pan/bi: Eliminate writemasks in the IR
[mesa.git] / src / panfrost / bifrost / compiler.h
1 /*
2 * Copyright (C) 2020 Collabora Ltd.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors (Collabora):
24 * Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
25 */
26
27 #ifndef __BIFROST_COMPILER_H
28 #define __BIFROST_COMPILER_H
29
30 #include "bifrost.h"
31 #include "compiler/nir/nir.h"
32 #include "panfrost/util/pan_ir.h"
33
34 /* Bifrost opcodes are tricky -- the same op may exist on both FMA and
35 * ADD with two completely different opcodes, and opcodes can be varying
36 * length in some cases. Then we have different opcodes for int vs float
37 * and then sometimes even for different typesizes. Further, virtually
38 * every op has a number of flags which depend on the op. In constrast
39 * to Midgard where you have a strict ALU/LDST/TEX division and within
40 * ALU you have strict int/float and that's it... here it's a *lot* more
41 * involved. As such, we use something much higher level for our IR,
42 * encoding "classes" of operations, letting the opcode details get
43 * sorted out at emit time.
44 *
45 * Please keep this list alphabetized. Please use a dictionary if you
46 * don't know how to do that.
47 */
48
49 enum bi_class {
50 BI_ADD,
51 BI_ATEST,
52 BI_BRANCH,
53 BI_CMP,
54 BI_BLEND,
55 BI_BITWISE,
56 BI_COMBINE,
57 BI_CONVERT,
58 BI_CSEL,
59 BI_DISCARD,
60 BI_FMA,
61 BI_FMOV,
62 BI_FREXP,
63 BI_ISUB,
64 BI_LOAD,
65 BI_LOAD_UNIFORM,
66 BI_LOAD_ATTR,
67 BI_LOAD_VAR,
68 BI_LOAD_VAR_ADDRESS,
69 BI_MINMAX,
70 BI_MOV,
71 BI_REDUCE_FMA,
72 BI_SHIFT,
73 BI_STORE,
74 BI_STORE_VAR,
75 BI_SPECIAL, /* _FAST on supported GPUs */
76 BI_SWIZZLE,
77 BI_TABLE,
78 BI_TEX,
79 BI_ROUND,
80 BI_NUM_CLASSES
81 };
82
83 /* Properties of a class... */
84 extern unsigned bi_class_props[BI_NUM_CLASSES];
85
86 /* abs/neg/outmod valid for a float op */
87 #define BI_MODS (1 << 0)
88
89 /* Generic enough that little class-specific information is required. In other
90 * words, it acts as a "normal" ALU op, even if the encoding ends up being
91 * irregular enough to warrant a separate class */
92 #define BI_GENERIC (1 << 1)
93
94 /* Accepts a bifrost_roundmode */
95 #define BI_ROUNDMODE (1 << 2)
96
97 /* Can be scheduled to FMA */
98 #define BI_SCHED_FMA (1 << 3)
99
100 /* Can be scheduled to ADD */
101 #define BI_SCHED_ADD (1 << 4)
102
103 /* Most ALU ops can do either, actually */
104 #define BI_SCHED_ALL (BI_SCHED_FMA | BI_SCHED_ADD)
105
106 /* Along with setting BI_SCHED_ADD, eats up the entire cycle, so FMA must be
107 * nopped out. Used for _FAST operations. */
108 #define BI_SCHED_SLOW (1 << 5)
109
110 /* Swizzling allowed for the 8/16-bit source */
111 #define BI_SWIZZLABLE (1 << 6)
112
113 /* For scheduling purposes this is a high latency instruction and must be at
114 * the end of a clause. Implies ADD */
115 #define BI_SCHED_HI_LATENCY (1 << 7)
116
117 /* Intrinsic is vectorized and acts with `vector_channels` components */
118 #define BI_VECTOR (1 << 8)
119
120 /* Use a data register for src0/dest respectively, bypassing the usual
121 * register accessor. Mutually exclusive. */
122 #define BI_DATA_REG_SRC (1 << 9)
123 #define BI_DATA_REG_DEST (1 << 10)
124
125 /* Quirk: cannot encode multiple abs on FMA in fp16 mode */
126 #define BI_NO_ABS_ABS_FP16_FMA (1 << 11)
127
128 /* It can't get any worse than csel4... can it? */
129 #define BIR_SRC_COUNT 4
130
131 /* BI_LD_VARY */
132 struct bi_load_vary {
133 enum bifrost_interp_mode interp_mode;
134 bool reuse;
135 bool flat;
136 };
137
138 /* BI_BRANCH encoding the details of the branch itself as well as a pointer to
139 * the target. We forward declare bi_block since this is mildly circular (not
140 * strictly, but this order of the file makes more sense I think)
141 *
142 * We define our own enum of conditions since the conditions in the hardware
143 * packed in crazy ways that would make manipulation unweildly (meaning changes
144 * based on port swapping, etc), so we defer dealing with that until emit time.
