pan/bi: Implement FMA/MOV without modifiers
[mesa.git] / src / panfrost / bifrost / compiler.h
1 /*
2 * Copyright (C) 2020 Collabora Ltd.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors (Collabora):
24 * Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
25 */
26
27 #ifndef __BIFROST_COMPILER_H
28 #define __BIFROST_COMPILER_H
29
30 #include "bifrost.h"
31 #include "compiler/nir/nir.h"
32 #include "panfrost/util/pan_ir.h"
33
34 /* Bifrost opcodes are tricky -- the same op may exist on both FMA and
35 * ADD with two completely different opcodes, and opcodes can be varying
36 * length in some cases. Then we have different opcodes for int vs float
37 * and then sometimes even for different typesizes. Further, virtually
38 * every op has a number of flags which depend on the op. In constrast
39 * to Midgard where you have a strict ALU/LDST/TEX division and within
40 * ALU you have strict int/float and that's it... here it's a *lot* more
41 * involved. As such, we use something much higher level for our IR,
42 * encoding "classes" of operations, letting the opcode details get
43 * sorted out at emit time.
44 *
45 * Please keep this list alphabetized. Please use a dictionary if you
46 * don't know how to do that.
47 */
48
49 enum bi_class {
50 BI_ADD,
51 BI_ATEST,
52 BI_BRANCH,
53 BI_CMP,
54 BI_BLEND,
55 BI_BITWISE,
56 BI_CONVERT,
57 BI_CSEL,
58 BI_DISCARD,
59 BI_FMA,
60 BI_FMOV,
61 BI_FREXP,
62 BI_ISUB,
63 BI_LOAD,
64 BI_LOAD_UNIFORM,
65 BI_LOAD_ATTR,
66 BI_LOAD_VAR,
67 BI_LOAD_VAR_ADDRESS,
68 BI_MINMAX,
69 BI_MOV,
70 BI_SHIFT,
71 BI_STORE,
72 BI_STORE_VAR,
73 BI_SPECIAL, /* _FAST, _TABLE on supported GPUs */
74 BI_SWIZZLE,
75 BI_TEX,
76 BI_ROUND,
77 BI_NUM_CLASSES
78 };
79
80 /* Properties of a class... */
81 extern unsigned bi_class_props[BI_NUM_CLASSES];
82
83 /* abs/neg/outmod valid for a float op */
84 #define BI_MODS (1 << 0)
85
86 /* Generic enough that little class-specific information is required. In other
87 * words, it acts as a "normal" ALU op, even if the encoding ends up being
88 * irregular enough to warrant a separate class */
89 #define BI_GENERIC (1 << 1)
90
91 /* Accepts a bifrost_roundmode */
92 #define BI_ROUNDMODE (1 << 2)
93
94 /* Can be scheduled to FMA */
95 #define BI_SCHED_FMA (1 << 3)
96
97 /* Can be scheduled to ADD */
98 #define BI_SCHED_ADD (1 << 4)
99
100 /* Most ALU ops can do either, actually */
101 #define BI_SCHED_ALL (BI_SCHED_FMA | BI_SCHED_ADD)
102
103 /* Along with setting BI_SCHED_ADD, eats up the entire cycle, so FMA must be
104 * nopped out. Used for _FAST operations. */
105 #define BI_SCHED_SLOW (1 << 5)
106
107 /* Swizzling allowed for the 8/16-bit source */
108 #define BI_SWIZZLABLE (1 << 6)
109
110 /* For scheduling purposes this is a high latency instruction and must be at
111 * the end of a clause. Implies ADD */
112 #define BI_SCHED_HI_LATENCY (1 << 7)
113
114 /* Intrinsic is vectorized and should read 4 components regardless of writemask */
115 #define BI_VECTOR (1 << 8)
116
117 /* Use a data register for src0/dest respectively, bypassing the usual
118 * register accessor. Mutually exclusive. */
119 #define BI_DATA_REG_SRC (1 << 9)
120 #define BI_DATA_REG_DEST (1 << 10)
121
122 /* It can't get any worse than csel4... can it? */
123 #define BIR_SRC_COUNT 4
124
125 /* BI_LD_VARY */
126 struct bi_load_vary {
127 enum bifrost_interp_mode interp_mode;
128 bool reuse;
129 bool flat;
130 };
131
132 /* BI_BRANCH encoding the details of the branch itself as well as a pointer to
133 * the target. We forward declare bi_block since this is mildly circular (not
134 * strictly, but this order of the file makes more sense I think)
135 *
136 * We define our own enum of conditions since the conditions in the hardware
137 * packed in crazy ways that would make manipulation unweildly (meaning changes
138 * based on port swapping, etc), so we defer dealing with that until emit time.
