48379cce9056e1cb34083ddbb75c43888325c966
[mesa.git] / src / panfrost / include / panfrost-job.h
1 /*
2 * © Copyright 2017-2018 Alyssa Rosenzweig
3 * © Copyright 2017-2018 Connor Abbott
4 * © Copyright 2017-2018 Lyude Paul
5 * © Copyright2019 Collabora, Ltd.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
24 * SOFTWARE.
25 *
26 */
27
28 #ifndef __PANFROST_JOB_H__
29 #define __PANFROST_JOB_H__
30
31 #include <stdint.h>
32 #include <stdbool.h>
33 #include <inttypes.h>
34
35 typedef uint8_t u8;
36 typedef uint16_t u16;
37 typedef uint32_t u32;
38 typedef uint64_t u64;
39 typedef uint64_t mali_ptr;
40
41 /* Applies to tiler_gl_enables */
42
43 #define MALI_OCCLUSION_QUERY (1 << 3)
44 #define MALI_OCCLUSION_PRECISE (1 << 4)
45
46 /* Set for a glFrontFace(GL_CCW) in a Y=0=TOP coordinate system (like Gallium).
47 * In OpenGL, this would corresponds to glFrontFace(GL_CW). Mesa and the blob
48 * disagree about how to do viewport flipping, so the blob actually sets this
49 * for GL_CW but then has a negative viewport stride */
50
51 #define MALI_FRONT_CCW_TOP (1 << 5)
52
53 #define MALI_CULL_FACE_FRONT (1 << 6)
54 #define MALI_CULL_FACE_BACK (1 << 7)
55
56 /* Flags apply to unknown2_3? */
57
58 #define MALI_HAS_MSAA (1 << 0)
59
60 /* Execute fragment shader per-sample if set (e.g. to implement gl_SampleID
61 * reads) */
62 #define MALI_PER_SAMPLE (1 << 2)
63 #define MALI_CAN_DISCARD (1 << 5)
64
65 /* Applies on SFBD systems, specifying that programmable blending is in use */
66 #define MALI_HAS_BLEND_SHADER (1 << 6)
67
68 /* func is mali_func */
69 #define MALI_DEPTH_FUNC(func) (func << 8)
70 #define MALI_GET_DEPTH_FUNC(flags) ((flags >> 8) & 0x7)
71 #define MALI_DEPTH_FUNC_MASK MALI_DEPTH_FUNC(0x7)
72
73 #define MALI_DEPTH_WRITEMASK (1 << 11)
74
75 #define MALI_DEPTH_CLIP_NEAR (1 << 12)
76 #define MALI_DEPTH_CLIP_FAR (1 << 13)
77
78 /* Next flags to unknown2_4 */
79 #define MALI_STENCIL_TEST (1 << 0)
80
81 #define MALI_ALPHA_TO_COVERAGE (1 << 1)
82
83 #define MALI_NO_DITHER (1 << 9)
84 #define MALI_DEPTH_RANGE_A (1 << 12)
85 #define MALI_DEPTH_RANGE_B (1 << 13)
86 #define MALI_NO_MSAA (1 << 14)
87
88 #define MALI_MASK_R (1 << 0)
89 #define MALI_MASK_G (1 << 1)
90 #define MALI_MASK_B (1 << 2)
91 #define MALI_MASK_A (1 << 3)
92
93 enum mali_nondominant_mode {
94 MALI_BLEND_NON_MIRROR = 0,
95 MALI_BLEND_NON_ZERO = 1
96 };
97
98 enum mali_dominant_blend {
99 MALI_BLEND_DOM_SOURCE = 0,
100 MALI_BLEND_DOM_DESTINATION = 1
101 };
102
103 enum mali_dominant_factor {
104 MALI_DOMINANT_UNK0 = 0,
105 MALI_DOMINANT_ZERO = 1,
106 MALI_DOMINANT_SRC_COLOR = 2,
107 MALI_DOMINANT_DST_COLOR = 3,
108 MALI_DOMINANT_UNK4 = 4,
109 MALI_DOMINANT_SRC_ALPHA = 5,
110 MALI_DOMINANT_DST_ALPHA = 6,
111 MALI_DOMINANT_CONSTANT = 7,
112 };
113
114 enum mali_blend_modifier {
115 MALI_BLEND_MOD_UNK0 = 0,
116 MALI_BLEND_MOD_NORMAL = 1,
117 MALI_BLEND_MOD_SOURCE_ONE = 2,
118 MALI_BLEND_MOD_DEST_ONE = 3,
119 };
120
121 struct mali_blend_mode {
122 enum mali_blend_modifier clip_modifier : 2;
123 unsigned unused_0 : 1;
124 unsigned negate_source : 1;
125
126 enum mali_dominant_blend dominant : 1;
127
128 enum mali_nondominant_mode nondominant_mode : 1;
129
130 unsigned unused_1 : 1;
131
132 unsigned negate_dest : 1;
133
134 enum mali_dominant_factor dominant_factor : 3;
135 unsigned complement_dominant : 1;
136 } __attribute__((packed));
137
138 struct mali_blend_equation {
139 /* Of type mali_blend_mode */
140 unsigned rgb_mode : 12;
141 unsigned alpha_mode : 12;
142
143 unsigned zero1 : 4;
144
145 /* Corresponds to MALI_MASK_* above and glColorMask arguments */
146
147 unsigned color_mask : 4;
148 } __attribute__((packed));
149
150 /* Used with channel swizzling */
151 enum mali_channel {
152 MALI_CHANNEL_RED = 0,
153 MALI_CHANNEL_GREEN = 1,
154 MALI_CHANNEL_BLUE = 2,
155 MALI_CHANNEL_ALPHA = 3,
156 MALI_CHANNEL_ZERO = 4,
157 MALI_CHANNEL_ONE = 5,
158 MALI_CHANNEL_RESERVED_0 = 6,
159 MALI_CHANNEL_RESERVED_1 = 7,
160 };
161
162 /* Compressed per-pixel formats. Each of these formats expands to one to four
163 * floating-point or integer numbers, as defined by the OpenGL specification.
164 * There are various places in OpenGL where the user can specify a compressed
165 * format in memory, which all use the same 8-bit enum in the various
166 * descriptors, although different hardware units support different formats.
167 */
168
169 /* The top 3 bits specify how the bits of each component are interpreted. */
170
171 /* e.g. ETC2_RGB8 */
172 #define MALI_FORMAT_COMPRESSED (0 << 5)
173
174 /* e.g. R11F_G11F_B10F */
175 #define MALI_FORMAT_SPECIAL (2 << 5)
176
177 /* signed normalized, e.g. RGBA8_SNORM */
178 #define MALI_FORMAT_SNORM (3 << 5)
179
180 /* e.g. RGBA8UI */
181 #define MALI_FORMAT_UINT (4 << 5)
182
183 /* e.g. RGBA8 and RGBA32F */
184 #define MALI_FORMAT_UNORM (5 << 5)
185
186 /* e.g. RGBA8I and RGBA16F */
187 #define MALI_FORMAT_SINT (6 << 5)
188
189 /* These formats seem to largely duplicate the others. They're used at least
190 * for Bifrost framebuffer output.
191 */
192 #define MALI_FORMAT_SPECIAL2 (7 << 5)
193 #define MALI_EXTRACT_TYPE(fmt) ((fmt) & 0xe0)
194
195 /* If the high 3 bits are 3 to 6 these two bits say how many components
196 * there are.
197 */
198 #define MALI_NR_CHANNELS(n) ((n - 1) << 3)
199 #define MALI_EXTRACT_CHANNELS(fmt) ((((fmt) >> 3) & 3) + 1)
200
201 /* If the high 3 bits are 3 to 6, then the low 3 bits say how big each
202 * component is, except the special MALI_CHANNEL_FLOAT which overrides what the
203 * bits mean.
204 */
205
206 #define MALI_CHANNEL_4 2
207
208 #define MALI_CHANNEL_8 3
209
210 #define MALI_CHANNEL_16 4
211
212 #define MALI_CHANNEL_32 5
213
214 /* For MALI_FORMAT_SINT it means a half-float (e.g. RG16F). For
215 * MALI_FORMAT_UNORM, it means a 32-bit float.