145 * Likewise, we expose NIR types instead of the crazy branch types, although
146 * the restrictions do eventually apply of course. */
147
148 struct bi_block;
149
150 enum bi_cond {
151 BI_COND_ALWAYS,
152 BI_COND_LT,
153 BI_COND_LE,
154 BI_COND_GE,
155 BI_COND_GT,
156 BI_COND_EQ,
157 BI_COND_NE,
158 };
159
160 struct bi_branch {
161 /* Types are specified in src_types and must be compatible (either both
162 * int, or both float, 16/32, and same size or 32/16 if float. Types
163 * ignored if BI_COND_ALWAYS is set for an unconditional branch. */
164
165 enum bi_cond cond;
166 struct bi_block *target;
167 };
168
169 /* Opcodes within a class */
170 enum bi_minmax_op {
171 BI_MINMAX_MIN,
172 BI_MINMAX_MAX
173 };
174
175 enum bi_bitwise_op {
176 BI_BITWISE_AND,
177 BI_BITWISE_OR,
178 BI_BITWISE_XOR
179 };
180
181 enum bi_round_op {
182 BI_ROUND_MODE, /* use round mode */
183 BI_ROUND_ROUND /* i.e.: fround() */
184 };
185
186 enum bi_table_op {
187 /* fp32 log2() with low precision, suitable for GL or half_log2() in
188 * CL. In the first argument, takes x. Letting u be such that x =
189 * 2^{-m} u with m integer and 0.75 <= u < 1.5, returns
190 * log2(u) / (u - 1). */
191
192 BI_TABLE_LOG2_U_OVER_U_1_LOW,
193 };
194
195 enum bi_reduce_op {
196 /* Takes two fp32 arguments and returns x + frexp(y). Used in
197 * low-precision log2 argument reduction on newer models. */
198
199 BI_REDUCE_ADD_FREXPM,
200 };
201
202 enum bi_frexp_op {
203 BI_FREXPE_LOG,
204 };
205
206 enum bi_special_op {
207 BI_SPECIAL_FRCP,
208 BI_SPECIAL_FRSQ,
209
210 /* fp32 exp2() with low precision, suitable for half_exp2() in CL or
211 * exp2() in GL. In the first argument, it takes f2i_rte(x * 2^24). In
212 * the second, it takes x itself. */
213 BI_SPECIAL_EXP2_LOW,
214 };
215
216 enum bi_tex_op {
217 BI_TEX_NORMAL,
218 BI_TEX_COMPACT,
219 BI_TEX_DUAL
220 };
221
222 typedef struct {
223 struct list_head link; /* Must be first */
224 enum bi_class type;
225
226 /* Indices, see bir_ssa_index etc. Note zero is special cased
227 * to "no argument" */
228 unsigned dest;
229 unsigned src[BIR_SRC_COUNT];
230
231 /* 32-bit word offset for destination, added to the register number in
232 * RA when lowering combines */
233 unsigned dest_offset;
234
235 /* If one of the sources has BIR_INDEX_CONSTANT */
236 union {
237 uint64_t u64;
238 uint32_t u32;
239 uint16_t u16[2];
240 uint8_t u8[4];
241 } constant;
242
243 /* Floating-point modifiers, type/class permitting. If not
244 * allowed for the type/class, these are ignored. */
245 enum bifrost_outmod outmod;
246 bool src_abs[BIR_SRC_COUNT];
247 bool src_neg[BIR_SRC_COUNT];
248
249 /* Round mode (requires BI_ROUNDMODE) */
250 enum bifrost_roundmode roundmode;
251
252 /* Destination type. Usually the type of the instruction
253 * itself, but if sources and destination have different
254 * types, the type of the destination wins (so f2i would be
255 * int). Zero if there is no destination. Bitsize included */
256 nir_alu_type dest_type;
257
258 /* Source types if required by the class */
259 nir_alu_type src_types[BIR_SRC_COUNT];
260
261 /* If the source type is 8-bit or 16-bit such that SIMD is possible,
262 * and the class has BI_SWIZZLABLE, this is a swizzle in the usual
263 * sense. On non-SIMD instructions, it can be used for component
264 * selection, so we don't have to special case extraction. */
265 uint8_t swizzle[BIR_SRC_COUNT][NIR_MAX_VEC_COMPONENTS];
266
267 /* For VECTOR ops, how many channels are written? */
268 unsigned vector_channels;
269
270 /* A class-specific op from which the actual opcode can be derived
271 * (along with the above information) */
272
273 union {
274 enum bi_minmax_op minmax;
275 enum bi_bitwise_op bitwise;
276 enum bi_round_op round;
277 enum bi_special_op special;
278 enum bi_reduce_op reduce;
279 enum bi_table_op table;
280 enum bi_frexp_op frexp;
281 enum bi_cond compare;
282 enum bi_tex_op texture;
283
284 /* For FMA/ADD, should we add a biased exponent? */
285 bool mscale;
286 } op;
287
288 /* Union for class-specific information */
289 union {
290 enum bifrost_minmax_mode minmax;
291 struct bi_load_vary load_vary;
292 struct bi_branch branch;
293
