pan/bi: Implement sysvals
[mesa.git] / src / panfrost / bifrost / compiler.h
1 /*
2 * Copyright (C) 2020 Collabora Ltd.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors (Collabora):
24 * Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
25 */
26
27 #ifndef __BIFROST_COMPILER_H
28 #define __BIFROST_COMPILER_H
29
30 #include "bifrost.h"
31 #include "compiler/nir/nir.h"
32 #include "panfrost/util/pan_ir.h"
33
34 /* Bifrost opcodes are tricky -- the same op may exist on both FMA and
35 * ADD with two completely different opcodes, and opcodes can be varying
36 * length in some cases. Then we have different opcodes for int vs float
37 * and then sometimes even for different typesizes. Further, virtually
38 * every op has a number of flags which depend on the op. In constrast
39 * to Midgard where you have a strict ALU/LDST/TEX division and within
40 * ALU you have strict int/float and that's it... here it's a *lot* more
41 * involved. As such, we use something much higher level for our IR,
42 * encoding "classes" of operations, letting the opcode details get
43 * sorted out at emit time.
44 *
45 * Please keep this list alphabetized. Please use a dictionary if you
46 * don't know how to do that.
47 */
48
49 enum bi_class {
50 BI_ADD,
51 BI_ATEST,
52 BI_BRANCH,
53 BI_CMP,
54 BI_BLEND,
55 BI_BITWISE,
56 BI_CONVERT,
57 BI_CSEL,
58 BI_DISCARD,
59 BI_FMA,
60 BI_FREXP,
61 BI_ISUB,
62 BI_LOAD,
63 BI_LOAD_UNIFORM,
64 BI_LOAD_ATTR,
65 BI_LOAD_VAR,
66 BI_LOAD_VAR_ADDRESS,
67 BI_MINMAX,
68 BI_MOV,
69 BI_SHIFT,
70 BI_STORE,
71 BI_STORE_VAR,
72 BI_SPECIAL, /* _FAST, _TABLE on supported GPUs */
73 BI_SWIZZLE,
74 BI_TEX,
75 BI_ROUND,
76 BI_NUM_CLASSES
77 };
78
79 /* Properties of a class... */
80 extern unsigned bi_class_props[BI_NUM_CLASSES];
81
82 /* abs/neg/outmod valid for a float op */
83 #define BI_MODS (1 << 0)
84
85 /* Generic enough that little class-specific information is required. In other
86 * words, it acts as a "normal" ALU op, even if the encoding ends up being
87 * irregular enough to warrant a separate class */
88 #define BI_GENERIC (1 << 1)
89
90 /* Accepts a bifrost_roundmode */
91 #define BI_ROUNDMODE (1 << 2)
92
93 /* Can be scheduled to FMA */
94 #define BI_SCHED_FMA (1 << 3)
95
96 /* Can be scheduled to ADD */
97 #define BI_SCHED_ADD (1 << 4)
98
99 /* Most ALU ops can do either, actually */
100 #define BI_SCHED_ALL (BI_SCHED_FMA | BI_SCHED_ADD)
101
102 /* Along with setting BI_SCHED_ADD, eats up the entire cycle, so FMA must be
103 * nopped out. Used for _FAST operations. */
104 #define BI_SCHED_SLOW (1 << 5)
105
106 /* Swizzling allowed for the 8/16-bit source */
107 #define BI_SWIZZLABLE (1 << 6)
108
109 /* For scheduling purposes this is a high latency instruction and must be at
110 * the end of a clause. Implies ADD */
111 #define BI_SCHED_HI_LATENCY ((1 << 7) | BI_SCHED_ADD)
112
113 /* It can't get any worse than csel4... can it? */
114 #define BIR_SRC_COUNT 4
115
116 /* BI_LD_VARY */
117 struct bi_load_vary {
118 enum bifrost_interp_mode interp_mode;
119 bool reuse;
120 bool flat;
121 };
122
123 /* BI_BRANCH encoding the details of the branch itself as well as a pointer to
124 * the target. We forward declare bi_block since this is mildly circular (not
125 * strictly, but this order of the file makes more sense I think)
126 *
127 * We define our own enum of conditions since the conditions in the hardware
128 * packed in crazy ways that would make manipulation unweildly (meaning changes
129 * based on port swapping, etc), so we defer dealing with that until emit time.