139 * Likewise, we expose NIR types instead of the crazy branch types, although
140 * the restrictions do eventually apply of course. */
141
142 struct bi_block;
143
144 enum bi_cond {
145 BI_COND_ALWAYS,
146 BI_COND_LT,
147 BI_COND_LE,
148 BI_COND_GE,
149 BI_COND_GT,
150 BI_COND_EQ,
151 BI_COND_NE,
152 };
153
154 struct bi_branch {
155 /* Types are specified in src_types and must be compatible (either both
156 * int, or both float, 16/32, and same size or 32/16 if float. Types
157 * ignored if BI_COND_ALWAYS is set for an unconditional branch. */
158
159 enum bi_cond cond;
160 struct bi_block *target;
161 };
162
163 /* Opcodes within a class */
164 enum bi_minmax_op {
165 BI_MINMAX_MIN,
166 BI_MINMAX_MAX
167 };
168
169 enum bi_bitwise_op {
170 BI_BITWISE_AND,
171 BI_BITWISE_OR,
172 BI_BITWISE_XOR
173 };
174
175 enum bi_round_op {
176 BI_ROUND_MODE, /* use round mode */
177 BI_ROUND_ROUND /* i.e.: fround() */
178 };
179
180 enum bi_special_op {
181 BI_SPECIAL_FRCP,
182 BI_SPECIAL_FRSQ,
183 BI_SPECIAL_FATAN,
184 BI_SPECIAL_FSIN,
185 BI_SPECIAL_FCOS,
186 BI_SPECIAL_FEXP,
187 BI_SPECIAL_FLOG2,
188 BI_SPECIAL_FLOGE
189 };
190
191 typedef struct {
192 struct list_head link; /* Must be first */
193 enum bi_class type;
194
195 /* Indices, see bir_ssa_index etc. Note zero is special cased
196 * to "no argument" */
197 unsigned dest;
198 unsigned src[BIR_SRC_COUNT];
199
200 /* If one of the sources has BIR_INDEX_CONSTANT */
201 union {
202 uint64_t u64;
203 uint32_t u32;
204 uint16_t u16[2];
205 uint8_t u8[4];
206 } constant;
207
208 /* Floating-point modifiers, type/class permitting. If not
209 * allowed for the type/class, these are ignored. */
210 enum bifrost_outmod outmod;
211 bool src_abs[BIR_SRC_COUNT];
212 bool src_neg[BIR_SRC_COUNT];
213
214 /* Round mode (requires BI_ROUNDMODE) */
215 enum bifrost_roundmode roundmode;
216
217 /* Writemask (bit for each affected byte). This is quite restricted --
218 * ALU ops can only write to a single channel (exception: <32 in which
219 * you can write to 32/N contiguous aligned channels). Load/store can
220 * only write to all channels at once, in a sense. But it's still
221 * better to use this generic form than have synthetic ops flying
222 * about, since we're not essentially vector for RA purposes. */
223 uint16_t writemask;
224
225 /* Destination type. Usually the type of the instruction
226 * itself, but if sources and destination have different
227 * types, the type of the destination wins (so f2i would be
228 * int). Zero if there is no destination. Bitsize included */
229 nir_alu_type dest_type;
230
231 /* Source types if required by the class */
232 nir_alu_type src_types[BIR_SRC_COUNT];
233
234 /* If the source type is 8-bit or 16-bit such that SIMD is possible,
235 * and the class has BI_SWIZZLABLE, this is a swizzle in the usual
236 * sense. On non-SIMD instructions, it can be used for component
237 * selection, so we don't have to special case extraction. */
238 uint8_t swizzle[BIR_SRC_COUNT][NIR_MAX_VEC_COMPONENTS];
239
240 /* A class-specific op from which the actual opcode can be derived
241 * (along with the above information) */
242
243 union {
244 enum bi_minmax_op minmax;
245 enum bi_bitwise_op bitwise;
246 enum bi_round_op round;
247 enum bi_special_op special;
248 enum bi_cond compare;
249 } op;
250
251 /* Union for class-specific information */
252 union {
253 enum bifrost_minmax_mode minmax;
254 struct bi_load_vary load_vary;
255 struct bi_branch branch;
256
257 /* For CSEL, the comparison op. BI_COND_ALWAYS doesn't make
258 * sense here but you can always just use a move for that */
259 enum bi_cond csel_cond;
260
261 /* For BLEND -- the location 0-7 */