294 /* For CSEL, the comparison op. BI_COND_ALWAYS doesn't make
295 * sense here but you can always just use a move for that */
296 enum bi_cond csel_cond;
297
298 /* For BLEND -- the location 0-7 */
299 unsigned blend_location;
300 };
301 } bi_instruction;
302
303 /* Scheduling takes place in two steps. Step 1 groups instructions within a
304 * block into distinct clauses (bi_clause). Step 2 schedules instructions
305 * within a clause into FMA/ADD pairs (bi_bundle).
306 *
307 * A bi_bundle contains two paired instruction pointers. If a slot is unfilled,
308 * leave it NULL; the emitter will fill in a nop.
309 */
310
311 typedef struct {
312 bi_instruction *fma;
313 bi_instruction *add;
314 } bi_bundle;
315
316 typedef struct {
317 struct list_head link;
318
319 /* A clause can have 8 instructions in bundled FMA/ADD sense, so there
320 * can be 8 bundles. But each bundle can have both an FMA and an ADD,
321 * so a clause can have up to 16 bi_instructions. Whether bundles or
322 * instructions are used depends on where in scheduling we are. */
323
324 unsigned instruction_count;
325 unsigned bundle_count;
326
327 union {
328 bi_instruction *instructions[16];
329 bi_bundle bundles[8];
330 };
331
332 /* For scoreboarding -- the clause ID (this is not globally unique!)
333 * and its dependencies in terms of other clauses, computed during
334 * scheduling and used when emitting code. Dependencies expressed as a
335 * bitfield matching the hardware, except shifted by a clause (the
336 * shift back to the ISA's off-by-one encoding is worked out when
337 * emitting clauses) */
338 unsigned scoreboard_id;
339 uint8_t dependencies;
340
341 /* Back-to-back corresponds directly to the back-to-back bit. Branch
342 * conditional corresponds to the branch conditional bit except that in
343 * the emitted code it's always set if back-to-bit is, whereas we use
344 * the actual value (without back-to-back so to speak) internally */
345 bool back_to_back;
346 bool branch_conditional;
347
348 /* Assigned data register */
349 unsigned data_register;
350
351 /* Corresponds to the usual bit but shifted by a clause */
352 bool data_register_write_barrier;
353
354 /* Constants read by this clause. ISA limit. */
355 uint64_t constants[8];
356 unsigned constant_count;
357
358 /* What type of high latency instruction is here, basically */
359 unsigned clause_type;
360 } bi_clause;
361
362 typedef struct bi_block {
363 pan_block base; /* must be first */
364
365 /* If true, uses clauses; if false, uses instructions */
366 bool scheduled;
367 struct list_head clauses; /* list of bi_clause */
368 } bi_block;
369
370 typedef struct {
371 nir_shader *nir;
372 gl_shader_stage stage;
373 struct list_head blocks; /* list of bi_block */
374 struct panfrost_sysvals sysvals;
375 uint32_t quirks;
376
377 /* During NIR->BIR */
378 nir_function_impl *impl;
379 bi_block *current_block;
380 unsigned block_name_count;
381 bi_block *after_block;
382 bi_block *break_block;
383 bi_block *continue_block;
384 bool emitted_atest;
385 nir_alu_type *blend_types;
386
387 /* For creating temporaries */
388 unsigned temp_alloc;
389
390 /* Analysis results */
391 bool has_liveness;
392
393 /* Stats for shader-db */
394 unsigned instruction_count;
395 unsigned loop_count;
396 } bi_context;
397
398 static inline bi_instruction *
399 bi_emit(bi_context *ctx, bi_instruction ins)
400 {
401 bi_instruction *u = rzalloc(ctx, bi_instruction);
402 memcpy(u, &ins, sizeof(ins));
403 list_addtail(&u->link, &ctx->current_block->base.instructions);
404 return u;
405 }
406
407 static inline bi_instruction *
408 bi_emit_before(bi_context *ctx, bi_instruction *tag, bi_instruction ins)
409 {
410 bi_instruction *u = rzalloc(ctx, bi_instruction);
411 memcpy(u, &ins, sizeof(ins));
412 list_addtail(&u->link, &tag->link);
413 return u;
414 }
415
416 static inline void
417 bi_remove_instruction(bi_instruction *ins)
418 {
419 list_del(&ins->link);
420 }
421
422 /* So we can distinguish between SSA/reg/sentinel quickly */
423 #define BIR_NO_ARG (0)
424 #define BIR_IS_REG (1)
425
426 /* If high bits are set, instead of SSA/registers, we have specials indexed by
427 * the low bits if necessary.