130 * Likewise, we expose NIR types instead of the crazy branch types, although
131 * the restrictions do eventually apply of course. */
132
133 struct bi_block;
134
135 enum bi_cond {
136 BI_COND_ALWAYS,
137 BI_COND_LT,
138 BI_COND_LE,
139 BI_COND_GE,
140 BI_COND_GT,
141 BI_COND_EQ,
142 BI_COND_NE,
143 };
144
145 struct bi_branch {
146 /* Types are specified in src_types and must be compatible (either both
147 * int, or both float, 16/32, and same size or 32/16 if float. Types
148 * ignored if BI_COND_ALWAYS is set for an unconditional branch. */
149
150 enum bi_cond cond;
151 struct bi_block *target;
152 };
153
154 /* Opcodes within a class */
155 enum bi_minmax_op {
156 BI_MINMAX_MIN,
157 BI_MINMAX_MAX
158 };
159
160 enum bi_bitwise_op {
161 BI_BITWISE_AND,
162 BI_BITWISE_OR,
163 BI_BITWISE_XOR
164 };
165
166 enum bi_round_op {
167 BI_ROUND_MODE, /* use round mode */
168 BI_ROUND_ROUND /* i.e.: fround() */
169 };
170
171 enum bi_special_op {
172 BI_SPECIAL_FRCP,
173 BI_SPECIAL_FRSQ,
174 BI_SPECIAL_FATAN,
175 BI_SPECIAL_FSIN,
176 BI_SPECIAL_FCOS,
177 BI_SPECIAL_FEXP,
178 BI_SPECIAL_FLOG2,
179 BI_SPECIAL_FLOGE
180 };
181
182 typedef struct {
183 struct list_head link; /* Must be first */
184 enum bi_class type;
185
186 /* Indices, see bir_ssa_index etc. Note zero is special cased
187 * to "no argument" */
188 unsigned dest;
189 unsigned src[BIR_SRC_COUNT];
190
191 /* If one of the sources has BIR_INDEX_CONSTANT */
192 union {
193 uint64_t u64;
194 uint32_t u32;
195 uint16_t u16[2];
196 uint8_t u8[4];
197 } constant;
198
199 /* Floating-point modifiers, type/class permitting. If not
200 * allowed for the type/class, these are ignored. */
201 enum bifrost_outmod outmod;
202 bool src_abs[BIR_SRC_COUNT];
203 bool src_neg[BIR_SRC_COUNT];
204
205 /* Round mode (requires BI_ROUNDMODE) */
206 enum bifrost_roundmode roundmode;
207
208 /* Writemask (bit for each affected byte). This is quite restricted --
209 * ALU ops can only write to a single channel (exception: <32 in which
210 * you can write to 32/N contiguous aligned channels). Load/store can
211 * only write to all channels at once, in a sense. But it's still
212 * better to use this generic form than have synthetic ops flying
213 * about, since we're not essentially vector for RA purposes. */
214 uint16_t writemask;
215
216 /* Destination type. Usually the type of the instruction
217 * itself, but if sources and destination have different
218 * types, the type of the destination wins (so f2i would be
219 * int). Zero if there is no destination. Bitsize included */
220 nir_alu_type dest_type;
221
222 /* Source types if required by the class */
223 nir_alu_type src_types[BIR_SRC_COUNT];
224
225 /* If the source type is 8-bit or 16-bit such that SIMD is possible,
226 * and the class has BI_SWIZZLABLE, this is a swizzle in the usual
227 * sense. On non-SIMD instructions, it can be used for component
228 * selection, so we don't have to special case extraction. */
229 uint8_t swizzle[BIR_SRC_COUNT][NIR_MAX_VEC_COMPONENTS];
230
231 /* A class-specific op from which the actual opcode can be derived
232 * (along with the above information) */
233
234 union {
235 enum bi_minmax_op minmax;
236 enum bi_bitwise_op bitwise;
237 enum bi_round_op round;
238 enum bi_special_op special;
239 enum bi_cond compare;
240 } op;
241
242 /* Union for class-specific information */
243 union {
244 enum bifrost_minmax_mode minmax;
245 struct bi_load_vary load_vary;
246 struct bi_branch branch;
247
248 /* For CSEL, the comparison op. BI_COND_ALWAYS doesn't make
249 * sense here but you can always just use a move for that */
250 enum bi_cond csel_cond;
251
252 /* For BLEND -- the location 0-7 */
253 unsigned blend_location;
254 };
255 } bi_instruction;
256
257 /* Scheduling takes place in two steps. Step 1 groups instructions within a
258 * block into distinct clauses (bi_clause). Step 2 schedules instructions
259 * within a clause into FMA/ADD pairs (bi_bundle).