262 unsigned blend_location;
263 };
264 } bi_instruction;
265
266 /* Scheduling takes place in two steps. Step 1 groups instructions within a
267 * block into distinct clauses (bi_clause). Step 2 schedules instructions
268 * within a clause into FMA/ADD pairs (bi_bundle).
269 *
270 * A bi_bundle contains two paired instruction pointers. If a slot is unfilled,
271 * leave it NULL; the emitter will fill in a nop.
272 */
273
274 typedef struct {
275 bi_instruction *fma;
276 bi_instruction *add;
277 } bi_bundle;
278
279 typedef struct {
280 struct list_head link;
281
282 /* A clause can have 8 instructions in bundled FMA/ADD sense, so there
283 * can be 8 bundles. But each bundle can have both an FMA and an ADD,
284 * so a clause can have up to 16 bi_instructions. Whether bundles or
285 * instructions are used depends on where in scheduling we are. */
286
287 unsigned instruction_count;
288 unsigned bundle_count;
289
290 union {
291 bi_instruction *instructions[16];
292 bi_bundle bundles[8];
293 };
294
295 /* For scoreboarding -- the clause ID (this is not globally unique!)
296 * and its dependencies in terms of other clauses, computed during
297 * scheduling and used when emitting code. Dependencies expressed as a
298 * bitfield matching the hardware, except shifted by a clause (the
299 * shift back to the ISA's off-by-one encoding is worked out when
300 * emitting clauses) */
301 unsigned scoreboard_id;
302 uint8_t dependencies;
303
304 /* Back-to-back corresponds directly to the back-to-back bit. Branch
305 * conditional corresponds to the branch conditional bit except that in
306 * the emitted code it's always set if back-to-bit is, whereas we use
307 * the actual value (without back-to-back so to speak) internally */
308 bool back_to_back;
309 bool branch_conditional;
310
311 /* Assigned data register */
312 unsigned data_register;
313
314 /* Corresponds to the usual bit but shifted by a clause */
315 bool data_register_write_barrier;
316
317 /* Constants read by this clause. ISA limit. */
318 uint64_t constants[8];
319 unsigned constant_count;
320
321 /* What type of high latency instruction is here, basically */
322 unsigned clause_type;
323 } bi_clause;
324
325 typedef struct bi_block {
326 pan_block base; /* must be first */
327
328 /* If true, uses clauses; if false, uses instructions */
329 bool scheduled;
330 struct list_head clauses; /* list of bi_clause */
331 } bi_block;
332
333 typedef struct {
334 nir_shader *nir;
335 gl_shader_stage stage;
336 struct list_head blocks; /* list of bi_block */
337 struct panfrost_sysvals sysvals;
338 uint32_t quirks;
339
340 /* During NIR->BIR */
341 nir_function_impl *impl;
342 bi_block *current_block;
343 unsigned block_name_count;
344 bi_block *after_block;
345 bi_block *break_block;
346 bi_block *continue_block;
347 bool emitted_atest;
348
349 /* For creating temporaries */
350 unsigned temp_alloc;
351
352 /* Analysis results */
353 bool has_liveness;
354
355 /* Stats for shader-db */
356 unsigned instruction_count;
357 unsigned loop_count;
358 } bi_context;
359
360 static inline bi_instruction *
361 bi_emit(bi_context *ctx, bi_instruction ins)
362 {
363 bi_instruction *u = rzalloc(ctx, bi_instruction);
364 memcpy(u, &ins, sizeof(ins));
365 list_addtail(&u->link, &ctx->current_block->base.instructions);
366 return u;
367 }
368
369 static inline void
370 bi_remove_instruction(bi_instruction *ins)
371 {
372 list_del(&ins->link);
373 }
374
375 /* So we can distinguish between SSA/reg/sentinel quickly */
376 #define BIR_NO_ARG (0)
377 #define BIR_IS_REG (1)
378
379 /* If high bits are set, instead of SSA/registers, we have specials indexed by
380 * the low bits if necessary.
