pan/bi: Add BI_TABLE for fast table accesses
[mesa.git] / src / panfrost / bifrost / compiler.h
1 /*
2 * Copyright (C) 2020 Collabora Ltd.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors (Collabora):
24 * Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
25 */
26
27 #ifndef __BIFROST_COMPILER_H
28 #define __BIFROST_COMPILER_H
29
30 #include "bifrost.h"
31 #include "compiler/nir/nir.h"
32 #include "panfrost/util/pan_ir.h"
33
34 /* Bifrost opcodes are tricky -- the same op may exist on both FMA and
35 * ADD with two completely different opcodes, and opcodes can be varying
36 * length in some cases. Then we have different opcodes for int vs float
37 * and then sometimes even for different typesizes. Further, virtually
38 * every op has a number of flags which depend on the op. In constrast
39 * to Midgard where you have a strict ALU/LDST/TEX division and within
40 * ALU you have strict int/float and that's it... here it's a *lot* more
41 * involved. As such, we use something much higher level for our IR,
42 * encoding "classes" of operations, letting the opcode details get
43 * sorted out at emit time.
44 *
45 * Please keep this list alphabetized. Please use a dictionary if you
46 * don't know how to do that.
47 */
48
49 enum bi_class {
50 BI_ADD,
51 BI_ATEST,
52 BI_BRANCH,
53 BI_CMP,
54 BI_BLEND,
55 BI_BITWISE,
56 BI_COMBINE,
57 BI_CONVERT,
58 BI_CSEL,
59 BI_DISCARD,
60 BI_FMA,
61 BI_FMOV,
62 BI_FREXP,
63 BI_ISUB,
64 BI_LOAD,
65 BI_LOAD_UNIFORM,
66 BI_LOAD_ATTR,
67 BI_LOAD_VAR,
68 BI_LOAD_VAR_ADDRESS,
69 BI_MINMAX,
70 BI_MOV,
71 BI_SHIFT,
72 BI_STORE,
73 BI_STORE_VAR,
74 BI_SPECIAL, /* _FAST on supported GPUs */
75 BI_SWIZZLE,
76 BI_TABLE,
77 BI_TEX,
78 BI_ROUND,
79 BI_NUM_CLASSES
80 };
81
82 /* Properties of a class... */
83 extern unsigned bi_class_props[BI_NUM_CLASSES];
84
85 /* abs/neg/outmod valid for a float op */
86 #define BI_MODS (1 << 0)
87
88 /* Generic enough that little class-specific information is required. In other
89 * words, it acts as a "normal" ALU op, even if the encoding ends up being
90 * irregular enough to warrant a separate class */
91 #define BI_GENERIC (1 << 1)
92
93 /* Accepts a bifrost_roundmode */
94 #define BI_ROUNDMODE (1 << 2)
95
96 /* Can be scheduled to FMA */
97 #define BI_SCHED_FMA (1 << 3)
98
99 /* Can be scheduled to ADD */
100 #define BI_SCHED_ADD (1 << 4)
101
102 /* Most ALU ops can do either, actually */
103 #define BI_SCHED_ALL (BI_SCHED_FMA | BI_SCHED_ADD)
104
105 /* Along with setting BI_SCHED_ADD, eats up the entire cycle, so FMA must be
106 * nopped out. Used for _FAST operations. */
107 #define BI_SCHED_SLOW (1 << 5)
108
109 /* Swizzling allowed for the 8/16-bit source */
110 #define BI_SWIZZLABLE (1 << 6)
111
112 /* For scheduling purposes this is a high latency instruction and must be at
113 * the end of a clause. Implies ADD */
114 #define BI_SCHED_HI_LATENCY (1 << 7)
115
116 /* Intrinsic is vectorized and should read 4 components in the first source
117 * regardless of writemask */
118 #define BI_VECTOR (1 << 8)
119
120 /* Use a data register for src0/dest respectively, bypassing the usual
121 * register accessor. Mutually exclusive. */
122 #define BI_DATA_REG_SRC (1 << 9)
123 #define BI_DATA_REG_DEST (1 << 10)
124
125 /* Quirk: cannot encode multiple abs on FMA in fp16 mode */
126 #define BI_NO_ABS_ABS_FP16_FMA (1 << 11)
127
128 /* It can't get any worse than csel4... can it? */
129 #define BIR_SRC_COUNT 4
130
131 /* BI_LD_VARY */
132 struct bi_load_vary {
133 enum bifrost_interp_mode interp_mode;
134 bool reuse;
135 bool flat;
136 };
137
138 /* BI_BRANCH encoding the details of the branch itself as well as a pointer to
139 * the target. We forward declare bi_block since this is mildly circular (not
140 * strictly, but this order of the file makes more sense I think)
141 *
142 * We define our own enum of conditions since the conditions in the hardware
143 * packed in crazy ways that would make manipulation unweildly (meaning changes
144 * based on port swapping, etc), so we defer dealing with that until emit time.
