pan/bi: Remove nontrivial SPECIAL ops
[mesa.git] / src / panfrost / bifrost / compiler.h
1 /*
2 * Copyright (C) 2020 Collabora Ltd.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors (Collabora):
24 * Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
25 */
26
27 #ifndef __BIFROST_COMPILER_H
28 #define __BIFROST_COMPILER_H
29
30 #include "bifrost.h"
31 #include "compiler/nir/nir.h"
32 #include "panfrost/util/pan_ir.h"
33
34 /* Bifrost opcodes are tricky -- the same op may exist on both FMA and
35 * ADD with two completely different opcodes, and opcodes can be varying
36 * length in some cases. Then we have different opcodes for int vs float
37 * and then sometimes even for different typesizes. Further, virtually
38 * every op has a number of flags which depend on the op. In constrast
39 * to Midgard where you have a strict ALU/LDST/TEX division and within
40 * ALU you have strict int/float and that's it... here it's a *lot* more
41 * involved. As such, we use something much higher level for our IR,
42 * encoding "classes" of operations, letting the opcode details get
43 * sorted out at emit time.
44 *
45 * Please keep this list alphabetized. Please use a dictionary if you
46 * don't know how to do that.
47 */
48
49 enum bi_class {
50 BI_ADD,
51 BI_ATEST,
52 BI_BRANCH,
53 BI_CMP,
54 BI_BLEND,
55 BI_BITWISE,
56 BI_COMBINE,
57 BI_CONVERT,
58 BI_CSEL,
59 BI_DISCARD,
60 BI_FMA,
61 BI_FMOV,
62 BI_FREXP,
63 BI_ISUB,
64 BI_LOAD,
65 BI_LOAD_UNIFORM,
66 BI_LOAD_ATTR,
67 BI_LOAD_VAR,
68 BI_LOAD_VAR_ADDRESS,
69 BI_MINMAX,
70 BI_MOV,
71 BI_SHIFT,
72 BI_STORE,
73 BI_STORE_VAR,
74 BI_SPECIAL, /* _FAST, _TABLE on supported GPUs */
75 BI_SWIZZLE,
76 BI_TEX,
77 BI_ROUND,
78 BI_NUM_CLASSES
79 };
80
81 /* Properties of a class... */
82 extern unsigned bi_class_props[BI_NUM_CLASSES];
83
84 /* abs/neg/outmod valid for a float op */
85 #define BI_MODS (1 << 0)
86
87 /* Generic enough that little class-specific information is required. In other
88 * words, it acts as a "normal" ALU op, even if the encoding ends up being
89 * irregular enough to warrant a separate class */
90 #define BI_GENERIC (1 << 1)
91
92 /* Accepts a bifrost_roundmode */
93 #define BI_ROUNDMODE (1 << 2)
94
95 /* Can be scheduled to FMA */
96 #define BI_SCHED_FMA (1 << 3)
97
98 /* Can be scheduled to ADD */
99 #define BI_SCHED_ADD (1 << 4)
100
101 /* Most ALU ops can do either, actually */
102 #define BI_SCHED_ALL (BI_SCHED_FMA | BI_SCHED_ADD)
103
104 /* Along with setting BI_SCHED_ADD, eats up the entire cycle, so FMA must be
105 * nopped out. Used for _FAST operations. */
106 #define BI_SCHED_SLOW (1 << 5)
107
108 /* Swizzling allowed for the 8/16-bit source */
109 #define BI_SWIZZLABLE (1 << 6)
110
111 /* For scheduling purposes this is a high latency instruction and must be at
112 * the end of a clause. Implies ADD */
113 #define BI_SCHED_HI_LATENCY (1 << 7)
114
115 /* Intrinsic is vectorized and should read 4 components in the first source
116 * regardless of writemask */
117 #define BI_VECTOR (1 << 8)
118
119 /* Use a data register for src0/dest respectively, bypassing the usual
120 * register accessor. Mutually exclusive. */
121 #define BI_DATA_REG_SRC (1 << 9)
122 #define BI_DATA_REG_DEST (1 << 10)
123
124 /* Quirk: cannot encode multiple abs on FMA in fp16 mode */
125 #define BI_NO_ABS_ABS_FP16_FMA (1 << 11)
126
127 /* It can't get any worse than csel4... can it? */
128 #define BIR_SRC_COUNT 4
129
130 /* BI_LD_VARY */
131 struct bi_load_vary {
132 enum bifrost_interp_mode interp_mode;
133 bool reuse;
134 bool flat;
135 };
136
137 /* BI_BRANCH encoding the details of the branch itself as well as a pointer to
138 * the target. We forward declare bi_block since this is mildly circular (not
139 * strictly, but this order of the file makes more sense I think)
140 *
141 * We define our own enum of conditions since the conditions in the hardware
142 * packed in crazy ways that would make manipulation unweildly (meaning changes
143 * based on port swapping, etc), so we defer dealing with that until emit time.