381 *
382 * Fixed register: do not allocate register, do not collect $200.
383 * Uniform: access a uniform register given by low bits.
384 * Constant: access the specified constant
385 * Zero: special cased to avoid wasting a constant
386 * Passthrough: a bifrost_packed_src to passthrough T/T0/T1
387 */
388
389 #define BIR_INDEX_REGISTER (1 << 31)
390 #define BIR_INDEX_UNIFORM (1 << 30)
391 #define BIR_INDEX_CONSTANT (1 << 29)
392 #define BIR_INDEX_ZERO (1 << 28)
393 #define BIR_INDEX_PASS (1 << 27)
394
395 /* Keep me synced please so we can check src & BIR_SPECIAL */
396
397 #define BIR_SPECIAL ((BIR_INDEX_REGISTER | BIR_INDEX_UNIFORM) | \
398 (BIR_INDEX_CONSTANT | BIR_INDEX_ZERO | BIR_INDEX_PASS))
399
400 static inline unsigned
401 bi_max_temp(bi_context *ctx)
402 {
403 unsigned alloc = MAX2(ctx->impl->reg_alloc, ctx->impl->ssa_alloc);
404 return ((alloc + 2 + ctx->temp_alloc) << 1);
405 }
406
407 static inline unsigned
408 bi_make_temp(bi_context *ctx)
409 {
410 return (ctx->impl->ssa_alloc + 1 + ctx->temp_alloc++) << 1;
411 }
412
413 static inline unsigned
414 bi_make_temp_reg(bi_context *ctx)
415 {
416 return ((ctx->impl->reg_alloc + ctx->temp_alloc++) << 1) | BIR_IS_REG;
417 }
418
419 static inline unsigned
420 bir_ssa_index(nir_ssa_def *ssa)
421 {
422 /* Off-by-one ensures BIR_NO_ARG is skipped */
423 return ((ssa->index + 1) << 1) | 0;
424 }
425
426 static inline unsigned
427 bir_src_index(nir_src *src)
428 {
429 if (src->is_ssa)
430 return bir_ssa_index(src->ssa);
431 else {
432 assert(!src->reg.indirect);
433 return (src->reg.reg->index << 1) | BIR_IS_REG;
434 }
435 }
436
437 static inline unsigned
438 bir_dest_index(nir_dest *dst)
439 {
440 if (dst->is_ssa)
441 return bir_ssa_index(&dst->ssa);
442 else {
443 assert(!dst->reg.indirect);
444 return (dst->reg.reg->index << 1) | BIR_IS_REG;
445 }
446 }
447
448 /* Iterators for Bifrost IR */
449
450 #define bi_foreach_block(ctx, v) \
451 list_for_each_entry(pan_block, v, &ctx->blocks, link)
452
453 #define bi_foreach_block_from(ctx, from, v) \
454 list_for_each_entry_from(pan_block, v, from, &ctx->blocks, link)
455
456 #define bi_foreach_instr_in_block(block, v) \
457 list_for_each_entry(bi_instruction, v, &(block)->base.instructions, link)
458
459 #define bi_foreach_instr_in_block_rev(block, v) \
460 list_for_each_entry_rev(bi_instruction, v, &(block)->base.instructions, link)
461
462 #define bi_foreach_instr_in_block_safe(block, v) \
463 list_for_each_entry_safe(bi_instruction, v, &(block)->base.instructions, link)
464
465 #define bi_foreach_instr_in_block_safe_rev(block, v) \
466 list_for_each_entry_safe_rev(bi_instruction, v, &(block)->base.instructions, link)
467
468 #define bi_foreach_instr_in_block_from(block, v, from) \