216 */
217 #define MALI_CHANNEL_FLOAT 7
218 #define MALI_EXTRACT_BITS(fmt) (fmt & 0x7)
219
220 enum mali_format {
221 /* Not all formats are in fact available, need to query dynamically to
222 * check. Factory settings for Juno enables only ETC2 and ASTC, no
223 * DXT/RGTC formats.
224 * */
225
226 /* 0x0 invalid */
227 MALI_ETC2_RGB8 = MALI_FORMAT_COMPRESSED | 0x1,
228 MALI_ETC2_R11_UNORM = MALI_FORMAT_COMPRESSED | 0x2,
229 MALI_ETC2_RGBA8 = MALI_FORMAT_COMPRESSED | 0x3,
230 MALI_ETC2_RG11_UNORM = MALI_FORMAT_COMPRESSED | 0x4,
231 /* 0x5 reserved */
232 MALI_NXR = MALI_FORMAT_COMPRESSED | 0x6, /* Nokia eXtended Range */
233 MALI_BC1_UNORM = MALI_FORMAT_COMPRESSED | 0x7, /* DXT1 */
234 MALI_BC2_UNORM = MALI_FORMAT_COMPRESSED | 0x8, /* DXT3 */
235 MALI_BC3_UNORM = MALI_FORMAT_COMPRESSED | 0x9, /* DXT5 */
236 MALI_BC4_UNORM = MALI_FORMAT_COMPRESSED | 0xA, /* RGTC1_UNORM */
237 MALI_BC4_SNORM = MALI_FORMAT_COMPRESSED | 0xB, /* RGTC1_SNORM */
238 MALI_BC5_UNORM = MALI_FORMAT_COMPRESSED | 0xC, /* RGTC2_UNORM */
239 MALI_BC5_SNORM = MALI_FORMAT_COMPRESSED | 0xD, /* RGTC2_SNORM */
240 MALI_BC6H_UF16 = MALI_FORMAT_COMPRESSED | 0xE,
241 MALI_BC6H_SF16 = MALI_FORMAT_COMPRESSED | 0xF,
242 MALI_BC7_UNORM = MALI_FORMAT_COMPRESSED | 0x10,
243 MALI_ETC2_R11_SNORM = MALI_FORMAT_COMPRESSED | 0x11, /* EAC_SNORM */
244 MALI_ETC2_RG11_SNORM = MALI_FORMAT_COMPRESSED | 0x12, /* EAC_SNORM */
245 MALI_ETC2_RGB8A1 = MALI_FORMAT_COMPRESSED | 0x13,
246 MALI_ASTC_3D_LDR = MALI_FORMAT_COMPRESSED | 0x14,
247 MALI_ASTC_3D_HDR = MALI_FORMAT_COMPRESSED | 0x15,
248 MALI_ASTC_2D_LDR = MALI_FORMAT_COMPRESSED | 0x16,
249 MALI_ASTC_2D_HDR = MALI_FORMAT_COMPRESSED | 0x17,
250
251 MALI_RGB565 = MALI_FORMAT_SPECIAL | 0x0,
252 MALI_RGB5_X1_UNORM = MALI_FORMAT_SPECIAL | 0x1,
253 MALI_RGB5_A1_UNORM = MALI_FORMAT_SPECIAL | 0x2,
254 MALI_RGB10_A2_UNORM = MALI_FORMAT_SPECIAL | 0x3,
255 MALI_RGB10_A2_SNORM = MALI_FORMAT_SPECIAL | 0x5,
256 MALI_RGB10_A2UI = MALI_FORMAT_SPECIAL | 0x7,
257 MALI_RGB10_A2I = MALI_FORMAT_SPECIAL | 0x9,
258
259 MALI_RGB332_UNORM = MALI_FORMAT_SPECIAL | 0xb,
260 MALI_RGB233_UNORM = MALI_FORMAT_SPECIAL | 0xc,
261
262 MALI_Z24X8_UNORM = MALI_FORMAT_SPECIAL | 0xd,
263 MALI_R32_FIXED = MALI_FORMAT_SPECIAL | 0x11,
264 MALI_RG32_FIXED = MALI_FORMAT_SPECIAL | 0x12,
265 MALI_RGB32_FIXED = MALI_FORMAT_SPECIAL | 0x13,
266 MALI_RGBA32_FIXED = MALI_FORMAT_SPECIAL | 0x14,
267 MALI_R11F_G11F_B10F = MALI_FORMAT_SPECIAL | 0x19,
268 MALI_R9F_G9F_B9F_E5F = MALI_FORMAT_SPECIAL | 0x1b,
269 /* Only used for varyings, to indicate the transformed gl_Position */
270 MALI_VARYING_POS = MALI_FORMAT_SPECIAL | 0x1e,
271 /* Only used for varyings, to indicate that the write should be
272 * discarded.
273 */
274 MALI_VARYING_DISCARD = MALI_FORMAT_SPECIAL | 0x1f,
275
276 MALI_R8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
277 MALI_R16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
278 MALI_R32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
279 MALI_RG8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
280 MALI_RG16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
281 MALI_RG32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
282 MALI_RGB8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
283 MALI_RGB16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
284 MALI_RGB32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
285 MALI_RGBA8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
286 MALI_RGBA16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
287 MALI_RGBA32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
288
289 MALI_R8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
290 MALI_R16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
291 MALI_R32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
292 MALI_RG8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
293 MALI_RG16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
294 MALI_RG32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
295 MALI_RGB8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
296 MALI_RGB16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
297 MALI_RGB32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
298 MALI_RGBA8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
299 MALI_RGBA16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
300 MALI_RGBA32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
301
302 MALI_R8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
303 MALI_R16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
304 MALI_R32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
305 MALI_R32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_FLOAT,
306 MALI_RG8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
307 MALI_RG16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
308 MALI_RG32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
309 MALI_RG32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_FLOAT,
310 MALI_RGB8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
311 MALI_RGB16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
312 MALI_RGB32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
313 MALI_RGB32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_FLOAT,
314 MALI_RGBA4_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_4,
315 MALI_RGBA8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
316 MALI_RGBA16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
317 MALI_RGBA32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
318 MALI_RGBA32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_FLOAT,
319
320 MALI_R8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
321 MALI_R16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
322 MALI_R32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
323 MALI_R16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_FLOAT,
324 MALI_RG8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
325 MALI_RG16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
326 MALI_RG32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
327 MALI_RG16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_FLOAT,
328 MALI_RGB8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
329 MALI_RGB16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
330 MALI_RGB32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
331 MALI_RGB16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_FLOAT,
332 MALI_RGBA8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
333 MALI_RGBA16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
334 MALI_RGBA32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
335 MALI_RGBA16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_FLOAT,
336
337 MALI_RGBA4 = MALI_FORMAT_SPECIAL2 | 0x8,
338 MALI_RGBA8_2 = MALI_FORMAT_SPECIAL2 | 0xd,
339 MALI_RGB10_A2_2 = MALI_FORMAT_SPECIAL2 | 0xe,
340 };
341
342
343 /* Applies to midgard1.flags_lo */
344
345 /* Should be set when the fragment shader updates the depth value. */
346 #define MALI_WRITES_Z (1 << 4)
347
348 /* Should the hardware perform early-Z testing? Set if the shader does not use
349 * discard, alpha-to-coverage, shader depth writes, and if the shader has no
350 * side effects (writes to global memory or images) unless early-z testing is
351 * forced in the shader.
352 */
353
354 #define MALI_EARLY_Z (1 << 6)
355
356 /* Should the hardware calculate derivatives (via helper invocations)? Set in a
357 * fragment shader that uses texturing or derivative functions */
358
359 #define MALI_HELPER_INVOCATIONS (1 << 7)
360
361 /* Flags denoting the fragment shader's use of tilebuffer readback. If the
362 * shader might read any part of the tilebuffer, set MALI_READS_TILEBUFFER. If
363 * it might read depth/stencil in particular, also set MALI_READS_ZS */
364
365 #define MALI_READS_ZS (1 << 8)
366
367 /* The shader might write to global memory (via OpenCL, SSBOs, or images).