144 * Likewise, we expose NIR types instead of the crazy branch types, although
145 * the restrictions do eventually apply of course. */
146
147 struct bi_block;
148
149 enum bi_cond {
150 BI_COND_ALWAYS,
151 BI_COND_LT,
152 BI_COND_LE,
153 BI_COND_GE,
154 BI_COND_GT,
155 BI_COND_EQ,
156 BI_COND_NE,
157 };
158
159 struct bi_branch {
160 /* Types are specified in src_types and must be compatible (either both
161 * int, or both float, 16/32, and same size or 32/16 if float. Types
162 * ignored if BI_COND_ALWAYS is set for an unconditional branch. */
163
164 enum bi_cond cond;
165 struct bi_block *target;
166 };
167
168 /* Opcodes within a class */
169 enum bi_minmax_op {
170 BI_MINMAX_MIN,
171 BI_MINMAX_MAX
172 };
173
174 enum bi_bitwise_op {
175 BI_BITWISE_AND,
176 BI_BITWISE_OR,
177 BI_BITWISE_XOR
178 };
179
180 enum bi_round_op {
181 BI_ROUND_MODE, /* use round mode */
182 BI_ROUND_ROUND /* i.e.: fround() */
183 };
184
185 enum bi_special_op {
186 BI_SPECIAL_FRCP,
187 BI_SPECIAL_FRSQ,
188 };
189
190 typedef struct {
191 struct list_head link; /* Must be first */
192 enum bi_class type;
193
194 /* Indices, see bir_ssa_index etc. Note zero is special cased
195 * to "no argument" */
196 unsigned dest;
197 unsigned src[BIR_SRC_COUNT];
198
199 /* If one of the sources has BIR_INDEX_CONSTANT */
200 union {
201 uint64_t u64;
202 uint32_t u32;
203 uint16_t u16[2];
204 uint8_t u8[4];
205 } constant;
206
207 /* Floating-point modifiers, type/class permitting. If not
208 * allowed for the type/class, these are ignored. */
209 enum bifrost_outmod outmod;
210 bool src_abs[BIR_SRC_COUNT];
211 bool src_neg[BIR_SRC_COUNT];
212
213 /* Round mode (requires BI_ROUNDMODE) */
214 enum bifrost_roundmode roundmode;
215
216 /* Writemask (bit for each affected byte). This is quite restricted --
217 * ALU ops can only write to a single channel (exception: <32 in which
218 * you can write to 32/N contiguous aligned channels). Load/store can
219 * only write to all channels at once, in a sense. But it's still
220 * better to use this generic form than have synthetic ops flying
221 * about, since we're not essentially vector for RA purposes. */
222 uint16_t writemask;
223
224 /* Destination type. Usually the type of the instruction
225 * itself, but if sources and destination have different
226 * types, the type of the destination wins (so f2i would be
227 * int). Zero if there is no destination. Bitsize included */
228 nir_alu_type dest_type;
229
230 /* Source types if required by the class */
231 nir_alu_type src_types[BIR_SRC_COUNT];
232
233 /* If the source type is 8-bit or 16-bit such that SIMD is possible,
234 * and the class has BI_SWIZZLABLE, this is a swizzle in the usual
235 * sense. On non-SIMD instructions, it can be used for component
236 * selection, so we don't have to special case extraction. */
237 uint8_t swizzle[BIR_SRC_COUNT][NIR_MAX_VEC_COMPONENTS];
238
239 /* A class-specific op from which the actual opcode can be derived
240 * (along with the above information) */
241
242 union {
243 enum bi_minmax_op minmax;
244 enum bi_bitwise_op bitwise;
245 enum bi_round_op round;
246 enum bi_special_op special;
247 enum bi_cond compare;
248 } op;
249
250 /* Union for class-specific information */
251 union {
252 enum bifrost_minmax_mode minmax;
253 struct bi_load_vary load_vary;
254 struct bi_branch branch;
255
256 /* For CSEL, the comparison op. BI_COND_ALWAYS doesn't make
257 * sense here but you can always just use a move for that */
258 enum bi_cond csel_cond;
259
260 /* For BLEND -- the location 0-7 */
261 unsigned blend_location;
262
263 /* For STORE, STORE_VAR -- channel count */
264 unsigned store_channels;
265 };
266 } bi_instruction;
267
268 /* Scheduling takes place in two steps. Step 1 groups instructions within a
269 * block into distinct clauses (bi_clause). Step 2 schedules instructions
270 * within a clause into FMA/ADD pairs (bi_bundle).