428 *
429 * Fixed register: do not allocate register, do not collect $200.
430 * Uniform: access a uniform register given by low bits.
431 * Constant: access the specified constant (specifies a bit offset / shift)
432 * Zero: special cased to avoid wasting a constant
433 * Passthrough: a bifrost_packed_src to passthrough T/T0/T1
434 */
435
436 #define BIR_INDEX_REGISTER (1 << 31)
437 #define BIR_INDEX_UNIFORM (1 << 30)
438 #define BIR_INDEX_CONSTANT (1 << 29)
439 #define BIR_INDEX_ZERO (1 << 28)
440 #define BIR_INDEX_PASS (1 << 27)
441
442 /* Keep me synced please so we can check src & BIR_SPECIAL */
443
444 #define BIR_SPECIAL ((BIR_INDEX_REGISTER | BIR_INDEX_UNIFORM) | \
445 (BIR_INDEX_CONSTANT | BIR_INDEX_ZERO | BIR_INDEX_PASS))
446
447 static inline unsigned
448 bi_max_temp(bi_context *ctx)
449 {
450 unsigned alloc = MAX2(ctx->impl->reg_alloc, ctx->impl->ssa_alloc);
451 return ((alloc + 2 + ctx->temp_alloc) << 1);
452 }
453
454 static inline unsigned
455 bi_make_temp(bi_context *ctx)
456 {
457 return (ctx->impl->ssa_alloc + 1 + ctx->temp_alloc++) << 1;
458 }
459
460 static inline unsigned
461 bi_make_temp_reg(bi_context *ctx)
462 {
463 return ((ctx->impl->reg_alloc + ctx->temp_alloc++) << 1) | BIR_IS_REG;
464 }
465
466 static inline unsigned
467 bir_ssa_index(nir_ssa_def *ssa)
468 {
469 /* Off-by-one ensures BIR_NO_ARG is skipped */
470 return ((ssa->index + 1) << 1) | 0;
471 }
472
473 static inline unsigned
474 bir_src_index(nir_src *src)
475 {
476 if (src->is_ssa)
477 return bir_ssa_index(src->ssa);
478 else {
479 assert(!src->reg.indirect);
480 return (src->reg.reg->index << 1) | BIR_IS_REG;
481 }
482 }
483
484 static inline unsigned
485 bir_dest_index(nir_dest *dst)
486 {
487 if (dst->is_ssa)
488 return bir_ssa_index(&dst->ssa);
489 else {
490 assert(!dst->reg.indirect);
491 return (dst->reg.reg->index << 1) | BIR_IS_REG;
492 }
493 }
494
495 /* Iterators for Bifrost IR */
496
497 #define bi_foreach_block(ctx, v) \
498 list_for_each_entry(pan_block, v, &ctx->blocks, link)
499
500 #define bi_foreach_block_from(ctx, from, v) \
501 list_for_each_entry_from(pan_block, v, from, &ctx->blocks, link)
502
503 #define bi_foreach_instr_in_block(block, v) \
504 list_for_each_entry(bi_instruction, v, &(block)->base.instructions, link)
505
506 #define bi_foreach_instr_in_block_rev(block, v) \
507 list_for_each_entry_rev(bi_instruction, v, &(block)->base.instructions, link)
508
509 #define bi_foreach_instr_in_block_safe(block, v) \
510 list_for_each_entry_safe(bi_instruction, v, &(block)->base.instructions, link)
511
512 #define bi_foreach_instr_in_block_safe_rev(block, v) \
513 list_for_each_entry_safe_rev(bi_instruction, v, &(block)->base.instructions, link)
514
515 #define bi_foreach_instr_in_block_from(block, v, from) \
516 list_for_each_entry_from(bi_instruction, v, from, &(block)->base.instructions, link)
517
518 #define bi_foreach_instr_in_block_from_rev(block, v, from) \
