pan/bi: Add log_frexpe op to IR
[mesa.git] / src / panfrost / bifrost / compiler.h
1 /*
2 * Copyright (C) 2020 Collabora Ltd.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors (Collabora):
24 * Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com>
25 */
26
27 #ifndef __BIFROST_COMPILER_H
28 #define __BIFROST_COMPILER_H
29
30 #include "bifrost.h"
31 #include "compiler/nir/nir.h"
32 #include "panfrost/util/pan_ir.h"
33
34 /* Bifrost opcodes are tricky -- the same op may exist on both FMA and
35 * ADD with two completely different opcodes, and opcodes can be varying
36 * length in some cases. Then we have different opcodes for int vs float
37 * and then sometimes even for different typesizes. Further, virtually
38 * every op has a number of flags which depend on the op. In constrast
39 * to Midgard where you have a strict ALU/LDST/TEX division and within
40 * ALU you have strict int/float and that's it... here it's a *lot* more
41 * involved. As such, we use something much higher level for our IR,
42 * encoding "classes" of operations, letting the opcode details get
43 * sorted out at emit time.
44 *
45 * Please keep this list alphabetized. Please use a dictionary if you
46 * don't know how to do that.
47 */
48
49 enum bi_class {
50 BI_ADD,
51 BI_ATEST,
52 BI_BRANCH,
53 BI_CMP,
54 BI_BLEND,
55 BI_BITWISE,
56 BI_COMBINE,
57 BI_CONVERT,
58 BI_CSEL,
59 BI_DISCARD,
60 BI_FMA,
61 BI_FMOV,
62 BI_FREXP,
63 BI_ISUB,
64 BI_LOAD,
65 BI_LOAD_UNIFORM,
66 BI_LOAD_ATTR,
67 BI_LOAD_VAR,
68 BI_LOAD_VAR_ADDRESS,
69 BI_MINMAX,
70 BI_MOV,
71 BI_REDUCE_FMA,
72 BI_SHIFT,
73 BI_STORE,
74 BI_STORE_VAR,
75 BI_SPECIAL, /* _FAST on supported GPUs */
76 BI_SWIZZLE,
77 BI_TABLE,
78 BI_TEX,
79 BI_ROUND,
80 BI_NUM_CLASSES
81 };
82
83 /* Properties of a class... */
84 extern unsigned bi_class_props[BI_NUM_CLASSES];
85
86 /* abs/neg/outmod valid for a float op */
87 #define BI_MODS (1 << 0)
88
89 /* Generic enough that little class-specific information is required. In other
90 * words, it acts as a "normal" ALU op, even if the encoding ends up being
91 * irregular enough to warrant a separate class */
92 #define BI_GENERIC (1 << 1)
93
94 /* Accepts a bifrost_roundmode */
95 #define BI_ROUNDMODE (1 << 2)
96
97 /* Can be scheduled to FMA */
98 #define BI_SCHED_FMA (1 << 3)
99
100 /* Can be scheduled to ADD */
101 #define BI_SCHED_ADD (1 << 4)
102
103 /* Most ALU ops can do either, actually */
104 #define BI_SCHED_ALL (BI_SCHED_FMA | BI_SCHED_ADD)
105
106 /* Along with setting BI_SCHED_ADD, eats up the entire cycle, so FMA must be
107 * nopped out. Used for _FAST operations. */
108 #define BI_SCHED_SLOW (1 << 5)
109
110 /* Swizzling allowed for the 8/16-bit source */
111 #define BI_SWIZZLABLE (1 << 6)
112
113 /* For scheduling purposes this is a high latency instruction and must be at
114 * the end of a clause. Implies ADD */
115 #define BI_SCHED_HI_LATENCY (1 << 7)
116
117 /* Intrinsic is vectorized and should read 4 components in the first source
118 * regardless of writemask */
119 #define BI_VECTOR (1 << 8)
120
121 /* Use a data register for src0/dest respectively, bypassing the usual
122 * register accessor. Mutually exclusive. */
123 #define BI_DATA_REG_SRC (1 << 9)
124 #define BI_DATA_REG_DEST (1 << 10)
125
126 /* Quirk: cannot encode multiple abs on FMA in fp16 mode */
127 #define BI_NO_ABS_ABS_FP16_FMA (1 << 11)
128
129 /* It can't get any worse than csel4... can it? */
130 #define BIR_SRC_COUNT 4
131
132 /* BI_LD_VARY */
133 struct bi_load_vary {
134 enum bifrost_interp_mode interp_mode;
135 bool reuse;
136 bool flat;
137 };
138
139 /* BI_BRANCH encoding the details of the branch itself as well as a pointer to
140 * the target. We forward declare bi_block since this is mildly circular (not
141 * strictly, but this order of the file makes more sense I think)
142 *
143 * We define our own enum of conditions since the conditions in the hardware
144 * packed in crazy ways that would make manipulation unweildly (meaning changes
145 * based on port swapping, etc), so we defer dealing with that until emit time.