271 *
272 * A bi_bundle contains two paired instruction pointers. If a slot is unfilled,
273 * leave it NULL; the emitter will fill in a nop.
274 */
275
276 typedef struct {
277 bi_instruction *fma;
278 bi_instruction *add;
279 } bi_bundle;
280
281 typedef struct {
282 struct list_head link;
283
284 /* A clause can have 8 instructions in bundled FMA/ADD sense, so there
285 * can be 8 bundles. But each bundle can have both an FMA and an ADD,
286 * so a clause can have up to 16 bi_instructions. Whether bundles or
287 * instructions are used depends on where in scheduling we are. */
288
289 unsigned instruction_count;
290 unsigned bundle_count;
291
292 union {
293 bi_instruction *instructions[16];
294 bi_bundle bundles[8];
295 };
296
297 /* For scoreboarding -- the clause ID (this is not globally unique!)
298 * and its dependencies in terms of other clauses, computed during
299 * scheduling and used when emitting code. Dependencies expressed as a
300 * bitfield matching the hardware, except shifted by a clause (the
301 * shift back to the ISA's off-by-one encoding is worked out when
302 * emitting clauses) */
303 unsigned scoreboard_id;
304 uint8_t dependencies;
305
306 /* Back-to-back corresponds directly to the back-to-back bit. Branch
307 * conditional corresponds to the branch conditional bit except that in
308 * the emitted code it's always set if back-to-bit is, whereas we use
309 * the actual value (without back-to-back so to speak) internally */
310 bool back_to_back;
311 bool branch_conditional;
312
313 /* Assigned data register */
314 unsigned data_register;
315
316 /* Corresponds to the usual bit but shifted by a clause */
317 bool data_register_write_barrier;
318
319 /* Constants read by this clause. ISA limit. */
320 uint64_t constants[8];
321 unsigned constant_count;
322
323 /* What type of high latency instruction is here, basically */
324 unsigned clause_type;
325 } bi_clause;
326
327 typedef struct bi_block {
328 pan_block base; /* must be first */
329
330 /* If true, uses clauses; if false, uses instructions */
331 bool scheduled;
332 struct list_head clauses; /* list of bi_clause */
333 } bi_block;
334
335 typedef struct {
336 nir_shader *nir;
337 gl_shader_stage stage;
338 struct list_head blocks; /* list of bi_block */
339 struct panfrost_sysvals sysvals;
340 uint32_t quirks;
341
342 /* During NIR->BIR */
343 nir_function_impl *impl;
344 bi_block *current_block;
345 unsigned block_name_count;
346 bi_block *after_block;
347 bi_block *break_block;
348 bi_block *continue_block;
349 bool emitted_atest;
350
351 /* For creating temporaries */
352 unsigned temp_alloc;
353
354 /* Analysis results */
355 bool has_liveness;
356
357 /* Stats for shader-db */
358 unsigned instruction_count;
359 unsigned loop_count;
360 } bi_context;
361
362 static inline bi_instruction *
363 bi_emit(bi_context *ctx, bi_instruction ins)
364 {
365 bi_instruction *u = rzalloc(ctx, bi_instruction);
366 memcpy(u, &ins, sizeof(ins));
367 list_addtail(&u->link, &ctx->current_block->base.instructions);
368 return u;
369 }
370
371 static inline bi_instruction *
372 bi_emit_before(bi_context *ctx, bi_instruction *tag, bi_instruction ins)
373 {
374 bi_instruction *u = rzalloc(ctx, bi_instruction);
375 memcpy(u, &ins, sizeof(ins));
376 list_addtail(&u->link, &tag->link);
377 return u;
378 }
379
380 static inline void
381 bi_remove_instruction(bi_instruction *ins)
382 {
383 list_del(&ins->link);
384 }
385
386 /* So we can distinguish between SSA/reg/sentinel quickly */
387 #define BIR_NO_ARG (0)
388 #define BIR_IS_REG (1)
389
390 /* If high bits are set, instead of SSA/registers, we have specials indexed by
391 * the low bits if necessary.