145 * Likewise, we expose NIR types instead of the crazy branch types, although
146 * the restrictions do eventually apply of course. */
147
148 struct bi_block;
149
150 enum bi_cond {
151 BI_COND_ALWAYS,
152 BI_COND_LT,
153 BI_COND_LE,
154 BI_COND_GE,
155 BI_COND_GT,
156 BI_COND_EQ,
157 BI_COND_NE,
158 };
159
160 struct bi_branch {
161 /* Types are specified in src_types and must be compatible (either both
162 * int, or both float, 16/32, and same size or 32/16 if float. Types
163 * ignored if BI_COND_ALWAYS is set for an unconditional branch. */
164
165 enum bi_cond cond;
166 struct bi_block *target;
167 };
168
169 /* Opcodes within a class */
170 enum bi_minmax_op {
171 BI_MINMAX_MIN,
172 BI_MINMAX_MAX
173 };
174
175 enum bi_bitwise_op {
176 BI_BITWISE_AND,
177 BI_BITWISE_OR,
178 BI_BITWISE_XOR
179 };
180
181 enum bi_round_op {
182 BI_ROUND_MODE, /* use round mode */
183 BI_ROUND_ROUND /* i.e.: fround() */
184 };
185
186 enum bi_table_op {
187 /* fp32 log2() with low precision, suitable for GL or half_log2() in
188 * CL. In the first argument, takes x. Letting u be such that x =
189 * 2^{-m} u with m integer and 0.75 <= u < 1.5, returns
190 * log2(u) / (u - 1). */
191
192 BI_TABLE_LOG2_U_OVER_U_1_LOW,
193 };
194
195 enum bi_special_op {
196 BI_SPECIAL_FRCP,
197 BI_SPECIAL_FRSQ,
198 };
199
200 typedef struct {
201 struct list_head link; /* Must be first */
202 enum bi_class type;
203
204 /* Indices, see bir_ssa_index etc. Note zero is special cased
205 * to "no argument" */
206 unsigned dest;
207 unsigned src[BIR_SRC_COUNT];
208
209 /* If one of the sources has BIR_INDEX_CONSTANT */
210 union {
211 uint64_t u64;
212 uint32_t u32;
213 uint16_t u16[2];
214 uint8_t u8[4];
215 } constant;
216
217 /* Floating-point modifiers, type/class permitting. If not
218 * allowed for the type/class, these are ignored. */
219 enum bifrost_outmod outmod;
220 bool src_abs[BIR_SRC_COUNT];
221 bool src_neg[BIR_SRC_COUNT];
222
223 /* Round mode (requires BI_ROUNDMODE) */
224 enum bifrost_roundmode roundmode;
225
226 /* Writemask (bit for each affected byte). This is quite restricted --
227 * ALU ops can only write to a single channel (exception: <32 in which
228 * you can write to 32/N contiguous aligned channels). Load/store can
229 * only write to all channels at once, in a sense. But it's still
230 * better to use this generic form than have synthetic ops flying
231 * about, since we're not essentially vector for RA purposes. */
232 uint16_t writemask;
233
234 /* Destination type. Usually the type of the instruction
235 * itself, but if sources and destination have different
236 * types, the type of the destination wins (so f2i would be
237 * int). Zero if there is no destination. Bitsize included */
238 nir_alu_type dest_type;
239
240 /* Source types if required by the class */
241 nir_alu_type src_types[BIR_SRC_COUNT];
242
243 /* If the source type is 8-bit or 16-bit such that SIMD is possible,
244 * and the class has BI_SWIZZLABLE, this is a swizzle in the usual
245 * sense. On non-SIMD instructions, it can be used for component
246 * selection, so we don't have to special case extraction. */
247 uint8_t swizzle[BIR_SRC_COUNT][NIR_MAX_VEC_COMPONENTS];
248
249 /* A class-specific op from which the actual opcode can be derived
250 * (along with the above information) */
251
252 union {
253 enum bi_minmax_op minmax;
254 enum bi_bitwise_op bitwise;
255 enum bi_round_op round;
256 enum bi_special_op special;
257 enum bi_table_op table;
258 enum bi_cond compare;
259 } op;
260
261 /* Union for class-specific information */
262 union {
263 enum bifrost_minmax_mode minmax;
264 struct bi_load_vary load_vary;
265 struct bi_branch branch;
266
267 /* For CSEL, the comparison op. BI_COND_ALWAYS doesn't make
268 * sense here but you can always just use a move for that */
269 enum bi_cond csel_cond;
270
271 /* For BLEND -- the location 0-7 */
272 unsigned blend_location;
273
274 /* For STORE, STORE_VAR -- channel count */
