pan/bi: Remove BI_GENERIC
[mesa.git] / src / panfrost / bifrost / compiler.h
1 /*
2 * Copyright (C) 2020 Collabora Ltd.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors (Collabora):
24 * Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
25 */
26
27 #ifndef __BIFROST_COMPILER_H
28 #define __BIFROST_COMPILER_H
29
30 #include "bifrost.h"
31 #include "compiler/nir/nir.h"
32 #include "panfrost/util/pan_ir.h"
33
34 /* Bifrost opcodes are tricky -- the same op may exist on both FMA and
35 * ADD with two completely different opcodes, and opcodes can be varying
36 * length in some cases. Then we have different opcodes for int vs float
37 * and then sometimes even for different typesizes. Further, virtually
38 * every op has a number of flags which depend on the op. In constrast
39 * to Midgard where you have a strict ALU/LDST/TEX division and within
40 * ALU you have strict int/float and that's it... here it's a *lot* more
41 * involved. As such, we use something much higher level for our IR,
42 * encoding "classes" of operations, letting the opcode details get
43 * sorted out at emit time.
44 *
45 * Please keep this list alphabetized. Please use a dictionary if you
46 * don't know how to do that.
47 */
48
49 enum bi_class {
50 BI_ADD,
51 BI_ATEST,
52 BI_BRANCH,
53 BI_CMP,
54 BI_BLEND,
55 BI_BITWISE,
56 BI_COMBINE,
57 BI_CONVERT,
58 BI_CSEL,
59 BI_DISCARD,
60 BI_FMA,
61 BI_FMOV,
62 BI_FREXP,
63 BI_ISUB,
64 BI_LOAD,
65 BI_LOAD_UNIFORM,
66 BI_LOAD_ATTR,
67 BI_LOAD_VAR,
68 BI_LOAD_VAR_ADDRESS,
69 BI_MINMAX,
70 BI_MOV,
71 BI_REDUCE_FMA,
72 BI_SELECT,
73 BI_SHIFT,
74 BI_STORE,
75 BI_STORE_VAR,
76 BI_SPECIAL, /* _FAST on supported GPUs */
77 BI_TABLE,
78 BI_TEX,
79 BI_ROUND,
80 BI_NUM_CLASSES
81 };
82
83 /* Properties of a class... */
84 extern unsigned bi_class_props[BI_NUM_CLASSES];
85
86 /* abs/neg/outmod valid for a float op */
87 #define BI_MODS (1 << 0)
88
89 /* bit 1 unused */
90
91 /* Accepts a bifrost_roundmode */
92 #define BI_ROUNDMODE (1 << 2)
93
94 /* Can be scheduled to FMA */
95 #define BI_SCHED_FMA (1 << 3)
96
97 /* Can be scheduled to ADD */
98 #define BI_SCHED_ADD (1 << 4)
99
100 /* Most ALU ops can do either, actually */
101 #define BI_SCHED_ALL (BI_SCHED_FMA | BI_SCHED_ADD)
102
103 /* Along with setting BI_SCHED_ADD, eats up the entire cycle, so FMA must be
104 * nopped out. Used for _FAST operations. */
105 #define BI_SCHED_SLOW (1 << 5)
106
107 /* Swizzling allowed for the 8/16-bit source */
108 #define BI_SWIZZLABLE (1 << 6)
109
110 /* For scheduling purposes this is a high latency instruction and must be at
111 * the end of a clause. Implies ADD */
112 #define BI_SCHED_HI_LATENCY (1 << 7)
113
114 /* Intrinsic is vectorized and acts with `vector_channels` components */
115 #define BI_VECTOR (1 << 8)
116
117 /* Use a data register for src0/dest respectively, bypassing the usual
118 * register accessor. Mutually exclusive. */
119 #define BI_DATA_REG_SRC (1 << 9)
120 #define BI_DATA_REG_DEST (1 << 10)
121
122 /* Quirk: cannot encode multiple abs on FMA in fp16 mode */
123 #define BI_NO_ABS_ABS_FP16_FMA (1 << 11)
124
125 /* It can't get any worse than csel4... can it? */
126 #define BIR_SRC_COUNT 4
127
128 /* BI_LD_VARY */
129 struct bi_load_vary {
130 enum bifrost_interp_mode interp_mode;
131 bool reuse;
132 bool flat;
133 };
134
135 /* BI_BRANCH encoding the details of the branch itself as well as a pointer to
136 * the target. We forward declare bi_block since this is mildly circular (not
137 * strictly, but this order of the file makes more sense I think)
138 *
139 * We define our own enum of conditions since the conditions in the hardware
140 * packed in crazy ways that would make manipulation unweildly (meaning changes
141 * based on port swapping, etc), so we defer dealing with that until emit time.