368 * Reading is okay, as are ordinary writes to the tilebuffer/varyings. Setting
369 * incurs a performance penalty. On a fragment shader, this bit implies there
370 * are side effects, hence it interacts with early-z. */
371 #define MALI_WRITES_GLOBAL (1 << 9)
372
373 #define MALI_READS_TILEBUFFER (1 << 10)
374
375 /* Applies to midgard1.flags_hi */
376
377 /* Should be set when the fragment shader updates the stencil value. */
378 #define MALI_WRITES_S (1 << 2)
379
380 /* Mode to suppress generation of Infinity and NaN values by clamping inf
381 * (-inf) to MAX_FLOAT (-MIN_FLOAT) and flushing NaN to 0.0
382 *
383 * Compare suppress_inf/suppress_nan flags on the Bifrost clause header for the
384 * same functionality.
385 *
386 * This is not conformant on GLES3 or OpenCL, but is optional on GLES2, where
387 * it works around app bugs (e.g. in glmark2-es2 -bterrain with FP16).
388 */
389 #define MALI_SUPPRESS_INF_NAN (1 << 3)
390
391 /* Flags for bifrost1.unk1 */
392
393 /* Shader uses less than 32 registers, partitioned as [R0, R15] U [R48, R63],
394 * allowing for full thread count. If clear, the full [R0, R63] register set is
395 * available at half thread count */
396 #define MALI_BIFROST_FULL_THREAD (1 << 9)
397
398 /* Enable early-z testing (presumably). This flag may not be set if the shader:
399 *
400 * - Uses blending
401 * - Uses discard
402 * - Writes gl_FragDepth
403 *
404 * This differs from Midgard which sets the MALI_EARLY_Z flag even with
405 * blending, although I've begun to suspect that flag does not in fact enable
406 * EARLY_Z alone. */
407 #define MALI_BIFROST_EARLY_Z (1 << 15)
408
409 /* First clause type is ATEST */
410 #define MALI_BIFROST_FIRST_ATEST (1 << 26)
411
412 /* The raw Midgard blend payload can either be an equation or a shader
413 * address, depending on the context */
414
415 union midgard_blend {
416 mali_ptr shader;
417
418 struct {
419 struct mali_blend_equation equation;
420 float constant;
421 };
422 };
423
424 /* We need to load the tilebuffer to blend (i.e. the destination factor is not
425 * ZERO) */
426
427 #define MALI_BLEND_LOAD_TIB (0x1)
428
429 /* A blend shader is used to blend this render target */
430 #define MALI_BLEND_MRT_SHADER (0x2)
431
432 /* On MRT Midgard systems (using an MFBD), each render target gets its own
433 * blend descriptor */
434
435 #define MALI_BLEND_SRGB (0x400)
436
437 /* Dithering is specified here for MFBD, otherwise NO_DITHER for SFBD */
438 #define MALI_BLEND_NO_DITHER (0x800)
439
440 struct midgard_blend_rt {
441 /* Flags base value of 0x200 to enable the render target.
442 * OR with 0x1 for blending (anything other than REPLACE).
443 * OR with 0x2 for programmable blending
444 * OR with MALI_BLEND_SRGB for implicit sRGB
445 */
446
447 u64 flags;
448 union midgard_blend blend;
449 } __attribute__((packed));
450
451 /* On Bifrost systems (all MRT), each render target gets one of these
452 * descriptors */
453
454 enum bifrost_shader_type {
455 BIFROST_BLEND_F16 = 0,
456 BIFROST_BLEND_F32 = 1,
457 BIFROST_BLEND_I32 = 2,
458 BIFROST_BLEND_U32 = 3,
459 BIFROST_BLEND_I16 = 4,
460 BIFROST_BLEND_U16 = 5,
461 };
462
463 #define BIFROST_MAX_RENDER_TARGET_COUNT 8
464
465 struct bifrost_blend_rt {
466 /* This is likely an analogue of the flags on
467 * midgard_blend_rt */
468
469 u16 flags; // = 0x200
470
471 /* Single-channel blend constants are encoded in a sort of
472 * fixed-point. Basically, the float is mapped to a byte, becoming
473 * a high byte, and then the lower-byte is added for precision.
474 * For the original float f:
475 *
476 * f = (constant_hi / 255) + (constant_lo / 65535)
477 *
478 * constant_hi = int(f / 255)
479 * constant_lo = 65535*f - (65535/255) * constant_hi
480 */
481 u16 constant;
482
483 struct mali_blend_equation equation;
484
485 /*
486 * - 0x19 normally
487 * - 0x3 when this slot is unused (everything else is 0 except the index)
488 * - 0x11 when this is the fourth slot (and it's used)
489 * - 0 when there is a blend shader
490 */
491 u16 unk2;
492
493 /* increments from 0 to 3 */
494 u16 index;
495
496 union {
497 struct {
498 /* So far, I've only seen:
499 * - R001 for 1-component formats
500 * - RG01 for 2-component formats
501 * - RGB1 for 3-component formats
502 * - RGBA for 4-component formats
503 */
504 u32 swizzle : 12;
505 enum mali_format format : 8;
506
507 /* Type of the shader output variable. Note, this can
508 * be different from the format.
509 * enum bifrost_shader_type
510 */
511 u32 zero1 : 4;
512 u32 shader_type : 3;
513 u32 zero2 : 5;
514 };
515
516 /* Only the low 32 bits of the blend shader are stored, the
517 * high 32 bits are implicitly the same as the original shader.
518 * According to the kernel driver, the program counter for
519 * shaders is actually only 24 bits, so shaders cannot cross
520 * the 2^24-byte boundary, and neither can the blend shader.
521 * The blob handles this by allocating a 2^24 byte pool for
522 * shaders, and making sure that any blend shaders are stored
523 * in the same pool as the original shader. The kernel will
524 * make sure this allocation is aligned to 2^24 bytes.
525 */
526 u32 shader;
527 };
528 } __attribute__((packed));
529
530 /* Descriptor for the shader. Following this is at least one, up to four blend
531 * descriptors for each active render target */
532
533 struct mali_shader_meta {
534 mali_ptr shader;
535 u16 sampler_count;
536 u16 texture_count;
537 u16 attribute_count;
538 u16 varying_count;
539
540 union {
541 struct {
542 u32 uniform_buffer_count : 4;
543 u32 unk1 : 28; // = 0x800000 for vertex, 0x958020 for tiler
544 } bifrost1;
545 struct {
546 unsigned uniform_buffer_count : 4;
547 unsigned flags_lo : 12;
548
549 /* vec4 units */
550 unsigned work_count : 5;
551 unsigned uniform_count : 5;
552 unsigned flags_hi : 6;
553 } midgard1;
554 };
555
556 /* Same as glPolygoOffset() arguments */
557 float depth_units;
558 float depth_factor;
559
560 u32 unknown2_2;
561
562 /* Generated from SAMPLE_COVERAGE_VALUE and SAMPLE_COVERAGE_INVERT. See
563 * 13.8.3 ("Multisample Fragment Operations") in the OpenGL ES 3.2
564 * specification. Only matters when multisampling is enabled. */
565 u16 coverage_mask;
566
567 u16 unknown2_3;
568
569 u8 stencil_mask_front;
570 u8 stencil_mask_back;
571 u16 unknown2_4;
572
573 struct mali_stencil_packed stencil_front;
574 struct mali_stencil_packed stencil_back;
575
576 union {
577 struct {
578 u32 unk3 : 7;
579 /* On Bifrost, some system values are preloaded in
580 * registers R55-R62 by the thread dispatcher prior to
581 * the start of shader execution. This is a bitfield
582 * with one entry for each register saying which
583 * registers need to be preloaded. Right now, the known
584 * values are:
585 *
586 * Vertex/compute:
587 * - R55 : gl_LocalInvocationID.xy
588 * - R56 : gl_LocalInvocationID.z + unknown in high 16 bits
589 * - R57 : gl_WorkGroupID.x
590 * - R58 : gl_WorkGroupID.y
591 * - R59 : gl_WorkGroupID.z
592 * - R60 : gl_GlobalInvocationID.x
593 * - R61 : gl_GlobalInvocationID.y/gl_VertexID (without base)
594 * - R62 : gl_GlobalInvocationID.z/gl_InstanceID (without base)
595 *
596 * Fragment:
597 * - R55 : unknown, never seen (but the bit for this is
598 * always set?)