275 unsigned store_channels;
276 };
277 } bi_instruction;
278
279 /* Scheduling takes place in two steps. Step 1 groups instructions within a
280 * block into distinct clauses (bi_clause). Step 2 schedules instructions
281 * within a clause into FMA/ADD pairs (bi_bundle).
282 *
283 * A bi_bundle contains two paired instruction pointers. If a slot is unfilled,
284 * leave it NULL; the emitter will fill in a nop.
285 */
286
287 typedef struct {
288 bi_instruction *fma;
289 bi_instruction *add;
290 } bi_bundle;
291
292 typedef struct {
293 struct list_head link;
294
295 /* A clause can have 8 instructions in bundled FMA/ADD sense, so there
296 * can be 8 bundles. But each bundle can have both an FMA and an ADD,
297 * so a clause can have up to 16 bi_instructions. Whether bundles or
298 * instructions are used depends on where in scheduling we are. */
299
300 unsigned instruction_count;
301 unsigned bundle_count;
302
303 union {
304 bi_instruction *instructions[16];
305 bi_bundle bundles[8];
306 };
307
308 /* For scoreboarding -- the clause ID (this is not globally unique!)
309 * and its dependencies in terms of other clauses, computed during
310 * scheduling and used when emitting code. Dependencies expressed as a
311 * bitfield matching the hardware, except shifted by a clause (the
312 * shift back to the ISA's off-by-one encoding is worked out when
313 * emitting clauses) */
314 unsigned scoreboard_id;
315 uint8_t dependencies;
316
317 /* Back-to-back corresponds directly to the back-to-back bit. Branch
318 * conditional corresponds to the branch conditional bit except that in
319 * the emitted code it's always set if back-to-bit is, whereas we use
320 * the actual value (without back-to-back so to speak) internally */
321 bool back_to_back;
322 bool branch_conditional;
323
324 /* Assigned data register */
325 unsigned data_register;
326
327 /* Corresponds to the usual bit but shifted by a clause */
328 bool data_register_write_barrier;
329
330 /* Constants read by this clause. ISA limit. */
331 uint64_t constants[8];
332 unsigned constant_count;
333
334 /* What type of high latency instruction is here, basically */
335 unsigned clause_type;
336 } bi_clause;
337
338 typedef struct bi_block {
339 pan_block base; /* must be first */
340
341 /* If true, uses clauses; if false, uses instructions */
342 bool scheduled;
343 struct list_head clauses; /* list of bi_clause */
344 } bi_block;
345
346 typedef struct {
347 nir_shader *nir;
348 gl_shader_stage stage;
349 struct list_head blocks; /* list of bi_block */
350 struct panfrost_sysvals sysvals;
351 uint32_t quirks;
352
353 /* During NIR->BIR */
354 nir_function_impl *impl;
355 bi_block *current_block;
356 unsigned block_name_count;
357 bi_block *after_block;
358 bi_block *break_block;
359 bi_block *continue_block;
360 bool emitted_atest;
361
362 /* For creating temporaries */
363 unsigned temp_alloc;
364
365 /* Analysis results */
366 bool has_liveness;
367
368 /* Stats for shader-db */
369 unsigned instruction_count;
370 unsigned loop_count;
371 } bi_context;
372
373 static inline bi_instruction *
374 bi_emit(bi_context *ctx, bi_instruction ins)
375 {
376 bi_instruction *u = rzalloc(ctx, bi_instruction);
377 memcpy(u, &ins, sizeof(ins));
378 list_addtail(&u->link, &ctx->current_block->base.instructions);
379 return u;
380 }
381
382 static inline bi_instruction *
383 bi_emit_before(bi_context *ctx, bi_instruction *tag, bi_instruction ins)
384 {
385 bi_instruction *u = rzalloc(ctx, bi_instruction);
386 memcpy(u, &ins, sizeof(ins));
387 list_addtail(&u->link, &tag->link);
388 return u;
389 }
390
391 static inline void
392 bi_remove_instruction(bi_instruction *ins)
393 {
394 list_del(&ins->link);
395 }
396
397 /* So we can distinguish between SSA/reg/sentinel quickly */
398 #define BIR_NO_ARG (0)
399 #define BIR_IS_REG (1)
400
401 /* If high bits are set, instead of SSA/registers, we have specials indexed by
402 * the low bits if necessary.