142 * Likewise, we expose NIR types instead of the crazy branch types, although
143 * the restrictions do eventually apply of course. */
144
145 struct bi_block;
146
147 enum bi_cond {
148 BI_COND_ALWAYS,
149 BI_COND_LT,
150 BI_COND_LE,
151 BI_COND_GE,
152 BI_COND_GT,
153 BI_COND_EQ,
154 BI_COND_NE,
155 };
156
157 struct bi_branch {
158 /* Types are specified in src_types and must be compatible (either both
159 * int, or both float, 16/32, and same size or 32/16 if float. Types
160 * ignored if BI_COND_ALWAYS is set for an unconditional branch. */
161
162 enum bi_cond cond;
163 struct bi_block *target;
164 };
165
166 /* Opcodes within a class */
167 enum bi_minmax_op {
168 BI_MINMAX_MIN,
169 BI_MINMAX_MAX
170 };
171
172 enum bi_bitwise_op {
173 BI_BITWISE_AND,
174 BI_BITWISE_OR,
175 BI_BITWISE_XOR
176 };
177
178 enum bi_table_op {
179 /* fp32 log2() with low precision, suitable for GL or half_log2() in
180 * CL. In the first argument, takes x. Letting u be such that x =
181 * 2^{-m} u with m integer and 0.75 <= u < 1.5, returns
182 * log2(u) / (u - 1). */
183
184 BI_TABLE_LOG2_U_OVER_U_1_LOW,
185 };
186
187 enum bi_reduce_op {
188 /* Takes two fp32 arguments and returns x + frexp(y). Used in
189 * low-precision log2 argument reduction on newer models. */
190
191 BI_REDUCE_ADD_FREXPM,
192 };
193
194 enum bi_frexp_op {
195 BI_FREXPE_LOG,
196 };
197
198 enum bi_special_op {
199 BI_SPECIAL_FRCP,
200 BI_SPECIAL_FRSQ,
201
202 /* fp32 exp2() with low precision, suitable for half_exp2() in CL or
203 * exp2() in GL. In the first argument, it takes f2i_rte(x * 2^24). In
204 * the second, it takes x itself. */
205 BI_SPECIAL_EXP2_LOW,
206 };
207
208 enum bi_tex_op {
209 BI_TEX_NORMAL,
210 BI_TEX_COMPACT,
211 BI_TEX_DUAL
212 };
213
214 struct bi_bitwise {
215 bool src_invert[2];
216 bool rshift; /* false for lshift */
217 };
218
219 struct bi_texture {
220 /* Constant indices. Indirect would need to be in src[..] like normal,
221 * we can reserve some sentinels there for that for future. */
222 unsigned texture_index, sampler_index;
223 };
224
225 typedef struct {
226 struct list_head link; /* Must be first */
227 enum bi_class type;
228
229 /* Indices, see pan_ssa_index etc. Note zero is special cased
230 * to "no argument" */
231 unsigned dest;
232 unsigned src[BIR_SRC_COUNT];
233
234 /* 32-bit word offset for destination, added to the register number in
235 * RA when lowering combines */
236 unsigned dest_offset;
237
238 /* If one of the sources has BIR_INDEX_CONSTANT */
239 union {
240 uint64_t u64;
241 uint32_t u32;
242 uint16_t u16[2];
243 uint8_t u8[4];
244 } constant;
245
246 /* Floating-point modifiers, type/class permitting. If not
247 * allowed for the type/class, these are ignored. */
248 enum bifrost_outmod outmod;
249 bool src_abs[BIR_SRC_COUNT];
250 bool src_neg[BIR_SRC_COUNT];
251