599 * - R56 : unknown (bit always unset)
600 * - R57 : gl_PrimitiveID
601 * - R58 : gl_FrontFacing in low bit, potentially other stuff
602 * - R59 : u16 fragment coordinates (used to compute
603 * gl_FragCoord.xy, together with sample positions)
604 * - R60 : gl_SampleMask (used in epilog, so pretty
605 * much always used, but the bit is always 0 -- is
606 * this just always pushed?)
607 * - R61 : gl_SampleMaskIn and gl_SampleID, used by
608 * varying interpolation.
609 * - R62 : unknown (bit always unset).
610 *
611 * Later GPUs (starting with Mali-G52?) support
612 * preloading float varyings into r0-r7. This is
613 * indicated by setting 0x40. There is no distinction
614 * here between 1 varying and 2.
615 */
616 u32 preload_regs : 8;
617 /* In units of 8 bytes or 64 bits, since the
618 * uniform/const port loads 64 bits at a time.
619 */
620 u32 uniform_count : 7;
621 u32 unk4 : 10; // = 2
622 } bifrost2;
623 struct {
624 u32 unknown2_7;
625 } midgard2;
626 };
627
628 u32 padding;
629
630 /* Blending information for the older non-MRT Midgard HW. Check for
631 * MALI_HAS_BLEND_SHADER to decide how to interpret.
632 */
633
634 union midgard_blend blend;
635 } __attribute__((packed));
636
637 /* This only concerns hardware jobs */
638
639 /* Possible values for job_descriptor_size */
640
641 #define MALI_JOB_32 0
642 #define MALI_JOB_64 1
643
644 struct mali_job_descriptor_header {
645 u32 exception_status;
646 u32 first_incomplete_task;
647 u64 fault_pointer;
648 u8 job_descriptor_size : 1;
649 enum mali_job_type job_type : 7;
650 u8 job_barrier : 1;
651 u8 unknown_flags : 7;
652 u16 job_index;
653 u16 job_dependency_index_1;
654 u16 job_dependency_index_2;
655 u64 next_job;
656 } __attribute__((packed));
657
658 /* These concern exception_status */
659
660 /* Access type causing a fault, paralleling AS_FAULTSTATUS_* entries in the
661 * kernel */
662
663 enum mali_exception_access {
664 /* Atomic in the kernel for MMU, but that doesn't make sense for a job
665 * fault so it's just unused */
666 MALI_EXCEPTION_ACCESS_NONE = 0,
667
668 MALI_EXCEPTION_ACCESS_EXECUTE = 1,
669 MALI_EXCEPTION_ACCESS_READ = 2,
670 MALI_EXCEPTION_ACCESS_WRITE = 3
671 };
672
673 /* Details about write_value from panfrost igt tests which use it as a generic
674 * dword write primitive */
675
676 #define MALI_WRITE_VALUE_ZERO 3
677
678 struct mali_payload_write_value {
679 u64 address;
680 u32 value_descriptor;
681 u32 reserved;
682 u64 immediate;
683 } __attribute__((packed));
684
685 /*
686 * Mali Attributes
687 *
688 * This structure lets the attribute unit compute the address of an attribute
689 * given the vertex and instance ID. Unfortunately, the way this works is
690 * rather complicated when instancing is enabled.
691 *
692 * To explain this, first we need to explain how compute and vertex threads are
693 * dispatched. This is a guess (although a pretty firm guess!) since the
694 * details are mostly hidden from the driver, except for attribute instancing.
695 * When a quad is dispatched, it receives a single, linear index. However, we
696 * need to translate that index into a (vertex id, instance id) pair, or a
697 * (local id x, local id y, local id z) triple for compute shaders (although
698 * vertex shaders and compute shaders are handled almost identically).
699 * Focusing on vertex shaders, one option would be to do:
700 *
701 * vertex_id = linear_id % num_vertices
702 * instance_id = linear_id / num_vertices
703 *
704 * but this involves a costly division and modulus by an arbitrary number.
705 * Instead, we could pad num_vertices. We dispatch padded_num_vertices *
706 * num_instances threads instead of num_vertices * num_instances, which results
707 * in some "extra" threads with vertex_id >= num_vertices, which we have to
708 * discard. The more we pad num_vertices, the more "wasted" threads we
709 * dispatch, but the division is potentially easier.
710 *
711 * One straightforward choice is to pad num_vertices to the next power of two,
712 * which means that the division and modulus are just simple bit shifts and
713 * masking. But the actual algorithm is a bit more complicated. The thread
714 * dispatcher has special support for dividing by 3, 5, 7, and 9, in addition
715 * to dividing by a power of two. This is possibly using the technique
716 * described in patent US20170010862A1. As a result, padded_num_vertices can be
717 * 1, 3, 5, 7, or 9 times a power of two. This results in less wasted threads,
718 * since we need less padding.
719 *
720 * padded_num_vertices is picked by the hardware. The driver just specifies the
721 * actual number of vertices. At least for Mali G71, the first few cases are
722 * given by:
723 *
724 * num_vertices | padded_num_vertices
725 * 3 | 4
726 * 4-7 | 8
727 * 8-11 | 12 (3 * 4)
728 * 12-15 | 16
729 * 16-19 | 20 (5 * 4)
730 *
731 * Note that padded_num_vertices is a multiple of four (presumably because
732 * threads are dispatched in groups of 4). Also, padded_num_vertices is always
733 * at least one more than num_vertices, which seems like a quirk of the
734 * hardware. For larger num_vertices, the hardware uses the following
735 * algorithm: using the binary representation of num_vertices, we look at the
736 * most significant set bit as well as the following 3 bits. Let n be the
737 * number of bits after those 4 bits. Then we set padded_num_vertices according
738 * to the following table:
739 *
740 * high bits | padded_num_vertices
741 * 1000 | 9 * 2^n
742 * 1001 | 5 * 2^(n+1)
743 * 101x | 3 * 2^(n+2)
744 * 110x | 7 * 2^(n+1)
745 * 111x | 2^(n+4)
746 *
747 * For example, if num_vertices = 70 is passed to glDraw(), its binary
748 * representation is 1000110, so n = 3 and the high bits are 1000, and
749 * therefore padded_num_vertices = 9 * 2^3 = 72.
750 *
751 * The attribute unit works in terms of the original linear_id. if
752 * num_instances = 1, then they are the same, and everything is simple.
753 * However, with instancing things get more complicated. There are four
754 * possible modes, two of them we can group together:
755 *
756 * 1. Use the linear_id directly. Only used when there is no instancing.
757 *
758 * 2. Use the linear_id modulo a constant. This is used for per-vertex
759 * attributes with instancing enabled by making the constant equal
760 * padded_num_vertices. Because the modulus is always padded_num_vertices, this
761 * mode only supports a modulus that is a power of 2 times 1, 3, 5, 7, or 9.
762 * The shift field specifies the power of two, while the extra_flags field
763 * specifies the odd number. If shift = n and extra_flags = m, then the modulus
764 * is (2m + 1) * 2^n. As an example, if num_vertices = 70, then as computed
765 * above, padded_num_vertices = 9 * 2^3, so we should set extra_flags = 4 and
766 * shift = 3. Note that we must exactly follow the hardware algorithm used to
767 * get padded_num_vertices in order to correctly implement per-vertex
768 * attributes.
769 *
770 * 3. Divide the linear_id by a constant. In order to correctly implement
771 * instance divisors, we have to divide linear_id by padded_num_vertices times
772 * to user-specified divisor. So first we compute padded_num_vertices, again
773 * following the exact same algorithm that the hardware uses, then multiply it
774 * by the GL-level divisor to get the hardware-level divisor. This case is
775 * further divided into two more cases. If the hardware-level divisor is a
776 * power of two, then we just need to shift. The shift amount is specified by
777 * the shift field, so that the hardware-level divisor is just 2^shift.
778 *
779 * If it isn't a power of two, then we have to divide by an arbitrary integer.