403 *
404 * Fixed register: do not allocate register, do not collect $200.
405 * Uniform: access a uniform register given by low bits.
406 * Constant: access the specified constant (specifies a bit offset / shift)
407 * Zero: special cased to avoid wasting a constant
408 * Passthrough: a bifrost_packed_src to passthrough T/T0/T1
409 */
410
411 #define BIR_INDEX_REGISTER (1 << 31)
412 #define BIR_INDEX_UNIFORM (1 << 30)
413 #define BIR_INDEX_CONSTANT (1 << 29)
414 #define BIR_INDEX_ZERO (1 << 28)
415 #define BIR_INDEX_PASS (1 << 27)
416
417 /* Keep me synced please so we can check src & BIR_SPECIAL */
418
419 #define BIR_SPECIAL ((BIR_INDEX_REGISTER | BIR_INDEX_UNIFORM) | \
420 (BIR_INDEX_CONSTANT | BIR_INDEX_ZERO | BIR_INDEX_PASS))
421
422 static inline unsigned
423 bi_max_temp(bi_context *ctx)
424 {
425 unsigned alloc = MAX2(ctx->impl->reg_alloc, ctx->impl->ssa_alloc);
426 return ((alloc + 2 + ctx->temp_alloc) << 1);
427 }
428
429 static inline unsigned
430 bi_make_temp(bi_context *ctx)
431 {
432 return (ctx->impl->ssa_alloc + 1 + ctx->temp_alloc++) << 1;
433 }
434
435 static inline unsigned
436 bi_make_temp_reg(bi_context *ctx)
437 {
438 return ((ctx->impl->reg_alloc + ctx->temp_alloc++) << 1) | BIR_IS_REG;
439 }
440
441 static inline unsigned
442 bir_ssa_index(nir_ssa_def *ssa)
443 {
444 /* Off-by-one ensures BIR_NO_ARG is skipped */
445 return ((ssa->index + 1) << 1) | 0;
446 }
447
448 static inline unsigned
449 bir_src_index(nir_src *src)
450 {
451 if (src->is_ssa)
452 return bir_ssa_index(src->ssa);
453 else {
454 assert(!src->reg.indirect);
455 return (src->reg.reg->index << 1) | BIR_IS_REG;
456 }
457 }
458
459 static inline unsigned
460 bir_dest_index(nir_dest *dst)
461 {
462 if (dst->is_ssa)
463 return bir_ssa_index(&dst->ssa);
464 else {
465 assert(!dst->reg.indirect);
466 return (dst->reg.reg->index << 1) | BIR_IS_REG;
467 }
468 }
469
470 /* Iterators for Bifrost IR */
471
472 #define bi_foreach_block(ctx, v) \
473 list_for_each_entry(pan_block, v, &ctx->blocks, link)
474
475 #define bi_foreach_block_from(ctx, from, v) \
476 list_for_each_entry_from(pan_block, v, from, &ctx->blocks, link)
477
478 #define bi_foreach_instr_in_block(block, v) \
479 list_for_each_entry(bi_instruction, v, &(block)->base.instructions, link)
480
481 #define bi_foreach_instr_in_block_rev(block, v) \
482 list_for_each_entry_rev(bi_instruction, v, &(block)->base.instructions, link)
483
484 #define bi_foreach_instr_in_block_safe(block, v) \
485 list_for_each_entry_safe(bi_instruction, v, &(block)->base.instructions, link)
486
487 #define bi_foreach_instr_in_block_safe_rev(block, v) \
488 list_for_each_entry_safe_rev(bi_instruction, v, &(block)->base.instructions, link)
489
490 #define bi_foreach_instr_in_block_from(block, v, from) \
491 list_for_each_entry_from(bi_instruction, v, from, &(block)->base.instructions, link)
492