469 list_for_each_entry_from(bi_instruction, v, from, &(block)->base.instructions, link)
470
471 #define bi_foreach_instr_in_block_from_rev(block, v, from) \
472 list_for_each_entry_from_rev(bi_instruction, v, from, &(block)->base.instructions, link)
473
474 #define bi_foreach_clause_in_block(block, v) \
475 list_for_each_entry(bi_clause, v, &(block)->clauses, link)
476
477 #define bi_foreach_instr_global(ctx, v) \
478 bi_foreach_block(ctx, v_block) \
479 bi_foreach_instr_in_block((bi_block *) v_block, v)
480
481 #define bi_foreach_instr_global_safe(ctx, v) \
482 bi_foreach_block(ctx, v_block) \
483 bi_foreach_instr_in_block_safe((bi_block *) v_block, v)
484
485 /* Based on set_foreach, expanded with automatic type casts */
486
487 #define bi_foreach_predecessor(blk, v) \
488 struct set_entry *_entry_##v; \
489 bi_block *v; \
490 for (_entry_##v = _mesa_set_next_entry(blk->base.predecessors, NULL), \
491 v = (bi_block *) (_entry_##v ? _entry_##v->key : NULL); \
492 _entry_##v != NULL; \
493 _entry_##v = _mesa_set_next_entry(blk->base.predecessors, _entry_##v), \
494 v = (bi_block *) (_entry_##v ? _entry_##v->key : NULL))
495
496 #define bi_foreach_src(ins, v) \
497 for (unsigned v = 0; v < ARRAY_SIZE(ins->src); ++v)
498
499 static inline bi_instruction *
500 bi_prev_op(bi_instruction *ins)
501 {
502 return list_last_entry(&(ins->link), bi_instruction, link);
503 }
504
505 static inline bi_instruction *
506 bi_next_op(bi_instruction *ins)
507 {
508 return list_first_entry(&(ins->link), bi_instruction, link);
509 }
510
511 static inline pan_block *
512 pan_next_block(pan_block *block)
513 {
514 return list_first_entry(&(block->link), pan_block, link);
515 }
516
517 /* BIR manipulation */
518
519 bool bi_has_outmod(bi_instruction *ins);
520 bool bi_has_source_mods(bi_instruction *ins);
521 bool bi_is_src_swizzled(bi_instruction *ins, unsigned s);
522 bool bi_has_arg(bi_instruction *ins, unsigned arg);
523 uint16_t bi_from_bytemask(uint16_t bytemask, unsigned bytes);
524 unsigned bi_get_component_count(bi_instruction *ins);
525 uint16_t bi_bytemask_of_read_components(bi_instruction *ins, unsigned node);
526
527 /* BIR passes */
528
529 bool bi_opt_dead_code_eliminate(bi_context *ctx, bi_block *block);
530 void bi_schedule(bi_context *ctx);
531 void bi_register_allocate(bi_context *ctx);
532
533 /* Liveness */
534
535 void bi_compute_liveness(bi_context *ctx);
536 void bi_liveness_ins_update(uint16_t *live, bi_instruction *ins, unsigned max);
537 void bi_invalidate_liveness(bi_context *ctx);
538 bool bi_is_live_after(bi_context *ctx, bi_block *block, bi_instruction *start, int src);
539
540 /* Code emit */
541
542 void bi_pack(bi_context *ctx, struct util_dynarray *emission);
543
544 #endif