252 /* Round mode (requires BI_ROUNDMODE) */
253 enum bifrost_roundmode roundmode;
254
255 /* Destination type. Usually the type of the instruction
256 * itself, but if sources and destination have different
257 * types, the type of the destination wins (so f2i would be
258 * int). Zero if there is no destination. Bitsize included */
259 nir_alu_type dest_type;
260
261 /* Source types if required by the class */
262 nir_alu_type src_types[BIR_SRC_COUNT];
263
264 /* If the source type is 8-bit or 16-bit such that SIMD is possible,
265 * and the class has BI_SWIZZLABLE, this is a swizzle in the usual
266 * sense. On non-SIMD instructions, it can be used for component
267 * selection, so we don't have to special case extraction. */
268 uint8_t swizzle[BIR_SRC_COUNT][NIR_MAX_VEC_COMPONENTS];
269
270 /* For VECTOR ops, how many channels are written? */
271 unsigned vector_channels;
272
273 /* A class-specific op from which the actual opcode can be derived
274 * (along with the above information) */
275
276 union {
277 enum bi_minmax_op minmax;
278 enum bi_bitwise_op bitwise;
279 enum bi_special_op special;
280 enum bi_reduce_op reduce;
281 enum bi_table_op table;
282 enum bi_frexp_op frexp;
283 enum bi_tex_op texture;
284
285 /* For FMA/ADD, should we add a biased exponent? */
286 bool mscale;
287 } op;
288
289 /* Union for class-specific information */
290 union {
291 enum bifrost_minmax_mode minmax;
292 struct bi_load_vary load_vary;
293 struct bi_branch branch;
294
295 /* For CSEL, the comparison op. BI_COND_ALWAYS doesn't make
296 * sense here but you can always just use a move for that */
297 enum bi_cond cond;
298
299 /* For BLEND -- the location 0-7 */
300 unsigned blend_location;
301
302 struct bi_bitwise bitwise;
303 struct bi_texture texture;
304 };
305 } bi_instruction;
306
307 /* Scheduling takes place in two steps. Step 1 groups instructions within a
308 * block into distinct clauses (bi_clause). Step 2 schedules instructions
309 * within a clause into FMA/ADD pairs (bi_bundle).
310 *
311 * A bi_bundle contains two paired instruction pointers. If a slot is unfilled,
312 * leave it NULL; the emitter will fill in a nop.
313 */
314
315 typedef struct {
316 bi_instruction *fma;
317 bi_instruction *add;
318 } bi_bundle;
319
320 typedef struct {
321 struct list_head link;
322
323 /* A clause can have 8 instructions in bundled FMA/ADD sense, so there
324 * can be 8 bundles. But each bundle can have both an FMA and an ADD,
325 * so a clause can have up to 16 bi_instructions. Whether bundles or
326 * instructions are used depends on where in scheduling we are. */
327
328 unsigned instruction_count;
329 unsigned bundle_count;
330
331 union {
332 bi_instruction *instructions[16];
333 bi_bundle bundles[8];
334 };
335
336 /* For scoreboarding -- the clause ID (this is not globally unique!)