260 *
261 * A bi_bundle contains two paired instruction pointers. If a slot is unfilled,
262 * leave it NULL; the emitter will fill in a nop.
263 */
264
265 typedef struct {
266 bi_instruction *fma;
267 bi_instruction *add;
268 } bi_bundle;
269
270 typedef struct {
271 struct list_head link;
272
273 /* A clause can have 8 instructions in bundled FMA/ADD sense, so there
274 * can be 8 bundles. But each bundle can have both an FMA and an ADD,
275 * so a clause can have up to 16 bi_instructions. Whether bundles or
276 * instructions are used depends on where in scheduling we are. */
277
278 unsigned instruction_count;
279 unsigned bundle_count;
280
281 union {
282 bi_instruction *instructions[16];
283 bi_bundle bundles[8];
284 };
285
286 /* For scoreboarding -- the clause ID (this is not globally unique!)
287 * and its dependencies in terms of other clauses, computed during
288 * scheduling and used when emitting code. Dependencies expressed as a
289 * bitfield matching the hardware, except shifted by a clause (the
290 * shift back to the ISA's off-by-one encoding is worked out when
291 * emitting clauses) */
292 unsigned scoreboard_id;
293 uint8_t dependencies;
294
295 /* Back-to-back corresponds directly to the back-to-back bit. Branch
296 * conditional corresponds to the branch conditional bit except that in
297 * the emitted code it's always set if back-to-bit is, whereas we use
298 * the actual value (without back-to-back so to speak) internally */
299 bool back_to_back;
300 bool branch_conditional;
301
302 /* Corresponds to the usual bit but shifted by a clause */
303 bool data_register_write_barrier;
304
305 /* Constants read by this clause. ISA limit. */
306 uint64_t constants[8];
307 unsigned constant_count;
308 } bi_clause;
309
310 typedef struct bi_block {
311 struct list_head link; /* must be first */
312 unsigned name; /* Just for pretty-printing */
313
314 /* If true, uses clauses; if false, uses instructions */
315 bool scheduled;
316 struct list_head instructions; /* pre-schedule, list of bi_instructions */
317 struct list_head clauses; /* list of bi_clause */
318
319 /* Control flow graph */
320 struct set *predecessors;
321 struct bi_block *successors[2];
322 } bi_block;
323
324 typedef struct {
325 nir_shader *nir;
326 gl_shader_stage stage;
327 struct list_head blocks; /* list of bi_block */
328 struct panfrost_sysvals sysvals;
329 uint32_t quirks;
330
331 /* During NIR->BIR */
332 nir_function_impl *impl;
333 bi_block *current_block;
334 unsigned block_name_count;
335 bi_block *after_block;
336 bi_block *break_block;
337 bi_block *continue_block;
338 bool emitted_atest;
339
340 /* For creating temporaries */
341 unsigned temp_alloc;
342
343 /* Stats for shader-db */
344 unsigned instruction_count;
345 unsigned loop_count;
346 } bi_context;
347
348 static inline bi_instruction *
349 bi_emit(bi_context *ctx, bi_instruction ins)
350 {
351 bi_instruction *u = rzalloc(ctx, bi_instruction);
352 memcpy(u, &ins, sizeof(ins));
353 list_addtail(&u->link, &ctx->current_block->instructions);
354 return u;
355 }
356
357 static inline void
358 bi_remove_instruction(bi_instruction *ins)
359 {
360 list_del(&ins->link);
361 }
362
363 /* So we can distinguish between SSA/reg/sentinel quickly */
364 #define BIR_NO_ARG (0)
365 #define BIR_IS_REG (1)
366
367 /* If high bits are set, instead of SSA/registers, we have specials indexed by
368 * the low bits if necessary.
369 *
370 * Fixed register: do not allocate register, do not collect $200.
371 * Uniform: access a uniform register given by low bits.