493 #define bi_foreach_instr_in_block_from_rev(block, v, from) \
494 list_for_each_entry_from_rev(bi_instruction, v, from, &(block)->base.instructions, link)
495
496 #define bi_foreach_clause_in_block(block, v) \
497 list_for_each_entry(bi_clause, v, &(block)->clauses, link)
498
499 #define bi_foreach_instr_global(ctx, v) \
500 bi_foreach_block(ctx, v_block) \
501 bi_foreach_instr_in_block((bi_block *) v_block, v)
502
503 #define bi_foreach_instr_global_safe(ctx, v) \
504 bi_foreach_block(ctx, v_block) \
505 bi_foreach_instr_in_block_safe((bi_block *) v_block, v)
506
507 /* Based on set_foreach, expanded with automatic type casts */
508
509 #define bi_foreach_predecessor(blk, v) \
510 struct set_entry *_entry_##v; \
511 bi_block *v; \
512 for (_entry_##v = _mesa_set_next_entry(blk->base.predecessors, NULL), \
513 v = (bi_block *) (_entry_##v ? _entry_##v->key : NULL); \
514 _entry_##v != NULL; \
515 _entry_##v = _mesa_set_next_entry(blk->base.predecessors, _entry_##v), \
516 v = (bi_block *) (_entry_##v ? _entry_##v->key : NULL))
517
518 #define bi_foreach_src(ins, v) \
519 for (unsigned v = 0; v < ARRAY_SIZE(ins->src); ++v)
520
521 static inline bi_instruction *
522 bi_prev_op(bi_instruction *ins)
523 {
524 return list_last_entry(&(ins->link), bi_instruction, link);
525 }
526
527 static inline bi_instruction *
528 bi_next_op(bi_instruction *ins)
529 {
530 return list_first_entry(&(ins->link), bi_instruction, link);
531 }
532
533 static inline pan_block *
534 pan_next_block(pan_block *block)
535 {
536 return list_first_entry(&(block->link), pan_block, link);
537 }
538
539 /* BIR manipulation */
540
541 bool bi_has_outmod(bi_instruction *ins);
542 bool bi_has_source_mods(bi_instruction *ins);
543 bool bi_is_src_swizzled(bi_instruction *ins, unsigned s);
544 bool bi_has_arg(bi_instruction *ins, unsigned arg);
545 uint16_t bi_from_bytemask(uint16_t bytemask, unsigned bytes);
546 unsigned bi_get_component_count(bi_instruction *ins, unsigned s);
547 unsigned bi_load32_components(bi_instruction *ins);
548 uint16_t bi_bytemask_of_read_components(bi_instruction *ins, unsigned node);
549 uint64_t bi_get_immediate(bi_instruction *ins, unsigned index);
550 bool bi_writes_component(bi_instruction *ins, unsigned comp);
551
552 /* BIR passes */
553
554 void bi_lower_combine(bi_context *ctx, bi_block *block);
555 bool bi_opt_dead_code_eliminate(bi_context *ctx, bi_block *block);
556 void bi_schedule(bi_context *ctx);
557 void bi_register_allocate(bi_context *ctx);
558
559 /* Liveness */
560
561 void bi_compute_liveness(bi_context *ctx);
562 void bi_liveness_ins_update(uint16_t *live, bi_instruction *ins, unsigned max);
563 void bi_invalidate_liveness(bi_context *ctx);
564 bool bi_is_live_after(bi_context *ctx, bi_block *block, bi_instruction *start, int src);
565
566 /* Code emit */
567
568 void bi_pack(bi_context *ctx, struct util_dynarray *emission);
569
570 #endif