392 *
393 * Fixed register: do not allocate register, do not collect $200.
394 * Uniform: access a uniform register given by low bits.
395 * Constant: access the specified constant (specifies a bit offset / shift)
396 * Zero: special cased to avoid wasting a constant
397 * Passthrough: a bifrost_packed_src to passthrough T/T0/T1
398 */
399
400 #define BIR_INDEX_REGISTER (1 << 31)
401 #define BIR_INDEX_UNIFORM (1 << 30)
402 #define BIR_INDEX_CONSTANT (1 << 29)
403 #define BIR_INDEX_ZERO (1 << 28)
404 #define BIR_INDEX_PASS (1 << 27)
405
406 /* Keep me synced please so we can check src & BIR_SPECIAL */
407
408 #define BIR_SPECIAL ((BIR_INDEX_REGISTER | BIR_INDEX_UNIFORM) | \
409 (BIR_INDEX_CONSTANT | BIR_INDEX_ZERO | BIR_INDEX_PASS))
410
411 static inline unsigned
412 bi_max_temp(bi_context *ctx)
413 {
414 unsigned alloc = MAX2(ctx->impl->reg_alloc, ctx->impl->ssa_alloc);
415 return ((alloc + 2 + ctx->temp_alloc) << 1);
416 }
417
418 static inline unsigned
419 bi_make_temp(bi_context *ctx)
420 {
421 return (ctx->impl->ssa_alloc + 1 + ctx->temp_alloc++) << 1;
422 }
423
424 static inline unsigned
425 bi_make_temp_reg(bi_context *ctx)
426 {
427 return ((ctx->impl->reg_alloc + ctx->temp_alloc++) << 1) | BIR_IS_REG;
428 }
429
430 static inline unsigned
431 bir_ssa_index(nir_ssa_def *ssa)
432 {
433 /* Off-by-one ensures BIR_NO_ARG is skipped */
434 return ((ssa->index + 1) << 1) | 0;
435 }
436
437 static inline unsigned
438 bir_src_index(nir_src *src)
439 {
440 if (src->is_ssa)
441 return bir_ssa_index(src->ssa);
442 else {
443 assert(!src->reg.indirect);
444 return (src->reg.reg->index << 1) | BIR_IS_REG;
445 }
446 }
447
448 static inline unsigned
449 bir_dest_index(nir_dest *dst)
450 {
451 if (dst->is_ssa)
452 return bir_ssa_index(&dst->ssa);
453 else {
454 assert(!dst->reg.indirect);
455 return (dst->reg.reg->index << 1) | BIR_IS_REG;
456 }
457 }
458
459 /* Iterators for Bifrost IR */
460
461 #define bi_foreach_block(ctx, v) \
462 list_for_each_entry(pan_block, v, &ctx->blocks, link)
463
464 #define bi_foreach_block_from(ctx, from, v) \
465 list_for_each_entry_from(pan_block, v, from, &ctx->blocks, link)
466
467 #define bi_foreach_instr_in_block(block, v) \
468 list_for_each_entry(bi_instruction, v, &(block)->base.instructions, link)
469
470 #define bi_foreach_instr_in_block_rev(block, v) \
471 list_for_each_entry_rev(bi_instruction, v, &(block)->base.instructions, link)
472
473 #define bi_foreach_instr_in_block_safe(block, v) \
474 list_for_each_entry_safe(bi_instruction, v, &(block)->base.instructions, link)
475
476 #define bi_foreach_instr_in_block_safe_rev(block, v) \
477 list_for_each_entry_safe_rev(bi_instruction, v, &(block)->base.instructions, link)
478
479 #define bi_foreach_instr_in_block_from(block, v, from) \
480 list_for_each_entry_from(bi_instruction, v, from, &(block)->base.instructions, link)
481