780 * For that, we use the well-known technique of multiplying by an approximation
781 * of the inverse. The driver must compute the magic multiplier and shift
782 * amount, and then the hardware does the multiplication and shift. The
783 * hardware and driver also use the "round-down" optimization as described in
784 * http://ridiculousfish.com/files/faster_unsigned_division_by_constants.pdf.
785 * The hardware further assumes the multiplier is between 2^31 and 2^32, so the
786 * high bit is implicitly set to 1 even though it is set to 0 by the driver --
787 * presumably this simplifies the hardware multiplier a little. The hardware
788 * first multiplies linear_id by the multiplier and takes the high 32 bits,
789 * then applies the round-down correction if extra_flags = 1, then finally
790 * shifts right by the shift field.
791 *
792 * There are some differences between ridiculousfish's algorithm and the Mali
793 * hardware algorithm, which means that the reference code from ridiculousfish
794 * doesn't always produce the right constants. Mali does not use the pre-shift
795 * optimization, since that would make a hardware implementation slower (it
796 * would have to always do the pre-shift, multiply, and post-shift operations).
797 * It also forces the multplier to be at least 2^31, which means that the
798 * exponent is entirely fixed, so there is no trial-and-error. Altogether,
799 * given the divisor d, the algorithm the driver must follow is:
800 *
801 * 1. Set shift = floor(log2(d)).
802 * 2. Compute m = ceil(2^(shift + 32) / d) and e = 2^(shift + 32) % d.
803 * 3. If e <= 2^shift, then we need to use the round-down algorithm. Set
804 * magic_divisor = m - 1 and extra_flags = 1.
805 * 4. Otherwise, set magic_divisor = m and extra_flags = 0.
806 *
807 * Unrelated to instancing/actual attributes, images (the OpenCL kind) are
808 * implemented as special attributes, denoted by MALI_ATTR_IMAGE. For images,
809 * let shift=extra_flags=0. Stride is set to the image format's bytes-per-pixel
810 * (*NOT the row stride*). Size is set to the size of the image itself.
811 *
812 * Special internal attribtues and varyings (gl_VertexID, gl_FrontFacing, etc)
813 * use particular fixed addresses with modified structures.
814 */
815
816 enum mali_attr_mode {
817 MALI_ATTR_UNUSED = 0,
818 MALI_ATTR_LINEAR = 1,
819 MALI_ATTR_POT_DIVIDE = 2,
820 MALI_ATTR_MODULO = 3,
821 MALI_ATTR_NPOT_DIVIDE = 4,
822 MALI_ATTR_IMAGE = 5,
823 };
824
825 /* Pseudo-address for gl_VertexID, gl_FragCoord, gl_FrontFacing */
826
827 #define MALI_ATTR_VERTEXID (0x22)
828 #define MALI_ATTR_INSTANCEID (0x24)
829 #define MALI_VARYING_FRAG_COORD (0x25)
830 #define MALI_VARYING_FRONT_FACING (0x26)
831
832 /* This magic "pseudo-address" is used as `elements` to implement
833 * gl_PointCoord. When read from a fragment shader, it generates a point
834 * coordinate per the OpenGL ES 2.0 specification. Flipped coordinate spaces
835 * require an affine transformation in the shader. */
836
837 #define MALI_VARYING_POINT_COORD (0x61)
838
839 /* Used for comparison to check if an address is special. Mostly a guess, but
840 * it doesn't really matter. */
841
842 #define MALI_RECORD_SPECIAL (0x100)
843
844 union mali_attr {
845 /* This is used for actual attributes. */
846 struct {
847 /* The bottom 3 bits are the mode */
848 mali_ptr elements : 64 - 8;
849 u32 shift : 5;
850 u32 extra_flags : 3;
851 u32 stride;
852 u32 size;
853 };
854 /* The entry after an NPOT_DIVIDE entry has this format. It stores
855 * extra information that wouldn't fit in a normal entry.
856 */
857 struct {
858 u32 unk; /* = 0x20 */
859 u32 magic_divisor;
860 u32 zero;
861 /* This is the original, GL-level divisor. */
862 u32 divisor;
863 };
864 } __attribute__((packed));
865
866 struct mali_attr_meta {
867 /* Vertex buffer index */
868 u8 index;
869
870 unsigned unknown1 : 2;
871 unsigned swizzle : 12;
872 enum mali_format format : 8;
873
874 /* Always observed to be zero at the moment */
875 unsigned unknown3 : 2;
876
877 /* When packing multiple attributes in a buffer, offset addresses by
878 * this value. Obscurely, this is signed. */
879 int32_t src_offset;
880 } __attribute__((packed));
881
882 #define FBD_MASK (~0x3f)
883
884 /* MFBD, rather than SFBD */
885 #define MALI_MFBD (0x1)
886
887 /* ORed into an MFBD address to specify the fbx section is included */
888 #define MALI_MFBD_TAG_EXTRA (0x2)
889
890 /* On Bifrost, these fields are the same between the vertex and tiler payloads.
891 * They also seem to be the same between Bifrost and Midgard. They're shared in
892 * fused payloads.
893 */
894
895 /* Applies to unknown_draw */
896
897 #define MALI_DRAW_INDEXED_UINT8 (0x10)
898 #define MALI_DRAW_INDEXED_UINT16 (0x20)
899 #define MALI_DRAW_INDEXED_UINT32 (0x30)
900 #define MALI_DRAW_INDEXED_SIZE (0x30)
901 #define MALI_DRAW_INDEXED_SHIFT (4)
902
903 #define MALI_DRAW_VARYING_SIZE (0x100)
904
905 /* Set to use first vertex as the provoking vertex for flatshading. Clear to
906 * use the last vertex. This is the default in DX and VK, but not in GL. */
907
908 #define MALI_DRAW_FLATSHADE_FIRST (0x800)
909
910 #define MALI_DRAW_PRIMITIVE_RESTART_FIXED_INDEX (0x10000)
911
912 struct mali_vertex_tiler_prefix {
913 /* This is a dynamic bitfield containing the following things in this order:
914 *
915 * - gl_WorkGroupSize.x
916 * - gl_WorkGroupSize.y
917 * - gl_WorkGroupSize.z
918 * - gl_NumWorkGroups.x
919 * - gl_NumWorkGroups.y
920 * - gl_NumWorkGroups.z
921 *
922 * The number of bits allocated for each number is based on the *_shift
923 * fields below. For example, workgroups_y_shift gives the bit that
924 * gl_NumWorkGroups.y starts at, and workgroups_z_shift gives the bit
925 * that gl_NumWorkGroups.z starts at (and therefore one after the bit
926 * that gl_NumWorkGroups.y ends at). The actual value for each gl_*
927 * value is one more than the stored value, since if any of the values
928 * are zero, then there would be no invocations (and hence no job). If
929 * there were 0 bits allocated to a given field, then it must be zero,
930 * and hence the real value is one.
931 *
932 * Vertex jobs reuse the same job dispatch mechanism as compute jobs,
933 * effectively doing glDispatchCompute(1, vertex_count, instance_count)
934 * where vertex count is the number of vertices.
935 */
936 u32 invocation_count;
937
938 /* Bitfield for shifts:
939 *
940 * size_y_shift : 5
941 * size_z_shift : 5
942 * workgroups_x_shift : 6
943 * workgroups_y_shift : 6
944 * workgroups_z_shift : 6
945 * workgroups_x_shift_2 : 4
946 */
947 u32 invocation_shifts;
948
949 u32 draw_mode : 4;
950 u32 unknown_draw : 22;
951
952 /* This is the the same as workgroups_x_shift_2 in compute shaders, but
953 * always 5 for vertex jobs and 6 for tiler jobs. I suspect this has
954 * something to do with how many quads get put in the same execution
955 * engine, which is a balance (you don't want to starve the engine, but
956 * you also want to distribute work evenly).
957 */
958 u32 workgroups_x_shift_3 : 6;
959
960
961 /* Negative of min_index. This is used to compute
962 * the unbiased index in tiler/fragment shader runs.
963 *
964 * The hardware adds offset_bias_correction in each run,
965 * so that absent an index bias, the first vertex processed is
966 * genuinely the first vertex (0). But with an index bias,
967 * the first vertex process is numbered the same as the bias.