337 * and its dependencies in terms of other clauses, computed during
338 * scheduling and used when emitting code. Dependencies expressed as a
339 * bitfield matching the hardware, except shifted by a clause (the
340 * shift back to the ISA's off-by-one encoding is worked out when
341 * emitting clauses) */
342 unsigned scoreboard_id;
343 uint8_t dependencies;
344
345 /* Back-to-back corresponds directly to the back-to-back bit. Branch
346 * conditional corresponds to the branch conditional bit except that in
347 * the emitted code it's always set if back-to-bit is, whereas we use
348 * the actual value (without back-to-back so to speak) internally */
349 bool back_to_back;
350 bool branch_conditional;
351
352 /* Assigned data register */
353 unsigned data_register;
354
355 /* Corresponds to the usual bit but shifted by a clause */
356 bool data_register_write_barrier;
357
358 /* Constants read by this clause. ISA limit. */
359 uint64_t constants[8];
360 unsigned constant_count;
361
362 /* What type of high latency instruction is here, basically */
363 unsigned clause_type;
364 } bi_clause;
365
366 typedef struct bi_block {
367 pan_block base; /* must be first */
368
369 /* If true, uses clauses; if false, uses instructions */
370 bool scheduled;
371 struct list_head clauses; /* list of bi_clause */
372 } bi_block;
373
374 typedef struct {
375 nir_shader *nir;
376 gl_shader_stage stage;
377 struct list_head blocks; /* list of bi_block */
378 struct panfrost_sysvals sysvals;
379 uint32_t quirks;
380
381 /* During NIR->BIR */
382 nir_function_impl *impl;
383 bi_block *current_block;
384 unsigned block_name_count;
385 bi_block *after_block;
386 bi_block *break_block;
387 bi_block *continue_block;
388 bool emitted_atest;
389 nir_alu_type *blend_types;
390
391 /* For creating temporaries */
392 unsigned temp_alloc;
393
394 /* Analysis results */
395 bool has_liveness;
396
397 /* Stats for shader-db */
398 unsigned instruction_count;
399 unsigned loop_count;
400 } bi_context;
401
402 static inline bi_instruction *
403 bi_emit(bi_context *ctx, bi_instruction ins)
404 {
405 bi_instruction *u = rzalloc(ctx, bi_instruction);
406 memcpy(u, &ins, sizeof(ins));
407 list_addtail(&u->link, &ctx->current_block->base.instructions);
408 return u;
409 }
410
411 static inline bi_instruction *
412 bi_emit_before(bi_context *ctx, bi_instruction *tag, bi_instruction ins)
413 {
414 bi_instruction *u = rzalloc(ctx, bi_instruction);
415 memcpy(u, &ins, sizeof(ins));
416 list_addtail(&u->link, &tag->link);
417 return u;
418 }
419
420 static inline void
421 bi_remove_instruction(bi_instruction *ins)
422 {
423 list_del(&ins->link);
424 }
425
426 /* If high bits are set, instead of SSA/registers, we have specials indexed by
427 * the low bits if necessary.
428 *
429 * Fixed register: do not allocate register, do not collect $200.
430 * Uniform: access a uniform register given by low bits.
431 * Constant: access the specified constant (specifies a bit offset / shift)
432 * Zero: special cased to avoid wasting a constant
433 * Passthrough: a bifrost_packed_src to passthrough T/T0/T1
434 */
435
436 #define BIR_INDEX_REGISTER (1 << 31)
437 #define BIR_INDEX_UNIFORM (1 << 30)
438 #define BIR_INDEX_CONSTANT (1 << 29)
439 #define BIR_INDEX_ZERO (1 << 28)
440 #define BIR_INDEX_PASS (1 << 27)
441
442 /* Keep me synced please so we can check src & BIR_SPECIAL */
443
444 #define BIR_SPECIAL ((BIR_INDEX_REGISTER | BIR_INDEX_UNIFORM) | \
445 (BIR_INDEX_CONSTANT | BIR_INDEX_ZERO | BIR_INDEX_PASS))
446
447 static inline unsigned
448 bi_max_temp(bi_context *ctx)
449 {
450 unsigned alloc = MAX2(ctx->impl->reg_alloc, ctx->impl->ssa_alloc);
451 return ((alloc + 2 + ctx->temp_alloc) << 1);
452 }
453
454 static inline unsigned
455 bi_make_temp(bi_context *ctx)
456 {
457 return (ctx->impl->ssa_alloc + 1 + ctx->temp_alloc++) << 1;
458 }
459
460 static inline unsigned
461 bi_make_temp_reg(bi_context *ctx)
462 {
463 return ((ctx->impl->reg_alloc + ctx->temp_alloc++) << 1) | PAN_IS_REG;
464 }
465