372 * Constant: access the specified constant
373 * Zero: special cased to avoid wasting a constant
374 */
375
376 #define BIR_INDEX_REGISTER (1 << 31)
377 #define BIR_INDEX_UNIFORM (1 << 30)
378 #define BIR_INDEX_CONSTANT (1 << 29)
379 #define BIR_INDEX_ZERO (1 << 28)
380
381 /* Keep me synced please so we can check src & BIR_SPECIAL */
382
383 #define BIR_SPECIAL ((BIR_INDEX_REGISTER | BIR_INDEX_UNIFORM) | \
384 (BIR_INDEX_CONSTANT | BIR_INDEX_ZERO)
385
386 static inline unsigned
387 bi_make_temp(bi_context *ctx)
388 {
389 return (ctx->impl->ssa_alloc + 1 + ctx->temp_alloc++) << 1;
390 }
391
392 static inline unsigned
393 bi_make_temp_reg(bi_context *ctx)
394 {
395 return ((ctx->impl->reg_alloc + ctx->temp_alloc++) << 1) | BIR_IS_REG;
396 }
397
398 static inline unsigned
399 bir_ssa_index(nir_ssa_def *ssa)
400 {
401 /* Off-by-one ensures BIR_NO_ARG is skipped */
402 return ((ssa->index + 1) << 1) | 0;
403 }
404
405 static inline unsigned
406 bir_src_index(nir_src *src)
407 {
408 if (src->is_ssa)
409 return bir_ssa_index(src->ssa);
410 else {
411 assert(!src->reg.indirect);
412 return (src->reg.reg->index << 1) | BIR_IS_REG;
413 }
414 }
415
416 static inline unsigned
417 bir_dest_index(nir_dest *dst)
418 {
419 if (dst->is_ssa)
420 return bir_ssa_index(&dst->ssa);
421 else {
422 assert(!dst->reg.indirect);
423 return (dst->reg.reg->index << 1) | BIR_IS_REG;
424 }
425 }
426
427 /* Iterators for Bifrost IR */
428
429 #define bi_foreach_block(ctx, v) \
430 list_for_each_entry(bi_block, v, &ctx->blocks, link)
431
432 #define bi_foreach_block_from(ctx, from, v) \
433 list_for_each_entry_from(bi_block, v, from, &ctx->blocks, link)
434
435 #define bi_foreach_instr_in_block(block, v) \
436 list_for_each_entry(bi_instruction, v, &block->instructions, link)
437
438 #define bi_foreach_instr_in_block_rev(block, v) \
439 list_for_each_entry_rev(bi_instruction, v, &block->instructions, link)
440
441 #define bi_foreach_instr_in_block_safe(block, v) \
442 list_for_each_entry_safe(bi_instruction, v, &block->instructions, link)
443
444 #define bi_foreach_instr_in_block_safe_rev(block, v) \
445 list_for_each_entry_safe_rev(bi_instruction, v, &block->instructions, link)
446
447 #define bi_foreach_instr_in_block_from(block, v, from) \
448 list_for_each_entry_from(bi_instruction, v, from, &block->instructions, link)
449
450 #define bi_foreach_instr_in_block_from_rev(block, v, from) \
451 list_for_each_entry_from_rev(bi_instruction, v, from, &block->instructions, link)
452
453 #define bi_foreach_clause_in_block(block, v) \
454 list_for_each_entry(bi_clause, v, &block->clauses, link)
455
456 #define bi_foreach_instr_global(ctx, v) \
457 bi_foreach_block(ctx, v_block) \
458 bi_foreach_instr_in_block(v_block, v)
459
460 #define bi_foreach_instr_global_safe(ctx, v) \
461 bi_foreach_block(ctx, v_block) \
462 bi_foreach_instr_in_block_safe(v_block, v)
463
464 #define bi_foreach_successor(blk, v) \
465 bi_block *v; \
466 bi_block **_v; \
467 for (_v = &blk->successors[0], \
468 v = *_v; \
469 v != NULL && _v < &blk->successors[2]; \
470 _v++, v = *_v) \
471
472 /* Based on set_foreach, expanded with automatic type casts */
473
474 #define bi_foreach_predecessor(blk, v) \
475 struct set_entry *_entry_##v; \
476 bi_block *v; \
477 for (_entry_##v = _mesa_set_next_entry(blk->predecessors, NULL), \
478 v = (bi_block *) (_entry_##v ? _entry_##v->key : NULL); \
479 _entry_##v != NULL; \
480 _entry_##v = _mesa_set_next_entry(blk->predecessors, _entry_##v), \
481 v = (bi_block *) (_entry_##v ? _entry_##v->key : NULL))
482
483 #define bi_foreach_src(ins, v) \
484 for (unsigned v = 0; v < ARRAY_SIZE(ins->src); ++v)
485
486 /* BIR manipulation */
487
488 bool bi_has_outmod(bi_instruction *ins);
489 bool bi_has_source_mods(bi_instruction *ins);
490 bool bi_is_src_swizzled(bi_instruction *ins, unsigned s);
491
492 /* BIR passes */
493
494 void bi_schedule(bi_context *ctx);
495
496 #endif