968 *
969 * To represent this more conviniently:
970 * unbiased_index = lower_bound_index +
971 * index_bias +
972 * offset_bias_correction
973 *
974 * This is done since the hardware doesn't accept a index_bias
975 * and this allows it to recover the unbiased index.
976 */
977 int32_t offset_bias_correction;
978 u32 zero1;
979
980 /* Like many other strictly nonzero quantities, index_count is
981 * subtracted by one. For an indexed cube, this is equal to 35 = 6
982 * faces * 2 triangles/per face * 3 vertices/per triangle - 1. That is,
983 * for an indexed draw, index_count is the number of actual vertices
984 * rendered whereas invocation_count is the number of unique vertices
985 * rendered (the number of times the vertex shader must be invoked).
986 * For non-indexed draws, this is just equal to invocation_count. */
987
988 u32 index_count;
989
990 /* No hidden structure; literally just a pointer to an array of uint
991 * indices (width depends on flags). Thanks, guys, for not making my
992 * life insane for once! NULL for non-indexed draws. */
993
994 u64 indices;
995 } __attribute__((packed));
996
997 /* Point size / line width can either be specified as a 32-bit float (for
998 * constant size) or as a [machine word size]-bit GPU pointer (for varying size). If a pointer
999 * is selected, by setting the appropriate MALI_DRAW_VARYING_SIZE bit in the tiler
1000 * payload, the contents of varying_pointer will be intepreted as an array of
1001 * fp16 sizes, one for each vertex. gl_PointSize is therefore implemented by
1002 * creating a special MALI_R16F varying writing to varying_pointer. */
1003
1004 union midgard_primitive_size {
1005 float constant;
1006 u64 pointer;
1007 };
1008
1009 struct bifrost_tiler_heap_meta {
1010 u32 zero;
1011 u32 heap_size;
1012 /* note: these are just guesses! */
1013 mali_ptr tiler_heap_start;
1014 mali_ptr tiler_heap_free;
1015 mali_ptr tiler_heap_end;
1016
1017 /* hierarchy weights? but they're still 0 after the job has run... */
1018 u32 zeros[10];
1019 u32 unk1;
1020 u32 unk7e007e;
1021 } __attribute__((packed));
1022
1023 struct bifrost_tiler_meta {
1024 u32 tiler_heap_next_start; /* To be written by the GPU */
1025 u32 used_hierarchy_mask; /* To be written by the GPU */
1026 u16 hierarchy_mask; /* Five values observed: 0xa, 0x14, 0x28, 0x50, 0xa0 */
1027 u16 flags;
1028 u16 width;
1029 u16 height;
1030 u64 zero0;
1031 mali_ptr tiler_heap_meta;
1032 /* TODO what is this used for? */
1033 u64 zeros[20];
1034 } __attribute__((packed));
1035
1036 struct bifrost_tiler_only {
1037 /* 0x20 */
1038 union midgard_primitive_size primitive_size;
1039
1040 mali_ptr tiler_meta;
1041
1042 u64 zero1, zero2, zero3, zero4, zero5, zero6;
1043 } __attribute__((packed));
1044
1045 struct mali_vertex_tiler_postfix {
1046 u16 gl_enables; // 0x6 on Midgard, 0x2 on Bifrost
1047
1048 /* Both zero for non-instanced draws. For instanced draws, a
1049 * decomposition of padded_num_vertices. See the comments about the
1050 * corresponding fields in mali_attr for context. */
1051
1052 unsigned instance_shift : 5;
1053 unsigned instance_odd : 3;
1054
1055 u8 zero4;
1056
1057 /* Offset for first vertex in buffer */
1058 u32 offset_start;
1059
1060 u64 zero5;
1061
1062 /* Zero for vertex jobs. Pointer to the position (gl_Position) varying
1063 * output from the vertex shader for tiler jobs.
1064 */
1065
1066 u64 position_varying;
1067
1068 /* An array of mali_uniform_buffer_meta's. The size is given by the
1069 * shader_meta.
1070 */
1071 u64 uniform_buffers;
1072
1073 /* On Bifrost, this is a pointer to an array of bifrost_texture_descriptor.
1074 * On Midgard, this is a pointer to an array of pointers to the texture
1075 * descriptors, number of pointers bounded by number of textures. The
1076 * indirection is needed to accomodate varying numbers and sizes of
1077 * texture descriptors */
1078 u64 textures;
1079
1080 /* For OpenGL, from what I've seen, this is intimately connected to
1081 * texture_meta. cwabbott says this is not the case under Vulkan, hence
1082 * why this field is seperate (Midgard is Vulkan capable). Pointer to
1083 * array of sampler descriptors (which are uniform in size) */
1084 u64 sampler_descriptor;
1085
1086 u64 uniforms;
1087 u64 shader;
1088 u64 attributes; /* struct attribute_buffer[] */
1089 u64 attribute_meta; /* attribute_meta[] */
1090 u64 varyings; /* struct attr */
1091 u64 varying_meta; /* pointer */
1092 u64 viewport;
1093 u64 occlusion_counter; /* A single bit as far as I can tell */
1094
1095 /* On Bifrost, this points directly to a mali_shared_memory structure.
1096 * On Midgard, this points to a framebuffer (either SFBD or MFBD as
1097 * tagged), which embeds a mali_shared_memory structure */
1098 mali_ptr shared_memory;
1099 } __attribute__((packed));
1100
1101 struct midgard_payload_vertex_tiler {
1102 struct mali_vertex_tiler_prefix prefix;
1103 struct mali_vertex_tiler_postfix postfix;
1104
1105 union midgard_primitive_size primitive_size;
1106 } __attribute__((packed));
1107
1108 struct bifrost_payload_vertex {
1109 struct mali_vertex_tiler_prefix prefix;
1110 struct mali_vertex_tiler_postfix postfix;
1111 } __attribute__((packed));
1112
1113 struct bifrost_payload_tiler {
1114 struct mali_vertex_tiler_prefix prefix;
1115 struct bifrost_tiler_only tiler;
1116 struct mali_vertex_tiler_postfix postfix;
1117 } __attribute__((packed));
1118
1119 struct bifrost_payload_fused {
1120 struct mali_vertex_tiler_prefix prefix;
1121 struct bifrost_tiler_only tiler;
1122 struct mali_vertex_tiler_postfix tiler_postfix;
1123 u64 padding; /* zero */
1124 struct mali_vertex_tiler_postfix vertex_postfix;
1125 } __attribute__((packed));
1126
1127 /* Purposeful off-by-one in width, height fields. For example, a (64, 64)
1128 * texture is stored as (63, 63) in these fields. This adjusts for that.
1129 * There's an identical pattern in the framebuffer descriptor. Even vertex
1130 * count fields work this way, hence the generic name -- integral fields that
1131 * are strictly positive generally need this adjustment. */
1132
1133 #define MALI_POSITIVE(dim) (dim - 1)
1134
1135 /* 8192x8192 */
1136 #define MAX_MIP_LEVELS (13)
1137
1138 /* Cubemap bloats everything up */
1139 #define MAX_CUBE_FACES (6)
1140
1141 /* For each pointer, there is an address and optionally also a stride */
1142 #define MAX_ELEMENTS (2)
1143
1144 /* Used for lod encoding. Thanks @urjaman for pointing out these routines can
1145 * be cleaned up a lot. */
1146
1147 #define DECODE_FIXED_16(x) ((float) (x / 256.0))
1148
1149 static inline int16_t
1150 FIXED_16(float x, bool allow_negative)
1151 {
1152 /* Clamp inputs, accounting for float error */
1153 float max_lod = (32.0 - (1.0 / 512.0));
1154 float min_lod = allow_negative ? -max_lod : 0.0;
1155
1156 x = ((x > max_lod) ? max_lod : ((x < min_lod) ? min_lod : x));
1157
1158 return (int) (x * 256.0);
1159 }
1160
1161 /* From presentations, 16x16 tiles externally. Use shift for fast computation
1162 * of tile numbers. */
1163
1164 #define MALI_TILE_SHIFT 4
1165 #define MALI_TILE_LENGTH (1 << MALI_TILE_SHIFT)
1166
1167 /* Tile coordinates are stored as a compact u32, as only 12 bits are needed to
1168 * each component. Notice that this provides a theoretical upper bound of (1 <<
1169 * 12) = 4096 tiles in each direction, addressing a maximum framebuffer of size
1170 * 65536x65536. Multiplying that together, times another four given that Mali
1171 * framebuffers are 32-bit ARGB8888, means that this upper bound would take 16
1172 * gigabytes of RAM just to store the uncompressed framebuffer itself, let
1173 * alone rendering in real-time to such a buffer.