146 * Likewise, we expose NIR types instead of the crazy branch types, although
147 * the restrictions do eventually apply of course. */
148
149 struct bi_block;
150
151 enum bi_cond {
152 BI_COND_ALWAYS,
153 BI_COND_LT,
154 BI_COND_LE,
155 BI_COND_GE,
156 BI_COND_GT,
157 BI_COND_EQ,
158 BI_COND_NE,
159 };
160
161 struct bi_branch {
162 /* Types are specified in src_types and must be compatible (either both
163 * int, or both float, 16/32, and same size or 32/16 if float. Types
164 * ignored if BI_COND_ALWAYS is set for an unconditional branch. */
165
166 enum bi_cond cond;
167 struct bi_block *target;
168 };
169
170 /* Opcodes within a class */
171 enum bi_minmax_op {
172 BI_MINMAX_MIN,
173 BI_MINMAX_MAX
174 };
175
176 enum bi_bitwise_op {
177 BI_BITWISE_AND,
178 BI_BITWISE_OR,
179 BI_BITWISE_XOR
180 };
181
182 enum bi_round_op {
183 BI_ROUND_MODE, /* use round mode */
184 BI_ROUND_ROUND /* i.e.: fround() */
185 };
186
187 enum bi_table_op {
188 /* fp32 log2() with low precision, suitable for GL or half_log2() in
189 * CL. In the first argument, takes x. Letting u be such that x =
190 * 2^{-m} u with m integer and 0.75 <= u < 1.5, returns
191 * log2(u) / (u - 1). */
192
193 BI_TABLE_LOG2_U_OVER_U_1_LOW,
194 };
195
196 enum bi_reduce_op {
197 /* Takes two fp32 arguments and returns x + frexp(y). Used in
198 * low-precision log2 argument reduction on newer models. */
199
200 BI_REDUCE_ADD_FREXPM,
201 };
202
203 enum bi_frexp_op {
204 BI_FREXPE_LOG,
205 };
206
207 enum bi_special_op {
208 BI_SPECIAL_FRCP,
209 BI_SPECIAL_FRSQ,
210
211 /* fp32 exp2() with low precision, suitable for half_exp2() in CL or
212 * exp2() in GL. In the first argument, it takes f2i_rte(x * 2^24). In
213 * the second, it takes x itself. */
214 BI_SPECIAL_EXP2_LOW,
215 };
216
217 typedef struct {
218 struct list_head link; /* Must be first */
219 enum bi_class type;
220
221 /* Indices, see bir_ssa_index etc. Note zero is special cased
222 * to "no argument" */
223 unsigned dest;
224 unsigned src[BIR_SRC_COUNT];
225
226 /* If one of the sources has BIR_INDEX_CONSTANT */
227 union {
228 uint64_t u64;
229 uint32_t u32;
230 uint16_t u16[2];
231 uint8_t u8[4];
232 } constant;
233
234 /* Floating-point modifiers, type/class permitting. If not
235 * allowed for the type/class, these are ignored. */
236 enum bifrost_outmod outmod;
237 bool src_abs[BIR_SRC_COUNT];
238 bool src_neg[BIR_SRC_COUNT];
239
240 /* Round mode (requires BI_ROUNDMODE) */
241 enum bifrost_roundmode roundmode;
242
243 /* Writemask (bit for each affected byte). This is quite restricted --
244 * ALU ops can only write to a single channel (exception: <32 in which
245 * you can write to 32/N contiguous aligned channels). Load/store can
246 * only write to all channels at once, in a sense. But it's still
247 * better to use this generic form than have synthetic ops flying
248 * about, since we're not essentially vector for RA purposes. */
249 uint16_t writemask;
250
251 /* Destination type. Usually the type of the instruction
252 * itself, but if sources and destination have different
253 * types, the type of the destination wins (so f2i would be
254 * int). Zero if there is no destination. Bitsize included */
255 nir_alu_type dest_type;
256
257 /* Source types if required by the class */
258 nir_alu_type src_types[BIR_SRC_COUNT];
259
260 /* If the source type is 8-bit or 16-bit such that SIMD is possible,
261 * and the class has BI_SWIZZLABLE, this is a swizzle in the usual
262 * sense. On non-SIMD instructions, it can be used for component