482 #define bi_foreach_instr_in_block_from_rev(block, v, from) \
483 list_for_each_entry_from_rev(bi_instruction, v, from, &(block)->base.instructions, link)
484
485 #define bi_foreach_clause_in_block(block, v) \
486 list_for_each_entry(bi_clause, v, &(block)->clauses, link)
487
488 #define bi_foreach_instr_global(ctx, v) \
489 bi_foreach_block(ctx, v_block) \
490 bi_foreach_instr_in_block((bi_block *) v_block, v)
491
492 #define bi_foreach_instr_global_safe(ctx, v) \
493 bi_foreach_block(ctx, v_block) \
494 bi_foreach_instr_in_block_safe((bi_block *) v_block, v)
495
496 /* Based on set_foreach, expanded with automatic type casts */
497
498 #define bi_foreach_predecessor(blk, v) \
499 struct set_entry *_entry_##v; \
500 bi_block *v; \
501 for (_entry_##v = _mesa_set_next_entry(blk->base.predecessors, NULL), \
502 v = (bi_block *) (_entry_##v ? _entry_##v->key : NULL); \
503 _entry_##v != NULL; \
504 _entry_##v = _mesa_set_next_entry(blk->base.predecessors, _entry_##v), \
505 v = (bi_block *) (_entry_##v ? _entry_##v->key : NULL))
506
507 #define bi_foreach_src(ins, v) \
508 for (unsigned v = 0; v < ARRAY_SIZE(ins->src); ++v)
509
510 static inline bi_instruction *
511 bi_prev_op(bi_instruction *ins)
512 {
513 return list_last_entry(&(ins->link), bi_instruction, link);
514 }
515
516 static inline bi_instruction *
517 bi_next_op(bi_instruction *ins)
518 {
519 return list_first_entry(&(ins->link), bi_instruction, link);
520 }
521
522 static inline pan_block *
523 pan_next_block(pan_block *block)
524 {
525 return list_first_entry(&(block->link), pan_block, link);
526 }
527
528 /* BIR manipulation */
529
530 bool bi_has_outmod(bi_instruction *ins);
531 bool bi_has_source_mods(bi_instruction *ins);
532 bool bi_is_src_swizzled(bi_instruction *ins, unsigned s);
533 bool bi_has_arg(bi_instruction *ins, unsigned arg);
534 uint16_t bi_from_bytemask(uint16_t bytemask, unsigned bytes);
535 unsigned bi_get_component_count(bi_instruction *ins, unsigned s);
536 unsigned bi_load32_components(bi_instruction *ins);
537 uint16_t bi_bytemask_of_read_components(bi_instruction *ins, unsigned node);
538 uint64_t bi_get_immediate(bi_instruction *ins, unsigned index);
539 bool bi_writes_component(bi_instruction *ins, unsigned comp);
540
541 /* BIR passes */
542
543 void bi_lower_combine(bi_context *ctx, bi_block *block);
544 bool bi_opt_dead_code_eliminate(bi_context *ctx, bi_block *block);
545 void bi_schedule(bi_context *ctx);
546 void bi_register_allocate(bi_context *ctx);
547
548 /* Liveness */
549
550 void bi_compute_liveness(bi_context *ctx);
551 void bi_liveness_ins_update(uint16_t *live, bi_instruction *ins, unsigned max);
552 void bi_invalidate_liveness(bi_context *ctx);
553 bool bi_is_live_after(bi_context *ctx, bi_block *block, bi_instruction *start, int src);
554
555 /* Code emit */
556
557 void bi_pack(bi_context *ctx, struct util_dynarray *emission);
558
559 #endif