1174 *
1175 * Nice job, guys.*/
1176
1177 /* From mali_kbase_10969_workaround.c */
1178 #define MALI_X_COORD_MASK 0x00000FFF
1179 #define MALI_Y_COORD_MASK 0x0FFF0000
1180
1181 /* Extract parts of a tile coordinate */
1182
1183 #define MALI_TILE_COORD_X(coord) ((coord) & MALI_X_COORD_MASK)
1184 #define MALI_TILE_COORD_Y(coord) (((coord) & MALI_Y_COORD_MASK) >> 16)
1185
1186 /* Helpers to generate tile coordinates based on the boundary coordinates in
1187 * screen space. So, with the bounds (0, 0) to (128, 128) for the screen, these
1188 * functions would convert it to the bounding tiles (0, 0) to (7, 7).
1189 * Intentional "off-by-one"; finding the tile number is a form of fencepost
1190 * problem. */
1191
1192 #define MALI_MAKE_TILE_COORDS(X, Y) ((X) | ((Y) << 16))
1193 #define MALI_BOUND_TO_TILE(B, bias) ((B - bias) >> MALI_TILE_SHIFT)
1194 #define MALI_COORDINATE_TO_TILE(W, H, bias) MALI_MAKE_TILE_COORDS(MALI_BOUND_TO_TILE(W, bias), MALI_BOUND_TO_TILE(H, bias))
1195 #define MALI_COORDINATE_TO_TILE_MIN(W, H) MALI_COORDINATE_TO_TILE(W, H, 0)
1196 #define MALI_COORDINATE_TO_TILE_MAX(W, H) MALI_COORDINATE_TO_TILE(W, H, 1)
1197
1198 struct mali_payload_fragment {
1199 u32 min_tile_coord;
1200 u32 max_tile_coord;
1201 mali_ptr framebuffer;
1202 } __attribute__((packed));
1203
1204 /* Single Framebuffer Descriptor */
1205
1206 /* Flags apply to format. With just MSAA_A and MSAA_B, the framebuffer is
1207 * configured for 4x. With MSAA_8, it is configured for 8x. */
1208
1209 #define MALI_SFBD_FORMAT_MSAA_8 (1 << 3)
1210 #define MALI_SFBD_FORMAT_MSAA_A (1 << 4)
1211 #define MALI_SFBD_FORMAT_MSAA_B (1 << 4)
1212 #define MALI_SFBD_FORMAT_SRGB (1 << 5)
1213
1214 /* Fast/slow based on whether all three buffers are cleared at once */
1215
1216 #define MALI_CLEAR_FAST (1 << 18)
1217 #define MALI_CLEAR_SLOW (1 << 28)
1218 #define MALI_CLEAR_SLOW_STENCIL (1 << 31)
1219
1220 /* Configures hierarchical tiling on Midgard for both SFBD/MFBD (embedded
1221 * within the larget framebuffer descriptor). Analogous to
1222 * bifrost_tiler_heap_meta and bifrost_tiler_meta*/
1223
1224 /* See pan_tiler.c for derivation */
1225 #define MALI_HIERARCHY_MASK ((1 << 9) - 1)
1226
1227 /* Flag disabling the tiler for clear-only jobs, with
1228 hierarchical tiling */
1229 #define MALI_TILER_DISABLED (1 << 12)
1230
1231 /* Flag selecting userspace-generated polygon list, for clear-only jobs without
1232 * hierarhical tiling. */
1233 #define MALI_TILER_USER 0xFFF
1234
1235 /* Absent any geometry, the minimum size of the polygon list header */
1236 #define MALI_TILER_MINIMUM_HEADER_SIZE 0x200
1237
1238 struct midgard_tiler_descriptor {
1239 /* Size of the entire polygon list; see pan_tiler.c for the
1240 * computation. It's based on hierarchical tiling */
1241
1242 u32 polygon_list_size;
1243
1244 /* Name known from the replay workaround in the kernel. What exactly is
1245 * flagged here is less known. We do that (tiler_hierarchy_mask & 0x1ff)
1246 * specifies a mask of hierarchy weights, which explains some of the
1247 * performance mysteries around setting it. We also see the bottom bit
1248 * of tiler_flags set in the kernel, but no comment why.
1249 *
1250 * hierarchy_mask can have the TILER_DISABLED flag */
1251
1252 u16 hierarchy_mask;
1253 u16 flags;
1254
1255 /* See mali_tiler.c for an explanation */
1256 mali_ptr polygon_list;
1257 mali_ptr polygon_list_body;
1258
1259 /* Names based on we see symmetry with replay jobs which name these
1260 * explicitly */
1261
1262 mali_ptr heap_start; /* tiler heap_free_address */
1263 mali_ptr heap_end;
1264
1265 /* Hierarchy weights. We know these are weights based on the kernel,
1266 * but I've never seen them be anything other than zero */
1267 u32 weights[8];
1268 };
1269
1270 struct mali_sfbd_format {
1271 /* 0x1 */
1272 unsigned unk1 : 6;
1273
1274 /* mali_channel_swizzle */
1275 unsigned swizzle : 12;
1276
1277 /* MALI_POSITIVE */
1278 unsigned nr_channels : 2;
1279
1280 /* 0x4 */
1281 unsigned unk2 : 6;
1282
1283 enum mali_block_format block : 2;
1284
1285 /* 0xb */
1286 unsigned unk3 : 4;
1287 };
1288
1289 /* Shared structure at the start of framebuffer descriptors, or used bare for
1290 * compute jobs, configuring stack and shared memory */
1291
1292 struct mali_shared_memory {
1293 u32 stack_shift : 4;
1294 u32 unk0 : 28;
1295
1296 /* Configuration for shared memory for compute shaders.
1297 * shared_workgroup_count is logarithmic and may be computed for a
1298 * compute shader using shared memory as:
1299 *
1300 * shared_workgroup_count = MAX2(ceil(log2(count_x)) + ... + ceil(log2(count_z), 10)
1301 *
1302 * For compute shaders that don't use shared memory, or non-compute
1303 * shaders, this is set to ~0
1304 */
1305
1306 u32 shared_workgroup_count : 5;
1307 u32 shared_unk1 : 3;
1308 u32 shared_shift : 4;
1309 u32 shared_zero : 20;
1310
1311 mali_ptr scratchpad;
1312
1313 /* For compute shaders, the RAM backing of workgroup-shared memory. For
1314 * fragment shaders on Bifrost, apparently multisampling locations */
1315
1316 mali_ptr shared_memory;
1317 mali_ptr unknown1;
1318 } __attribute__((packed));
1319
1320 /* Configures multisampling on Bifrost fragment jobs */
1321
1322 struct bifrost_multisampling {
1323 u64 zero1;
1324 u64 zero2;
1325 mali_ptr sample_locations;
1326 u64 zero4;
1327 } __attribute__((packed));
1328
1329 struct mali_single_framebuffer {
1330 struct mali_shared_memory shared_memory;
1331 struct mali_sfbd_format format;
1332
1333 u32 clear_flags;
1334 u32 zero2;
1335
1336 /* Purposeful off-by-one in these fields should be accounted for by the
1337 * MALI_DIMENSION macro */
1338
1339 u16 width;
1340 u16 height;
1341
1342 u32 zero3[4];
1343 mali_ptr checksum;
1344 u32 checksum_stride;
1345 u32 zero5;
1346
1347 /* By default, the framebuffer is upside down from OpenGL's
1348 * perspective. Set framebuffer to the end and negate the stride to
1349 * flip in the Y direction */
1350
1351 mali_ptr framebuffer;
1352 int32_t stride;
1353
1354 u32 zero4;
1355
1356 /* Depth and stencil buffers are interleaved, it appears, as they are
1357 * set to the same address in captures. Both fields set to zero if the
1358 * buffer is not being cleared. Depending on GL_ENABLE magic, you might
1359 * get a zero enable despite the buffer being present; that still is
1360 * disabled. */
1361
1362 mali_ptr depth_buffer; // not SAME_VA
1363 u32 depth_stride_zero : 4;
1364 u32 depth_stride : 28;
1365 u32 zero7;
1366
1367 mali_ptr stencil_buffer; // not SAME_VA
1368 u32 stencil_stride_zero : 4;
1369 u32 stencil_stride : 28;
1370 u32 zero8;
1371
1372 u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware
1373 u32 clear_color_2; // always equal, but unclear function?