519 list_for_each_entry_from_rev(bi_instruction, v, from, &(block)->base.instructions, link)
520
521 #define bi_foreach_clause_in_block(block, v) \
522 list_for_each_entry(bi_clause, v, &(block)->clauses, link)
523
524 #define bi_foreach_instr_global(ctx, v) \
525 bi_foreach_block(ctx, v_block) \
526 bi_foreach_instr_in_block((bi_block *) v_block, v)
527
528 #define bi_foreach_instr_global_safe(ctx, v) \
529 bi_foreach_block(ctx, v_block) \
530 bi_foreach_instr_in_block_safe((bi_block *) v_block, v)
531
532 /* Based on set_foreach, expanded with automatic type casts */
533
534 #define bi_foreach_predecessor(blk, v) \
535 struct set_entry *_entry_##v; \
536 bi_block *v; \
537 for (_entry_##v = _mesa_set_next_entry(blk->base.predecessors, NULL), \
538 v = (bi_block *) (_entry_##v ? _entry_##v->key : NULL); \
539 _entry_##v != NULL; \
540 _entry_##v = _mesa_set_next_entry(blk->base.predecessors, _entry_##v), \
541 v = (bi_block *) (_entry_##v ? _entry_##v->key : NULL))
542
543 #define bi_foreach_src(ins, v) \
544 for (unsigned v = 0; v < ARRAY_SIZE(ins->src); ++v)
545
546 static inline bi_instruction *
547 bi_prev_op(bi_instruction *ins)
548 {
549 return list_last_entry(&(ins->link), bi_instruction, link);
550 }
551
552 static inline bi_instruction *
553 bi_next_op(bi_instruction *ins)
554 {
555 return list_first_entry(&(ins->link), bi_instruction, link);
556 }
557
558 static inline pan_block *
559 pan_next_block(pan_block *block)
560 {
561 return list_first_entry(&(block->link), pan_block, link);
562 }
563
564 /* Special functions */
565
566 void bi_emit_fexp2(bi_context *ctx, nir_alu_instr *instr);
567 void bi_emit_flog2(bi_context *ctx, nir_alu_instr *instr);
568
569 /* BIR manipulation */
570
571 bool bi_has_outmod(bi_instruction *ins);
572 bool bi_has_source_mods(bi_instruction *ins);
573 bool bi_is_src_swizzled(bi_instruction *ins, unsigned s);
574 bool bi_has_arg(bi_instruction *ins, unsigned arg);
575 uint16_t bi_from_bytemask(uint16_t bytemask, unsigned bytes);
576 unsigned bi_get_component_count(bi_instruction *ins, signed s);
577 uint16_t bi_bytemask_of_read_components(bi_instruction *ins, unsigned node);
578 uint64_t bi_get_immediate(bi_instruction *ins, unsigned index);
579 bool bi_writes_component(bi_instruction *ins, unsigned comp);
580 unsigned bi_writemask(bi_instruction *ins);
581
582 /* BIR passes */
583
584 void bi_lower_combine(bi_context *ctx, bi_block *block);
585 bool bi_opt_dead_code_eliminate(bi_context *ctx, bi_block *block);
586 void bi_schedule(bi_context *ctx);
587 void bi_register_allocate(bi_context *ctx);
588
589 /* Liveness */
590
591 void bi_compute_liveness(bi_context *ctx);
592 void bi_liveness_ins_update(uint16_t *live, bi_instruction *ins, unsigned max);
593 void bi_invalidate_liveness(bi_context *ctx);
594 bool bi_is_live_after(bi_context *ctx, bi_block *block, bi_instruction *start, int src);
595
596 /* Code emit */
597
598 void bi_pack(bi_context *ctx, struct util_dynarray *emission);
599
600 #endif