263 * selection, so we don't have to special case extraction. */
264 uint8_t swizzle[BIR_SRC_COUNT][NIR_MAX_VEC_COMPONENTS];
265
266 /* A class-specific op from which the actual opcode can be derived
267 * (along with the above information) */
268
269 union {
270 enum bi_minmax_op minmax;
271 enum bi_bitwise_op bitwise;
272 enum bi_round_op round;
273 enum bi_special_op special;
274 enum bi_reduce_op reduce;
275 enum bi_table_op table;
276 enum bi_frexp_op frexp;
277 enum bi_cond compare;
278 } op;
279
280 /* Union for class-specific information */
281 union {
282 enum bifrost_minmax_mode minmax;
283 struct bi_load_vary load_vary;
284 struct bi_branch branch;
285
286 /* For CSEL, the comparison op. BI_COND_ALWAYS doesn't make
287 * sense here but you can always just use a move for that */
288 enum bi_cond csel_cond;
289
290 /* For BLEND -- the location 0-7 */
291 unsigned blend_location;
292
293 /* For STORE, STORE_VAR -- channel count */
294 unsigned store_channels;
295 };
296 } bi_instruction;
297
298 /* Scheduling takes place in two steps. Step 1 groups instructions within a
299 * block into distinct clauses (bi_clause). Step 2 schedules instructions
300 * within a clause into FMA/ADD pairs (bi_bundle).
301 *
302 * A bi_bundle contains two paired instruction pointers. If a slot is unfilled,
303 * leave it NULL; the emitter will fill in a nop.
304 */
305
306 typedef struct {
307 bi_instruction *fma;
308 bi_instruction *add;
309 } bi_bundle;
310
311 typedef struct {
312 struct list_head link;
313
314 /* A clause can have 8 instructions in bundled FMA/ADD sense, so there
315 * can be 8 bundles. But each bundle can have both an FMA and an ADD,
316 * so a clause can have up to 16 bi_instructions. Whether bundles or
317 * instructions are used depends on where in scheduling we are. */
318
319 unsigned instruction_count;
320 unsigned bundle_count;
321
322 union {
323 bi_instruction *instructions[16];
324 bi_bundle bundles[8];
325 };
326
327 /* For scoreboarding -- the clause ID (this is not globally unique!)
328 * and its dependencies in terms of other clauses, computed during
329 * scheduling and used when emitting code. Dependencies expressed as a
330 * bitfield matching the hardware, except shifted by a clause (the
331 * shift back to the ISA's off-by-one encoding is worked out when
332 * emitting clauses) */
333 unsigned scoreboard_id;
334 uint8_t dependencies;
335
336 /* Back-to-back corresponds directly to the back-to-back bit. Branch
337 * conditional corresponds to the branch conditional bit except that in
338 * the emitted code it's always set if back-to-bit is, whereas we use
339 * the actual value (without back-to-back so to speak) internally */
340 bool back_to_back;
341 bool branch_conditional;
342
343 /* Assigned data register */
344 unsigned data_register;
345
346 /* Corresponds to the usual bit but shifted by a clause */
347 bool data_register_write_barrier;
348
349 /* Constants read by this clause. ISA limit. */
350 uint64_t constants[8];
351 unsigned constant_count;
352
353 /* What type of high latency instruction is here, basically */
354 unsigned clause_type;
355 } bi_clause;
356
357 typedef struct bi_block {
358 pan_block base; /* must be first */
359
360 /* If true, uses clauses; if false, uses instructions */
361 bool scheduled;
362 struct list_head clauses; /* list of bi_clause */
363 } bi_block;
364
365 typedef struct {
366 nir_shader *nir;
367 gl_shader_stage stage;
368 struct list_head blocks; /* list of bi_block */
369 struct panfrost_sysvals sysvals;
370 uint32_t quirks;
371
