). In
196 * the second, it takes x itself. */
197 BI_SPECIAL_EXP2_LOW,
198 };
199
200 enum bi_tex_op {
201 BI_TEX_NORMAL,
202 BI_TEX_COMPACT,
203 BI_TEX_DUAL
204 };
205
206 struct bi_bitwise {
207 bool src_invert[2];
208 bool rshift; /* false for lshift */
209 };
210
211 struct bi_texture {
212 /* Constant indices. Indirect would need to be in src[..] like normal,
213 * we can reserve some sentinels there for that for future. */
214 unsigned texture_index, sampler_index;
215 };
216
217 typedef struct {
218 struct list_head link; /* Must be first */
219 enum bi_class type;
220
221 /* Indices, see pan_ssa_index etc. Note zero is special cased
222 * to "no argument" */
223 unsigned dest;
224 unsigned src[BIR_SRC_COUNT];
225
226 /* 32-bit word offset for destination, added to the register number in
227 * RA when lowering combines */
228 unsigned dest_offset;
229
230 /* If one of the sources has BIR_INDEX_CONSTANT */
231 union {
232 uint64_t u64;
233 uint32_t u32;
234 uint16_t u16[2];
235 uint8_t u8[4];
236 } constant;
237
238 /* Floating-point modifiers, type/class permitting. If not
239 * allowed for the type/class, these are ignored. */
240 enum bifrost_outmod outmod;
241 bool src_abs[BIR_SRC_COUNT];
242 bool src_neg[BIR_SRC_COUNT];
243
244 /* Round mode (requires BI_ROUNDMODE) */
245 enum bifrost_roundmode roundmode;
246
247 /* Destination type. Usually the type of the instruction
248 * itself, but if sources and destination have different
249 * types, the type of the destination wins (so f2i would be
250 * int). Zero if there is no destination. Bitsize included */
251 nir_alu_type dest_type;
252
253 /* Source types if required by the class */
254 nir_alu_type src_types[BIR_SRC_COUNT];
255
256 /* If the source type is 8-bit or 16-bit such that SIMD is possible,
257 * and the class has BI_SWIZZLABLE, this is a swizzle in the usual
258 * sense. On non-SIMD instructions, it can be used for component
259 * selection, so we don't have to special case extraction. */
260 uint8_t swizzle[BIR_SRC_COUNT][NIR_MAX_VEC_COMPONENTS];
261
262 /* For VECTOR ops, how many channels are written? */
263 unsigned vector_channels;
264
265 /* The comparison op. BI_COND_ALWAYS may not be valid. */
266 enum bi_cond cond;
267
268 /* A class-specific op from which the actual opcode can be derived
269 * (along with the above information) */
270
271 union {
272 enum bi_minmax_op minmax;
273 enum bi_bitwise_op bitwise;
274 enum bi_special_op special;
275 enum bi_reduce_op reduce;
276 enum bi_table_op table;
277 enum bi_frexp_op frexp;
278 enum bi_tex_op texture;
279
280 /* For FMA/ADD, should we add a biased exponent? */
281 bool mscale;
282 } op;
283
284 /* Union for class-specific information */
285 union {
286 enum bifrost_minmax_mode minmax;
287 struct bi_load_vary load_vary;
288 struct bi_block *branch_target;
289
290 /* For BLEND -- the location 0-7 */
291 unsigned blend_location;
292
293 struct bi_bitwise bitwise;
294 struct bi_texture texture;
295 };
296 } bi_instruction;
297
298 /* Scheduling takes place in two steps. Step 1 groups instructions within a
299 * block into distinct clauses (bi_clause). Step 2 schedules instructions
300 * within a clause into FMA/ADD pairs (bi_bundle).
301 *
302 * A bi_bundle contains two paired instruction pointers. If a slot is unfilled,
303 * leave it NULL; the emitter will fill in a nop.
304 */
305
306 typedef struct {
307 bi_instruction *fma;
308 bi_instruction *add;
309 } bi_bundle;
310
311 typedef struct {
312 struct list_head link;
313
314 /* A clause can have 8 instructions in bundled FMA/ADD sense, so there
315 * can be 8 bundles. But each bundle can have both an FMA and an ADD,
316 * so a clause can have up to 16 bi_instructions. Whether bundles or
317 * instructions are used depends on where in scheduling we are. */
318
319 unsigned instruction_count;
320 unsigned bundle_count;
321
322 union {
323 bi_instruction *instructions[16];
324 bi_bundle bundles[8];
325 };
326
327 /* For scoreboarding -- the clause ID (this is not globally unique!)