1374 u32 clear_color_3; // always equal, but unclear function?
1375 u32 clear_color_4; // always equal, but unclear function?
1376
1377 /* Set to zero if not cleared */
1378
1379 float clear_depth_1; // float32, ditto
1380 float clear_depth_2; // float32, ditto
1381 float clear_depth_3; // float32, ditto
1382 float clear_depth_4; // float32, ditto
1383
1384 u32 clear_stencil; // Exactly as it appears in OpenGL
1385
1386 u32 zero6[7];
1387
1388 struct midgard_tiler_descriptor tiler;
1389
1390 /* More below this, maybe */
1391 } __attribute__((packed));
1392
1393
1394 /* SINGLE to disable multisampling, AVERAGE for
1395 * EXT_multisampled_render_to_texture operation where multiple tilebuffer
1396 * samples are implicitly resolved before writeout, MULTIPLE to write multiple
1397 * samples inline, and LAYERED for ES3-style multisampling with each sample in
1398 * a different buffer.
1399 */
1400
1401 enum mali_msaa_mode {
1402 MALI_MSAA_SINGLE = 0,
1403 MALI_MSAA_AVERAGE = 1,
1404 MALI_MSAA_MULTIPLE = 2,
1405 MALI_MSAA_LAYERED = 3,
1406 };
1407
1408 #define MALI_MFBD_FORMAT_SRGB (1 << 0)
1409
1410 struct mali_rt_format {
1411 unsigned unk1 : 32;
1412 unsigned unk2 : 3;
1413
1414 unsigned nr_channels : 2; /* MALI_POSITIVE */
1415
1416 unsigned unk3 : 4;
1417 unsigned unk4 : 1;
1418 enum mali_block_format block : 2;
1419 enum mali_msaa_mode msaa : 2;
1420 unsigned flags : 2;
1421
1422 unsigned swizzle : 12;
1423
1424 unsigned zero : 3;
1425
1426 /* Disables MFBD preload. When this bit is set, the render target will
1427 * be cleared every frame. When this bit is clear, the hardware will
1428 * automatically wallpaper the render target back from main memory.
1429 * Unfortunately, MFBD preload is very broken on Midgard, so in
1430 * practice, this is a chicken bit that should always be set.
1431 * Discovered by accident, as all good chicken bits are. */
1432
1433 unsigned no_preload : 1;
1434 } __attribute__((packed));
1435
1436 /* Flags for afbc.flags and ds_afbc.flags */
1437
1438 #define MALI_AFBC_FLAGS 0x10009
1439
1440 /* Lossless RGB and RGBA colorspace transform */
1441 #define MALI_AFBC_YTR (1 << 17)
1442
1443 struct mali_render_target {
1444 struct mali_rt_format format;
1445
1446 u64 zero1;
1447
1448 struct {
1449 /* Stuff related to ARM Framebuffer Compression. When AFBC is enabled,
1450 * there is an extra metadata buffer that contains 16 bytes per tile.
1451 * The framebuffer needs to be the same size as before, since we don't
1452 * know ahead of time how much space it will take up. The
1453 * framebuffer_stride is set to 0, since the data isn't stored linearly
1454 * anymore.
1455 *
1456 * When AFBC is disabled, these fields are zero.
1457 */
1458
1459 mali_ptr metadata;
1460 u32 stride; // stride in units of tiles
1461 u32 flags; // = 0x20000
1462 } afbc;
1463
1464 mali_ptr framebuffer;
1465
1466 u32 zero2 : 4;
1467 u32 framebuffer_stride : 28; // in units of bytes, row to next
1468 u32 layer_stride; /* For multisample rendering */
1469
1470 u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware
1471 u32 clear_color_2; // always equal, but unclear function?
1472 u32 clear_color_3; // always equal, but unclear function?
1473 u32 clear_color_4; // always equal, but unclear function?
1474 } __attribute__((packed));
1475
1476 /* An optional part of mali_framebuffer. It comes between the main structure
1477 * and the array of render targets. It must be included if any of these are
1478 * enabled:
1479 *
1480 * - Transaction Elimination
1481 * - Depth/stencil
1482 * - TODO: Anything else?
1483 */
1484
1485 /* flags_hi */
1486 #define MALI_EXTRA_PRESENT (0x1)
1487
1488 /* flags_lo */
1489 #define MALI_EXTRA_ZS (0x4)
1490
1491 struct mali_framebuffer_extra {
1492 mali_ptr checksum;
1493 /* Each tile has an 8 byte checksum, so the stride is "width in tiles * 8" */
1494 u32 checksum_stride;
1495
1496 unsigned flags_lo : 4;
1497 enum mali_block_format zs_block : 2;
1498
1499 /* Number of samples in Z/S attachment, MALI_POSITIVE. So zero for
1500 * 1-sample (non-MSAA), 0x3 for MSAA 4x, etc */
1501 unsigned zs_samples : 4;
1502 unsigned flags_hi : 22;
1503
1504 union {
1505 /* Note: AFBC is only allowed for 24/8 combined depth/stencil. */
1506 struct {
1507 mali_ptr depth_stencil_afbc_metadata;
1508 u32 depth_stencil_afbc_stride; // in units of tiles
1509 u32 flags;
1510
1511 mali_ptr depth_stencil;
1512
1513 u64 padding;
1514 } ds_afbc;
1515
1516 struct {
1517 /* Depth becomes depth/stencil in case of combined D/S */
1518 mali_ptr depth;
1519 u32 depth_stride_zero : 4;
1520 u32 depth_stride : 28;
1521 u32 depth_layer_stride;
1522
1523 mali_ptr stencil;
1524 u32 stencil_stride_zero : 4;
1525 u32 stencil_stride : 28;
1526 u32 stencil_layer_stride;
1527 } ds_linear;
1528 };
1529
1530
1531 u32 clear_color_1;
1532 u32 clear_color_2;
1533 u64 zero3;
1534 } __attribute__((packed));
1535
1536 /* Flags for mfbd_flags */
1537
1538 /* Enables writing depth results back to main memory (rather than keeping them
1539 * on-chip in the tile buffer and then discarding) */
1540
1541 #define MALI_MFBD_DEPTH_WRITE (1 << 10)
1542
1543 /* The MFBD contains the extra mali_framebuffer_extra section */
1544
1545 #define MALI_MFBD_EXTRA (1 << 13)
1546
1547 struct mali_framebuffer {
1548 union {
1549 struct mali_shared_memory shared_memory;
1550 struct bifrost_multisampling msaa;
1551 };
1552
1553 /* 0x20 */
1554 u16 width1, height1;
1555 u32 zero3;
1556 u16 width2, height2;
1557 u32 unk1 : 19; // = 0x01000
1558 u32 rt_count_1 : 3; // off-by-one (use MALI_POSITIVE)
1559 u32 unk2 : 2; // = 0
1560 u32 rt_count_2 : 3; // no off-by-one
1561 u32 zero4 : 5;
1562 /* 0x30 */
1563 u32 clear_stencil : 8;
1564 u32 mfbd_flags : 24; // = 0x100
1565 float clear_depth;
1566
1567 union {
1568 struct midgard_tiler_descriptor tiler;
1569 struct {
1570 mali_ptr tiler_meta;
1571 u32 zeros[16];
1572 };
1573 };
1574
1575 /* optional: struct mali_framebuffer_extra extra */
1576 /* struct mali_render_target rts[] */
1577 } __attribute__((packed));
1578
1579 #endif /* __PANFROST_JOB_H__ */