466 /* Iterators for Bifrost IR */
467
468 #define bi_foreach_block(ctx, v) \
469 list_for_each_entry(pan_block, v, &ctx->blocks, link)
470
471 #define bi_foreach_block_from(ctx, from, v) \
472 list_for_each_entry_from(pan_block, v, from, &ctx->blocks, link)
473
474 #define bi_foreach_instr_in_block(block, v) \
475 list_for_each_entry(bi_instruction, v, &(block)->base.instructions, link)
476
477 #define bi_foreach_instr_in_block_rev(block, v) \
478 list_for_each_entry_rev(bi_instruction, v, &(block)->base.instructions, link)
479
480 #define bi_foreach_instr_in_block_safe(block, v) \
481 list_for_each_entry_safe(bi_instruction, v, &(block)->base.instructions, link)
482
483 #define bi_foreach_instr_in_block_safe_rev(block, v) \
484 list_for_each_entry_safe_rev(bi_instruction, v, &(block)->base.instructions, link)
485
486 #define bi_foreach_instr_in_block_from(block, v, from) \
487 list_for_each_entry_from(bi_instruction, v, from, &(block)->base.instructions, link)
488
489 #define bi_foreach_instr_in_block_from_rev(block, v, from) \
490 list_for_each_entry_from_rev(bi_instruction, v, from, &(block)->base.instructions, link)
491
492 #define bi_foreach_clause_in_block(block, v) \
493 list_for_each_entry(bi_clause, v, &(block)->clauses, link)
494
495 #define bi_foreach_instr_global(ctx, v) \
496 bi_foreach_block(ctx, v_block) \
497 bi_foreach_instr_in_block((bi_block *) v_block, v)
498
499 #define bi_foreach_instr_global_safe(ctx, v) \
500 bi_foreach_block(ctx, v_block) \
501 bi_foreach_instr_in_block_safe((bi_block *) v_block, v)
502
503 /* Based on set_foreach, expanded with automatic type casts */
504
505 #define bi_foreach_predecessor(blk, v) \
506 struct set_entry *_entry_##v; \
507 bi_block *v; \
508 for (_entry_##v = _mesa_set_next_entry(blk->base.predecessors, NULL), \
509 v = (bi_block *) (_entry_##v ? _entry_##v->key : NULL); \
510 _entry_##v != NULL; \
511 _entry_##v = _mesa_set_next_entry(blk->base.predecessors, _entry_##v), \
512 v = (bi_block *) (_entry_##v ? _entry_##v->key : NULL))
513
514 #define bi_foreach_src(ins, v) \
515 for (unsigned v = 0; v < ARRAY_SIZE(ins->src); ++v)
516
517 static inline bi_instruction *
518 bi_prev_op(bi_instruction *ins)
519 {
520 return list_last_entry(&(ins->link), bi_instruction, link);
521 }
522
523 static inline bi_instruction *
524 bi_next_op(bi_instruction *ins)
525 {
526 return list_first_entry(&(ins->link), bi_instruction, link);
527 }
528
529 static inline pan_block *
530 pan_next_block(pan_block *block)
531 {
532 return list_first_entry(&(block->link), pan_block, link);
533 }
534
535 /* Special functions */
536
537 void bi_emit_fexp2(bi_context *ctx, nir_alu_instr *instr);
538 void bi_emit_flog2(bi_context *ctx, nir_alu_instr *instr);
539
540 /* BIR manipulation */
541
542 bool bi_has_outmod(bi_instruction *ins);
543 bool bi_has_source_mods(bi_instruction *ins);
544 bool bi_is_src_swizzled(bi_instruction *ins, unsigned s);
545 bool bi_has_arg(bi_instruction *ins, unsigned arg);
546 uint16_t bi_from_bytemask(uint16_t bytemask, unsigned bytes);
547 unsigned bi_get_component_count(bi_instruction *ins, signed s);
548 uint16_t bi_bytemask_of_read_components(bi_instruction *ins, unsigned node);
549 uint64_t bi_get_immediate(bi_instruction *ins, unsigned index);
550 bool bi_writes_component(bi_instruction *ins, unsigned comp);
551 unsigned bi_writemask(bi_instruction *ins);
552
553 /* BIR passes */
554
555 void bi_lower_combine(bi_context *ctx, bi_block *block);
556 bool bi_opt_dead_code_eliminate(bi_context *ctx, bi_block *block);
557 void bi_schedule(bi_context *ctx);
558 void bi_register_allocate(bi_context *ctx);
559
560 /* Liveness */
561
562 void bi_compute_liveness(bi_context *ctx);
563 void bi_liveness_ins_update(uint16_t *live, bi_instruction *ins, unsigned max);
564 void bi_invalidate_liveness(bi_context *ctx);
565 bool bi_is_live_after(bi_context *ctx, bi_block *block, bi_instruction *start, int src);
566
567 /* Code emit */
568
569 void bi_pack(bi_context *ctx, struct util_dynarray *emission);
570
571 #endif