372 /* During NIR->BIR */
373 nir_function_impl *impl;
374 bi_block *current_block;
375 unsigned block_name_count;
376 bi_block *after_block;
377 bi_block *break_block;
378 bi_block *continue_block;
379 bool emitted_atest;
380
381 /* For creating temporaries */
382 unsigned temp_alloc;
383
384 /* Analysis results */
385 bool has_liveness;
386
387 /* Stats for shader-db */
388 unsigned instruction_count;
389 unsigned loop_count;
390 } bi_context;
391
392 static inline bi_instruction *
393 bi_emit(bi_context *ctx, bi_instruction ins)
394 {
395 bi_instruction *u = rzalloc(ctx, bi_instruction);
396 memcpy(u, &ins, sizeof(ins));
397 list_addtail(&u->link, &ctx->current_block->base.instructions);
398 return u;
399 }
400
401 static inline bi_instruction *
402 bi_emit_before(bi_context *ctx, bi_instruction *tag, bi_instruction ins)
403 {
404 bi_instruction *u = rzalloc(ctx, bi_instruction);
405 memcpy(u, &ins, sizeof(ins));
406 list_addtail(&u->link, &tag->link);
407 return u;
408 }
409
410 static inline void
411 bi_remove_instruction(bi_instruction *ins)
412 {
413 list_del(&ins->link);
414 }
415
416 /* So we can distinguish between SSA/reg/sentinel quickly */
417 #define BIR_NO_ARG (0)
418 #define BIR_IS_REG (1)
419
420 /* If high bits are set, instead of SSA/registers, we have specials indexed by
421 * the low bits if necessary.
422 *
423 * Fixed register: do not allocate register, do not collect $200.
424 * Uniform: access a uniform register given by low bits.
425 * Constant: access the specified constant (specifies a bit offset / shift)
426 * Zero: special cased to avoid wasting a constant
427 * Passthrough: a bifrost_packed_src to passthrough T/T0/T1
428 */
429
430 #define BIR_INDEX_REGISTER (1 << 31)
431 #define BIR_INDEX_UNIFORM (1 << 30)
432 #define BIR_INDEX_CONSTANT (1 << 29)
433 #define BIR_INDEX_ZERO (1 << 28)
434 #define BIR_INDEX_PASS (1 << 27)
435
436 /* Keep me synced please so we can check src & BIR_SPECIAL */
437
438 #define BIR_SPECIAL ((BIR_INDEX_REGISTER | BIR_INDEX_UNIFORM) | \
439 (BIR_INDEX_CONSTANT | BIR_INDEX_ZERO | BIR_INDEX_PASS))
440
441 static inline unsigned
442 bi_max_temp(bi_context *ctx)
443 {
444 unsigned alloc = MAX2(ctx->impl->reg_alloc, ctx->impl->ssa_alloc);
445 return ((alloc + 2 + ctx->temp_alloc) << 1);
446 }
447
448 static inline unsigned
449 bi_make_temp(bi_context *ctx)
450 {
451 return (ctx->impl->ssa_alloc + 1 + ctx->temp_alloc++) << 1;
452 }
453
454 static inline unsigned
455 bi_make_temp_reg(bi_context *ctx)
456 {
457 return ((ctx->impl->reg_alloc + ctx->temp_alloc++) << 1) | BIR_IS_REG;
458 }
459
460 static inline unsigned
461 bir_ssa_index(nir_ssa_def *ssa)
462 {
463 /* Off-by-one ensures BIR_NO_ARG is skipped */
464 return ((ssa->index + 1) << 1) | 0;
465 }
466
467 static inline unsigned
468 bir_src_index(nir_src *src)
469 {
470 if (src->is_ssa)
471 return bir_ssa_index(src->ssa);
472 else {
473 assert(!src->reg.indirect);
474 return (src->reg.reg->index << 1) | BIR_IS_REG;
475 }
476 }
477
478 static inline unsigned
479 bir_dest_index(nir_dest *dst)
480 {
481 if (dst->is_ssa)
482 return bir_ssa_index(&dst->ssa);
483 else {
484 assert(!dst->reg.indirect);
485 return (dst->reg.reg->index << 1) | BIR_IS_REG;
486 }
487 }
488
489 /* Iterators for Bifrost IR */
490
491 #define bi_foreach_block(ctx, v) \
492 list_for_each_entry(pan_block, v, &ctx->blocks, link)
493
494 #define bi_foreach_block_from(ctx, from, v) \
495 list_for_each_entry_from(pan_block, v, from, &ctx->blocks, link)
496
497 #define bi_foreach_instr_in_block(block, v) \