328 * and its dependencies in terms of other clauses, computed during
329 * scheduling and used when emitting code. Dependencies expressed as a
330 * bitfield matching the hardware, except shifted by a clause (the
331 * shift back to the ISA's off-by-one encoding is worked out when
332 * emitting clauses) */
333 unsigned scoreboard_id;
334 uint8_t dependencies;
335
336 /* Back-to-back corresponds directly to the back-to-back bit. Branch
337 * conditional corresponds to the branch conditional bit except that in
338 * the emitted code it's always set if back-to-bit is, whereas we use
339 * the actual value (without back-to-back so to speak) internally */
340 bool back_to_back;
341 bool branch_conditional;
342
343 /* Assigned data register */
344 unsigned data_register;
345
346 /* Corresponds to the usual bit but shifted by a clause */
347 bool data_register_write_barrier;
348
349 /* Constants read by this clause. ISA limit. */
350 uint64_t constants[8];
351 unsigned constant_count;
352
353 /* What type of high latency instruction is here, basically */
354 unsigned clause_type;
355 } bi_clause;
356
357 typedef struct bi_block {
358 pan_block base; /* must be first */
359
360 /* If true, uses clauses; if false, uses instructions */
361 bool scheduled;
362 struct list_head clauses; /* list of bi_clause */
363 } bi_block;
364
365 typedef struct {
366 nir_shader *nir;
367 gl_shader_stage stage;
368 struct list_head blocks; /* list of bi_block */
369 struct panfrost_sysvals sysvals;
370 uint32_t quirks;
371
372 /* During NIR->BIR */
373 nir_function_impl *impl;
374 bi_block *current_block;
375 unsigned block_name_count;
376 bi_block *after_block;
377 bi_block *break_block;
378 bi_block *continue_block;
379 bool emitted_atest;
380 nir_alu_type *blend_types;
381
382 /* For creating temporaries */
383 unsigned temp_alloc;
384
385 /* Analysis results */
386 bool has_liveness;
387
388 /* Stats for shader-db */
389 unsigned instruction_count;
390 unsigned loop_count;
391 } bi_context;
392
393 static inline bi_instruction *
394 bi_emit(bi_context *ctx, bi_instruction ins)
395 {
396 bi_instruction *u = rzalloc(ctx, bi_instruction);
397 memcpy(u, &ins, sizeof(ins));
398 list_addtail(&u->link, &ctx->current_block->base.instructions);
399 return u;
400 }
401
402 static inline bi_instruction *
403 bi_emit_before(bi_context *ctx, bi_instruction *tag, bi_instruction ins)
404 {
405 bi_instruction *u = rzalloc(ctx, bi_instruction);
406 memcpy(u, &ins, sizeof(ins));
407 list_addtail(&u->link, &tag->link);
408 return u;
409 }
410
411 static inline void
412 bi_remove_instruction(bi_instruction *ins)
413 {
414 list_del(&ins->link);
415 }
416
417 /* If high bits are set, instead of SSA/registers, we have specials indexed by
418 * the low bits if necessary.
419 *
420 * Fixed register: do not allocate register, do not collect $200.
421 * Uniform: access a uniform register given by low bits.
422 * Constant: access the specified constant (specifies a bit offset / shift)
423 * Zero: special cased to avoid wasting a constant
424 * Passthrough: a bifrost_packed_src to passthrough T/T0/T1
425 */
426
427 #define BIR_INDEX_REGISTER (1 << 31)
428 #define BIR_INDEX_UNIFORM (1 << 30)
429 #define BIR_INDEX_CONSTANT (1 << 29)
430 #define BIR_INDEX_ZERO (1 << 28)
431 #define BIR_INDEX_PASS (1 << 27)
432
433 /* Keep me synced please so we can check src & BIR_SPECIAL */
434
435 #define BIR_SPECIAL ((BIR_INDEX_REGISTER | BIR_INDEX_UNIFORM) | \
436 (BIR_INDEX_CONSTANT | BIR_INDEX_ZERO | BIR_INDEX_PASS))
437
438 static inline unsigned
439 bi_max_temp(bi_context *ctx)
440 {
441 unsigned alloc = MAX2(ctx->impl->reg_alloc, ctx->impl->ssa_alloc);
442 return ((alloc + 2 + ctx->temp_alloc) << 1);
443 }
444
445 static inline unsigned
446 bi_make_temp(bi_context *ctx)
447 {
448 return (ctx->impl->ssa_alloc + 1 + ctx->temp_alloc++) << 1;
449 }
450
451 static inline unsigned
452 bi_make_temp_reg(bi_context *ctx)
453 {
454 return ((ctx->impl->reg_alloc + ctx->temp_alloc++) << 1) | PAN_IS_REG;
455 }
456