498 list_for_each_entry(bi_instruction, v, &(block)->base.instructions, link)
499
500 #define bi_foreach_instr_in_block_rev(block, v) \
501 list_for_each_entry_rev(bi_instruction, v, &(block)->base.instructions, link)
502
503 #define bi_foreach_instr_in_block_safe(block, v) \
504 list_for_each_entry_safe(bi_instruction, v, &(block)->base.instructions, link)
505
506 #define bi_foreach_instr_in_block_safe_rev(block, v) \
507 list_for_each_entry_safe_rev(bi_instruction, v, &(block)->base.instructions, link)
508
509 #define bi_foreach_instr_in_block_from(block, v, from) \
510 list_for_each_entry_from(bi_instruction, v, from, &(block)->base.instructions, link)
511
512 #define bi_foreach_instr_in_block_from_rev(block, v, from) \
513 list_for_each_entry_from_rev(bi_instruction, v, from, &(block)->base.instructions, link)
514
515 #define bi_foreach_clause_in_block(block, v) \
516 list_for_each_entry(bi_clause, v, &(block)->clauses, link)
517
518 #define bi_foreach_instr_global(ctx, v) \
519 bi_foreach_block(ctx, v_block) \
520 bi_foreach_instr_in_block((bi_block *) v_block, v)
521
522 #define bi_foreach_instr_global_safe(ctx, v) \
523 bi_foreach_block(ctx, v_block) \
524 bi_foreach_instr_in_block_safe((bi_block *) v_block, v)
525
526 /* Based on set_foreach, expanded with automatic type casts */
527
528 #define bi_foreach_predecessor(blk, v) \
529 struct set_entry *_entry_##v; \
530 bi_block *v; \
531 for (_entry_##v = _mesa_set_next_entry(blk->base.predecessors, NULL), \
532 v = (bi_block *) (_entry_##v ? _entry_##v->key : NULL); \
533 _entry_##v != NULL; \
534 _entry_##v = _mesa_set_next_entry(blk->base.predecessors, _entry_##v), \
535 v = (bi_block *) (_entry_##v ? _entry_##v->key : NULL))
536
537 #define bi_foreach_src(ins, v) \
538 for (unsigned v = 0; v < ARRAY_SIZE(ins->src); ++v)
539
540 static inline bi_instruction *
541 bi_prev_op(bi_instruction *ins)
542 {
543 return list_last_entry(&(ins->link), bi_instruction, link);
544 }
545
546 static inline bi_instruction *
547 bi_next_op(bi_instruction *ins)
548 {
549 return list_first_entry(&(ins->link), bi_instruction, link);
550 }
551
552 static inline pan_block *
553 pan_next_block(pan_block *block)
554 {
555 return list_first_entry(&(block->link), pan_block, link);
556 }
557
558 /* BIR manipulation */
559
560 bool bi_has_outmod(bi_instruction *ins);
561 bool bi_has_source_mods(bi_instruction *ins);
562 bool bi_is_src_swizzled(bi_instruction *ins, unsigned s);
563 bool bi_has_arg(bi_instruction *ins, unsigned arg);
564 uint16_t bi_from_bytemask(uint16_t bytemask, unsigned bytes);
565 unsigned bi_get_component_count(bi_instruction *ins, unsigned s);
566 unsigned bi_load32_components(bi_instruction *ins);
567 uint16_t bi_bytemask_of_read_components(bi_instruction *ins, unsigned node);
568 uint64_t bi_get_immediate(bi_instruction *ins, unsigned index);
569 bool bi_writes_component(bi_instruction *ins, unsigned comp);
570
571 /* BIR passes */
572
573 void bi_lower_combine(bi_context *ctx, bi_block *block);
574 bool bi_opt_dead_code_eliminate(bi_context *ctx, bi_block *block);
575 void bi_schedule(bi_context *ctx);
576 void bi_register_allocate(bi_context *ctx);
577
578 /* Liveness */
579
580 void bi_compute_liveness(bi_context *ctx);
581 void bi_liveness_ins_update(uint16_t *live, bi_instruction *ins, unsigned max);
582 void bi_invalidate_liveness(bi_context *ctx);
583 bool bi_is_live_after(bi_context *ctx, bi_block *block, bi_instruction *start, int src);
584
585 /* Code emit */
586
587 void bi_pack(bi_context *ctx, struct util_dynarray *emission);
588
589 #endif