457 /* Iterators for Bifrost IR */
458
459 #define bi_foreach_block(ctx, v) \
460 list_for_each_entry(pan_block, v, &ctx->blocks, link)
461
462 #define bi_foreach_block_from(ctx, from, v) \
463 list_for_each_entry_from(pan_block, v, from, &ctx->blocks, link)
464
465 #define bi_foreach_instr_in_block(block, v) \
466 list_for_each_entry(bi_instruction, v, &(block)->base.instructions, link)
467
468 #define bi_foreach_instr_in_block_rev(block, v) \
469 list_for_each_entry_rev(bi_instruction, v, &(block)->base.instructions, link)
470
471 #define bi_foreach_instr_in_block_safe(block, v) \
472 list_for_each_entry_safe(bi_instruction, v, &(block)->base.instructions, link)
473
474 #define bi_foreach_instr_in_block_safe_rev(block, v) \
475 list_for_each_entry_safe_rev(bi_instruction, v, &(block)->base.instructions, link)
476
477 #define bi_foreach_instr_in_block_from(block, v, from) \
478 list_for_each_entry_from(bi_instruction, v, from, &(block)->base.instructions, link)
479
480 #define bi_foreach_instr_in_block_from_rev(block, v, from) \
481 list_for_each_entry_from_rev(bi_instruction, v, from, &(block)->base.instructions, link)
482
483 #define bi_foreach_clause_in_block(block, v) \
484 list_for_each_entry(bi_clause, v, &(block)->clauses, link)
485
486 #define bi_foreach_instr_global(ctx, v) \
487 bi_foreach_block(ctx, v_block) \
488 bi_foreach_instr_in_block((bi_block *) v_block, v)
489
490 #define bi_foreach_instr_global_safe(ctx, v) \
491 bi_foreach_block(ctx, v_block) \
492 bi_foreach_instr_in_block_safe((bi_block *) v_block, v)
493
494 /* Based on set_foreach, expanded with automatic type casts */
495
496 #define bi_foreach_predecessor(blk, v) \
497 struct set_entry *_entry_##v; \
498 bi_block *v; \
499 for (_entry_##v = _mesa_set_next_entry(blk->base.predecessors, NULL), \
500 v = (bi_block *) (_entry_##v ? _entry_##v->key : NULL); \
501 _entry_##v != NULL; \
502 _entry_##v = _mesa_set_next_entry(blk->base.predecessors, _entry_##v), \
503 v = (bi_block *) (_entry_##v ? _entry_##v->key : NULL))
504
505 #define bi_foreach_src(ins, v) \
506 for (unsigned v = 0; v < ARRAY_SIZE(ins->src); ++v)
507
508 static inline bi_instruction *
509 bi_prev_op(bi_instruction *ins)
510 {
511 return list_last_entry(&(ins->link), bi_instruction, link);
512 }
513
514 static inline bi_instruction *
515 bi_next_op(bi_instruction *ins)
516 {
517 return list_first_entry(&(ins->link), bi_instruction, link);
518 }
519
520 static inline pan_block *
521 pan_next_block(pan_block *block)
522 {
523 return list_first_entry(&(block->link), pan_block, link);
524 }
525
526 /* Special functions */
527
528 void bi_emit_fexp2(bi_context *ctx, nir_alu_instr *instr);
529 void bi_emit_flog2(bi_context *ctx, nir_alu_instr *instr);
530
531 /* BIR manipulation */
532
533 bool bi_has_outmod(bi_instruction *ins);
534 bool bi_has_source_mods(bi_instruction *ins);
535 bool bi_is_src_swizzled(bi_instruction *ins, unsigned s);
536 bool bi_has_arg(bi_instruction *ins, unsigned arg);
537 uint16_t bi_from_bytemask(uint16_t bytemask, unsigned bytes);
538 unsigned bi_get_component_count(bi_instruction *ins, signed s);
539 uint16_t bi_bytemask_of_read_components(bi_instruction *ins, unsigned node);
540 uint64_t bi_get_immediate(bi_instruction *ins, unsigned index);
541 bool bi_writes_component(bi_instruction *ins, unsigned comp);
542 unsigned bi_writemask(bi_instruction *ins);
543
544 /* BIR passes */
545
546 void bi_lower_combine(bi_context *ctx, bi_block *block);
547 bool bi_opt_dead_code_eliminate(bi_context *ctx, bi_block *block);
548 void bi_schedule(bi_context *ctx);
549 void bi_register_allocate(bi_context *ctx);
550
551 /* Liveness */
552
553 void bi_compute_liveness(bi_context *ctx);
554 void bi_liveness_ins_update(uint16_t *live, bi_instruction *ins, unsigned max);
555 void bi_invalidate_liveness(bi_context *ctx);
556 bool bi_is_live_after(bi_context *ctx, bi_block *block, bi_instruction *start, int src);
557
558 /* Code emit */
559
560 void bi_pack(bi_context *ctx, struct util_dynarray *emission);
561
562 #endif